
PHYSICAL REVIEW FLUIDS 3, 073701 (2018)

Electrohydrodynamic interaction, deformation, and coalescence of suspended
drop pairs at varied angle of incidence
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The electrohydrodynamic interaction of liquid drop pairs suspended in another
immiscible liquid and subjected to uniform electric field is examined using the leaky
dielectric model and the explicit forcing lattice Boltzmann method, by taking into account
the nonlinear inertia effects. This facilitates explorations of wider parametric contrast,
precise electrohydrodynamic interaction, and postcoalescence breakup phenomena that
remained unknown. The influence of dielectrophoretic and electrohydrodynamic forces
in prolate- and oblate-shaped deformations, coalescences, and repulsive motion of leaky
drop pairs appearing at widely varied incidence angle (α � 0◦) to the applied electric
field is studied. The electrically driven flow at α = 0◦ evolves in the form of decisively
important outflow- and inflow-natured counterrotating vortex pairs in and around the drops.
With suitably tuned conductivity (σin/σout) and permittivity (εin/εout) ratios of drop fluid to
surrounding outer medium, the relative impacts of attractive electric force versus outflow- or
inflow-natured vortex pair-induced hydrodynamic force was optimized to distinctly facilitate
the prolate- and the oblate-type deformations of a drop pair, their coalescence, departure,
and the postcoalescence breakup. For varied εin/εout over a range 0.25 � εin/εout � 20.0,
and using fixed conductivity ratio σin/σout = 5.0 and electric capillary number CaE = 0.46
(the ratio of electric force and surface tension), the dipolar electric force is appropriately set
with respect to the surrounding four outflow-type outer vortex pair-induced hydrodynamic
force to enforce two prolately deformed drops move apart for εin/εout < (εin/εout)crit1 ≈ 2.4
and coalesce for 2.4 < εin/εout < 9.57. The low pressure that grew at the neck of
near-contact or coalescing drops facilitated the transport of inner fluid into neck region
and helped the drop pair’s coalescence. For εin/εout > (εin/εout)crit3 ≈ 9.57, exceeding a
critical value, the deformed oblate drop pair moved closer and coalesced; and depending on
εin/εout the coalesced drop subsequently broke into a number of satellite or daughter drops
spread in a direction perpendicular to the electric field; and such a phenomenon is newly
identified. For the nonaligned drop pairs with α < 54.7◦ or α > 125.3◦, the attractive
radial (Fr ) component of dielectrophoretic force drove two drops closer, while the torque
produced by tangential (Ft ) components of the electric force made them rotate and align to
the electric field upon coalescence. For 54.7◦ < α < 125.3◦ the dipolar radial force (Fr )
appeared repulsive and drop pair moved apart. Importantly for nonaligned drop pairs both
oblate and prolate deformations are noticed, for suitably selected dielectric properties.

DOI: 10.1103/PhysRevFluids.3.073701

I. INTRODUCTION

The response of immiscible conducting liquid drops under applied electric field brings in
promising means of phase separation or transporting liquids in the form of droplets, which include
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dewatering of crude oil via electrocoalescence [1,2], augmentation of electroconvection [3,4], fuel
atomization [5], electrospray mass spectrometry [6], and important biotechnological applications [7].
In addition, in many microfluidic devices the electric field is utilized to control migration, targeted
coalescence, and fission of surfactant stabilized drops, as microreactors, for facilitating mixing of
reagents in biological or chemical assays [8]. The fundamental need of investigating drop’s responses
to an electric field is to extract decisive information on how to efficiently manipulate the behavior of
drops for practical purposes. Moreover, depending on the angle of incidence α of two polarized drops
in an electric field, the attractive- or repulsive-natured force develops via dipole-dipole interaction.
The phenomenon is known as dielectrophoretic effect; and it leads to coalescence or divergence of
emulsion drops. For a pair of leaky dielectric drops suspended in a leaky dielectric emulsion, using
full nonlinear governing equations the present study shows that the electrohydrodynamic (EHD)
flow developed due to interactive tangential electric stress at drop interface facilitates the systematic
outflow and inflow paired vortex dynamics-induced forcing, structural distortion, and breakup of a
coalesced drop in a direction orthogonal to applied electric field. Accordingly, drops deform prolately
or oblately and move closer or apart depending upon chosen conductivity and permittivity ratios of
drop fluid and surrounding fluid.

Considering relatively poor conductive behavior of fluids, the leaky dielectric model of Taylor
[9] predicts the deformation and internal kinetics of a single drop suspended in another immiscible
fluid, when subjected to an external electric field. Due to low conductivity, a small amount of electric
current develops on the drop under the influence of the applied electric field and facilitates the
surface charge built up along the periphery. The accumulated charges effectively modify the local
field strength and help growth of the tangential component of electrical shear force along a charged
drop interface, in addition to electric pressure. The tangential electric shear force in turn drags
neighboring bulk fluid into motion that helps creating the dynamically important near-surface vortex
pairs. The resulting physical interaction accordingly affects the interfacial stability and spreading
of the leaky dielectric drops via the symmetrically paired vortex motion-induced thrust. While the
accompanying interface distortion coupled with surface tension balance the normal component of
the electric stress, the tangential electric shear stress contributes to oblate- or prolate-type drop
deformations. Based on Taylor’s leaky dielectric model [9], efforts have been made over the past
years to examine EHD problems both experimentally [10] and theoretically [11–16] to understand
response of various emulsion drops in externally applied electric field. Notably, the experimental
study of Torza et al. [10] exhibits the growth of the oblate- and prolate-shaped drops depending on
varied fluid properties (permittivity and conductivity) that facilitated small deformation. Moreover,
for large nonlinear deformations the reported deviation from the linear theory is effectively resolved
with the inclusion of the higher order terms [11] in the original asymptotic model [9]. The recent
finding of Lac and Homsy [12] supports such a conjecture, and the authors extend their investigation
to explore the drop’s approach to different breaking modes in the Stokes regime. The influence of
the viscosity contrast on the instability or breakup of a drop is theoretically addressed by Lac and
Homsy [12]. In addition, the past researchers [17,18] elaborate important influences of the EHD
vortices around a leaky dielectric drop, when exposed to an external electric field.

However, multiple drop dispersion is encountered [19–25] in many practical applications. For
aligned two-drop system, the asymmetric electric field, compared to a symmetric state that persists
with an isolated drop, is produced due to presence of the neighboring drop. The phenomenon that the
intensity of the electric field at one side of a drop is stronger than that at another side is the well-known
dielectrophoresis effect [20]. Based on the dipole argument, Atten [21] examined electric interaction
between two close emulsion drops in the form of electrostatic forces located at drop centers. For
small separation distance, Atten et al. [22] show that the nondimensional critical distance for two
drops that can facilitate coalescence is scrit/R0 ≈ 0.63s0/R0 and the critical magnitude of applied
electric field Ecrit ∼ s1.30

0 , where s0 is the distance and R0 is radius of the undistorted drops aligned
along the direction of the electric field. Moreover, Bird et al. [23] show that, above a critical electric
capillary number (CaE) a drop pair aligned to an electric field does not always coalesce even after
contact, and they attribute the process to the cone angle and pressure gradient that form at the neck
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region. On the other hand, recently Eow and Ghadiri [24] experimentally examined response of a
pair of suspended drops at varied inclination α with the applied electric field and observed mutual
attraction and repulsion behaviors, depending on the angle α between the electric field and the line
joining mass centers of two drops. Later, Mhatre et al. [25] examined the electrocoalescence of two
drops. However, the precise electrohydrodynamic interaction, possible prolate- or oblate-shaped
deformation of nonaligned drops (α > 0◦), and decisive governing physics that impacts coalescence
or repulsion remained practically unknown. The present study aims to add significantly to the existing
knowledge of electrocoalescence plus postcoalescence breakup of a leaky dielectric drop pair by
appropriately analyzing the competitive roles of electric force and electrically induced hydrodynamic
influence via the created inflow and outflow paired vortex dynamics, by using widely varied electric
field strength, fluid properties, and incidence angle α.

Notably, using the Navier-Stokes equation, Hua et al. [15] shows that for an isolated leaky
dielectric drop the symmetrically paired vortical flow that develops in the near-field practically
balances the tangential component of interfacial electric stress. However, for two adjacent drops in
proximity the imbalance created by electrically induced asymmetrical vortical flow plus developed
pressure gradient (e.g., Bird et al. [23]) around one drop can have significant impact on the other
drop. Based on creeping flow conditions and far-field argument Baygents et al. [26] postulate a kind
of hydrodynamic interaction for two leaky dielectric drops aligned to (α = 0◦) an external electric
field, where bulk fluid motion produced by the tangential electric stress is thought to influence a drop
pair move closer or apart depending on the sense of near-surface circulation. However, the role
of important outflow-natured near-interface vortex pairs remained practically unknown. Moreover,
Zhang et al. [27] investigated the collision or coalescence of two conducting drops using a trajectory
analysis. Although, unlike with leaky drops suspended in leaky dielectric fluid, the electrically
driven near-interface vortices were absent for the conducting drops [27] placed in a perfect dielectric
fluid. Accordingly, the electrically driven hydrodynamic interaction was not explored in previous
studies [28–30], as authors addressed issues related to perfect conductors or perfect dielectrics.
Hereby unambiguous and clear evidences are provided to reveal how exactly the EHD interaction
generated inflow and outflow paired near-field vortical motion in leaky dielectrics plays a competitive
or supporting role together with the electric interaction to control the drop pair’s dynamics, prolate-
or oblate-type deformations, and coalescences, over a wide range of incidence angle α. Moreover,
the present nonlinear model captures the new modes of postcoalescing breakup of a pair of leaky
drops at α = 0◦, for sufficiently high electric capillary number (CaE).

To reveal the governing flow interaction, an improved explicit forcing lattice Boltzmann method
(LBM) is employed hereby. The mesoscopic approach [31,32] has benefit that the evolving interfaces
do not require special tracking or reconstruction at each time step and arise naturally as the part of
adopted liquid-liquid phase separation model. Instead of Shan and Chen [33] model, in this study we
have employed the improved explicit forcing model of Porter et al. [34]. The LB model of Porter et al.
[34] uses higher-order isotropy in the evaluation of fluid-fluid forces and reduces the magnitude of
spurious currents in vicinity of the interface. The relative performances of the above said two models
are also extensively demonstrated, as appeared appropriate. The detailed theoretical background for
the EHD interaction and the implementation of the LBM are presented in Sec. II. Subsequently, in
Sec. III, the computation of the droplet’s surface tension is elaborated. This is followed by extensive
validation of the adopted solution algorithm, showing comparison our simulated results with the
available recent theoretical or numerical results for an isolated drop [12,14,50], and with results
reported for a coalescing drop pair [25] using boundary element method (BEM). Thereafter, the
motion or deformation of leaky dielectric drop pairs are systematically investigated first, as they
remained aligned (α = 0◦) with the applied electric field. Using varied field properties, the important
driving factors are ascertained in order to demonstrate relative roles of electric interaction and paired
vortex dynamics-induced hydrodynamic interaction. Finally, the effect of varied inclination α of
two suspended nonaligned drops on their rotating motion, prolate- or oblate-type coalescences,
and drifting are systematically explored to present a comprehensive understanding of the physical
scenarios.
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FIG. 1. Sketch of two identical drops appearing at an angle α to the electric field E and placed at a distance d

apart. The radial (Fr ) and tangential (Ft ) components of the induced electric force are shown to act at respective
drop centers.

II. THE GOVERNING EQUATION AND THE NUMERICAL METHOD

The important work of Baygents et al. [26] is followed to formulate the model problem. However,
instead of solving Stokes equation, hereby full nonlinear effects are taken into account to explore
precise flow interactions and governing physics. We consider two uncharged liquid drops of identical
property and radius R (Fig. 1), placed in an immiscible liquid subjected to uniform electric field E.
The liquids inside and outside the drops are assumed incompressible (of equal density ρ), Newtonian,
and leaky dielectrics [35], and have viscosities μin, μout, permittivities εin, εout, and conductivities
σin, σout, respectively. The initial center-to-center separation distance of two drops is d, and the
interfaces separating two immiscible fluids have constant surface tension γ . Here we ignore the
impacts of gravitational force and buoyancy effect.

A. The leaky dielectric model

The leaky dielectric theory of Taylor [9] and Melcher and Taylor [35] is used here to model
the electrical response of the suspended drops in a surrounding fluid medium. For the investigated
dielectric-dielectric system the magnetic induction effect is ignored, and electrostatic equations
become an accurate approximation. Since the propagation time for electromagnetic waves is much
faster compared to characteristic timescale of the induced hydrodynamic motion, the small ionic
charges are assumed to be present only at interface, and the concept of diffuse (Debye) layers
(volumetric charges) becomes irrelevant. Accordingly, the electrical phenomena are governed by

∇ × �E = 0. (1)

Moreover, Gauss’s law in a dielectric fluid medium of permittivity ε, when written in terms of
electric displacement �D(=ε �E), becomes the following [Eq. (2)], where qv denotes the volume density
of free charge:

∇ · �D = ∇ · (ε �E) = qv. (2)

Additionally, the charge conservation equation is expressed as

∇ · �J + Dqv

Dt
= ∇ · (σ �E) + ∂qv

∂t
+ �u · ∇qv = 0, (3)

where �J = σ �E is the current density due to conduction, σ is the electrical conductivity, D/Dt
denotes the material derivative, and �u is the local fluid velocity. Inserting Eq. (2) into Eq. (3), one
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obtains

qv = qv,0e
− σ

ε
t , (4)

where subscript 0 represents the initial time, and a field variable χ above corresponds to both χin

and χout.
Equation (4) shows the charge density in the neighborhood of a fluid particle decays with

relaxation time te = ε/σ . The hydrodynamic timescale for the motion is given by tυ = ρR2/μ.
Based on Melcher and Taylor’s theory [35], for a conductive fluid with te � tυ , any existing free
charge instantly accumulates at interface and charge conservation occurs faster than fluid response.
Consequently, for a leaky dielectric model, the free charge in bulk fluid is zero and the charge is
constrained on the surface, that is Dqv/Dt = 0, and Eq. (3) becomes

∇ · (σ �E) = 0. (5)

Moreover, in terms of the electric potential (V), the electric field strength can be written as

�E = −∇V. (6)

Combining Eqs. (5) and (6), the governing equation for the electric field (potential) can be obtained
as

∇ · (σ∇V ) = 0. (7)

On a fluid-fluid interface the electric potential (V) and the tangential component of the local
electric filed (E) are assumed continuous,

�t · �Ein = �t · �Eout, Vin = Vout, (7a)

where �t is the unit tangent vector at the interface.
However, owing to mismatching electrical property of inner and outer fluids, the jump of normal

component of local electric field generates surface charge q(�x), that is calculated through Gauss’s
law,

q(�x) = [[ε �Ex]] for x ∈ S, (7b)

where, [[·]] denotes jump across the interface, and S denotes droplet surface. Over the years two
methods are employed [12,14,15,27,36,37] to describe the surface charge. One method takes into
account the Ohmic current from the bulk and advection by fluid flow on the drop surface. Therefore,
it is governed by the following charge conservation equation [36,37]:

∂q

∂t
+ [[σ �En]] + ∇S · (q �v) = 0 for x ∈ S, (7c)

where, ∇S is the gradient operator and �v is the fluid velocity on the surface.
The second method neglects the unsteady term and surface charge convection [12,14,15,27], so

the Eq. (7c) reduces to simpler surface condition, that is, the continuity of the current:

[[σ �En]] = 0. (7d)

The electrohydrodynamic phenomenon arises due to the generated electric stress at the interface.
However, the electric forces are essentially exerted on interfacial free charges and charge dipoles
rather than on the dielectric fluid. Therefore, the electric body force ( �FE) can be described [35–37]
in terms of divergence of the Maxwell stress, σ M = ε �E �E − ε

2 [1 − ρ

ε
( ∂ε
∂ρ

)]E2 I ; and
−→
FE coupled

with hydrodynamic and surface tension forces drive the EHD flow in a medium of continuously
varying permittivity and bulk charges. The electric force (

−→
FE) per unit volume, as calculated by

taking divergence of the Maxwell stress tensor, becomes

�FE = ∇ · −→σM = qv
�E − 1

2
�E · �E∇ε + ∇

(
1

2
�E · �E ∂ε

∂ρ
ρ

)
. (8)
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Under the assumption of incompressibility, by inserting electric body force together with surface
tension force into the Navier-Stokes equation, one obtains the governing equation [e.g., Eq. (20)
in Hua et al. [15]] for the EHD flow phenomenon, known as the leaky dielectric model. The
relevant boundary conditions at the interfaces are the continuity of the velocity, �uin = �uout, and

balancing the jump in total stress and interfacial tension, [[�n · �TH
]] = γ κ �n − [[�n · �TE

]], where
κ = [(I − �n �n) · ∇] · �n is the mean curvature of the interface, and [[·]] denotes jump in hydrodynamic

( �TH
) and electrical ( �TE

) stresses across the interface. For the present numerical investigation,
the suitable lattice Boltzmann (LB) collision operator to model the nonlinear EHD interactions
is elaborated in Secs. II C 1 and II C 2.

Notably, over the years the response of an isolated leaky dielectric drop, suspended in an
immiscible leaky dielectric medium and subjected to uniform electrostatic field, is extensively
examined [9–18]. Due to developed interfacial stresses, the drop experiences prolate or oblate
deformation. Torza et al. [10] and Baygents et al. [26] present the expression for the drop deformation
D in terms of the fluid properties as

D = L − B

L + B
= 9fd

16
(
2 + σin

/
σout

)2 CaE (9)

fd =
(

σin

σout

)2

+ 1 − 2
εin

εout
+ 3

5

(
σin

σout
− εin

εout

)(
2 + 3 μin

μout

)
(
1 + μin

μout

) , (10)

where L is end-to-end length of a deformed drop measured along the applied electric field, B is the
maximum drop width perpendicular to the electric field, and CaE(= εoutE

2R
γ

) is the electric capillary
number (the ratio of electric force and surface tension γ ). Herein, the subscripts in and out correspond
to drop-fluid and bulk fluid properties, fd is the discriminating function, and R is the initial drop
radius. When fd > 0, the drop deforms into prolate form, and for fd < 0 the drop assumes the oblate
shape.

Additionally, for the leaky dielectric drop the systematic vortical or recirculatory flows are
generated both inside and outside by virtue of the developed tangential component of the electric
stress at the interface. The resulting tangential velocity at the surface is expressed as [26]

uθ = − 9
(

σin
σout

− εin
εout

)
5
(
1 + μin

μout

)(
σin
σout

+ 2
)2 cos θ sin θ, (11)

where θ is the angle between the line joining the drop center and the point on the interface, and
the direction of applied electric field. From Eq. (11), it becomes clear that two types of near-field
circulations can occur, and their senses are determined by the sign of σin/σout − εin/εout. Furthermore,
the interfacial viscous stress imposed by the vortical circulations can promote prolate or oblate
deformation of a leaky dielectric drop.

B. The electrohydrodynamic interaction

In a homogeneous medium, the net force generated around an isolated drop under the influence
of uniform electrostatic field is zero, and there occurs no motion of the center of mass. However, in a
coupled two-drop system, the presence of another neighboring leaky dielectric drop disturbs uniform
electric field as induced by an individual drop, and the resulting electric field strength for two dielectric
drops is larger than that in far field. Thus, a nonzero net force acts on the drop pair in the direction
of the electric field gradient. The typical phenomenon is the well-known dielectrophoresis [20].
By employing the so-called point-dipole model Chiesa et al. [38] estimate electrostatic interaction
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between two suspended drops as the force between two dipoles located at drop centers. The resulting
radial (Fr ) and tangential (Ft ) components of the electric force, as shown in Fig. 1, are expressed
as

Fr = 12πεoutE
2
∞R6β2

d4
[3(cos α)2 − 1], (12)

Ft = −12πεoutE
2
∞R6β2

d4
sin 2α, (13)

where d is the center-to-center distance between two drops, α is the angle between the applied electric
field and the line joining two drop centers, and β is given by

β = 1 − 3

/(
εin

εout
+ 2

)
. (14)

As mentioned above, two types of vortical circulations can occur due to the applied electric
field; sense of which is determined by the sign of σin/σout − εin/εout. According to Baygents et al.
[26] at α = 0◦ the dipolar far field (hydrodynamic or electrical) would create essential vortical
outer circulations to enforce a drop pair either move closer or apart; for σin/σout > εin/εout the
vortical circulations around one drop shall push the second drop away, and for σin/σout < εin/εout the
circulations around one drop will pull the second drop closer. The postulated EHD interactions [26]
can apparently outline drop pair’s relative motion. However, virtually no experimental or numerical
exploration is available in literature that could help better comprehend the related physics or kinetics
that is essentially based on established principles of paired vortex dynamics. Moreover, the presented
scenarios like breakup of a droplet upon coalescence remained unknown. A systematic numerical
study is conducted here by taking into account full nonlinear effects, widely varied dielectric
properties, and aligned and nonaligned electric field, with an objective to unfold precise physical
mechanisms that control a drop pair’s relative motion, prolate or oblate deformation, coalescence,
and postcoalescence breakup.

C. The numerical method and implementation

1. The explicit forcing interparticle-potential Lattice Boltzmann Method

Important to mention at this point that, in the Shan and Chen [33] model the external forces that
introduced into the discrete Boltzmann equations through an equilibrium velocity shift bring in some
inherent error [39] and produces relaxation time dependent solution for the multiphase flow, leading
to creation of large spurious eddies in vicinity of interface. As a remedy, Porter et al. [34] recently
proposed the explicit forcing LB model wherein the forcing term is directly incorporated into the
discrete Boltzmann equation. In the present work, we have implemented below the recent LB model
of Porter et al. [34], which is substantially improved on various fronts [39,47]. The LB model is
expressed as

f k
l (�x + �el�t, t + �t) − f k

l (�x, t)

= −f k
l (�x, t) − f

k(eq)
l

(
nk,�ueq

k

)
τ k

+ �t

(
1 − 1

2τ k

)(�el − �ueq

k

) · �Fk

ρkc2
s

f
k(eq)
l

(
nk,�ueq

k

)
, (15)

where, f k
l (�x, t) is the probability distribution function of the kth component in the direction of lth

molecular velocity (−→el ) at a position �x at time t , and τk is the nondimensional relaxation time.
Herein, as evidenced below, the adopted D2Q9 [34,40] model efficiently and accurately predicts
the multiphase flow interactions. The f

k(eq)
l (nk,�ueq

k ), representing local Maxwellian equilibrium
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distribution, is given by [13,34,40,41]

f
k(eq)
0 = αknk − 2

3
nk �ueq

k · �ueq

k ,

f
k(eq)
l = (1 − αk)nk

5
+ 1

3
nk

(−→
el · �ueq

k

) + 1

2
nk

(−→
el · �ueq

k

)2 − 1

6
nk �ueq

k · �ueq

k for l = 1–4, (16)

f
k(eq)
l = (1 − αk)nk

20
+ 1

12
nk

(−→
el · �ueq

k

) + 1

8
nk

(−→
el · �ueq

k

)2 − 1

24
nk �ueq

k · �ueq

k for l = 5–8.

The discrete molecular velocity −→
el is expressed as

−→
el =

⎧⎪⎨
⎪⎩

�0, l = 0,[
cos (l−1)π

2 , sin (l−1)π
2

]
, l = 1–4,√

2
{
cos

[ (l−5)π
2 + π

4

]
, sin

[ (l−5)π
2 + π

4

]}
, l = 5–8

⎫⎪⎬
⎪⎭. (17)

In Eqs. (16), the parameter αk is related to the speed of sound in the D2Q9 [40] model and is
given by (ck

s )2 = 0.6(1 − αk). nk is the total number of density of the kth component, defined by
nk = ∑

l f
k
l . The mass density of the kth component is ρk = mknk = mk

∑
l f

k
l ; where mk is the

kth molecular mass. The kth component of fluid velocity �ueq

k at the equilibrium state is determined
by

�ueq

k =
(

s∑
k=0

ρk �uk

τk

)/(
s∑

k=0

ρk

τk

)
, (18)

ρk �uk =
∑

l

f k
l �el + 0.5�t �Fk, (19)

where S + 1 represents total number of components in the multiphase system, �Fk is total force acting
on kth component, including fluid-fluid interaction ( �F int

k ) and electric ( �F ele
k ) forces, as appropriate

for this work.
In the interparticle potential model, the interactive force between particles of the kth component

at location �x and the k̄th component at the location �x ′ is assumed to be proportional to product of
the effective number density ϕk(nk), which is defined as a function of local number density [34,40].
Following past investigations [13,40,42], ϕk(nk) is chosen here as nk . Thus, the total interaction force
acting on the kth component at �x is given by

−→
F int

k (�x) = −nk(�x)
∑
x ′

∑
k̄

Gkk̄(�x,�x ′) nk̄(�x ′) (�x − �x ′). (20)

Here Gkk̄(�x,�x ′) is the Green’s function that satisfies Gkk̄(�x,�x ′) = Gk̄k(�x,�x ′) and the magnitude of
which controls the strength (gkk̄) of the interaction potential. For the D2Q9 lattice arrangement, we
adopt a method similar to that proposed by Marty and Chen [43] to obtain the required interaction
potential, by projecting the four-dimensional face-centered hypercubic (4D FCHC) lattices to the
present D2Q9 format. Consequently, the potential that couples nearest and next nearest neighbors
becomes

Gkk̄(�x,�x ′) =

⎧⎪⎨
⎪⎩

gkk̄, |�x − �x ′| = 1
gkk̄

4 , |�x − �x ′| = √
2

0, otherwise

⎫⎪⎬
⎪⎭. (21)
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The whole fluid velocity (�u) is thereby expressed in the following form:

�u =
∑

k ρk �uk∑
k ρk

. (22)

And the kinematic fluid viscosity is expressed as

υ = 1

3

∑
k

ρkτk

ρ
− 1

6
. (23)

Accordingly, for the kth component, the viscosity is reduced to

υ = 1
3τk − 1

6 . (24)

2. The LBM approach for computing the electric field and treatment of interface

In principle, the governing electric potential equation [Eq. (7)] is an elliptic equation, while LBM
is a method that essentially solves parabolic equation. Thus, the solution of Eq. (7) is conveniently
obtained (e.g., He and Li [44]; Guo et al. [45]) as the steady solution of the following equation
[Eq. (25)] in the LBM timescale:

∂V

∂t
+ ∇ · (σ∇V ) = 0. (25)

For this, the new particle distribution function hl is introduced [44,45] and expressed as

hl(�x + �el�t, t + �t) − hl(�x, t) = −hl(�x, t) − h
eq

l (�x, t)

τh
. (26)

The corresponding equilibrium distributions h
eq

l and the relaxation time τh are expressed as

h
eq

0 = 4
9V,

h
eq

l = 1
9V, l = 1–4, (27a)

h
eq

l = 1
36V, l = 5–8,

τh = 3σ + 0.5, (27b)

where σ represents a combination of electric conductivities, as described below. Based on Eqs. (26)
and (27), Eq. (25) can be recovered using Chapman-Enskog expansion [46], while electric potential
V is defined as

V =
∑

l

hl . (28)

Notably, the influence of the electric field in the EHD motion activates through the Maxwell’s stress
that is developed due to different fluid conductivity and permittivity and/or electric field strength.
In numerical algorithms solving the two-phase hydrodynamics (e.g., Kang et al. [42,47]), the sharp
interface is often treaded as a diffused one, spanning over a thin region (of three grid size [14,42])
wherein physical properties continuously and smoothly transit from a value of one phase to that of
another phase. Therefore, the electric force existing on the interface is induced by the nonuniform
dielectric properties (σ and ε). Here we employ the following interpolation process to calculate the
electric field properties:

ρε = εinρin + εoutρout ,

ρσ = σinρin + σoutρout , (29)

where ρ(=ρin + ρout) denotes total density for the mixture. For clarity, the computed variations of
ρin, ρout , ε, across a drop interface, the invariances of the flow interaction and the resulting interfacial
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TABLE I. The computed deformation rate D of a drop for implemented various domain sizes; CaE = 0.18,
εin/εout = 10, and σin/σout = 1.81.

Domain size/lattices 128 × 128 256 × 256 300 × 300
Radius 14 14 11 14 16
D (deformation rate) 0.162 0.1632 0.1634 0.16325 0.1631

tangential electric stress upon using Eq. (29) and a proposed new formula [Eq. (A1)] are elucidated in
Appendix A.

In addition, for dealing with two different fluids, the electric force �F ele
k obtained from the

Maxwell’s stress needs to be separated into two parts and suitably applied for each set of fluid
properties. In a way consistent to Eq. (29), we divide this force according to density ratio as

�F ele
k = ρk

ρ
�FE, k = 1,2. (30)

Note however that, the condition of isotropy [34] is broadly imposed while calculating the
−→
FE .

III. RESULTS AND DISCUSSION

Before presenting detailed simulated results, first, effect of the computational domain size is
examined to employ an appropriate flow configuration and avoid any unphysical influence. Table I
presents computed deformation rate D of a drop using different lattice sizes and CaE = 0.18,
εin/εout = 10, σin/σout = 1.81. Notably, Table I shows that lattice numbers greater or equal to
256 × 256 are sufficiently large to generate the domain size-independent numerical results. Second,
the computed D at CaE = 0.18, εin/εout = 10, σin/σout = 1.81, for three different drop radii, as
presented in Table I, reveals that D remains virtually unchanged when the domain is covered
by 300 × 300 lattices. Accordingly simulations are carried out in two dimensions in a domain
covered by 300×300 D2Q9 lattices with implemented periodic conditions for fluid motion in both
directions (Fig. 1) and the Neumann-type spanwise boundary condition (∂V/∂y = 0) for the electric
potential. In the first part of the study (Sec. III C), two leaky dielectric drops are symmetrically
placed at α = 0◦ in a domain filled with another immiscible leaky dielectric fluid. The system
remains exposed to the uniform electric field that is generated by maintaining the (constant)
higher and lower electric potential at left (V+) and right (V−) boundaries of the domain. The
molecular mass (mk) is set to be 1.0. To examine the influence of the electric field on the drop-drop
response, the densities of the drop fluid and the surrounding fluid are assumed to be identical. It
may be noted from Eqs. (9)–(11), the drop deformation (D) and interface velocity (uθ ) are weak
functions of fluid viscosity. Therefore, the viscosity ratio was fixed to be 1.0 (i.e., μin/μout = 1).
Additionally, in the adopted explicit forcing LBM formulation [34] the interaction potential strengths
are appropriately selected as g12 = g21 = 0.275, g11 = g22 = 0.0, and the relaxation time τk is
chosen as 1.0. Moreover, in Appendix B we describe how the present explicit forcing LB model
[34] drastically reduces the spurious currents [39] in a drop with respect to the Shan and Chen [33]
model.

A. Computation of surface tension

Now, the bubble test [42] is performed to calculate surface tension γ of a drop suspended in
another fluid, which also helps to validate the adopted LB approach. For this, in the absence of
electric field, a circular drop (of radius R) of one fluid is placed symmetrically in a (2D) domain
filled with a second fluid. At equilibrium, the pressure jump (pin − pout) created across the drop
interface (in absence of body force) is balanced by the surface tension γ . The evolution of the drop
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FIG. 2. Computation of surface tension for a single drop through Laplace’s law. The slope (surface tension)
is 0.268.

is governed [48] by the Laplace’s law,

pin − pout = γ /R, (31)

and the pressure p for the whole fluid is expressed as [40]

p = 1

3

∑
k

nk + 3

2

∑
kk̄

gkk̄nknk̄. (32)

In a 300 × 300 lattice structure, the initial density for component 1 was set as 2.0 in the drop and
0.01 for outer fluid; whereas the density for component 2 was initially set to be 0.01 for the drop and
2.0 elsewhere. Simulations for the multicomponent fluid flow with different component densities are
then conducted with various R, and the resulting pressure difference pin − pout is computed at the
steady state. Since LBE is a dynamical procedure, the static state for the drop is achieved through
time evolution of about 15 000 time steps. Figure 2 presents the computed pin − pout for varied R,
together with the fitted solid line that obeys the Laplace equation [Eq. (31)]. Notably, the computed
slope, that is, the surface tension becomes γ = 0.268. The observed linear fit (in Fig. 2) between
computed pin − pout and 1/R is clearly consistent with the Laplace equation.

B. The validation of the explicit forcing LBM model for computing EHD drop deformation

In this section, first, the EHD behavior of a single leaky dielectric drop suspended in another
leaky dielectric fluid and subjected under an applied electric field is numerically studied using
the LBM approach. In recent years the leaky model is broadly used [12,15,49] to predict small
drop deformation. Extensive simulations are performed here for varied electric capillary number
(CaE), conductivity ratio (σin/σout), and permittivity ratio (εin/εout) to examine the physical
transformation of a single drop and demonstrate efficiency and accuracy of the adopted numerical
methodology in correctly predicting the EHD interaction. For the simulated flows, following Feng
and Scott [49], the Reynolds number Re is calculated or reported based on the maximum interface

velocity u = 9R εinE
2
∞

10 μin
[| εout

εin

σin
σout

− 1|/(2 + σin
σout

)2(1 + μout

μin
)] and the drop radius R.

Figure 3(a) presents our computed results of (single) drop deformation D for varied CaE (up
to onset of breakup), together with available theoretical or numerical results [12,50]. First, for
the case [12] of the simulated oblate deformation at σin/σout = 0.1, εin/εout = 2.0, CaE � 0.32,
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FIG. 3. (a) Computed effect of the electric capillary number (CaE) on the deformation rate D of a drop and
comparison between present result and available numerical predictions [12,50] for σin/σout = 0.1, εin/εout = 2.0,
0.54 � Re � 4.09; (b1) simulated variation of D with σin/σout and comparison with existing numerical results
[14] at εin/εout = 10.0, CaE = 0.18; (b2) the computed prolate drop deformation (red solid curve is the interface)
and electrically induced velocity field at σin/σout = 14.5, εin/εout = 10.0, CaE = 0.18; (b3) computed oblate
drop deformation and induced velocity at σin/σout = 1.81, εin/εout = 10.0, CaE = 0.18; (c) sketches of locally
grown inflow- and outflow-type vortex pairs and induced influences.
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Fig. 3(a) shows that for small D the present results agree very well with the results of Lac and
Homsy [12]. However, for larger deformation the observed deviation occurs possibly because of
relatively higher Re (0.54 � Re � 4.09) used in the present nonlinear model and assumed 2D
character of the flow interaction; whereas Lac and Homsy [12] studied the axisymmetric case under
creeping condition. On the other hand, our simulated D [Fig. 3(a)] appears quite similar to the 2D
nonlinear solution of Paknemat et al. [50], obtained via level set method. Notably, as CaE exceeds
certain critical value, the droplet exhibits breaking behavior [12,50]. The critical electric capillary
number (CaE,c) that facilitates onset of breakup is computed here by minutely varying CaE ; and
our predicted CaE,c = 0.322 compares closely with the value CaE,c1 = 0.297 obtained by Lac and
Homsy [12] (using BEM), and with CaE,c2 = 0.321 of Paknemat et al. [50]. The noted relatively
early breakup [12] of an axisymmetric drop in Stokes regime can be influenced by transverse shear
or curvature. For further clarity, Fig. 3(b1) displays our computed D and numerical results of Tomar
et al. [14] for increased σin/σout over 1.81 to 14.5, while εin/εout = 10.0, CaE = 0.18 kept fixed.
It shows, the present results virtually coincide with those of Tomar et al. [14]. Moreover, as drops
of varied σin/σout changed shape, Figs. 3(b2) and 3(b3) captures computed physical transformation
of a drop in the range 1.81 � σin/σout � 14.5, while εin/εout = 10.0, CaE = 0.18 kept fixed. Note
that, the drop transforms from prolate [Fig. 3(b2); σin/σout = 14.5] to oblate shape [Fig. 3(b3);
σin/σout = 1.81] for gradually decreased σin/σout. The discriminating function fd [Eq. (10)] which
depends on fluid properties is known to determine [10,26] the axial drop deformation, and our results
[Figs. 3(b2) and 3(b3)] clearly follow the stated analytical condition. In addition, Figs. 3(b2) and
3(b3) reveal that besides shape change, the sense of internal kinetics or vortices in a drop is clearly
dependent on the sign of σin/σout − εin/εout. Note that, for σin/σout > εin/εout the circulation in
first quadrant is clockwise [Fig. 3(b2); σin/σout = 14.5, εin/εout = 10.0], and for σin/σout < εin/εout

the said circulation [Fig. 3(b3); σin/σout = 1.81, εin/εout = 10.0] nature is distinctly reversed. The
important fact to note in Figs. 3(b2) and 3(b3) that, irrespective of prolate or oblate shapes, drops
inevitably appear elongated along the direction of the dominant outflow-natured or outward-moving
near-interface outer vortex pairs that formed at their major-axis ends. On the other hand, presented
consistent variations (Fig. 3) of our simulated results with existing findings [12,14,50] demonstrate
that the adopted explicit forcing LBM method can correctly predict the EHD flow physics of
suspended drops. For clear understanding, a sketch showing outflow-type outward (horizontal)
motion of two outer vortex pairs and the induced prolate deformation of a drop is presented in
Fig. 3(c).

C. EHD interaction of drop pairs at α = 0◦

For the leaky dielectric drop pair [Fig. 4(a)] aligned along the direction of an applied electric field
(α = 0◦), the mutual interaction is driven by two distinct mechanisms. (i) The electric interaction
by induced electric field [Eqs. (12)–(14)] which develops in the presence of the second drop in
vicinity and creates local imbalance, helping generation of a far-field dipole that tends to drive two
drops closer. (ii) The electrically driven hydrodynamic interaction owing to bulk fluid circulation
produced [see Eq. (11)] via the interfacial stretching and dynamics of drops, that is capable of
inducing attractive or repulsive forces between a drop pair (depending on sign of σin/σout − εin/εout)
as discussed in Sec. II B. From Eqs. (11)–(14) it becomes clear that the permittivity contrast εin/εout

can be a sensitive factor for effectively manipulating the above said two physical mechanisms or
interactions. Guided by such an intuition, and to provide clear understanding of diverse drop-drop
or drop-fluid interactions and related physics, the systematically planned simulations are performed
here using full nonlinear set of equations. For the sake of clarity (and displaying essential validity
of the LB approach) at this point we compute the tangential electric stress that developed along
the interface of the left-side drop, as drop pair was placed in the electric field. For a test case of
d0/R = 2.2, εin/εout = 1.0, σin/σout = 10, Fig. 4(b) presents a comparison of our simulated results
with the theoretical solution of Sozou [51] and BEM solution of Baygents et al. [26]. It is worthy
to note that, in Sozou’s study [51] two restrictions were present. First, no relative motion occurs
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FIG. 4. (a) A sketch of two identical liquid drops aligned with the direction of the applied electric field.
(b) The computed tangential electric stress (τ ) along the interface of the left-side droplet for d0/R = 2.2,
εin/εout = 1.0, σin/σout = 10, and comparison with Stokes solution of Baygents et al. [26] and Sozou [51].
(c) The computed drop velocity (u) with varied permittivity ratio (εin/εout) at fixed σin/σout = 5.0, CaE = 0.46.
The positive u values represent divergence of two drops, while negative u shows two drops move closer. PR
denotes prolate, OB denotes oblate shape; exponents +/− denote two outflow-type outer vortex pairs induced
equator to pole and pole to equator flow directions, as shown in insets; div denotes divergence of two drops,
and coa denotes coalescence of two drops.
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between two equivalent creeping drops, and second, the drops retain the spherical shape. In our
study, we relax these constraints and take into account the influence of advection; demonstrating that
due to droplet deformation and relative motion the location of the maximum tangential electric stress
moves leftward [Fig. 4(b)] on the left half, and persisting relatively stronger tangential electric stress
for θ > 90° results owing to development of higher local curvature on the leading face. However,
while being closely consistent to reported [26,51] linear theory, the presented results in Fig. 4(b)
further exhibit the suitability of the adopted method in correctly simulating EHD interactions. Now
we focus on exploring detailed physics that lead to electrohydrodynamic interaction or coalescence
for a drop pair at α = 0◦.

Figure 4(c) presents the important characteristic signatures of coupled drop-drop motion under
widely varied 0.25 � εin/εout � 20.0, when σin/σout = 5.0, CaE = 0.46 kept fixed, and initial center-
to-center separation of the drops [Fig. 4(a)] is set to d = 4R. The characteristic drop velocity u at
a particular εin/εout is calculated following the relative motion of drop centroids over a specified
time interval �t , and the sign of u, negative or positive, is decided depending on whether the
drops move closer or apart. As Fig. 4(c) shows, a drop pair experiences four distinct classes of
movement or deformation mechanisms over stretches: (i) A (0.25 � εin/εout < 2.4; divergence as
the PR+ drop pair), (ii) B (2.4 < εin/εout < 5.0; coalescence as the PR+ drop pair), (iii) C (5.0 <

εin/εout < 9.57; coalescence as PR− drop pair), and (iv) D (εin/εout > 9.57; coalescence in the
OB− form, and subsequent breakup in a direction orthogonal to applied electric field), for varied
εin/εout.

1. Relative motion and prolate departure or coalescence in stretches A, B, and C

Equations (12)–(14) reveal, at α = 0◦ only the radial component Fr of electric force exists.
However, for increased εin/εout the radial force Fr increases, that influences a drop pair to move closer.
Additionally, Eq. (11) shows, the variation of εin/εout, in addition to changing the sign of σin/σout −
εin/εout, also alters the magnitude of the interfacial velocity uθ on which the strength of the bulk flow
depends. First, for the stretch A [Fig. 4(c)] a smaller εin/εout (<2.4) weakens the attractive-natured
electric force Fr [Eqs. (12) and (14)] that could have otherwise facilitated the drop pair’s coalescence.
The second important fact to note from Eq. (11) that, a smaller εin/εout in A creates a stronger bulk
flow; and the resulting vortex dynamics-induced forcing, as clearly evidenced below, is responsible
for decisively dictating the drop pair move (u > 0) apart. Moreover, σin/σout − εin/εout > 0
over the stretch A. Accordingly throughout A the electrically driven (repulsive) hydrodynamic
interaction dominates over (attractive) electric interaction to dictate the drop pair’s diverging motion
[see u > 0 in A; Fig. 4(c)].

To gain clearer insight, in Figs. 5(a1) and 5(a2) we now present transient drop deformation or
divergence mechanisms and associated EHD flow phenomena at εin/εout = 1.0 that correspond to
stretch A [Fig. 4(c)]. Note that, as Fig. 5(a1) reveals, two drops (at εin/εout = 1.0) deform prolately
while moving apart; in clear agreement with existing linear theory [26], when fd > 0 [Eq. (10)].
Figure 5(a2) unfolds the precise induced vortical kinetics, covering both outer as well as inner regions
around the drop pair at t = 1.8T (where T denotes 500 lattice unit time). Notably, inside the drops, in
terms of the left-right distribution, two dominantly asymmetric vortex pairs are formed. For the left
drop, the left-side (with respect to vertical line of symmetry) inner vortex pair induces a hydrodynamic
force that tends to drive the (left) drop or enclosed mass rightward. In contrary, the right-side (inner)
vortex pair through their induced velocity tries to push the left drop or enclosed mass leftward. As the
relative length of vectors clearly reveal, the strength of the right-side vortex pair is higher than that of
vortex pair situated in the left half (which followed for increasing t , as the left-side inner vortex pair
appeared gradually weaker while the right-side inner vortex pair became stronger); and therefore the
net vortex-induced inner thrust on the left drop is directed leftward. It is important to note that, just
outside the left drop the counter rotating two pairs of dominant (outer) vortices are formed (evolving
symmetrically with respect to major axis) near left and right edges [as sketched in Fig. 3(c)], owing
to electrically induced bulk fluid motion. Clearly, the stronger outer vortex pair formed at the left
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FIG. 5. Simulated prolate deformation and relative motion of a drop pair for increased permittivity ratio
over 0.5 < εin/εout � 9.57, at fixed σin/σout = 5.0, CaE = 0.46, α = 0◦. (a1) The transient divergence of a
drop pair at εin/εout = 1.0 [within stretch A, εin/εout < (εin/εout)crit1 = 2.4], and (a2) induced velocity field
at t = 1.8T ; Re = 1.14. (b1) The transient electrocoalescence of a drop pair at εin/εout = 2.5, detected in
the stretch B[(εin/εout)crit1 = 2.4 < εin/εout < 5.0 = (εin/εout)crit2], and (b2) induced velocity field at t = 2.6T ;
Re = 0.71. (c1) The transitional coalescence of a drop pair at εin/εout = 7.0 [within stretch C, (εin/εout)crit2 =
5.0 < εin/εout < 9.57 = (εin/εout)crit3], and (c2) the evolution of the surrounding velocity field showing the 90°
switching of outflow-natured two outer vortex pairs; Re = 0.57.
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FIG. 5. (Continued.)

side [Fig. 5(a2)] enforce the left drop to move leftward through their induced higher velocity and
overcomes the rightward forcing that is thrust upon by the relatively weaker right-side vortex pair
situated just outside the interface. Therefore, the combined vortex dynamics-induced thrust causes
the left drop to move leftward [Fig. 5(a1)]. In a similar way, the right drop is driven towards right due
to combined dynamics of the developed inner and outer vortex pairs. Thus, from the perspective of
simulated velocity vector field [Fig. 5(a2)], the drop pair at εin/εout = 1.0,σin/σout = 5.0, CaE = 0.46
(d = 4R) drifts apart under the effect of EHD interactions, and such finding agrees well with the
existing theoretical analysis [26] forσin/σout > εin/εout; however the actual or hidden mechanism now
becomes much clearer. As far as observed horizontal stretching of two drops (Fig. 5) to the prolate
configuration is concerned, readers may note dominantly important roles of the asymmetrically
developed near-interfacial two outer vortex pairs located at major axis ends. Owing to their induced
outward dynamics or thrust (directed towards left and right) the drops are clearly forced to elongate
or stretch unequally [Fig. 5(a1)] in the horizontal direction, leading to formation of a prolate shape
while moving apart. Importantly, while the near-interfacial outer vortex pairs seating at major axis
ends decisively dictate the horizontal drop elongation, the developed inner vortex pairs [Fig. 5(a2)]
try to bring back the drops to an energy optimizing compact configuration through their induced
motion or forcing. To be explicit, at major-axis ends of a deformed drop, where the local curvature
is increased (radius of curvature decreased), the inflow-type two inner vortex pairs remain visibly
active, and by virtue of induced inward forcing two inflow-natured inner vortex pairs try to resist
the drop deformation (horizontal elongation). Furthermore, at minor-axis ends, where curvature is
decreased (radius of curvature increased), the outflow-type local vortex dynamics prevails, and by
outward local velocity or thrust the vortex pairs try to vertically stretch a drop to bring it back to a
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stable circular shape. Notably, for increasing εin/εout in the stretch A the above elaborated repulsive
strength of the bulk flow (via developed outer vortex pairs) gradually decreases [see Eq. (11)] which
results to reduced drop velocity u, as revealed by Fig. 4(c); in contrary, it clearly helps to enhance
the attractive electric force [see Eqs. (12)–(14)].

Now we examine the EHD interactions in the stretch B (2.4 < εin/εout < σin/σout = 5.0). Note
that, for progressively increased εin/εout up to 5.0 [Fig. 4(c)] the deformed prolate drops move closer
(u < 0) and coalesce due to increasing relative dominance of electric interaction. More precisely,
a larger εin/εout along stretch B [Fig. 4(c)] enhances the attractive electric force Fr [Eq. (12)],
while weakening the diverging bulk fluid velocity. Accordingly, for 2.4 < εin/εout < σin/σout = 5.0
the dominating electric interaction over the electrically driven hydrodynamic interaction leads drop
pair to fast converge following increased [Fig. 4(c)] negative velocity (−u). Fig. 5(b1) illustrates
the simulated nature of electrocoalescence for a drop pair at εin/εout = 2.5, that is, the transient
drop-drop approach in stretch B [Fig. 4(c)]; showing that two drops at εin/εout = 2.5 deform prolately
and then translate closer together and finally merge [Fig. 5(b1); 3.6 � t/T� 8.6] into one prolate
drop. Fig. 5(b2) shows the detailed interactive velocity field, at t = 2.6T , inducing the coalescence.
Notably, inside the left drop, the vortex pair that developed in the left half appear stronger than
the pair in right half, and resultant axial thrust of these two counterrotating pairs of inner vortices
helps to drive the left drop rightward (along the direction of major axis). In addition, as revealed by
relative length of outer velocity vectors [Fig. 5(b2)], on the left drop a decisively stronger rightward
hydrodynamic thrust is clearly imposed by the induced motion of the dominating near-interfacial two
outer vortex pairs (of bulk flow) that evolve symmetrically with respect to the major axis. Clearly
the rightward forcing generated by the vortex pair situated at right end (owing to close proximity)
overcomes the induced leftward axial thrust that is imposed by vortex pair formed at left end (of the
left drop). Therefore, the combined (inner plus outer) vortex pairs driven resulting thrust enforces the
left drop to move towards right. Similarly, the generated vortex pairs-induced forcing, as evident from
Fig. 5(b2), effectively drives the right drop leftward. Owing to such electrohydrodynamic imbalance,
and by virtue of enhanced attractive electric force [as Fr increased with εin/εout; Eqs. (12)–(14)], two
deformed drops simultaneously move closer and eventually coalesce [Fig. 5(b1)] upon their contact.
Moreover, the prolate-type drop deformation is primarily guided by oppositely directed dynamics
[Fig. 5(b2)] of the outflow-natured near-interfacial two outer vortex pairs [e.g., Fig. 3(c)] that formed
at major axis ends. Hereby, the resulting outer flows remained clearly and consistently directed from
equator to pole, as postulated by Baygents et al. [26]. Remarkably, the consistent active roles of
inflow- and outflow-natured vortex pairs in dictating unequal compression or elongation and axis
switching for noncircular jet sections [52–55], and regulating solute entrainment in microdrops [56]
are extensively elaborated in recent past. Solutions from the nonlinear set of governing equations
and presented vortex dynamics based analysis thus provides an improved understanding of EHD
responses that dictate coalescence and departure of the leaky dielectric drops. Physically, an inflow-
natured vortex pair [52–55] of equal and opposite strength ±� and spaced 2a apart will exert an
inward force proportional to �/4πa, whereas an outflow-type [Fig. 3(c)] pair would exert the outward
force ∼�/4πa to a drop.

In the stretch C [5.0 < εin/εout < 9.57; Fig. 4(c)] as fd > 0 and σin/σout < εin/εout the drops
continue to display prolate deformation [26], but importantly the near-field EHD flow is changed
to pole-to-equator [PR−; Fig. 4(c)] owing to the 90◦ switched orientation of the dominant outflow-
type outer vortex pairs. Accordingly, in C, the hydrodynamic force by bulk fluid and the electric
force together influence the drop pair move closer and coalesce. For clarity, Figs. 5(c1) and 5(c2)
show the drop pair’s prolate coalescence and near-field flow behavior at t = 0.8T and εin/εout =
7.0. Noteworthy, in Fig. 5(c2), is the vertically opposite directed outflow-natured dynamics of the
developed two near-interfacial (weaker) outer vortex pairs; whereas in Fig. 5(b2) the motion of similar
vortex pairs was horizontally directed. What we observed is that the stretch C display a transitional
behavior and Fig. 5(c2) shows the transitional signature (at CaE = 0.46). Accordingly, as droplet
deformation process starts to change from prolate to oblate shape, the favorable outflow-type two
outer vortex pairs switch their orientation. Such issues are clarified again in Appendix C.
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FIG. 6. The detected oblate deformation of a drop pair, transient coalescence, and the postcoalescence
break up to different modes for increased εin/εout over the stretch D [(εin/εout)crit3 = 9.57 < εin/εout � 20.0],
at fixed σin/σout = 5.0, CaE = 0.46, α = 0◦. (d1) The coalescence and subsequent two-component break up
at εin/εout = 11, Re = 1.71; (d2) the streamlines at t = 4.2T reveal the development of the outflow-natured
vertically upward moving outer vortex pair around the upper half of the drop that drives it to elongate in a
direction perpendicular to the electric field and facilitates breakup. Similarly, another outflow-natured downward
moving near-interfacial outer vortex pair dominates around the bottom half of the drop. (d3) The detected oblate
coalescence and three component breakup at εin/εout = 15, Re = 2.85. (d4) The transient coalescence and five
component postcoalescing breakup at εin/εout = 20, Re = 4.27; and (d5) surrounding streamline pattern at
t = 3.48T reveal the active dominance or role of the developed vertically upward moving outflow-natured
near-interface outer vortex pair that enforces the droplet to elongate in a direction orthogonal to the electric field
due to the paired vortex-induced thrust. (d6) The corresponding velocity field at t = 0.6T that facilitates drop
pair to move closer and elongate in the vertical direction.
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FIG. 6. (Continued.)

2. Relative motion, oblate coalescence of a drop pair, and breakup in stretch D

The new observation made here is that, for increased εin/εout > (εin/εout)crit3 = 9.57 in the stretch
D [Fig. 4(c)] the drop pair (at CaE = 0.46) first deform oblately and coalesce; and interestingly,
upon coalescence the droplet disintegrates again in a direction perpendicular to the applied electric
field. The detected such flow phenomena for different εin/εout are extensively elaborated in Fig. 6.
Our repeated and careful examination reveal, for gradually increased εin/εout > (εin/εout)crit3, the
coalesced oblate drop breaks orthogonally to two satellite/component drops [Fig. 6(d1)] at εin/εout =
11, three satellite drops at εin/εout = 15 [Fig. 6(d3)], and five satellite drops at εin/εout = 20
[Fig. 6(d4)]. Apparently, the increased strength of electrohydrodynamic bulk flow and resulting
augmented interfacial thrust as imposed by the outflow-natured vertically opposite moving two outer
vortex pairs at CaE = 0.46 enforce the postcoalescence vertical drop elongation (Fig. 6) and eventual
breakup. Such issues are elaborated below. Notably, Mhatre et al. [25] experimentally reported (Fig. 4
[25]) the postcoalescence breakup of a pair of castor oil drops (suspended in silicon oil) along the
direction of applied electric field. According to Mhatre et al. [25] the increased CaE can influence
such a breakup. In addition, in the experiment [25] σin/σout = 50 and εin/εout = 1.77 are used; that is,
σin/σout − εin/εout > 0. This results to the horizontally opposite moving [e.g., Figs. 5(b2) and 3(b2)]
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outer vortex pairs driven increased axial drop stretching at high |σin/σout − εin/εout|; possibly causing
the postcoalescence horizontal drop breakup [25]. However, as shown in Fig. 6(d6), in stretch D [see
Fig. 4(c)], with σin/σout − εin/εout < 0 and increasing difference of |σin/σout − εin/εout|, the bulk flow
generates outflow paired vortex driven augmented vertically opposite EHD forcing at CaE = 0.46,
which leads to systematic elongation and multicomponent breakup [see Figs. 6(d1) and 6(d3)] of a
coalesced drop in a direction perpendicular to the applied electric field. The unambiguous evidences
are provided in this regard in Figs. 6(d2) and 6(d5), wherein the depicted streamlines around the
upper half of coalesced drops explicitly reveal how exactly the upward moving near-interfacial
outflow-natured outer vortex pairs decisively dictate vertical stretching and eventual postcoalescence
drop breakup at εin/εout = 11, and εin/εout = 20, respectively (at a higher CaE = 0.46).

Concerning the physical mechanism leading to encountered shape transformation, Fig. 6(d4)
shows starting with t > 0 the leaky drop pair at εin/εout = 20 expand vertically (e.g., t = 1.9T ) to
an oblate shape and start moving closer (u < 0) at higher velocity [see Fig. 4(c)]. Subsequently, the
coalesced drop elongates to a dumbbell shape at t = 2.33T having fat belly and round edges. At t =
3.84T two neck formations are clearly visible as the combined drop continues to vertically elongate;
before eventually breaking to five satellite drops at t = 4.74T . Figure 6(d6) captures the simulated
velocity field at t = 0.6T , showing the explicit nature of developed vortex driven near-field forcing or
kinetics plus oblate deformation of two drops. Importantly, within the left drop we observe asymmetric
(with respect to vertical centerline) presence of two vortex pairs; with left pair getting fast dissipated.
The horizontal component of their induced internal velocity or thrust is clearly directed towards right.
Second, at the left side of left drop, as Fig. 6(d6) reveals, the vortex-induced near-interface outer
velocity or thrust remained rightward directed, while opposite natured velocity field at the central
film region remains weaker. Therefore, owing to above mentioned two (inner and outer) -induced
horizontal velocity components the left drop translates towards right. Similarly, for the right drop,
clearly the horizontal component of the noted vortex pairs driven combined thrust (from inside plus
outside) enforces it to move leftward [Fig. 6(d6)]. The physical process thereby guides two drops to
gradually move closer and coalesce, via increased electric attraction Fr [Eq. (12)]. Third, as far as the
vertical stretching to the oblate drop configuration is concerned, note in Fig. 6(d6) the dominant roles
of counterrotating two outflow paired outer vortices (of bulk flow) seating at the top and at the bottom
(of each drop). Note that, the vortex dynamics around a drop, as presented in Fig. 6(d6), corresponds
to 90° rotated view of Fig. 3(c). The upward or downward directed motion and imposed thrust
by the dominating two outer vortex pairs hereby decisively enforce continued physical stretching
of the coalesced drop (Fig. 6) in a direction perpendicular to applied electric field. On the other
hand, Fig. 6(d5) provides explicit flow details that clearly reveal the decisive role of the developed
near-interfacial outflow-natured vertically upward moving outer vortex pair (that evolves around the
neck) in dictating the observed drop breakup [Fig. 6(d4)]. The presented EHD flow simulations
accordingly help to better comprehend the precise physics. Important to note that a nonbreaking
or stable oblate-shaped drop-drop coalescence is indeed achievable by appropriately reducing the
electric capillary number CaE ; and Appendix C presents such computed details at CaE = 0.33.

D. Physical insight into drop-drop electrocoalescence

The physically distinct stages of coalescence can be divided into (i) the approach of drop pair
towards each other, (ii) the formation plus drainage of the film between approaching interfaces,
and (iii) the rupture of the film [57]. The findings by Lin et al. [58] show natures of the near-field
hydrodynamics and resulting various shapes of the leading drop face during film drainage for varied
viscosity ratio (μin/μout). At high viscosity ratio (μin/μout = 100) a protrusion is formed at leading
faces of the drop pair due to induced electric force; facilitating film drainage or rupture. In contrary,
at low μin/μout = 0.01 < 1.0, the film drainage is obstructed due to high viscosity in the film, and
the radical component of viscous stress that act on the interface generate the well-known dimpled
shape. The phenomenon is also noted in the absence of electric filed [59,60]. Recently, Mhatre
et al. [25] reported the formation of the dimpled shape during film drainage at μin/μout = 2.28, due
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to increased tangential electric stress in a leaky dielectric system. Importantly, in our simulations
as shown in Figs. 7(c1) and 7(c2), at a fixed μin/μout = 1.0 we detected the said two types of
interfacial deformations during film drainage, by suitably tuning the conductivity ratio (σin/σout).
At σin/σout = 10.0 [Fig. 7(c1)] the dimple shape formation is detected, and for σin/σout = 5.0 a
protrusion developed [Fig. 7(c2)].

Now we focus on exploring near-contact or near-coalescence flow physics (atα = 0◦). As observed
by Bird et al. [23] upon initiation of coalescence of a drop pair, a low-pressure area forms within
the neck region due to relatively smaller local curvature (positive), whereas higher pressure persists
at respective drop center. This pressure difference drives inner fluid into neck region, and facilitates
the coalescence [23]. In Fig. 7(a1)–7(b1), we capture the near-field pressure variation including both
inside and outside of coalescing drops plus pressure distribution along the horizontal line (y = 0.5)
of symmetry, when two drops are about to touch each other. The field properties used in simulation
are εin/εout = 2.5, σin/σout = 10, CaE = 0.46. The presented pressure contours in Fig. 7(a1) reveal,
starting from contact line the pressure inside the drops gradually increases and reaches local maximum
at two far ends. The pressure variation along the horizontal line of symmetry of the coalescing droplet
as presented in Fig. 7(b1) displays the detailed physics. Clearly, the developed pressure gradient that
is directed toward the neck hereby systematically drives inner fluid into the film region [Fig. 7(c1)]
and stimulates the drop pair to coalesce. In addition, it’s important to note in Fig. 7(a1) the existence of
two distinct outer high-pressure areas that symmetrically formed across the neck, marked by outward
directed arrows for clarity. Accordingly, the resulting vertically opposite local flow acceleration [23]
helps the contact-line liquid bridge to expand outward and drain out the cavity fluid. For clarity,
Fig. 7(c1) presents the EHD flow behavior surrounding the neck and the adjoin interface area at
εin/εout = 2.5, σin/σout = 10, CaE = 0.46. Herein, a distinct dent is noted in Fig. 7(c1), and in that a
stronger tangential electric stress persists along the leading interface [25]. Noteworthy, in Fig. 7(c1),
are the horizontally converging internal flow (that facilitates motion of respective drop centroids)
towards the neck and the vertically outward continuous-phase film draining in the cavity region
(e.g., Fig. 17 in Ref. [25]), in manners consistent to the experimental prediction of Mhatre et al.
[25], under the influence of said pressure gradients that apparently expedite drop pair’s coalescence.
Note also in Fig. 7(c1), the roles of locally dominating two outflow-natured vortex pairs that actively
regulate film drainage and interface expansion during the process of electrocoalescence, as the
combined drop seeks to take a compact energy-optimized shape.

Remarkably, Fig. 1 of Sozou [51] shows the tangential electric stress on the leading drop face fast
decreases, as conductivity ratio (σin/σout) is decreased. This reduction of tangential electric stress
affects the shape of the contact line and the physical coalescence. To unravel the phenomenon, in
Figs. 7(a2)–7(c2) we present the simulated pressure contour, streamline pattern, and the leading
edge interface deformation characteristic as the coalescing drop pair is about to touch each other at a
lower σin/σout = 5.0; while εin/εout = 2.5, CaE = 0.46 remained unchanged. Notably, in this case, a
stronger horizontal pressure gradient directed towards leading drop interface [Fig. 7(a2)] plus sharper
transverse pressure (outer) variation across the neck region are generated at σin/σout = 5.0, compared
to the case with σin/σout = 10 [Figs. 7(a1)–7(c1))]; prompting the formation of two characteristic
Taylor cones and rupture of the film [Fig. 7(c2)] during coalescence. A protrusion is clearly formed at
σin/σout = 5.0 on leading poles [Fig. 7(c2)], which is caused due to reduced tangential electric stress
and increased horizontal pressure gradient [Figs. 7(a2)–7(b2)]. In addition, the issue of formation of
Taylor cone for a single leaky drop (prior to breakup) is elaborated in Appendix D.

E. Effect of incidence angle α

The dispersion of drops often varies by wide ranges with respect to the direction of the applied
electric field. Therefore, a better understanding of the α-dependent response of a drop pair is essential.
As Eq. (12) shows, the radial electric force between two suspended leaky dielectric drops can
have attractive (Fr > 0) nature only when 3(cos α)2 − 1 > 0, i.e., for α <54.7° or α > 125.3°.
Moreover, Ft and Fr [Eqs. (12) and (13)] induce a torque that causes two adjacent drops to exhibit
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FIG. 7. (a1) The simulated pressure (p) contours; (b1) pressure variation along the horizontal line of
symmetry y = 0.5; (c1) streamline pattern, and near-contact dimple-shaped interface deformation (red solid
curve is the interface), as two drops begin to coalesce at σin/σout = 10.0, εin/εout = 2.5, CaE = 0.46. (a2) The
simulated pressure (p) contours; (b2) extracted pressure variation along the line y = 0.5; (c2) streamline patterns
and near-contact Taylor cone formation at the interface (red solid curve is the interface), as two drops just begin
to coalesce at a reduced σin/σout = 5.0; εin/εout = 2.5, CaE = 0.46.
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FIG. 8. Mutual responses of a drop pair aligned at different angles α to the applied electric field: attraction
( ); attraction and rotation ( ); repulsion ( ); repulsion and rotation ( ).

rotating motion. The available experimental results [24,25] suggest such a coupled dynamics for
nonaligned drop pairs. However, the governing EHD interaction and possible prolate or oblate drop
deformation remained unexplored, and there virtually exists no computational contribution. As a first
step, systematic 2D simulations are done to reveal the α-dependent response (for Re � 1.48) of two
identical leaky dielectric drops in an immiscible leaky dielectric medium. Considering symmetry
of drop pairs appearing at α and 180°−α in a horizontally aligned electric field, the variation of α

through 0° � α � 90° is examined first for fixed center-to-center distance d = 5R of two drops, and
at εin/εout = 0.9, σin/σout = 0.5, CaE = 0.76. The simulated characteristic response of a drop pair
for 0° � α � 90° are presented in Fig. 8, which clearly agree with existing experimental predictions
for anchored drops [24] and for water or castor-oil drops suspended in silicone oil [25]. Notably, two
classes of behavior, attraction and repulsion, depending on the initial angle α are observed (Fig. 8).
For 0° < α < 54.7°, the attractive radial component Fr of electric force drives two drops closer
during transient electrocoalescence. However, the tangential component Ft effectively manipulates
the drop pair to rotate and eventually align with the direction of the applied electric field. Accordingly,
during coalescence the deformed drop pair (Fig. 9) mutually converge while gradually lowering α

to zero. On the other hand, for 54.7° < α < 90° (Fig. 8), the drop pair is pushed apart (e.g., Fig. 10)
under the influence of developed repulsive radial force Fr ; and Ft made them rotate while moving
away. At α = 0◦ or α = 90◦ only the radial force component [Eqs. (12) and (13)] exists, and drops
can have no rotational motion. Accordingly at α = 0◦ or α = 90◦ the EHD responses appear similar
those presented in Sec. III C. Importantly, as evidenced below, for 0° < α < 54.7° and suitably
selected dielectric properties the coalescing drops reveal the systematic shape transformation from
an eight style to final oblate or prolate state.

To better display the α-dependent mutual interactions for leaky dielectric drop pairs, the simulated
EHD flow phenomena are extensively presented in Figs. 9–11. At α = 35◦, a sketch denoting
the attractive electric force (Fe), together with equivalent radial (Fr ) and tangential (Ft ) force
components that exerted at drop centers is provided in Fig. 9(a). Under the influence of said forces
(Fr plus Ft ), the detected rotating motion, oblate deformation, and coalescence of two drops at
εin/εout = 0.9, σin/σout = 0.5, CaE = 0.76, α = 35◦ are illustrated in Fig. 9(b). Importantly, the
drops first deform to oblate shape through 0.0 < t � 0.5T , prior to initiation of relative motion
of their mass centers, and then the attractive radial component (Fr ) of electric force drives them
closer by gradually reducing the center-to-center gap. However, under the effect of Ft [Eq. (13)]
a torque is produced [see Fig. 9(c2)]; which acts to align the drop pair along the direction of the
applied electric field by slowly reducing α to zero at coalescence. Thereby, the drop pair exhibits
rotating coalescence as noted in Fig. 9(b). For clarity, detailed EHD interaction process in the form of
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FIG. 9. (a) Sketch of the attractive electric force Fe acting on two drops placed at an angle α = 35◦ with the
direction of electric field; Fe is the total force, and Fr , Ft correspond to radial and tangential force components
shown to act at drop centers. (b) Simulated transient alignment and coalescence of a drop pair to an oblate
shape. (c1) The induced vortical velocity field around the left drop at t = 8.9T (red solid curve is the drop
interface). (c2) The combined streamline plot at t = 8.9T around two drops revealing the physical process of
rotating coalescence at α = 35◦. (d) The velocity vector plot at t = 10.7T shows the role of the developed two
outflow-natured vortex pairs in the interface expansion process upon merging. εin/εout = 0.9, σin/σout = 0.5 and
CaE = 0.76, Re = 1.39, d = 5R.
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FIG. 9. (Continued.)

generated instantaneous velocity field in a drop (the left drop), and the combined streamline pattern
surrounding the deformed or moving drop pair (α = 35◦) at t = 8.9T is presented in Figs. 9(c1) and
9(c2). As Fig. 9(c1) shows, under the influence of radial (Fr > 0, attractive) and tangential (Ft ) forces
[Eqs. (12) and (13)] the asymmetric velocity field (with respect to horizontal centerline) that develops
in the left drop, via the dynamics of two pairs of asymmetrically evolving inflow-natured inner
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FIG. 10. (a) Sketch of a repulsive electric force acting on the drop pair at α = 60◦; Fe is the total force, and
Fr , Ft correspond to radial and tangential components shown to act at drop centers. (b) Simulated temporal
divergence process of deformed oblate drop pair. (c) The developed velocity field around the left drop at t = 7.9T

(red solid curve is the drop interface). (d) The combined streamlines at t = 7.9T , revealing the clockwise rotating
divergence of the oblate drop pair at α = 60◦. εin/εout = 0.9, σin/σout = 0.5, CaE = 0.76, Re = 1.39, d = 5R.

073701-27



QINGMING DONG AND AMALENDU SAU

FIG. 10. (Continued.)

vortices, remains predominantly upward directed. On the other hand, the dominantly asymmetric
and opposite moving near-interfacial outflow-type two outer vortex pairs (seated at top and bottom)
decisively stretch the left drop vertically [Fig. 9(c1)] to produce an oblate shape. As Figs. 9(c1)
and 9(c2)] show, the dominating outflow-natured outer vortex pairs-induced thrust is responsible for
lifting the left drop upward in a rightward tilted manner under Ft . Such upward motion occurs, as the
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FIG. 11. (a) Simulated transient alignment and coalescence of the deformed prolate drop pair at α = 35◦;
(b) simulated divergence of the deformed prolate drop pair at α = 60◦. εin/εout = 0.9, σin/σout = 2.0, Re = 1.48,
CaE = 1.0. Note that, the physical domain size is much larger, however, for clarity we capture a small part of it.
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outflow-natured outer vortex pair that formed at the upper edge of the drop interface appears relatively
closely placed and stronger [Fig. 9(c1)] than the outflow-type outer vortex pair formed below the
lower edge. Moreover, Fig. 9(c1) shows the resulting horizontal component of velocity (from left and
right) surrounding the left drop remains rightward directed. Therefore, under Fr and Ft the left drop
moves rightward [Fig. 9(b)] with time, while α is systematically decreased. Similarly, the other drop
situated at right side [Fig. 9(c2)] faces an equal but opposite force that brings it closer to the left drop,
while α is slowly reduced to zero. Accordingly, the left drop exhibits the upward motion whereas the
right drop follows an equal downward motion and produce clockwise rotating oblate coalescence
[Fig. 9(b)], under Fr and Ft . Notably, for the chosen set of parameters the induced hydrodynamic
force, as evident from Fig. 9(c2), becomes favorable and leads to the oblate coalescence of the leaky
dielectric drops at α = 35◦. Clearly, the manifestation of numerically generated flow behavior adds
value to the available experimental predictions [24,25]; and the governing flow phenomena now
becomes easier to realize. Moreover, Fig. 9(d) shows clear role of timely important two outflow-type
vortex pairs in facilitating the outward interface expansion at the neck region, as the combined drop
try to attend an energy optimizing shape.

Once α is increased (Fig. 8) beyond the critical angle 54.7° the Fr [<0; Eq. (12)] acts repulsively
and drives the drop pair apart [Figs. 10(a) and 10(b)]. Owing to coupled tangential [Eq. (13)] force Ft

(that tends to align the drop pair with the applied electric field) and radial force Fr , both drops at this
stage drifts apart while exhibiting rotation during transient motion. Figure 10(b) presents simulated
such drop-drop departure with oblate deformation, at α = 60◦ and εin/εout = 0.9, σin/σout = 0.5,
CaE = 0.76,d = 5R. The vortical velocity field in a deformed drop (left drop) and the outer EHD flow
pattern that induce the predicted motion plus oblate shape of the drop pair at t = 7.9T are revealed
in Figs. 10(c) and 10(d). Notably, the developed velocity field around the left drop, as shown in
Fig. 10(c), clearly facilitates the leftward motion of its mass center under Fr and Ft . Conversely,
the drop situated on right side experiences a net force that is directed rightward. Furthermore, as
Fig. 10(d) shows, the oblate drop pair in this case rotate clockwise owing to imposed tangential
component (Ft ) of the electric force [Eq. (13)]; helping to reduce the angle of inclination (α) during
mutual divergence. The deformed oblate drop pair [Fig. 10(b)] accordingly moves apart under Fr

[<0; Eq. (12)] and Ft [Eq. (13)], following the elaborated EHD interaction at α = 60◦.
Figure 11 shows the simulated electrocoalescence or departure of two nonaligned (α 
= 0°) leaky

drops, as they deform prolately for suitably selected dielectric properties. The initial center-to-center
distance (d) of the drops is taken as d = 5R. As Fig. 11(a) exhibits, the drop pair placed at α =
35◦ and for chosen dielectric properties, εin/εout = 0.9, σin/σout = 2.0, CaE = 1.0, now experience
anticlockwise rotating prolate coalescence, while their inclination is systematically reduces to zero.
The attractive Fr [>0; Eq. (12)] in this case drives the drop pair closer, whereas Ft [Eq. (13)]
produces a torque that acts to align the drops with the direction of the electric field. On the other
hand, as α is increased to α = 60◦, the Fr (<0) became repulsive, and the same drop pair [Fig. 11(b)]
with identical properties, εin/εout = 0.9, σin/σout = 2.0, CaE = 1.0, move apart prolately during
the EHD interaction. Since the electric interaction and the inflow or outflow-natured vortex pairs
driven near-field hydrodynamic phenomena remained consistent to those presented in Figs. 9 and
10, the details are omitted here for the sake of brevity. However, Figs. 9–11 clearly display the
electrocoalescence or departure behaviors of nonaligned leaky drop pairs that depend solely on
angular orientation α (Fig. 8); whereas the appropriately selected dielectric or field properties here
distinctly influence the oblate- (Figs. 9 and 10) and the prolate- (Fig. 11) type structural deformations.

IV. CONCLUSIONS

In this study, the interparticle explicit forcing LBM model is implemented to numerically
investigate the EHD response of the leaky dielectric drops in another immiscible leaky dielectric fluid
under the applied electric field. Using full nonlinear equations and widely varied dielectric properties,
the work uncovers precise electrohydrodynamic interactions that regulate observed prolate and oblate
drop deformations, dispersion, coalescence, and postcoalescence breakup phenomena. The present
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study reveals that, the outflow-natured two outer vortex pairs of the bulk flow that are created due
to tangential electric stress effectively lead to prolate and oblate drop deformations, depending on
conductivity (σin/σout) and permittivity (εin/εout) ratios of drop fluid to surrounding fluid. First, for
an isolated drop we simulate the prolate to oblate shape transformation. At fixed εin/εout = 10,
CaE = 0.18, when σin/σout is increased from 1.81 to 14.5, the isolated leaky drop transforms from
an oblate shape (at σin/σout = 1.81) to a prolate shape (at σin/σout = 14.5). Our results show that,
the persisting symmetrical dominance of two opposite moving outflow-type EHD vortex pairs at
major axis ends of a prolate or oblate drop, and their 90◦ switching distinctly lead to prolate- and
oblate-shaped drop deformations; while the resulting outer flow remained directed from equator to
pole and pole to equator, respectively.

Second, the coupled interactions of suspended leaky dielectric drop pairs at α = 0◦ reveal
interesting interdependence of relative drop velocity (u) and permittivity ratio (εin/εout) in 0.25 �
εin/εout � 20.0, when σin/σout = 5.0, CaE = 0.46 kept fixed; unfolding two physically distinct
driving mechanisms. While the dipolar (attractive) electric force try to bring the drop pair closer, the
imbalance created by the electrically driven hydrodynamic force (vortical outer flows) depending
on the sign of σin/σout − εin/εout made two drops move either closer or apart. At εin/εout = 1.0,
σin/σout = 5.0, CaE = 0.46 [for εin/εout < (εin/εout)crit1 = 2.4, as hydrodynamic force dominated
over attractive electric force] the horizontally opposite directed two dominant outflow-natured outer
vortex pairs, situated at left end of left drop and right end of right drop, decisively forced the prolately
deformed drops move away (u > 0) from each other. With increased εin/εout until a critical value
(εin/εout)crit1 = 2.4, the electrical shear stress-induced hydrodynamic vortex pairs (at fixed σin/σout =
5, CaE = 0.46) could generate a decisive repulsive force (that exceeded attractive electrical
interaction) via their dominant outflow-type outward dynamics (induced thrust), and force the
deformed (prolate) drop pair move apart. However, for 2.4 = (εin/εout)crit1 < εin/εout < σin/σout =
5.0 the dipolar (attractive) electric force dominated over relatively weakened hydrodynamic force,
which made the drop pair (having initial separation distance d = 4R) move closer (u < 0) and
coalesce to a prolate form. As far as near-coalescing flow physics is concerned, the present results
exhibit that the development of local low pressure in neck region of two coalescing drops, compared
to high pressure that persists at respective drop centers, creates the favorable pressure gradient to
transport the inner fluid into the neck and facilitates the electrocoalescence. Importantly, for εin/εout >

σin/σout the direction or orientation of the dominating outflow paired outer vortex dynamics and the
induced thrust switched by 90°; however, a coalesced drop could preserve the prolate shape for
permittivity ratios (εin/εout) ranging over σin/σout = 5.0 < εin/εout < (εin/εout)crit3 = 9.57.

Third, for εin/εout > 9.57 the drop pair not only deformed and coalesced to an oblate shape;
importantly, at this higher CaE = 0.46, upon electrocoalescence the elongated oblate drop broke
again into a number of satellite drops spreading in a direction perpendicular to the applied electric
field. For gradually increased permittivity ratio (εin/εout > 9.57) the coalesced oblate drop broke
(orthogonally) to two satellite drops at εin/εout = 11, three satellite drops at εin/εout = 15, and five
satellite drops at εin/εout = 20. The increased strength of electrohydrodynamic bulk flow (at CaE =
0.46) and the resulting outflow paired vertically opposite vortex motion-induced augmented thrust
seem to govern this postcoalescence drop breakup.

Four, the coalescence of the nonaligned (α 
= 0) leaky drops depends significantly on the angle
α between the directions of applied electric field and the line joining mass centers of two drops. For
α < 54.7° or α > 125.3°, the dipolar electric interaction-induced an attractive radial force along
the line joining mass centers of two drops, while the tangential force components created a torque;
which enforced the drop pair move closer and eventually align with the applied electric field upon
coalescence. For 54.7° < α < 125.3° the growth of repulsive radial component of dipolar electric
force effectively pushed the drop pair apart. Our simulations at α = 35◦ and α = 60◦ exhibit, for
εin/εout = 0.9, σin/σout = 0.5, CaE = 1.0 (σin/σout − εin/εout < 0) the coalescing or diverging drop
pair deform oblately, whereas at εin/εout = 0.9, σin/σout = 2.0, CaE = 1.0 (σin/σout − εin/εout > 0)
the drops took the prolate shape. Importantly, while remaining consistent to past predictions, the
present simulations using the implemented nonlinear model provide significant new insights into
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FIG. 12. Using interpolation 1 [Eq. (29)], the computed (a) density, and (b) permittivity (ε) profiles across
the drop interface and along the horizontal line of symmetry y = 0.5. (c) Simulated drop deformation and
velocity field obtained by adopting two different interpolation schemes: for the top half the interpolation 1
is used, and for the bottom half the interpolation 2 [Eq. (A1)] is used to calculate the electric properties;
(d) computed tangential electric stress obtained by adopting interpolation 1 [Eq. (29)] and interpolation 2
[Eq. (A1)].

physical coalescence, departure, and breakup details of leaky EHD drops for widely varied dielectric
properties and incidence angle.
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APPENDIX A: SMOOTHENING OF FLUIDIC PROPERTIES IN THE TRANSITION REGION

Based on Eq. (29), that is the interpolation 1, and using εin = 0.02 and εout = 0.05, Fig. 12(a)
and 12(b) present the computed distributions of ρin, ρout, and ε along the horizontal drop centerline,
spanning across fluid-fluid interfaces. Such variations of ρin, ρout [Fig. 12(a)] and ε [Fig. 12(b)] are
used to generate smooth transition of properties across an interface, from one bulk value to another.
However, a cosine function interpolation is used in the past [see Eq. (12) in Trau et al. [36]] to describe
the transition of physical properties. In order to demonstrate the insensitivity of the computed results
to the density profile [e.g., Eq. (29)] we change the interpolation scheme to a proposed new one
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FIG. 13. Comparison of spurious currents [39] generated by (a) the present explicit forcing model, and
(b) the Shan and Chen [33] model, for a static droplet.

[interpolation 2; Eq. (A1)], expressed as

ρε2 = ρinε
2
in + ρoutε

2
out,

ρσ 2 = ρinσ
2
in + ρoutσ

2
out. (A1)

Notably, Fig. 12(c) displays the computed oblate deformation and internal flow patterns in a drop,
where top and bottom halves reveal results that are obtained by adopting interpolation 1 [Eq. (29)] and
interpolation 2 [Eq. (A1)], respectively, at CaE = 0.18, εin/εout = 10, σin/σout = 1.81. Importantly,
the generated error for deformation rate D by using above two interpolation schemes is 1.33%, and
two schemes are clearly noted to induce the same internal flow pattern [Fig. 12(c)]. Additionally,
Fig. 12(d) presents computed corresponding interfacial tangential electrical stresses [using Eqs. (29)
and (A1)], which are quite identical. Such evidences clearly demonstrate that the density interpolation
formula [Eq. (29)] utilized in the present work has little effect on the numerical results.

APPENDIX B: SPURIOUS CURRENTS

The spurious current is a commonly encountered problem [15,34,39,47] for many of the
multiphase flow models involving curved interfaces. When a droplet is suspended in an immiscible
fluid, the pressure difference between inside and outside the drop is balanced by surface tension.
However, due to numerical error from inadequate discretization, when calculating corresponding
gradient, the balance between pressure difference and surface tension is often not fully realized,
causing spurious eddies [39] to be present in the vicinity of the interface. Accordingly, it becomes
difficult to distinguish the physical flow from spurious eddies [39,47] when the spurious current is
as large as the characteristic velocity of the problem. Therefore, it is essential to reduce the strength
of spurious eddies. For this, in the absence of any body force (e.g., electric force), we run two cases
to study the evolution of a drop by using Shan and Chen [33] model and the present explicit forcing
model [34] until it reached static state. Figures 13(a) and 13(b) show the presence of corresponding
spurious currents in the drop in the form of eight eddies [39]. The pink arrow and the level in each
case denote the relative magnitude of fluid velocity. The length of arrows in Figs. 13(a) and 13(b)
clearly show that the spurious current is reduced by a factor of 5.5 (see Ref. [39]) by the present
model. Such results clearly demonstrate that, compared with the magnitude [e.g., Fig. 12(c)] of
physical eddies, the present model drastically reduce the magnitude of spurious current with respect
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FIG. 14. The simulated (c1) oblate deformation of a drop pair (α = 0◦) and the clear nonbreaking
electrocoalescence that occurred at a reduced CaE = 0.33, and for εin/εout = 15.0, σin/σout = 5.0, Re = 1.94
[when εin/εout > (εin/εout)crit3 = 9.57]; and (c2) the induced surrounding velocity field at t = T that facilitate the
drop pair to move closer, while the surrounding vortical flow behavior unfolds supporting role of the developed
outflow-natured upward and downward moving two dominant outer vortex pairs that dictate a drop to elongate
vertically. Note that, at this lower CaE = 0.33 the coalesced drop do not break, as the outflow-type two outer
vortex pair could not create sufficient vertically opposite thrust.

to spurious current [Fig. 13(b)] generated by Shan and Chen [33] model. Therefore, the adopted
model has the ability to better predict the actual nature of EHD flows.

APPENDIX C: NONBREAKING OBLATE COALESCENCE

Remarkably, it has been observed that, a nonbreaking oblate-shaped stable electrocoalescence
is indeed achievable for εin/εout = 15 > (εin/εout)crit3 = 9.57 at fixed σin/σout = 5.0, by reducing
the electric capillary number to CaE = 0.33. For clarity, such a simulated scenario is presented in
Fig. 14(c1) and 14(c2); revealing in detail the transient process of electrocoalescence [Fig. 14(c1)]
and the role of the developed outflow-natured two near-interfacial outer vortex pairs (at t = T )
in vertical drop elongation [Fig. 14(c2)]. In addition, as evident from Fig. 14(c2), the horizontal
component of interactive near-field (including inner and outer regions) velocity clearly influences
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FIG. 15. Simulated Taylor cone formation for a single high-conductivity leaky drop. σin/σout = 30.0,
εin/εout = 1.37, and CaE = 0.68.

the drop pair to move closer. Noteworthy also that, the outflow-type outer vortex pairs-induced flow
around an oblate drop remains consistently [26] directed from pole to equator.

APPENDIX D: FORMATION OF TAYLOR CONE FOR A SINGLE LEAKY DIELECTRIC DROP
IN A STRONG ELECTRIC FIELD

Taylor cone is clearly observed in perfect conductor (e.g., water) and perfect dielectrics (air
bubble, methanol drop) on which only the normal electric stress acts [6,61]. Accordingly, plenty of
charge is accumulated at two droplet tips that induce a high electric pressure, and is balanced by
the interactive capillary stress around the higher curvature tip region (Taylor cone). However, for a
leaky dielectric drop, in addition to electric pressure, the electric tangential stress is developed; which
prevents formation of sharp conical tips [6]. Hereby, for increased conductivity of a leaky dielectric
drop placed in a strong electric field, the Taylor cone formation in a way similar to conducting drops
(e.g., Fig. 1 in Ref. [61]; Fig. 4c in Ref. [62]) is predicted prior to the drop breakup. Figure 15
presents such a simulated scenario at σin/σout = 30.0, εin/εout = 1.37 and CaE = 0.68. Note that,
as discussed by Collins et al. [6], unlike the conducting case, the tip of a breaking leaky film/drop
loses its conical shape and appear curved, as tip streaming initiates. However, the simulated detailed
breaking events for a leaky drop are planned to be presented in a separate work, including their
precise dependence on the viscosity ratio [62].
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