
PHYSICAL REVIEW FLUIDS 3, 073603 (2018)
Editors’ Suggestion

Edge states control droplet breakup in subcritical extensional flows
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A fluid droplet suspended in an extensional flow of moderate intensity may break
into pieces, depending on the amplitude of the initial droplet deformation. In subcritical
uniaxial extensional flow the nonbreaking base state is linearly stable, implying that only
a finite-amplitude perturbation can trigger breakup. Consequently, the stable base solution
is surrounded by its finite basin of attraction. The basin boundary, which separates initial
droplet shapes returning to the nonbreaking base state from those becoming unstable and
breaking up, is characterized using edge tracking techniques. We numerically construct
the edge state, a dynamically unstable equilibrium whose stable manifold forms the basin
boundary. The edge state equilibrium controls if the droplet breaks and selects a unique
path towards breakup. This path physically corresponds to the well-known end-pinching
mechanism. Our results thereby rationalize the dynamics observed experimentally [H. A.
Stone and L. G. Leal, J. Fluid Mech. 206, 223 (1989)].

DOI: 10.1103/PhysRevFluids.3.073603

I. INTRODUCTION

The shape of a droplet in low-Reynolds-number flows results from two competing effects, the
viscous forces stretching the droplet and the surface tension forces reducing its deformation in order
to minimize the droplet surface area. When the ratio between viscous forces and surface tension
forces, defined as the capillary number Ca, is large, the droplet may deform until breaking into
smaller droplets [1–3].

Taylor was the first to systematically study this phenomenon, by placing a liquid drop in flow
fields generated by counterrotating rollers [4]. Imposing a hyperbolic flow, he observed that when
the capillary number exceeds a critical value Cacrit, the droplet always breaks. Consistent results
were later obtained in experimental [5,6] and numerical [7] studies. At the critical capillary number,
the nonbreaking equilibrium state, or base state, undergoes a saddle-node bifurcation [8,9] and no
longer exists for Ca > Cacrit. Interestingly, the droplet can break up even for a subcritical value of Ca,
depending on its initial shape [10–12]. The dependence of the droplet stability upon the initial shape
indicates the existence of a finite basin of attraction surrounding the base state. Initial droplet shapes
evolving towards the base state are separated from those breaking apart by the basin boundary.

Due to the high dimensionality of the state space and the infinite number of possible initial
shapes, it is challenging to characterize the basin of attraction and predict if a droplet breaks up. The
situation is however analogous to other high-dimensional nonlinear dynamical systems characterized
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FIG. 1. Sketch of the axisymmetric droplet, its parametrization, and the coordinate system. The arrows
indicate the direction of the extensional flow.

by a finite basin of attraction, such as in pipe flow and plane Couette flow, where the laminar base
flow is linearly stable and a finite-amplitude perturbation is needed to trigger turbulence. In the latter
cases, recent studies have demonstrated the relevance of unstable equilibrium states embedded in
the basin boundary. Of specific importance are edge states [13,14], unstable equilibria in the basin
boundary with only a single unstable direction. These edge states are attracting for the dynamics
confined to the basin boundary but unstable in the direction perpendicular to the boundary. Their
significance lies in their guiding role for the transition between laminar and turbulent flows.

In this paper we show that an unstable edge state equilibrium embedded in the basin boundary of
the base state governs the breakup dynamics of a droplet in a subcritical uniaxial extensional flow. In
fact, the unstable direction of the edge state selects an almost unique path towards droplet breakup.

II. NUMERICAL METHOD

We consider a droplet of fluid 1 and unperturbed radius R suspended in fluid 2; the viscosity ratio
between the two fluids is λ = μ1/μ2 and the surface tension γ . The characteristic length scale of the
problem is R and the velocity scale γ /μ2. After nondimensionalization, the axisymmetric droplet
shape is expressed in cylindrical coordinates as x = [z(t,s),r(t,s)], with z the axial and r the radial
coordinates, t the time, and s ∈ [0,1] the spatial curvilinear coordinate along the droplet’s meridian
(see Fig. 1).

The unknown interface velocity u = [uz(t,s),ur (t,s)] on a point of the interface x0 is determined
by solving the Stokes equations in fluids 1 and 2. The creeping flow equations can be recast into
a boundary integral equation [2,15]. Consequently, the interface velocity is given by an integration
along the droplet interface of arc length l,

4π (1 + λ)u(x0) = 8πu∞ −
∫ l

0
M(x0,x) · �f(x)dl(x) + (1 − λ)

∫ l

0
u(x) · q(x0,x) · n(x)dl(x),

(1)

where M and q are the Green’s functions of the Stokes equations forced by a ring of point forces after
azimuthal integration (see Ref. [15] for details), n is the normal vector pointing into the suspending
fluid, and �f(x) = (∇s · n)n is the discontinuity in normal stresses scaled by γ /R. In the far field
we impose vanishing pressure p → 0 and the uniaxial extensional flow u∞ = � · x0, where, in
cylindrical coordinates (z,r) and omitting the θ direction,

� = Ca

2

(
2 0
0 −1

)
.

The capillary number Ca = μ2GR/γ and G are, respectively, the nondimensional and dimensional
velocity gradients. The droplet interface evolves in time under the impermeability condition

dx
dt

= [(u − udrop) · n]n, (2)
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where udrop is the velocity of the center of mass of the droplet. Focusing on shape deformations, we
describe the system in the frame of reference comoving with the droplet, thus enforcing z-translational
symmetry [2].

Equation (1) is discretized using a pseudospectral scheme in which the interface coordinates
x(s), velocity u(s), and normal stresses �f(s) are represented by Legendre polynomials. For direct
numerical simulations, we integrate Eq. (2) with a second-order Runge-Kutta scheme. Typically,
100 modes are sufficient for the spatial discretization and the time step is �t = 2 × 10−3. Similar
to previous studies [16,17], we develop a Newton solver in order to find the roots of Eq. (2), which
allows for the computation of unstable steady states and rigorous linear stability analysis. The code
has been validated against Refs. [11,18–20].

III. RESULTS

A. Edge tracking

To follow orbits in the basin boundary and compute the edge state we adapt the edge tracking
techniques used in shear flows [14] and other fields [21,22]: We consider two slightly different initially
ellipsoidal droplets for Ca = 0.1 and λ = 1. One labeled a0 in Fig. 2(a) approaches the base state and
another one, labeled b0, eventually breaks apart. Consequently, the two droplets, both of identical
volume, define two initial conditions on either side of the basin boundary. For fixed volume, the
shape of an ellipsoidal droplet is uniquely defined by the droplet half-length L, so iterative bisecting
in L allows one to construct a pair of arbitrarily close initial conditions on opposite sides of the
basin boundary. Orbits starting from those initial conditions bracket and approximate an edge orbit
that neither returns to the base state nor evolves towards breakup but remains in the basin boundary.
When the distance between the bracketing orbits becomes larger than a set threshold (usually 10−4

measured in the difference of surface area), the approximation of the edge orbit is refined and a new
initial condition is created by bisecting between the current shapes.1 Iterating this procedure allows
us to numerically follow an edge orbit in the basin boundary for arbitrary time. Two iterations are
reported in Fig. 2 with initial conditions c0 (long-dashed line) and d0 (dash-dotted line).

After a short time the edge orbit settles to a shape of constant L, indicating that a locally attracting
equilibrium state in the basin boundary, the edge state, has been reached. We have verified the
existence of the nonlinear edge state equilibrium by Newton iteration, reaching convergence to
machine precision in a few iterations. The bracketing orbits transiently approach the edge state
(shape a1, b1, c0, and d0), as evidenced by the low values of the residuals shown in Fig. 2(b), before
evolving towards breakup or approaching the base state. As expected, the growth rate of the residuals
shows an exponential behavior close to the edge state and to the base state. For both bracketing orbits,
the least stable eigenvalue σE

2 of the edge state governs the attractive dynamics, while its unstable
eigenvalue σE

1 drives the dynamics when departing from it. Likewise, when the droplet approaches
the stable base state, the decay of the residuals is dictated by its least stable eigenvalue σB

1 . It is
noteworthy that the exponential growth (or decay) is maintained also far from the equilibrium states.

The flow fields associated with the equilibrium states are qualitatively similar to each other [see
Figs. 3(a) and 3(b)]. Namely, the external flow induces a fluid motion along the interface toward the
droplet caps, which is compensated by a recirculation along the axis driven by a pressure gradient
(decreasing from the caps toward the droplet center). The equilibrium states exist when the flow
along the interface is equal to the recirculating one, although they might be stable or unstable. If a
slight droplet elongation increases (decreases) the recirculating flow, the droplet is stable (unstable).

When the base state is perturbed with its least stable eigenmode, the pressure along the axis
decreases more in the center than at the caps [see Fig. 3(c)]; therefore, the recirculation becomes

1Technically, a convex combination followed by resizing to enforce volume conservation is used to interpolate
between the shapes along the two previous orbits. The iterative bisection in the weight parameter of the convex
combination yields a new initial condition for bracketing the orbit.
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FIG. 2. Edge tracking orbits for Ca = 0.1 and λ = 1. (a) Droplet elongation versus time. The orbits reach
the stable base state or break up through the end-pinching mechanism. Triangles denote the initial shapes and
dots subsequent snapshots. (b) Corresponding normal velocity residuals measured in the L∞-norm versus time.
The growth and decay rates are given by the most unstable and least stable eigenvalues of the edge state and the
base state σE

1 , σE
2 , and σB

1 , respectively.

stronger due to the lower pressure in the droplet center, producing an interface displacement that
restores the base state shape. When the edge state is perturbed with its most unstable eigenmode, the
pressure along the axis increases in the center and decreases at the caps [see Fig. 3(d)]; therefore, the
recirculation becomes weaker due to the higher pressure in the droplet center, producing an unstable
droplet elongation that leads to breakup.

To demonstrate the dynamical relevance of the edge state, we consider a two-dimensional cut of
the state space, following [9,23]. To this end, we project the local droplet radius ρ(s) = √

z2 + r2 onto
the second and fourth Legendre polynomials, obtaining the coefficients f2 and f4. The state-space
representation of the orbits in Fig. 2 is plotted in Fig. 4.

All orbits are attracted towards the edge state along its stable manifold, which forms the basin
boundary. After passing close to the edge state, the orbit leaves along the one-dimensional unstable
manifold. Depending on which side of the basin boundary the initial condition is located, the orbit
either approaches the base state or evolves towards breakup along an almost unique path. The
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FIG. 3. Pressure field and velocity streamlines for (a) the base state and (b) the edge state for Ca = 0.1 and
λ = 1. The change in pressure along the z axis is shown when (c) the base state is perturbed with its least stable
eigenmode and (d) the edge state is perturbed with its most unstable eigenmode. The insets show the shape of
the base state and the edge state (solid line) and their shapes after the modes are superimposed (dashed line).
The interface motion is depicted by the arrows.

state-space visualization thus shows the guiding role of the edge state and its stable manifold which
controls if a droplet undergoes breakup.

B. Bifurcation diagram

In order to track equilibrium solutions (i.e., the base state and the edge state) when varying the
capillary number, we apply a continuation method based on our Newton algorithm. In particular, we
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FIG. 4. Edge tracking orbits in state space (f2,f4) for the cases shown in Fig. 2, where f2 and f4 are the
droplet radius projections onto the second and fourth Legendre polynomials. The star and the square indicate
the locations of the edge state and stable base state, respectively.
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FIG. 5. Elongation of the droplet versus the capillary number for λ = 1. The solid and dashed lines indicate
the stable (base state) and unstable (edge state) branches, respectively. Stable and unstable droplet shapes
are plotted for Ca = 0.05 and Ca = 0.1 (solid line), superimposing the most unstable mode (dashed line).
The eigenvalue spectrum is also reported. Circles indicate eigenvalues corresponding to symmetric modes and
crosses to asymmetric modes. The translational symmetry is canceled by constraining the droplet center of mass
in the origin.

implement pseudo-arc-length continuation, which consists in adding the continuation parameter, in
our case the capillary number, as unknown in the Newton iteration and constraining the solution along
the tangent to the solution branch curve [24,25]. The bifurcation diagram is shown in Fig. 5: Starting
from the edge state for Ca = 0.1 and decreasing Ca, the droplet elongation of the equilibrium state
first increases and then decreases, with a concavity developing in the central part of the droplet. When
Ca < 0.07, a second unstable eigenvalue appears; see, for instance, the eigenvalue spectra for the
edge state at Ca = 0.1 compared to Ca = 0.05, which are shown in the top right and top left insets of
Fig. 5, respectively. These states have more than one unstable eigendirection and are thus are not edge
states in the strict sense of being an attractor for the dynamics within the basin boundary. However,
the states dynamically still act like edge states for two reasons: First, the second unstable eigenvalue
is very small compared to the first one with the ratio being less than 10−2; second, the eigenmode
associated with the second unstable eigenvalue is asymmetric and therefore it is not excited by the
symmetric initial shapes hereby considered [eigenvalues associated with symmetric (nonsymmetric)
modes are denoted by circles (crosses) in the inset of Fig. 5]. When the capillary number is increased,
the edge state droplet elongation decreases. A saddle-node bifurcation is encountered when Cacrit =
0.1203, as already discussed in previous studies [8,9,26]. The saddle-node bifurcation connects the
stable solution branch (solid line) with the unstable branch of the edge states (dash-dotted line).
The bifurcation diagram shows that, for every subcritical capillary number, there exists an edge
state sharing similar properties with the one found for Ca = 0.1. We omit edge states for very low
capillary numbers since their computations become challenging due to the increasing concavity of
the droplet neck. Calculation attempts at increased numerical resolution suggest that the concavity
always increases as the capillary number decreases, leading us to speculate that in the limit of Ca = 0
the edge state may develop a cusp and correspond to two equally sized spherical droplets in contact.

C. Numerical experiment: Sudden change in flow conditions

In experiments, the breakup of droplets in subcritical conditions is often a consequence of a
sudden change in the flow [10–12]. For instance, an elongated droplet can result from a supercritical
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FIG. 6. Step change from a supercritical flow Casuper = 0.125 (solid line) to a subcritical flow Casub =
Casuper/2 (dashed lines) for λ = 1. (a) Elongation of the droplet versus time and corresponding shapes. The
horizontal lines indicate the elongation of the unstable equilibrium (edge state) Lu and stable equilibrium (base
state) Ls for Casub = Casuper/2. (b) State-space orbits. The edge state selects the path towards the base state or
end pinching. The edge state and the base state are plotted and indicated by the star and the square, respectively.

flow, which selects the initial condition for a subsequent subcritical flow. We address this situation by
repeating the numerical experiment performed by Stone and Leal [12] and we verify the relevance
of the edge state for the dynamics (see the Supplemental Material for a video [27]). Namely, a
droplet is placed in a slightly supercritical flow set by Casuper = 0.125 and evolved in time with
Eq. (2). Since no base state exists for the selected capillary number, the droplet elongates until it
breaks. However, if one applies a step change on the flow by setting Casub = Casuper/2, the droplet
approaches a steady state or becomes unstable, depending on its initial elongation. This is illustrated
in Fig. 6(a), with the blue solid line representing the droplet elongation for Casuper and the dashed
lines for Casub = Casuper/2 (in order of increasing initial elongation: orange long-dashed, yellow
dotted, purple short-dashed, and green dash-dotted lines). We demonstrate the relevance of the edge
state in Fig. 6(b) by showing the orbits in state space. All the orbits are transiently attracted to the
edge state, which selects an almost unique path towards breakup. In fact, the path toward breakup
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FIG. 7. Breakup of a droplet whose initial elongation L0 is smaller than the edge state elongation Lu for
Ca = 0.0625 and λ = 1. (a) Droplet elongation versus time (solid line) and edge state elongation (dotted line).
The inset shows the initial shape at t = 0 and the edge state. (b) State-space orbit plotted together with the orbits
in Fig. 6. The inset shows snapshots corresponding to the markers.

is dictated by the unstable eigenmode of the edge state, which guides the droplet elongation before
final pinch-off [see, for instance, state h3 in Fig. 6(b)].

The unique path thereby explains the robustness of the end-pinching mechanism for droplet
breakup commonly observed in experiments. Repeating the Stone-Leal experiment thus stresses the
relevance of the edge state and also shows that its shape was indeed already observed experimentally
and named the dog-bone shape [12].

It is worth noting that the edge state, while it explains the robustness of the end-pinching
mechanism, does not yield a critical value for the droplet elongation. In fact, the critical elongation
depends on the droplet shape itself: Some initial droplet shapes are stable when more elongated than
the edge state (for instance, e0 and f0 in Fig. 6) while others become unstable when they are less
elongated, as reported in Fig. 7(a). At the same time this shows that one scalar parameter (here the
droplet elongation) is not sufficient to describe the basin boundary of this high-dimensional system.
However, even if these initial droplet shapes differ in term of initial elongation, they undergo a similar
time evolution which is guided by the edge state and leads to the base state or breakup through the
end-pinching mechanism [see Fig. 7(b)].

D. Influence of the viscosity ratio

We verify that the guiding role of the edge state is robust when the viscosity ratio is varied.
Continuation of nonlinear equilibrium states in the capillary number for different viscosity ratios
is shown in Fig. 8. The critical capillary number increases with decreasing viscosity ratio [6,28],
allowing for more elongated stable base states [2]. For slender droplets, the critical capillary number
depends on the viscosity ratio as Cacrit = 0.148λ−1/6, based on slender body theory [28]. We find
a compatible scaling based on our fully nonlinear computations, as shown in the inset of Fig. 8.
The dynamics at subcritical Ca discussed above is robust for all nonzero viscosity ratios: A finite
deformation of the stable base state is required to trigger the breakup and its dynamics is controlled
by the edge state, which remains connected to the base state via a saddle-node bifurcation at Cacrit.
In the λ → 0 limit corresponding to an ideal bubble with vanishing viscosity there is no finite critical
capillary number but the base state remains stable for all Ca and a finite deformation is required
to trigger the breakup dynamics. Remarkably, the unstable upper branch of edge states still exists,
although it stays separated from the stable lower branch of base states. This separation persists at
arbitrary large Ca.
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FIG. 8. Droplet elongation L versus capillary number Ca. Each line corresponds to a different viscosity ratio
λ; crosses indicate the critical capillary number. The inset shows a log-log plot of Cacrit versus λ ∈ [0.02,1]
(dashed line) compared with the theoretical prediction of [28] (solid line).

IV. CONCLUSION

In summary, let us reiterate that at subcritical capillary numbers, the edge state equilibrium located
within the basin boundary of the stable base state controls whether an initial droplet deformation leads
to breakup. If the breakup is triggered, the dynamical evolution is attracted towards the edge state
along its stable manifold and then repelled along the one-dimensional unstable manifold. Thereby
the edge state selects an almost unique breakup path which physically corresponds to the well-known
end-pinching mechanism. It is worth noting that the guiding role of the edge state is robust for varying
capillary numbers and viscosity ratios. In the ideal bubble limit, there is no saddle-node bifurcation
and the edge state plays a key role in selecting the breakup mechanism for arbitrary large Ca.

Our results rationalize previous studies about the mechanism responsible for droplet breakup in
subcritical extensional flows. Moreover, we answer previous conjectures regarding the existence of
unstable states, finding that the dog-bone shape, already observed in experiments, is an edge state.
Future work should complement the identification of the basin boundary by a nonlinear optimal
growth analysis [29,30], which provides the minimal perturbation amplitude triggering breakup.
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