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We study the fronts that appear when a shear-thickening suspension is submitted to a
sudden driving force at a boundary. Using a quasi-one-dimensional experimental geometry,
we extract the front shape and the propagation speed from the suspension flow field and
map out their dependence on applied shear. We find that the relation between stress and
velocity is quadratic, as is generally true for inertial effects in liquids, but with a prefactor
that can be much larger than the material density. We show that these experimental findings
can be explained by an extension of a phenomenological model originally developed to
describe steady-state shear thickening. This is achieved by introducing a sole additional
parameter: the characteristic strain scale that controls the crossover from startup response
to steady-state behavior. The theoretical framework we obtain points out a linkage between
transient and steady-state properties of shear-thickening materials.
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Dense suspensions of micron-sized solid particles in a simple liquid can show a rich set of
properties under an imposed shear stress, such as continuous shear thickening (CST), discontinuous
shear thickening (DST), and jamming [1–7]. DST is a striking phenomenon whereby the viscosity
of the suspension shoots up discontinuously when a certain shear rate threshold is reached. Jamming
is an even more extreme case where the suspension becomes not just more viscous but turns into a
solid with nonzero shear modulus. Among these complex behaviors, impact-activated solidification
is commonly referred to but also is one of the least well understood. Under impact, dense suspensions
can quickly turn into a solid that applies strong resistance on the impactor. But when the external
forcing is removed, it relaxes and turns back into a fluid. This property allows people to run on the
surface of such suspensions, to produce soft armors [8], and to prevent injuries due to rapid motion
of body parts [9].

Efforts to map out a state diagram that delineates the properties of dense suspensions as a
function of packing fraction and imposed forcing have focused almost exclusively on steady-state
conditions. The strongly non-Newtonian rheological properties become most pronounced at high
particle packing fractions, where suspensions start to exhibit characteristics also found in dry
granular material [10–14]. Recent experimental [15–20] and numerical work [21–24] points to the
existence of a stress threshold above which the dominant interaction between particles switches from
hydrodynamic frictionless lubrication to granular friction forces. This crossover forms the basis of
a phenomenological model developed by Wyart and Cates, which unifies CST, DST, and jamming
under a common framework [25].

However, this does not capture the many remarkable transient phenomena exhibited by sus-
pensions [6,26–33]. Only a couple years ago was it discovered [28,29] that the impact-activated
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solidification is a dynamic process where impact at the suspension surface initiates jamming fronts
that rapidly propagate into the bulk of the material and transform the suspension from a fluidlike into
a solidlike state in its wake. The jamming fronts discussed here are created by a different mechanism
compared to compression fronts in granular materials below jamming [34–36] and above jamming
[37], and shear shocks in fragile networks [38]. So far, several key aspects have remained largely
unresolved, including (i) the conditions under which dense suspensions can develop jamming fronts;
(ii) the shape of the flow profile at the front; and importantly (iii) the relation between the applied
stress and the front speed. These questions underline the need to build a description that would
encompass both transient and steady-state properties of shear-thickening materials.

In this paper, we consider the arguably simplest geometry in which these properties can be
measured: a plane of fluid that is sheared along one of its boundaries. With a resulting flow field
that changes only along the direction perpendicular to the sheared boundary, this configuration
exhibits one-dimensional (1D) dynamics. A key finding is that the velocity-stress relation measured
at the boundary, i.e., the macroscopic response of the suspension to applied forcing, is governed
by a microscopic, particle-scale quantity: the amount of strain accumulated locally when the
jamming front passes through. This accumulated strain depends on both the intrinsic properties
of the suspension, such as the packing fraction, and the system’s initial preparation condition. We
can capture this transient behavior by introducing one additional parameter, a strain amplitude γ ∗
characterizing the crossover to steady-state flow, into a model originally developed for steady-state
rheology [25]. With this generalization, the model exhibits well-defined jamming fronts and allows
us to compute their dependence on packing fraction and forcing conditions, leading to predictions
for (i), (ii), and (iii) raised in the previous paragraph, in close agreement with our experimental
observations.

I. QUASI-ONE-DIMENSIONAL SHEAR EXPERIMENTS

Our experimental system, based on Ref. [29] and illustrated schematically in Fig. 1, consisted of
a layer of cornstarch suspension into which a thin plate was inserted. Starting from rest, the plate
was impacted by a computer-controlled linear actuator (Parker ETT050) and then moved along the
y direction at constant speed U0. The suspension was floated on heavy, low-viscosity oil (Fluorinert
FC-3283 from 3M), providing a nearly stress-free boundary condition. This allowed us to deduce
the stress applied at the boundary from the momentum of the suspensions, which we measured
experimentally. A high-speed camera (Phantom V12) was used to image the motion of the suspension
surface. The videos were analyzed using a particle imaging velocimetry (PIV) algorithm to obtain
the flow field.

Inside the dashed red box in Fig. 1(a), the system is, to very good approximation, quasi-1D, with
significant flow field gradients only along the x direction. We therefore average in the y direction
and leave x as the only spatial coordinate. An example of a flow field exhibiting a front is shown
in Supplementary Movie 1 [39]. Figure 1(b) shows the evolution of the resulting, averaged velocity
profiles. As the arrows indicate, a moving region rapidly expands outward to either side of the plate,
while the shape of the velocity profiles stays approximately invariant.

For convenience, we define the front position xf as the point on a velocity profile where vy =
0.45U0. As shown in Fig. 1(c), xf is a linear function of time on both sides of the plate, providing
a well-defined, constant front propagation speed Uf. In the example shown, Uf = 3.60 ± 0.03 m/s,
which is 7.8 times the plate speed U0 = 0.46 ± 0.02 m/s but much slower than the speed of sound
in the material (about 1900 m/s [31]). From the flow fields, we also extract the local accumulated
strain γ as a function of time. Because of the invariance of the velocity profiles, we collapse the γ -t
curves at different x using the time when the front reaches that position, i.e., xf(t) = x. As shown
in Fig. 1(d), γ increases quickly at the beginning, but then slows down because of shear thickening.
The red curves are power law fits to the data for t > 0 ms and indicate that the accumulated strain
will approach 0.12 asymptotically. This asymptotic approach to a finite value of the accumulated
strain γ∞ (under continued finite stress) is a clear indicator of jamming
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FIG. 1. Quasi-1D shear experiment. (a) Illustration of the experimental setup, consisting of a layer of
cornstarch suspension (yellow) that floats on oil (blue). Dashed black lines represent rubber sheets confining the
suspension. An acrylic plate with roughened surface was inserted in the middle of the container (at x = 0 m) and
moved with speed U0. The dashed red box indicates the area used for data analysis. The shaded area in the side
view illustrates the cross sectional area S. (b) Exemplary velocity profiles of a shear front for φ = 0.532 and
U0 = 0.46 ± 0.02 m/s, propagating transversely to either side of the plate (dashed blue line). [(c), (d)] Front
position xf and accumulated strain γ as functions of time t . In panel (c), red lines show linear fits. In panel (d),
time t = 0 ms represents the time when x = xf. Red lines show fits to a power law. Black dashed lines indicate
the asymptotic accumulated strain γ∞. (e) Local shear rate calculated from the mean velocity profiles. Blue and
pink represent the left and right branches, respectively, in panel (b).

To obtain the shear rate distribution along the velocity profiles, we average them after shifting
the front positions xf to zero. The absolute value of the local shear rate |γ̇ | = |dvy/dx| is shown in
Fig. 1(e).1 The maximum shear rate γ̇max is found close to the front position. However, the shear rate
profile is not symmetric with respect to |x| − |xf| = 0, exhibiting a steeper gradient at the leading edge
(|x| > |xf|). Behind the front, we observe a tail of small but finite shear rate. Thus, strictly speaking,
the region in the wake of the passing front does not immediately become solidlike. However, as the
front keeps moving ahead and the local strain approaches γ∞, a jammed state with nonzero yield
stress is reached. By contrast, if a suspension does not “jam” but only shear “thickens,” we expect
the accumulated strain to keep growing and the shear rate to stay finite.

From this discussion, we extract three defining features for jamming fronts: (1) a well-defined,
steplike velocity profile that stays invariant over time; (2) a constant propagation speed Uf; and (3) an
asymptotically accumulated strain that stays finite. These characteristics distinguish jamming fronts
from the more diffusive response to applied shear that occurs at low driving speeds U0 or at low
packing fractions, as discussed below. We will use them in comparing model calculations to the
experiments.

We performed the quasi-1D shear experiments at different packing fractions φ and pushing speeds
U0. At slow U0, the suspension is fluidlike, and we obtain Uf ≈ 0 m/s (see Appendix B). As U0

1Since in our 1D system, γ always changes monotonically, we only consider the absolute value of γ̇ and γ .
In the paper, the signs on γ̇ and γ are ignored.
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FIG. 2. Characteristics of propagating jamming fronts as function of pushing speed U0. Experimentally
obtained data for different packing fractions φ are shown by solid symbols. In panels (a)–(c), dashed lines are
from model calculations. (a) Dimensionless front propagation speed k. (b) Asymptotic accumulated strain γ∞.
(c) Stress at the boundary �. Solid circles are calculated by plugging experimentally measured U0 and k into
Eq. (2). Dashed lines show the stress at the boundary obtained from the numerical calculations, which satisfy
� ∼ U 2

0 . (d) Maximum shear rate γ̇max. Open circles are from the model (the same color scheme is used as for
data from the experiments). Black lines are power law fits.

increases, we start to see a front that propagates out. However, before U0 is sufficiently fast, the flow
does not have the three features of the jamming fronts. For example, there is no well-defined Uf

at intermediate driving speed. We now focus on the limit of sufficiently fast U0, where we obtain
jamming fronts as defined above.

II. FRONT SPEED AND ACCUMULATED STRAIN

Here we consider how Uf, γ∞, the stress at the boundary �, and the maximum shear rate γ̇max

depend on the wall velocity U0 at different φ, as shown in Fig. 2. We define the normalized front
propagation speed as k ≡ Uf/U0. The variation of k as a function of U0 is presented in Fig. 2(a), and
Fig. 2(b) shows the corresponding γ∞. At φ � 0.5, both k and γ∞ are essentially constant. However,
for the largest values of φ and U0 we probed, departure from this constant behavior can be detected,
an effect whose relative magnitude can be as large as 30%. Still, for each φ < 0.54, we can find a
range in which k and γ∞ are nearly independent of U0. Using the average value in such a range, we
can define k(φ) and γ∞(φ) at each φ. Note that γ∞(φ) decreases with increasing φ, and the trend is
reversed for k(φ). These results are documented in Fig. 3.

Visual inspection of Figs. 2(a), 2(b), and 3 suggests an inverse relationship between k and γ∞,
which we now derive. The total accumulated strain when the front passes through is γ∞ = ∫ +∞

−∞ γ̇ dt .
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FIG. 3. Dimensionless front propagation speed k (black) and asymptotic accumulated strain γ∞ (blue) as
functions of packing fraction φ. The blue curve shows Eq. (11), and the black curve shows its reciprocal, both
with γ ∗ = 0.197. Data at φ = 0.556 and 0.544 are represented by open circles.

For a propagating front with invariant shape, we have γ̇ = ∂v
∂x

= ∂v
Uf∂t

, so that

γ∞ = 1

Uf

∫ U0

0
dv = U0

Uf
= 1

k
. (1)

Thus, how fast a jamming front propagates depends on how much total strain is accumulated locally
as the jamming front moves through. The physical picture is that a finite strain is required to shear the
suspension out of an initial state, where the particles are uniformly distributed, into a contact network
that jams. As the particles pack more densely, less rearrangement is necessary toward jamming and,
consequently, the front propagates more quickly.

To further prove that the front propagation speed depends on the microscopic particle config-
uration, we prepared an anisotropic initial state of the suspension by moving the plate at a slow
speed prior to the high-speed shear. These experiments confirm that a front will propagate more
quickly (slowly) if the suspension has been presheared along the same (opposite) direction (see
Appendix C). This suggests that the front propagation speed not only depends on φ but also on the
system preparation conditions and the straining history.

III. RELATION BETWEEN APPLIED STRESS AND FRONT SPEED

In our geometry, a relation connecting the applied stress � to the velocity U0 is readily extracted
from momentum conservation. The momentum of an elongating jammed part of the material with a
cross-sectional area S in the plane perpendicular to the front propagation direction is p = ρSxf U0.
Equating the time derivative of this quantity with the force �S, one obtains

� = ρU0Uf = ρkU 2
0 , (2)

where ρ = 1.63 × 103 kg/m3 is the density of the suspension. We calculated � with Eq. (2) using
the experimental data. As Fig. 2(c) shows, the dependence of � on U0 matches a quadratic power
law well. Interestingly, the form of Eq. (2) is identical to the expression for the dynamic pressure
in a normal fluid, except that the density is renormalized by a factor k, so the effective density
becomes ρeff ∼ kρ, where k can be as big as a factor of 10 according to our experiments. This “added
mass” generated by the propagating fronts was tracked and imaged in previous impact experiments
[28,29,31].

Note that as the shear stress increases with U0, so does the normal stress. As the front passes
by, the surface of the suspension turns from smooth to matte due to the dilation of grains [40]. The
protrusion of particles increases the confining stress applied by surface tension at the suspension-air
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interface [5]. However, there is an upper limit in confinement stress at free interfaces, which is of
order 103 Pa for our suspensions [4]. As a result, at sufficiently fast U0 the material could expand
near the surface, causing φ to decrease in the bulk [16]. This effect may lead to the departure of
the power-law behavior in Fig. 2(c) for the largest stresses we probed, or equivalently [according
to Eq. (2)] to the erosion of the U0-independent behavior of k in Fig. 2(a). In the model developed
below, we neglect this dilation effect, and thus it predicts a constant k(U0) at fast U0.

IV. MAXIMUM SHEAR RATE

The maximum shear rate γ̇max characterizes the steepness of the fronts. It is inversely related to
the front width � since dimensionally we must have � ∼ U0/γ̇max. Figure 2(d) shows γ̇max as a
function of U0. The experimental data for different φ from 0.462 to 0.532 collapse to very good
approximation onto a single curve, revealing a power law of the form γ̇max ∝ Ub

0 , with exponent
bexp = 1.51 ± 0.09. From this observation, we can deduce that � ∝ U 1−b

0 ∝ U−0.5
0 . Since γ̇max is

roughly independent of φ, we predict the front width to be insensitive to φ, which is different from
what was found in the case of compression front [34].

V. A MODEL FOR TRANSIENT PHENOMENA

The model by Wyart and Cates [25] describes shear thickening of suspensions under steady-state
shear. The central ideas are as follows:

(i) If particles have a short-range repulsion (due to charges, polymer brushes, etc.), frictional
contacts between them will be made only beyond a characteristic particle pressure P ∗. The fraction
of frictional contacts f (P ) must be a growing function of P , such as

f (P ) = 1 − exp(−P/P ∗). (3)

(ii) The packing fraction φeff at which jamming occurs is known to depend on the friction
coefficient. For such particles, it must then depend on P , as can be captured in a linear interpolation:

φeff(P ) = f (P )φm + [1 − f (P )]φ0, (4)

where φ0 and φm are the frictionless and frictional jamming packing fractions, respectively.
(iii) When a suspension with packing fraction φ is under shear, the ratio between normal stress

P and shear rate γ̇ diverges at φeff:

P/γ̇ ∝ [1 − φ/φeff(P )]−α. (5)

For frictionless particles, the exponent α can be computed analytically, leading to α = 2.85 [13],
whereas for frictional particles it is smaller [41]. Here we pick α = 2 for simplicity, a value also in
good agreement with previous experimental results [16,42,43]. Recently, a similar but more detailed
model has been validated with numerical simulations by Singh et al. [24].

Equations (3)–(5) allow one to compute P (γ̇ ), eventually leading to a phase diagram predicting
CST, DST, and jamming in the (φ,γ̇ ) plane. A further prediction of the shear stress can be obtained
following the relation � = μP , where μ is the macroscopic friction. It can in principle depend on
P and φ, but in practice the dependence is mild on φ and essentially nonexistent on P , and μ can
thus be approximated as a constant.

However, this model only applies to steady state. To model transient phenomena, consider an
initial isotropic state where particles are not touching. There must be a characteristic strain γ ∗
beyond which the microscopic structure becomes anisotropic and particles start to make contact. Let
us denote the fraction of such particles by g(γ ), whose contacts can be frictional or not (if the force
is insufficient). g(γ ) must be a growing function, such as

g(γ ) = 1 − exp(−γ /γ ∗). (6)
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The density of frictional contacts can now be estimated as g(γ )f (�). We thus obtain for the jamming
packing fraction

φeff(�,γ ) = g(γ )f (�)φm + [1 − f (�)g(γ )]φ0, (7)

where f (�) = 1 − exp(−�/�∗) and �∗ = μP ∗. Making the additional approximation2 that in the
transient as well, the viscosity only depends on the value of φeff we obtain for the shear stress [in the
spirit of Eq. (5)],

� = η0γ̇ [1 − φ/φeff(�,γ )]−2, (8)

where η0 is the solvent viscosity. Note that this equation can be applied to higher dimensions as well,
where � and γ̇ now indicate the shear stress and shear strain tensors respectively.3 Equations (6)–(8)]
lead to a closed relationship for �(γ,γ̇ ,φ). If the suspension does not jam, we can take the limit
γ → +∞ and Eq. (7) reverts back to Eq. (4) for a steady-state system, as it should.

Furthermore, to study spatially nonuniform situations such as fronts, Newton’s second law must
be included. Here we calculated the velocity and stress distributions in a one-dimensional model
system with a finite element method (see Appendix D). The velocity change of the nth element �vn

over a time step �t is set by the shear stresses �l and �r applied on its left and right boundaries,
respectively. So the equation of motion is

ρ
�vn

�t
= �l − �r

�l
, (9)

where �l is the width of the element. We set v1 = U0 and vN = 0 throughout the calculation. For
the other elements, the velocity vn(t) was calculated using the forward Euler method. The stresses
�l(vn−1,vn) and �l(vn,vn+1) are calculated using the generalized model discussed above [Eqs. (3),
(6), and (7)].

Note that in the transient regime the inertia of the suspension plays a role on the macroscopic scale
because of the acceleration term ∂u/∂t . However, on the length scale of a particle, the Stokes number
St = ρpd2

pγ̇ /η [23] is still at least two orders of magnitude smaller than 1 in our experiments. Some
typical values are particle diameter dp ≈ 15 μm; density of the particles ρp matched to the density of
the solvent ρl , ρp = ρl ≈ 1.6 × 103 kg/m3; and dynamic viscosity of the solvent η ≈ 14 mPas. Even
at the maximum shear rate applied in the experiments, γ̇ ≈ 200 s−1, we get St ≈ 5 × 10−3 	 1. As
a result, the “no inertia” requirement of the original model by Wyart and Cates [25] is still met as far
as individual particles are concerned.

On the macroscopic level, when it comes to the effect of inertia in a transient flow, we need to
consider both terms in the material derivative of velocity ∂u/∂t + (u · ∇)u in the Navier-Stokes
equations. In a steady flow, ∂u/∂t = 0, and the effect of inertia is indicated by the Reynolds number
Re, which is the ratio between the inertia term (u · ∇)u and the viscous term ν∇2u. In a transient
flow, however, the ∂u/∂t term should also be considered. In our case, the timescale T for the front
to propagate through its own width � is T ∼ �/(kU0), and this time is also comparable to the time
for the suspension to accelerate from 0 to U0. This allows us to estimate the order of each term:

O

(
∂u
∂t

)
∼ O

(
U

T

)
∼ kU 2

0

�
, O[(u · ∇)u] ∼ O

(
U 2

L

)
∼ U 2

0

�
,

O
(
ν∇2u

) ∼ O

(
ν

U

L2

)
∼ ν

U0

�2
, (10)

2This is clearly a simplification, as the viscosity should not only depend on the fraction of frictional contacts,
but also on the anisotropy of the contact network characterized by γ . Our results support that this dependence
is not essential to describe fronts.

3To describe propagating fronts in two or three dimensions, one may further assume that φ is constant in space
since particle migration is slow and use that the material is incompressible.
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FIG. 4. The 1D model system for numerical calculation. For all data shown, the parameters are φ0 = 0.593,
φm = 0.452, η0 = 13.6 mPa s, �∗ = 20.4 Pa, and γ ∗ = 0.197. [(a), (b)] Velocity profiles at different times for
φ = 0.521, U0 = 0.01 m/s (a) and 0.1 m/s (b). (a) Fluidlike regime. (b) Unstable regime. [(c)–(g)] Results in the
jamming regime for φ = 0.532 and U0 = 0.456 m/s. The results can be directly compared with the experiment
shown in Fig. 1. [(c), (d)] Velocity profiles and accumulated strain γ at different times. (e) Front position xf as
a function of time. The red line shows a linear fit. (f) Accumulated strain γ as a function of time in element
n = 80. The red curve is a fit to a power law. The dashed black line indicates the asymptotic strain. (g) Local
shear rate calculated from the mean velocity profile.

where U , L, and T represent the characteristic speed, length, and timescales, respectively. In our
experiments k ranges from ∼2 to ∼10 depending on φ (Fig. 3), and thus ∂u/∂t is several times
larger than (u · ∇)u, except for φ very close to φm. Actually, in an ideal one-dimensional system
(with this specific geometry), the (u · ∇)u term simply vanishes because the direction along which
the flow velocity varies is perpendicular to the direction of the flow itself. So finally, it is a balance
between the acceleration term ∂u/∂t and the viscous term ν∇2u, but in this case ν is not a constant.
As a result, before the front reaches any outside boundary, the inertia will always play a role. The
suspension close to the front is accelerating, and thus there must be a stress gradient. This should be
a valid result as long as the flow in the suspension is still laminar and no instability is generated.

VI. QUALITATIVE PREDICTIONS OF THE MODEL

When U0 (or equivalently the stress �) is sufficiently small, φeff ≈ φ0 and the viscosity is constant
according to Eq. (8). Injecting this relation into Eq. (9) leads to a diffusion equation, and one
recovers the usual flow profile for a liquid, evolving with a characteristic length scale

√
νt toward a

steady-state shear flow, where ν is the kinematic viscosity. We do recover such a diffusive profile in
our finite-element implementation of the model, as shown in Fig. 4(a).

By contrast, if U0 is large and φ > φm then there must exist a front separating a jammed and a
flowing region. According to Eq. (2), this front must move at constant speed. This is also recovered
in our numerics. Figure 4 shows the numerically obtained velocity [Fig. 4(c)] and local accumulated
strain [Fig. 4(d)] profiles at different times, as well as the front location xf [Fig. 4(e)], the accumulated
strain γ at a fixed position [Fig. 4(f)], and local shear rate γ̇ [Fig. 4(g)]. The parameters are indicated
in the caption, and they were chosen (see below) to correspond to the experimental data in Fig. 1,
allowing a direct comparison. The model reproduces a front that propagates with a constant speed
[Figs. 4(c) and 4(e)]. The local accumulated strain always approaches a finite value asymptotically
[Figs. 4(d) and 4(f)], which is in close agreement with observations. The shape of the γ̇ (x) curve
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plotted in Fig. 4(g) also agrees with the experimental data in several key aspects. The maximum
shear rate is obtained near x = xf, and both curves show asymmetry with respect to |x| − |xf| = 0: γ̇

grows quickly as the front approaches but decays with a tail after the front has passed by. However,
the front is sharper than in the experiments, as quantified below.

Finally, at intermediate U0 the model predicts a regime of instability (not seen in our experiments),
exemplified in Fig. 4(b). After propagating across a certain distance, the shape of the velocity profile
in the comoving frame oscillates back and forth. Such instability is not entirely surprising: For these
velocities, the stress � lies inside the S-shaped portion of the flow curves (see Appendix E). In that
stress range, a complex sequence of instabilities and chaotic behavior in steady-state systems has
been reported experimentally [44], which appears to be sensitive to the presence of a free surface
that can be deformed. Modeling the front in this velocity regime in the one-dimensional geometry
discussed here may thus require us to allow for deformation of the free surface. This goes beyond
this work, and here we focus on the large U0 regime.

VII. QUANTITATIVE COMPARISON WITH EXPERIMENTS

There are five parameters in our model, but we can obtain φ0, φm, η0, and �∗ from steady-state
rheology. This is shown in Appendix F where we obtain φ0 = 0.593, φm = 0.452, η0 = 13.6 mPa s,
and �∗ = 20.4 Pa. We are left with a single parameter, γ ∗ = 0.197 ± 0.002, obtained by fitting the
front propagation speed k and its inverse γ∞ at different φ, as shown in Fig. 3. Interestingly, a threshold
strain of approximately 0.2 is also found in regular granular materials [45] and in suspensions [33]
as the strain scale below which transient, startup behavior is observed.

Note that the most important predicted quantities (k and γ∞) can be estimated analytically in our
model in the limit of large U0. In that case, the stress is large when the front passes and we may take
f (�) ≈ 1 in Eq. (7). Jamming occurs when φeff = φ, leading to g(γ ∗) = (φ0 − φ)/(φ0 − φm). For
our choice of g this implies

γ∞ = γ ∗ln
φ0 − φm

φ − φm
. (11)

To further test the model, we compute k, γ∞, �, and γ̇max across a range of packing fractions φ

and boundary speeds U0, and compare the results with experiments directly in Fig. 2. As follows
from Eq. (11), we predict k and γ∞ to be essentially independent of U0 for large values, and � ∼ U 2

0 .
These predictions match the data very well at each φ (except for the largest φ values where k shows
some decay, presumably induced by the deformation of the free interface as discussed above).

As shown in Fig. 2(d), γ̇max obtained from experiments (solid circles) and calculations (hollowed
circles) both obey power laws as functions of U0, and their prefactors are both relatively φ independent
over the range φ ∈ [0.462,0.532] (see Appendix H). However, the model predicts an exponent around
2 instead of 1.5, and the prefactor is about one order of magnitude larger. For both the transient and
steady-state systems (see Appendix F), the model overestimates the sharpness of the transition from
low to high viscosity. First, this could be due to the complexity of cornstarch granules (irregular
shape, polydispersity, etc.). Second, more sophisticated models describing not only the fraction of
frictional contacts but also the evolution of the anisotropy of the contact network with strain may be
required for a more detailed treatment of the front width.

VIII. CONCLUSIONS

By studying the rapidly propagating jamming fronts generated when applying a sudden shear, we
proposed and validated a phenomenological framework for fluid-solid front propagation in dense
particulate suspensions. We found that besides the applied stress, the properties of such fronts are
controlled by the local accumulated shear strain as well. These transient, startup dynamics can
be captured by introducing a characteristic strain scale γ ∗ into a model [25] that describes the
steady-state rheology of shear-thickening suspensions. Despite its simplicity, this extended model
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gives very good agreement with the experiments, quantitatively reproducing the dependence of the
normalized fronts speed k and of the locally accumulated shear strain γ∞ on packing fraction φ. It
also predicts correctly the qualitative dependence on system and forcing parameters of the maximum
shear rate γ̇max inside the front.

Importantly, the generalized model introduced here establishes a direct link between the steady-
state and transient behaviors in dense suspensions. It shows that to obtain jamming fronts, the packing
fraction of the suspension must be above the frictional jamming packing fraction φm. In the range
between φm and the frictionless jamming packing fraction φ0, the suspension will evolve into a state
that jams at high stress but can still flow at low stress.

While we discussed the model in its simplest form, appropriate for a semi-infinite 1D system, the
same ideas and numerical approaches should allow for several extensions. This includes accounting
for the presence of walls (which can take up large stresses once reached by the fronts) as well as
extension to 2D or 3D systems (where the fronts propagate with different speeds in the directions
along the applied forcing and perpendicular to it [29,31,33]).
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APPENDIX A: PREPARATION OF SUSPENSIONS

We used suspensions of cornstarch (Ingredion). The dry cornstarch particles were stored in a
temperature- and humidity-controlled environment at 22.5 ± 0.5 ◦C and 44 ± 2% relative humidity.
The solvent was a mixture of caesium chloride (CsCl), glycerol, and deionized water. The mass
ratio between glycerol and water in the solvent was 65% : 35%. The density of the solvent was
1.62 × 103 kg/m3, which matched the density of cornstarch particles to prevent sedimentation. The
viscosity of the solvent was 11 ± 1 mPas. When a suspension was made, we mixed mcs grams of
cornstarch particles with ml grams of the solvent and left it sit still for approximately 2 h before
performing experiments to allow full wetting of the particles and for most air bubbles to disappear.
The packing fraction φ of the suspension was calculated by

φ = 1

1 − ψ

(1 − ξ )mcs/ρcs

(1 − ξ )mcs/ρcs + ml/ρl + ξmcs/ρw
, (A1)

where ρcs and ρl represent the density of the particles and the solvent, respectively, ρw is the density
of water, ξ is the mass ratio of moisture in the cornstarch particles in our laboratory environment, and
ψ is the porosity of cornstarch particles. We used ξ = 0.13, ψ = 0.31, and ρcs = 1.63 × 103 kg/m3

in the calculation of φ [47].

APPENDIX B: FLOW PROFILES FOR SLOW U0

When U0 is sufficiently slow, the suspension is in the lubrication regime and behaves like a
Newtonian fluid. For a Newtonian fluid sheared in a semi-infinite 1D system, the flow profile is
self-similar with a characteristic length scale

√
νt , where ν is the kinematic viscosity. If we define a

normalized, time-dependent length scale s = x/(
√

νt), the velocity u(x,t) is [48]

u(x,t) = U0[1 − erf(s/2)], (B1)
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FIG. 5. Flow profiles in the fluidlike regime and “front” position xf at φ = 0.521 and U0 = 0.01 m/s.
(a) Numerical calculation based on the model. (b) Experimental data. (c) Position of the front, defined as the
position where uy = 0.45U0.

where erf(x) is the error function. The numerically calculated and experimentally measured flow
profiles at φ = 0.521 and at sufficiently slow speed U0 = 0.01 m/s are shown in Fig. 5 as an
example. One major difference is that in the calculation the system is strictly one dimensional, so
the local velocity is always positive during the whole process. However, in the experiment, negative
flow velocity is observed further away from the plate, which originates from fluid recirculation due
to the finite container size. We can still define the “front position” xf as the x position at which
u = 0.45U0. As shown in Fig. 5(c), in the calculation xf keeps growing as a function of time, and
before the flow reaches the other boundary it satisfies xf ∝ √

νt , where ν = η0(1 − φ/φ0)−2/ρ. In
the experiments, the front almost stopped propagating at late time and reached a steady state. As a
result, in experiments with slow U0, we obtain Uf ≈ 0.

APPENDIX C: EFFECT OF PRESHEAR

To prepare a system with nonzero initial strain, we applied a preshear at a slow speed Upre, where
the suspension is still fluidlike. For testing the effect of preshear, we moved the plate 10 mm forward
or backward at Upre = 1 or 10 mm/s, and then applied fast shear at U0. Results for φ = 0.526 and
U0 = 0.36 m/s are shown in Fig. 6 as an example. We performed preshear at different Upre (from 0.1
to 10 mm/s), and waited for different lengths of time between preshear and fast shear, from several
seconds to 10 min. In each case, we obtained almost identical xf-t curves, as long as Upre was slow
enough so that the suspension remained fluidlike. This also shows that cornstarch suspensions can
be treated as an athermal system over timescales as long as several minutes.

Note that in our experiments the velocity profile was not always linear during the preshear. This
was due to the limited range the plate could move, so the distribution of prestrain was not exactly
the same everywhere. When the preshear finished, the accumulated strain close to the plate was the
maximum and it decreased gradually to the side. As a result, in the following step, when pushed
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FIG. 6. Front position as a function of time for different preshear. The fast plate speed was U0 = 360 mm/s,
and the slow preshear speed Upre varied as labeled in the plot. Positive Upre represents pre-shear in the same
direction as U0, and negative Upre was in the opposite direction.

with a fast speed U0, the front speed Uf slowed down as it propagated away from the plate, which
can be seen in Fig. 6. All these observations support our argument that the front propagation speed
is dependent on the initial configuration and arrangement of the particles.

APPENDIX D: NUMERICAL CALCULATIONS

The one-dimensional model system we considered for the numerical calculations is illustrated
in Fig. 7. It was composed of N elements aligned in the x direction as labeled. Each element was
allowed to move in the y direction only. The initial condition was zero velocity and zero strain for
every element. At time t = 0 s, the velocity of the first element was set to be U0 and kept fixed
throughout the calculation. The velocity of the N th element was set to be zero for all times. For the
other elements, the velocity was calculated using the forward Euler method. The equation of motion

U0 
un un+1 un-1 

∆l 

x 

y 

O

  1 2 3 n-1 n n+1 N-1 N-2 N 

σn-1 σn 

FIG. 7. Schematic illustration of the model system used for the numerical calculations. The black boxes
represent fluid elements, the blue arrows represent the local velocities and the red arrows show the shear stress
applied on the left and right boundaries of the nth element. The boundary conditions are u1 = U0 and uN = 0.
The width of an element is �l.
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was

�un = �t

ρ�l
(σn−1 − σn), (D1)

where ρ is the density of the suspension, u is the velocity of the element in the y direction, σ is the
shear stress applied on its boundaries, and �l and �t are the length and timescales, respectively.
From time step i to i + 1, we had

un(i + 1) = un(i) + �un(i). (D2)

The stress σn was calculated using

σn = η0γ̇n[1 − φ/φeff,n]−2, (D3)

where

γ̇n = un − un+1

�l
(n � 2), (D4)

and φeff,n was calculated according to the generalized model [Eqs. (3), (6), and (7) in the main text
of the paper]. The increment of strain in every step was

γn(i + 1) = γn(i) + γ̇n�t. (D5)

APPENDIX E: TRANSITION FROM SLOW TO FAST U0

To better understand the transition from slow U0 to fast U0, we look at the evolution of the �-γ̇
relation as γ accumulates, as shown in Fig. 8. The �-γ̇ relation for a steady-state system is labeled
by the dashed black curve. Since φ > φm, it intersects with the γ̇ = 0 s−1 axis and does not have an
upper branch. However, in the generalized model, since we introduced the g(γ ) term, the �-γ̇ relation
evolves as γ accumulates. The �-γ̇ relations at different γ are presented by the blue curves in Fig. 8.

10-1

100

101

102

103

104

10-2 10-1 100 101 102 103

Σ 
(P

a)

γ̇ (s-1)

U0 = 500 mm/s
U0 = 100 mm/s
U0 = 10 mm/s

FIG. 8. Evolution of �-γ̇ at φ = 0.521. The blue curves show the �-γ̇ relation at different γ (starting from
zero, with strain increments of 0.0105 between adjacent curves), as predicted by the generalized Wyart-Cates
model. The dashed black line corresponds to the relation at steady state (γ → +∞). The thick black, green, and
red lines show the relation between stress and shear rate in element no. 2, calculated numerically for different
U0 as indicated.
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When γ = 0, the relation between � and γ̇ is linear with a constant viscosity η0(1 − φ/φ0)−2. As
γ increases, the �-γ̇ curve turns from linear to sigmoidal and finally approaches the black dashed
line as γ → +∞.

Given the �-γ̇ relation at any γ , we now discuss, as a specific example, the variation of � with γ̇

in element 2 of the numerical 1D system, which we call the “state” of that element. When U0 = 0.01
m/s, the state moves up along the Newtonian-fluid line and then turns back down along an almost
identical path as γ̇ is varied (black line). In contrast, at U0 = 0.5 m/s the stress quickly reaches the
upper branch of the sigmoidal curves and stays up there as γ keeps accumulating and γ̇ slows down.
If γ keeps increasing, the shear rate approaches γ̇ = 0 s−1. Since � stays constant, the viscosity
of the suspension diverges as γ̇ → 0. This then leads to a jammed state (red line). At intermediate
U0, the system can enter a regime where the flows become unstable (green lines). Here the stress
reaches the upper branch and forms a plateau at the beginning. However, as the strain accumulates
and the strain rate slows down, the state of the element (at that stress level) enters a section of the
S-shaped �-γ̇ curves with negative slope. As a consequence, the stress has to jump down to the
lower branch. The stress then builds up again and jumps back to the upper branch, and the process
repeats.

APPENDIX F: STEADY-STATE RHEOLOGY EXPERIMENTS

The steady-state rheology experiments were performed with an Anton Paar MCR 301 rheometer.
The suspensions were tested between parallel plates, and the diameter of the upper plate was 25 mm
(tool PP25). An enclosed solvent trap was used to prevent evaporation. We performed both shear-
rate-controlled and shear-stress-controlled experiments at different φ. Before each measurement, the
suspension was presheared by ramping from� = 0.1 Pa to 100 Pa for 50 s in total, then sheared slowly
at � = 0.1 Pa for 30 to 60 s. After these two steps of preparation, we ran the actual measurements,
where we took 20 data points in a scan from low to high γ̇ or � (from approximately 0.1 to 1000 Pa).
At each point, the measurement lasted for 10 to 30 s, and we made sure that the time was long enough
so that the viscosity did not vary with time. Some exemplary viscosity-shear rate data (η-γ̇ curves)
at different φ are shown in Fig. 9(a).

The steady-state model predicts that, for suspensions in the CST and DST regimes, the η-γ̇ curves
have two Newtonian regimes: ηN,1 at low stress and ηN,2 at high stress. Both ηN,1 and ηN,2 increase
with φ, and the stress threshold �∗ controls the stress at which the transition occurs from one regime
to the other. In the experiments, there are several differences from this model, which we need to
account for. First, dense suspensions show shear thinning at low shear rate. To accommodate this, we
took the average viscosity in the flat section near the minimum of a η-γ̇ curve as ηN,1. Second, the
higher branches of the η-γ̇ curves are more like smooth peaks instead of plateaus. We therefore took
the peak values of η as ηN,2. Lastly, in steady-state rheology experiments there is another stress limit
set by the surface tension at the suspension-air interface, which confines the suspensions between
the parallel plates. The empirical relation is �max ≈ 0.1�/d, where � is the surface tension of the
solvent and d is the particle diameter [4]. The surface tension of our solvent was about 75 N/m
[49,50] and the average diameter of cornstarch granules was about 15 μm. As a result, �max was
500 Pa approximately. Above this stress, the surface tension could not confine the suspension and
the measurements became unreliable; i.e., the data could no longer be used to extract ηN,2.

According to the model by Wyart and Cates, the viscosity of a suspension is

η = �

γ̇
= η0[1 − φ/φeff(�)]−2. (F1)

In the two limits of �, Eq. (F1) has two asymptotes:

ηN,1 = η0(1 − φ/φ0)−2, (� → 0), ηN,2 = η0(1 − φ/φm)−2, (� → +∞). (F2)

This predicts that though both ηN,1 and ηN,2 increase with φ, they grow with different rates and
diverge at different φ: ηN,2 diverges at φ = φm while ηN,1 diverges at φ0. Figure 9(b) shows ηN,1 and
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FIG. 9. (a) Viscosity η at different shear rates γ̇ and packing fractions φ. Squares connected by thin solid lines
represent stress-controlled experiments; circles connected by thin dashed lines represent shear-rate-controlled
experiments. The predictions of the Wyart-Cates model are shown by the thick curves with the same color as
the experiments. The dashed black line indicates a constant stress � = 500 Pa, which is provided by surface
tension and corresponds to the upper limit of stress in steady-state experiments using our shear cell geometry.
(b) The lower Newtonian viscosity ηN,1 (solid circles) and higher Newtonian viscosity ηN,2 (open circles) at
different φ. The two curves show the best fit of ηN,1 and ηN,2 with Eq. (F2). The vertical dashed lines label φm

(left) and φ0 (right) obtained from the fitting. (c) Relation between rescaled packing fraction � and onset stress
�DST. For each �, the corresponding φ is labeled on the right. The solid black points are experimental data.
The red curve is the prediction of the model for �∗ = 20.4 Pa.

ηN,2 as functions of φ. We fit both ηN,1 and ηN,2 simultaneously on log scales to Eq. (F2) and obtain
the parameters η0 = 13.6 mPas, φ0 = 0.593, and φm = 0.452.

We can then use the onset stress of DST, �DST, to obtain the threshold stress �∗. �DST is the
stress at the turning point where a η-γ̇ curve becomes vertical, so we have

dγ̇

d�

∣∣∣∣
�=�DST

= 0. (F3)

Now with the three parameters η0, φ0, and φm already extracted, �DST is only a function of φ and
�∗. Equivalently, we can use a rescaled packing fraction �, defined as

� = φ − φm

φ0 − φm
. (F4)

Figure 9(c) shows the relation between � and �DST obtained from experiments. To obtain the
�∗ that best fits �-�DST, we varied �∗ from 15 to 25 Pa. For each �∗, we calculated the �-γ̇
curve and found the corresponding �DST at the experimentally measured packing fractions. Then
we calculated the sum of squared residuals (SSR) between the measured and calculated �DST and
obtained �∗ = 20.4 Pa, for the minimum SSR.

The four parameters to describe the steady-state behavior of our suspensions are η0 = 13.6 ×
10−3 Pas, φ0 = 0.593, φm = 0.452, and �∗ = 20.4 Pa. With these in hand, we can calculate the η-γ̇
relation at any packing fraction and compare it with the experimental measurement, as shown in
Fig. 9(a). The lowest three curves (green, light blue, and gray) are in the CST regime with φ < φm.
The next two curves above, at φ = 0.417 and 0.449, are in the DST regime where φm < φ < φ0. In
this regime, one might expect to see a discontinuous jump in viscosity, while the transitions seen in
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the experiments are less sharp than the model predicts. We note that this “sharpness” may be affected
by the size distribution of the particles. It has been shown that the onset stress of shear thickening
is a function of the particle size [43]: As the particles are large, the onset stress is smaller. Since
cornstarch is highly polydisperse, there should be a distribution of onset stress in the system, which
smooths the transition. Lastly, the curves at the four highest packing fractions (from 0.472 to 0.544)
are in the jamming regime where φ > φm.

APPENDIX G: AN ALTERNATIVE DERIVATION OF EQ. (11)

Equation (10) in the main text is an approximate relation between γ∞ and γ ∗ in the regime of
sufficiently fast U0 where the front speed can be assumed constant. To keep the calculation simple,
we make three approximations that are appropriate for this high-speed limit: First, we approximate
Eq. (8) in the main text by

� ≈ η̃0γ̇ [φeff − φ]−2, (G1)

where η̃0 ≡ η0φ
2
0 . Second, in this limit � is much larger than �∗, so we take f (�) ≈ 1. Finally, since

the front profile has an approximately invariant shape while propagating, the accumulated strain can
be written as γ (x,t) = γ (Uft − x) ≡ γ (X). This leads to

γ ′ ≡ dγ (X)

dX
= 1

Uf

∂γ

∂t
= −∂γ

∂x
, (G2)

and

γ ′′ ≡ d2γ (X)

dX2
= 1

U 2
f

∂2γ

∂t2
= ∂2γ

∂x2
. (G3)

Plugging Eq. (G1) into the equation of motion gives

ρ
∂2γ

∂t2
= ∂2�

∂x2
, (G4)

and by using Eqs. (G2) and (G3), we obtain a first-order equation governing the evolution of γ :

dγ

dX
= ρUf

η̃0
γ
[
(φ0 − φm)e−γ /γ ∗ + φm − φ

]2
. (G5)

It has two fixed points. For any given x, γ increases with time from an unstable fixed point γ = 0 to
a half-stable fixed point, which is the asymptotic accumulated strain γ∞ shown in Eq. (11). Written
as a function of the rescaled packing fraction � defined in Eq. (F4), it becomes

γ∞ = −γ ∗ln�. (G6)

This approximate result captures the relation between γ∞ and γ ∗ very well. In Fig. 10, we compare
the numerically calculated k and γ∞ at γ ∗ = 0.197 and U0 = 1 m/s with Eq. (11).

APPENDIX H: MAXIMUM SHEAR RATE

Using Eqs. (G2) and (G5), we can write out the expression for the shear rate:

γ̇ =
{

ρk2

η̃0
γ [(φ0 − φm)e−γ /γ ∗ + φm − φ]2

}
U 2

0 , (H1)

where we have replaced Uf by kU0. The maximum shear rate γ̇max is achieved at γm, where the
function in the curly brackets reaches its peak. By calculating the first derivative, we find that this
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FIG. 10. Dimensionless front propagation speed k and asymptotic accumulated strainγ∞ at different packing
fraction φ obtained numerically at γ ∗ = 0.197 and U0 = 1 m/s. The solid curves show Eq. (11) and its reciprocal
at the same γ ∗.

occurs when

e−γm/γ ∗
(

1 − 2
γm

γ ∗

)
= �. (H2)

This can be evaluated numerically to find γm. Plugging γm into Eq. (H1), we can see that everything
in the curly brackets is independent of U0. As a result, the prediction of the maximum shear rate by
the model can be written as

γ̇max = R(φ)U 2
0 , (H3)

 100
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2 )
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FIG. 11. Comparison of R(φ) obtained from the numerical calculation (open circles) with the prediction of
Eq. (H1) (blue line). The dashed black lines show φm and φ0.
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where the prefactor R(φ) is simply a function of the packing fraction. As shown in Fig. 11, R(φ)
vanishes as φ → φ0 and φ → φm, but in the range φ ∈ [0.462,0.532], it is relatively flat. This agrees
well with the numerical results shown in Fig. 2(d) in the main text. To extract R(φ), we fit the
calculated γ̇max(U0) for each φ to Eq. (H3). The results are given by the open circles in Fig. 11.
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