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Recently the generation of eddy currents by interacting surface waves was observed
experimentally. The phenomenon provides the possibility for manipulation of particles
which are immersed in the fluid. The analysis shows that the amplitude of the established
eddy currents produced by stationary surface waves does not depend on the fluid viscosity
in the free surface case. The currents become parametrically larger, being inversely
proportional to the square root of the fluid viscosity in the case when the fluid surface
is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed
by an insoluble agent with negligible internal viscous losses as compared to the dissipation
in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity
and small shear and dilational viscosities on the case of an arbitrary elastic compression
modulus. We find both contributions into the Lagrangian motion of passive tracers, which
are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes
drift contribution preserves its value for the free surface case outside a thin viscous sublayer,
the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the
film compression modulus. The Stokes drift acquires a strong dependence on the fluid
viscosity inside the viscous sublayer; however, the change is compensated by an opposite
change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity
of eddy currents is given by a sum of two decaying exponents with both decrements being
of the order of the wave number. The decrements are numerically different, so the Eulerian
contribution becomes dominant at some depth for the surface film with any compression
modulus.
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I. INTRODUCTION

A mass transport (relatively slow) of a fluid produced by surface waves (relatively fast) is a long-
standing problem in fluid mechanics. Considering an ideal fluid, Stokes showed that the account of
second-order corrections in the amplitude of progressive wave leads to a drift of Lagrangian particles
toward the propagation direction of the wave [1]. A control experiment should involve the generation
of the monochromatic steady wave with small enough amplitude to provide a laminar regime of the
transport current. It was demonstrated that the spatial distribution of the current substantially differs
from the Stokes prediction; see, e.g., Ref. [2]. The discrepancy was attributed to the Eulerian part of
the mass transport. The appropriate theory was developed by Longuet-Higgins [3], and it takes into
account the viscosity of the fluid along with the flow nonlinearity.
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The interest in the progressive wave is justified by an almost unidirectional wave spectrum excited
by wind in the ocean. In the laboratory, surface waves can be excited by the wave makers, and
this promoted expansion of the interest onto crossed monochromatic plane waves as the simplest
nontrivial example [4–6]. In the experiments, the eddy laminar horizontal currents induced by crossed
waves were observed by analyzing the velocity of floating particles by the Particle Image Velocimetry
method. The eddy currents can be described in terms of vertical vorticity, and the theoretical treatment
of the problem [4,7] reveals both Eulerian and Stokes contributions into these currents as well. The
viscosity of a fluid is shown to play a crucial role in the generation of Eulerian motion. It violates
a potential approximation in the description of surface waves and leads to the appearance of a
nonzero horizontal vorticity concentrated in the thin viscous sublayer in the linear approximation
with respect to the wave steepness. The nonlinear interaction forces the surface tilt to produce a tilt
of the horizontal vorticity that is the vertical vorticity. The generated vertical vorticity spreads by the
viscous diffusion into the fluid bulk, where the Stokes drift contribution is determined solely by the
potential part of the wave flow. Both these effects have comparable amplitudes and the same spatial
structure near the fluid surface. Note that the account of the corrections stemming from the vortical
part of the velocity field for both Stokes drift and Eulerian current reveals that the intensity of eddy
currents is almost constant inside the viscous sublayer.

Interestingly, the resulting expression for the velocity of floating passive tracers is independent of
the fluid viscosity for the fluid with a free surface. The result can be compared to the phenomenon
of acoustic streaming (Ref. [8], Sec. 80), where the velocity is also independent of the viscosity,
even though it originates from the viscosity. The prediction is in agreement with recent experimental
results [6], where it was found that changes in the fluid viscosity by an order of magnitude do not
qualitatively change horizontal drifts of floating particles driven by the surface waves. The situation
should be different when the fluid surface is covered by an almost incompressible thin liquid film
formed by an insoluble agent. In this case we have predicted that the velocity of floating passive
tracers parametrically increases and the parameter is inversely proportional to the square root of the
fluid viscosity [7]. The prediction is still awaiting experimental tests.

In the present paper, we theoretically investigate the laminar eddy currents and address some new
questions. The first question is how does the drift velocity of the floating passive tracers depend
on the properties of the film, which possibly covers the fluid surface? Here we consider only thin
liquid films and expand the model in comparison with previous works [4,7] on films with an arbitrary
elastic compression modulus. This extension allows us to develop a unified theory that includes both
limiting cases and reveals the role of elastic properties of the surface film in the problem.

The fact that a surface film can modify the hydrodynamic motion has been well known since
ancient times (e.g., Greeks used oil to calm rough seas). However, the problem has no universality
since the caused changes in the fluid flow substantially depend on the properties of the film itself. For
example, a thin viscoelastic film of adsorbed soluble protein with a finite shear elastic modulus totally
suppresses the horizontal motion of floating particles [9]. On the other hand, the particle motion was
observed in freely suspended thin smectic film (which can be considered as a two-dimensional liquid),
which undergoes fast transverse oscillations [10]. The theory predicts that an almost incompressible
thin liquid film formed by an insoluble agent on a fluid surface should increase the intensity of
horizontal motion [7]. Presumably these differences are caused by differences in the shear properties
of the films, but further detailed theoretical and experimental studies are required.

In this paper, we consider a thin (e.g., monomolecular) film which is formed by an insoluble
agent, and for this reason, the film mass is conserved. Such film does not change the fluid density
ρ and its kinematic viscosity ν. The rheological properties of the film can be characterized by four
coefficients: dilational elasticity, dilational viscosity, shear elasticity, and shear viscosity [11,12]. We
assume that the film is liquid, i.e., it does not resist the shear deformations in the film plane, and
therefore the shear elasticity is absent. One can also neglect the dilational and shear viscosities of
the film for typical experimental conditions. The approximation is justified when ρν � ηsk, where
ηs stands for the dilational or shear viscosity of the film and k is the characteristic wave number of
the flow; see, e.g., Ref. [13]. In particular, this means that the dissipation due to internal viscosity of
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the film is small as compared to the dissipation in the fluid bulk. In this way, the film properties can
be described solely by the dilational elasticity or the compression modulus −n(∂σ/∂n), which is a
positive real number under the made assumptions. Here n is the film surface density and σ (n) is the
surface tension coefficient. Due to the wave motion, the periodic contractions and expansions of the
fluid surface cause periodic deviations of the film density n from its equilibrium value at the resting
surface. The surface tension σ (n), which depends on the surface coverage, also varies from point to
point, giving rise to an additional tangential surface stress. This stress should be taken into account
in the boundary condition for the fluid motion, and this is the reason why the surface film alters the
wave motion. Note that when we neglect the dilational viscosity of the film we assume that there is
no time lag between changes in n and σ . Otherwise, the compression modulus −n(∂σ/∂n) becomes
a complex number.

One of the challenges is that the film properties may be completely unknown a priori. For this
reason, we first analyze how thin compressible liquid film modifies the wave motion in the linear
approximation with respect to the wave steepness and how one can infer the film properties based on
the experimental observations. Then we proceed to the second-order approximation and establish the
intensity and the spatial structure of eddy currents (the slow nonlinear motion of passive tracers). We
expect that the obtained results can find applications as a particle manipulation technique (see also
Refs. [6,10]) and in geophysics, since the uppermost layer of the ocean is sometimes covered by a
monomolecular surface film formed by a surfactant [14,15]. Note here that the artificial slicks laid by
boats are about a thousand times the thickness of a monomolecular layer. However, if the thickness
of these slicks is the minimum length scale in the system, they can be treated as monomolecular
films at least in the linear approximation [16].

The second question which we would like to address in this article is how do the generated eddy
currents penetrate into the fluid bulk? The question is interesting by itself from a fundamental point
of view, and it is also important for applications. Moreover, most of the theoretical predictions were
obtained for passive tracers, while floating particles used in experiments may demonstrate different
behavior due to capillary effects [17]. Sometimes this circumstance makes it difficult to directly
compare the theoretical predictions and experimental results, which are obtained by analyzing the
surface motion of floating particles. We believe that the measurements in the fluid bulk will provide
more accurate experimental data because the capillary forces do not affect the particles which are
completely immersed in the fluid.

Our paper is structured as follows. In Sec. II we introduce the main ingredients of our model,
define physical quantities of interest, and write general equations for the quantities. In Sec. III we
perform a linear analysis of general equations and study how the fluid viscosity and the surface film
affect the wave motion. In Sec. IV we discuss the nonlinear generation of the vertical vorticity and
obtain an explicit expression for it in terms of the wave amplitudes. Then in Sec. V we investigate
the transport of a passive scalar advected by the generated vertical vorticity, taking into account
the Stokes drift contribution to its motion. In Sec. VI we discuss the obtained results for particular
examples and put them in the context of recent experimental studies. Finally, in Sec. VII we present
a summary of our findings. Appendices contain some details of calculations.

II. GENERAL RELATIONS

We consider the bulk motion of an incompressible fluid of infinite depth covered by a thin liquid
film, which is formed by an insoluble agent. The motion is described by the Navier-Stokes equation
(see, e.g., Refs. [8,18])

∂tv + (v · ∇)v = −∇P/ρ + ν∇2v, (1)

where v is the fluid velocity, ρ is the fluid mass density, ν is the kinematic viscosity coefficient, and P

is the modified pressure which includes the gravitational term. The equation has to be supplemented
by the incompressibility condition, div v = 0, and by the boundary conditions posed at the fluid
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surface. The film on the fluid surface partially changes the boundary conditions in comparison with
the free surface case and thus affects the fluid motion.

The kinematic boundary condition remains unchanged in the presence of the film. This condition
means that the fluid surface moves with the fluid velocity v (hereinafter the Greek indices run over
x and y, and we sum over the repeated indices)

∂th = vz − vα∂αh, (2)

where we assume that the axis Z is directed opposite to the gravitational acceleration g, the fluid
surface is determined by the equation z = h(t,x,y), and it coincides with the plane z = 0 at rest.
Function h(t,x,y) is assumed to be single-valued, which excludes wave-breaking processes from the
consideration.

The film modifies the dynamic boundary condition that expresses the requirement of zero total
external force acting on an arbitrary element of the fluid surface. This condition is just the second
Newton law, and we neglect the acceleration term because the surface film is assumed to be thin
and therefore it has a negligible mass. However, one has to take into account the inhomogeneity
of the surface tension coefficient σ (n) related to its dependence on the film surface density n. This
inhomogeneity leads to an additional tangential force, and for this reason the boundary condition is
modified in comparison with the free surface case. Projecting it onto the normal vector l to the fluid
surface and on the tangential plane, we obtain

P − 2ρνli lk∂ivk = ρgh + σK, (3)

ρνδ⊥
ij lk(∂jvk + ∂kvj ) = σ ′δ⊥

ij ∂jn (4)

(see, e.g., Ref. [8], Sec. 63, or [19]). Here δ⊥
ij = δij − li lj is the projector operator on the fluid

surface, and then δ⊥
ij ∂j does not contain the derivative in the direction normal to the film. K is the

mean curvature of the surface, and it is equal to the trace of the curvature tensor Kik = Kki = δ⊥
ij ∂j lk ,

and σ ′ ≡ (∂σ/∂n). Note that one can express the unit vector normal to the fluid surface in terms of
the surface elevation, l(t,x,y) = (−∂xh, − ∂yh,1)/

√
1 + (∇h)2.

In the present study we assume that there is no time lag between the imposed film stretching and
the resulting changes in surface tension, thus the surface tension coefficient σ (n) and the surface
compression modulus −nσ ′(n) depend only on the current value of the film surface density n. Note
that we also assume that the temperature in our model is uniform. The assumption can be broken in
real systems, and then the model parameters like the fluid viscosity ν and the surface tension σ will
depend on the temperature distribution. This complication of the model is beyond the scope of the
present paper, although it is of great interest for geophysical applications.

The set of equations becomes closed after the mass conservation law for the surface film density
n is added:

∂tn + δ⊥
ij ∂j (nvi) = 0, (5)

where the value of the velocity field should be taken at the fluid surface. The equation follows from
assumed insolubility of the agent which forms the film.

In this paper, we are interested in the vortex motion, which is generated near the fluid surface due
to the interaction of surface waves. It is convenient to describe such a motion in terms of the vorticity
� = curl v. Taking the curl from the Navier-Stokes equation (1), one obtains [8,18]

∂t� = −(v · ∇)� + (� · ∇)v + ν∇2� . (6)

The vorticity should also satisfy the boundary condition, which follows from Eq. (4). Acting by an
operator εimqlm∂q (it contains only the derivatives along the surface) on both sides of this equation,
we find

lmlk∂k
m + (∂ivk + ∂kvi)εimqlmKkq = 0, (7)
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where εijk is the unit antisymmetric tensor and 
i = εijk∂j vk . In deriving, we have used the identity
εimqlm∂qli = εimqlmKqi = 0, which can be checked by straightforward calculation. Note that the
gradient of the surface tension drops from the boundary condition (7), and further this circumstance
substantially simplifies the nonlinear analysis.

III. LINEAR ANALYSIS

The linear analysis of surface waves in the considered system is well known [12,20], and it
shows that there are two branches, which are gravity-capillary (transverse) waves and Marangoni
(longitudinal) waves. Further, we assume that the gravity-capillary waves are weakly decaying. As we
will see below, this means that the dimensionless parameter γ =

√
νk2/ω � 1, where ω is the wave

frequency and k is its wave number. Marangoni waves are damped out much more rapidly, and for
this reason, they are beyond our consideration. Usually in that regime the gravity-capillary waves are
described in terms of the potential approximation. In this section, we discuss how the fluid viscosity
violates the approximation and how the surface film alters the amplitude of the vortical component
of the flow. The details of the analysis can be found in Appendix A, and here we concentrate on the
results.

In the linear approximation all quantities characterising the gravity-capillary waves can be
expressed in terms of the surface elevation h(t,x,y) ∝ exp(ikαrα − iωt), which is assumed to obey
the small steepness condition |∇h| � 1. The velocity field is given by expression

vα = (ekz − Dez)

k(1 − k

D)

∂α∂th, vz =
(
ekz − k


Dez

)
(
1 − k


D

) ∂th, (8)

where  =
√

k2 − iω/ν (with a positive real part) and factor D is the only parameter which depends
on the film properties

D = 2iγ − ε

iγ 2+k2

k
− ε

, ε = −n0σ
′(n0)

ρ
√

νω3/k2
; (9)

n0 is an equilibrium value of the film surface density at the resting surface, and ε can be called the
dimensionless elastic stretching modulus of the film. Let us note that the made assumption of the
instant response of the film stresses on its density means that the value of surface compression elastic
modulus −n0σ

′(n0) is real. Besides, it should be positive in order for the film to be thermodynamically
stable [21].

Now let us discuss the obtained expression (8). The velocity field is given by a sum of two terms.
The first term is proportional to ekz, and it corresponds to a potential part of the velocity field,
which penetrates into the fluid bulk to a depth of 1/k. The second term is proportional to ez, and it
originates from the fluid viscosity. The penetration depth of the second term 1/Re  ∼ γ /k is much
smaller than 1/k, and therefore it is localized in a thin viscous sublayer near the fluid surface. Below
the viscous sublayer, at the depth of |z| � γ /k, one can neglect the contribution proportional to ez

in expression (8), and then the velocity field becomes potential. Note that the assumption of infinite
depth of fluid is correct when the depth of fluid is much larger than the penetration depth 1/k of the
potential component.

The compressibility of the surface film comes into play through the real parameter ε and the
complex parameter D, which are related to each other; see expression (9). The limiting case of the
film with infinite compression modulus corresponds to ε → ∞, D → 1, and then the film can be
treated as incompressible in the linear approximation, i.e., n(t,x,y) = n0. Below we refer to this
situation as to the case of the almost incompressible film. If there is no film on the fluid surface, then
ε → 0, D → 2k/(2 + k2), and one can check that in both limiting cases expression (8) reproduces
the previously obtained results [4,7]. In the range between, the absolute value of the parameter D is
of the order or less than unity. Therefore, the term kD/ is as small at least as γ � 1, and this means
that the surface film mainly changes the nonpotential part of the horizontal velocity. Moreover,
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if |D| ∼ 1, then this nonpotential correction becomes comparable with the potential contribution
inside the viscous sublayer. If there is no film on the fluid surface, then |D| ∼ γ and the potential
contribution is leading everywhere.

Next, let us calculate the vorticity � = curl v. It is produced only by the nonpotential part of the
velocity field, and thus it should be localized in the viscous sublayer as well. The direct calculation
leads to the answer


α = εαβ

(2 − k2)D

k
(
1 − k


D

)ez∂β∂th, 
z = 0, (10)

where εαβ is the unit antisymmetric tensor. So the vorticity is directed horizontally in the linear
approximation. To find the vertical component we should go beyond the approximation. Note that
the horizontal vorticity 
α essentially depends on the film compressibility, since it is proportional
to the parameter D.

The presence of the film on the fluid surface does not change the dispersion law of the surface
waves, ω2 = gk + σ0k

3/ρ, except for the possible change in an equilibrium value σ0 of the surface
tension coefficient. However, the wave damping is modified:

Im ω

ω
= − γ

2
√

2
(ReD + ImD) − γ 2 + O(Dγ 2). (11)

In the case of free surface D = γ
√

2(1 + i) + O(γ 2), and therefore first two terms in expression
(11) are of the same order, and then we find Im ω/ω = −2γ 2. If the fluid surface is covered by the
almost incompressible film, then D = 1 and we obtain Im ω/ω = −γ /2

√
2. In the latter case, it

would be wrong to keep the correction arising from the second term of expression (11) because the
terms of the same order were omitted in deriving this expression. To conclude, the presence of a film
parametrically increases the wave damping.

One can think that the influence of thin film on the velocity field and the wave damping is
the strongest when the surface film is almost incompressible. However, this statement is wrong. In
particular, the surface film of finite elasticity gives rise to stronger damping. We will demonstrate this
with a particular example in Sec. VI. Physically, the increase of damping is caused by the resonance
between the gravity-capillary and Marangoni waves. When the gravity-capillary wave propagates,
it causes local expansions and contractions of the surface film, which in turn lead to gradients of the
surface tension. The motion corresponds to that in a Marangoni wave, and it is the most effectively
excited in the resonance, where the dispersion curves of these two modes intersect. We refer readers
to the papers [21,22] for details.

Note that the parameters ε and D, which depend on the compression modulus of the film, also
depend on the frequency ω and the wave number k of the excited surface wave, and therefore the
surface film differently affects the waves of different frequencies. At moderate values of film elastic
stretching modulus ε � 1, Eq. (9) gives

D = (i − 1)ε/
√

2 + γ
√

2(1 + i) + iε2 + 2γ ε + O(ε3,γ 3,γ ε2,εγ 2), (12)

and thus the combination ReD + ImD ≈ 2
√

2γ + ε2 + 2γ ε in expression (11). The film consider-
ably increases the wave damping if the combination is large as compared to γ , i.e., when ε � √

γ .
Suppose, for example, that the film compression modulus −n0σ

′(n0) does not depend on scale.
Then the ratio ε/

√
γ is proportional to k7/8 for gravity waves and to k−3/8 for capillary waves.

Thus, the maximum of the ratio is near the point k = k∗ corresponding to the transition from
gravitational to capillary waves. If the maximum value (ε/

√
γ )

k=k∗
� 1, then there is a range of

wave numbers kmin < k < kmax around the point k∗ determined by inequality ε/
√

γ � 1, where
the film significantly alters the wave damping. For example, the ratio (ε/

√
γ )

k=k∗
is about 15–35

for some types of monomolecular films at a water surface having compression elastic modulus
−n0σ

′(n0) ∼ 20–40 erg/cm2 [11]. Outside the range the wave damping is modified only slightly.
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TABLE I. The relation between film properties, values of parameters ε and D, and the wave damping
coefficient.

ε D Im ω/ω

Almost incompressible film ∞ 1 −γ /2
√

2
Compressible film ε � √

γ ReD + ImD � γ Eqs. (11) and (25)
Almost free surface ε � √

γ ReD + ImD ∼ γ Eqs. (11) and (25)
Free surface 0 2k/(2 + k2) −2γ 2

Table I summarizes the results for the discussed limiting cases and illustrates the relation between
film properties and values of parameters ε and D.

The derived expressions can be easily generalized to the case when the surface elevation h(t,x,y)
is an arbitrary superposition of plane waves. In the situation we need to replace complex numbers,
e.g., −iω, k, , and so on by nonlocal operators: −iω → ∂t , k → k̂ = (−∂2

x − ∂2
y )1/2,  → ̂ =

(∂t/ν + k̂2)1/2, where the square roots should be taken with positive real parts. This implies that
when an operator is acting on h(t,x,y) it is necessary first to represent h(t,x,y) as a superposition
of plane waves, and then the action of the operator on each of the harmonics is determined by
multiplying by the corresponding complex number. These notations are convenient, and we will use
them below.

IV. NONLINEAR GENERATION OF THE VERTICAL VORTICITY

It is natural to describe the horizontal eddy currents [4–6] in terms of the vertical vorticity 
z.
However, in the linear approximation, according to expression (10), there is no contribution to this
motion. In this section, we go beyond the approximation and take into account the main nonlinear
contribution, which is of the second order in the wave steepness |∇h| � 1. As a result, we obtain
the explicit formula for the vertical vorticity 
z in terms of the surface elevation h(t,x,y) and the
system parameters.

The vertical vorticity 
z must satisfy the exact Eq. (6). Then, up to the second order in the wave
steepness |∇h| � 1, we obtain (see Appendix B)(

∂2
z − ̂2)
z = −ν−1
α∂αvz, (13)

and we recall that the nonlocal operator ̂2 = ∂t/ν + k̂2. The term on the right-hand side is associated
with the wave motion and can be regarded as a source with respect to the vertical vorticity 
z, which
is associated with the currents. The source can be interpreted as a rotation of two-dimensional vector

α by the velocity field of the surface waves. Roughly, one can say that the horizontal vorticity 
α ,
which is nonzero in the linear approximation and concentrated in a thin viscous sublayer, is slightly
rotated by the surface tilt, and this gives rise to the vertical vorticity. Equation (13) is the differential
equation of the second order, and thus it has to be supplemented by two boundary conditions. One of
them was obtained earlier (7), and in the same order with respect to |∇h| � 1 we find the condition

∂z
z = ∂αh∂z
α − εαγ (∂αvβ + ∂βvα)∂β∂γ h, (14)

which must be posed at z = 0; see expression (B3). The second condition is trivial: 
z → 0 at
z → −∞. Note that the gradient of the film surface density drops from the boundary conditions (7)
and (14), and this means that the second-order contribution in |∇h| � 1 to the film surface density
n(t,x,y) is irrelevant for the subsequent analysis.

The solution of the boundary value problem (13)–(14) is straightforward. To calculate the right-
hand sides one needs to know the velocity field and the vorticity in the linear approximation, which
were obtained earlier; see expressions (8) and (10). The details of the solution and the answer for
the vertical vorticity 
z, which is correct for an arbitrary form of the wave elevation h(t,x,y), can
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be found in Appendix B. Here, motivated by recent experiments [4–6], we concentrate on a special
form of the wave elevation h(t,x,y), which allows us to simplify the obtained expression (B8) for the
vertical vorticity 
z. First, we assume that the pumping is monochromatic, and then the frequencies
of waves and their wave numbers are the same. Second, we believe that ∂x∂yh = 0, e.g., the surface
waves propagate perpendicularly to each other. Then the expression for the vertical vorticity 
z takes
a form


z = εαβ

(
êz ̂D̂

k̂
∂β∂th

)
(ek̂z∂αh) + εαβ̂−1êz[(̂D̂∂β∂th)∂αh], (15)

and the relative accuracy of this expression is O(γ ). Note that in the limiting cases of the free surface,
D̂ → 2̂k/(̂2 + k̂2), and the almost incompressible film, D̂ → 1, we can reproduce the previously
obtained results [4,7].

So far as we study the second-order nonlinearity, the vertical vorticity 
z varies in time with
frequency 2ω or it is stationary. Depending on the characteristic frequency of the vorticity, the
nonlocal operator ̂ in the prefactor before the brackets in the second term of expression (15) must
be estimated differently, because it acts on the second-order term in the wave elevation h. For
the double-frequency contribution,  ∼ √

2ω/ν � k, and then the first term in expression (15) is
leading. For the stationary contribution, we can replace ̂ by k̂ in the prefactor before the brackets in
the second term, and then both terms in expression (15) are of the same order. Furthermore, for the
stationary contribution the first term is localized on the scale of the order of γ /k near the surface in
the viscous sublayer, while the second term penetrates deeper, on a distance of the order of 1/k. Let
us stress that the nonlinear stationary vorticity (15) has a contribution which penetrates in the bulk
much deeper than the linear horizontal vorticity (10).

The value of the vertical vorticity on the fluid surface is especially important, because in most
experiments the flows on the fluid surface are studied. It is given by expression (15), where we must set
z = 0. Now it remains to understand how the nonlocal operators ̂ and D̂ act on the surface elevation
h(t,x,y). As earlier, we assume that the pumping is monochromatic, i.e., the surface elevationh(t,x,y)
is given by a superposition of plane waves with frequency ω and wave number k, which are related
to each other according to the dispersion law, ω2 = gk + σ0k

3/ρ. Then, by using the definition of
operators, we obtain

̂h(t,x,y) = k

γ
h

(
t + π

4ω
,x,y

)
+ O(γ kh), (16)

D̂h(t) = ε2h(t) − εh
(
t + π

4ω

) − 2γ εh
(
t − π

2ω

) + 2γ h
(
t − π

4ω

)
ε2 − ε

√
2 + 1

+ O(γ 2), (17)

and for brevity, we omitted the dependence on spatial coordinates in the second line.
These expressions allow us to analyze how the film compressibility affects the generated vertical

vorticity 
z on the fluid surface and in the bulk. However, in experiments the generated eddy currents
are studied by observing the motion of particles immersed in the fluid. There is another second-order
mechanism with respect to the wave steepness |∇h| � 1, which is well known as the Stokes drift
[1], that also influences the motion of particles. So, first we need to investigate how the Stokes drift
changes the eddy currents (see Sec. V), and then we will discuss the resulting motion of particles,
taking into account both contributions (see Sec. VI). Particular attention will be paid to the influence
of the surface film on the vortex flow.

To conclude this section we would like to discuss the applicability conditions of the presented
theory. On the one hand, we consider the limit of low viscosity, when the parameter γ =

√
νk2/ω �

1, but on the other, we assume that the vortex flow is laminar. It means that the theory is correct if
higher order nonlinear terms are small compared to the kept ones, i.e., the effective Reynolds number
for the slow motion must be low. The characteristic velocity of the slow motion can be estimated
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from expression (15) as v(2) ∼ Dωh2 and therefore

Re ∼ (v(2)∇)
z

ν∇2
z

∼ (kh)2

γ 3
D � 1. (18)

The dependence on the film properties is given by factor D. Note that the condition is always stronger
than the small steepness condition kh � 1. If the condition (18) is violated, then the vortices start
to interact with each other and the motion becomes chaotic [23–25].

V. MASS TRANSPORT

In this section we study the vortex motion of passive tracers, which are immersed in the fluid with
the surface elevation h(t,x,y), up to the first two orders with respect to the wave steepness |∇h| � 1
and in the main approximation with respect to the parameter γ � 1, which means that the waves are
weakly decaying. To characterize the position of a passive tracer we introduce a three-dimensional
vector R, which obeys the equation of motion

d R
dt

= v(t,R). (19)

Near some point R(t0) = r0 we can expand the velocity field in the Taylor series

vi(t,r) = vi(t,r0) + Gij (t,r0)(rj − r0j ) + · · · , (20)

where Gij (t,r0) = ∂jvi(t,r0) is the velocity gradient tensor. Next, we solve Eq. (19) up to the second
order with respect to the parameter |∇h| � 1, using an iterative method. The displacement of the
passive tracer is δR = δR0 + δR1, where

δR0(t) =
∫ t

t0

dt ′ v(t ′,r0), δR1i(t) =
∫ t

t0

dt ′ Gij (t ′,r0)δR0j (t ′), (21)

and one needs to keep only linear terms in δR0 and Gij to calculate δR1. The velocity of the passive
tracer, which initially was located in the point r0, is given by

V L(t) = 〈v(t,r0)〉 + 〈Gij (t,r0)δR0j (t)〉, (22)

where we perform averaging over fast wave oscillations denoted by angle brackets, since we are
interested only in the slow motion. The last term in expression (22) is known as the Stokes drift [1].

Experimentally the velocity field is reconstructed by analyzing particle tracks. To capture only
the slow motion it is convenient to synchronize the recording camera with the wave period [7]. In
this case and if the used particles can be treated as passive tracers, the reconstructed velocity is
described by expression (22). As far as we would like to analyze horizontal eddy currents, we must
calculate the vertical vorticity �L of the measured velocity field, �L = εαβ∂αVLβ . Then the first term
in expression (22) produces the Eulerian vorticity [see Eq. (15)], and the second term gives rise to
the contribution 
S associated with the Stokes drift, i.e., �L = 〈
z〉 + 
S .

Next we proceed to the direct calculation of the vertical vorticity 
S = εαβ∂α〈GβjδR0j 〉, which is
produced by the Stokes drift. The details are presented in Appendix C. The reduction of the general
result (C3) to a specific case ∂x∂yh = 0 of, e.g., orthogonal surface waves gives


S = εαβ〈(ek̂z∂β∂th)(ek̂z∂αh)〉 − εαβ

〈(
êz ̂D̂

k̂
∂β∂th

)
(ek̂z∂αh)

〉
, (23)

and the relative accuracy of both terms is O(Dγ ). The first term is always leading outside the viscous
sublayer, it is produced only by the potential part of the velocity field and penetrates to a depth of
1/k. The second term is localized in the viscous sublayer at a depth of γ /k. Thus, the first term
represents the well-known Stokes drift for the ideal fluid, while the second term takes into account
the fluid viscosity and the presence of the surface film.
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Now we can calculate the vertical vorticity of the measured velocity field, �L = 〈
z〉 + 
S . By
using relations (15) and (23), we obtain

�L = εαβ〈k̂−1ek̂z[(̂D̂∂β∂th)∂αh]〉 + εαβ〈(ek̂z∂β∂th)(ek̂z∂αh)〉 + O[ω(kh)2D], (24)

where we have substituted ̂ by k̂ in the prefactor of the first term as we explained earlier. Both terms
penetrate in the bulk on a distance of the order of 1/k. Note that the terms in expressions (15) and
(23), which are localized in the viscous sublayer, have compensated each other, and this reduction
was known before for the case of fluid with a free surface [3].

In the case of the film with high compression modulus, |D| � γ , the first term in relation (24) is
leading, and then the Stokes drift produces the negligible correction to the Eulerian vorticity. Note
also that condition (18) of low Reynolds number can be rewritten in terms of the Lagrangian vorticity
as �L � νk2 for any value of the film compression modulus.

VI. DISCUSSION

In this section we illustrate the obtained results on particular examples and derive compact
formulas, which can be used to describe experimental data. The section includes two parts. The
first part is devoted to the linear analysis, and here we discuss how the surface film alters the wave
motion and how to infer the properties of thin liquid film if they are not known a priori. In the second
part we consider the intensity of eddy currents on the fluid surface and analyze how the eddy currents
penetrate into the fluid bulk.

A. Properties of the surface film and the wave motion

The film on the fluid surface can be applied either specifically to control the transport of floating
particles, or accidentally due to various contaminants and impurities. Various films may alter the
hydrodynamic flow very differently depending on their properties. In the present paper, we consider
thin (monomolecular) liquid films formed by insoluble agents, which can be characterized by two
parameters: the equilibrium surface tension σ0 and the dimensionless compression modulus ε.

Let us assume that the standing plane wave h(t) = H cos(kx) cos(ωt) is excited in the system.
According to the performed analysis, the dispersion law of the surface waves is ω2 = gk + σ0k

3/ρ.
Therefore, to infer an equilibrium value σ0 of the surface tension coefficient, one needs to measure
the wave frequency ω and the wave number k, and then substitute them into the dispersion law.

The value of parameter ε can be also unknown. As was shown in Sec. III, the compression modulus
of the film modifies the wave damping. By direct calculation, using expression (11), we find

Im ω

ω
= −2γ 2 − γ

2
√

2

ε2

(ε2 − ε
√

2 + 1)
+ f (ε)γ 2 + O(γ 3), (25)

where f (ε) is some bounded analytic function and f → 0 as ε → 0. As compared to expression
(11), we elaborated the order of the correction in accordance with expression (12) at moderate values
of film elastic stretching modulus, ε � 1, and for higher values of ε, the value of the operator D was
estimated by a number of the order of unity.

In Eq. (25) the third term is always small as compared to the sum of the first and the second
terms, and its relative contribution is not larger than

√
γ for any ε. The film considerably increases

the wave decrement if ε � √
γ , when the second term becomes the leading one. In this case, the

decrement is shown in Fig. 1(a). Note that the wave damping is maximized when ε = √
2 under fixed

values of the wave frequency ω and the wave number k. This means that the surface film with finite
compressibility gives rise to stronger wave damping than the almost incompressible surface film,
which corresponds to ε → ∞. At ε = 0 expression (25) gives the answer for the free surface case.
In general, Eq. (25) has two different solutions with respect to the value of parameter ε. Therefore,
sometimes in order to infer the film compressibility, it is not enough to measure experimentally the
wave damping, further analysis is required. Note also that expression (25) does not take into account
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FIG. 1. (a) The wave damping −Im ω/ω depending on the parameter 1/ε, which characterizes compress-
ibility of the film. The parameter γ is equal to 1/120, which corresponds to the surface waves on water with
frequency 3 Hz. (b) The ratio of amplitudes of horizontal and vertical velocities on the fluid surface depending
on the same parameter. The black dashed lines correspond to the fluid with a free surface when ε = 0.

the dissipation related to the friction at the boundaries of the system, which can be important in
laboratory experiments and depends on the size of the experimental setup.

According to expression (8), the presence of the surface film strongly affects the horizontal
velocity on the fluid surface. For example, in the case of the almost incompressible film, D = 1, one
can obtain vα|z=0 = 0. Let us imagine that we have added floating passive tracers on the fluid surface.
Then analyzing the horizontal periodic motion with frequency ω of these tracers we can measure the
horizontal velocity vα on the fluid surface. The amplitude of horizontal velocity ||vα|| = maxx,y,t |vα|
will be proportional to the wave amplitude. Therefore to define the compressibility properties of the
film we also should measure the wave elevation h(t,x,y), which can be recalculated into the vertical
velocity vz = ∂th on the fluid surface. By using expression (8) and setting z = 0, we can directly
relate the ratio of horizontal and vertical velocities on the fluid surface and the parameter ε of the
surface film for the standing plane wave:

||vx ||
||vz|| = 1√

ε2 − ε
√

2 + 1
[1 + O(γ )]. (26)

The velocities ratio (26) considerably differs from unity if ε � 1, thus the higher value of compression
modulus is needed to considerably change the ratio as compared to the value which leads to a
considerable increment in the wave damping; see expression (25). Equation (26) allows us to infer
the value of parameter ε, which describes compressibility of the film, based on the experimentally
measured ratio of velocity amplitudes ||vx ||/||vz|| of floating passive tracers. The ratio varies from
0 to

√
2 depending on the film properties; see Fig. 1(b). By combining two methods (25) and (26),

one can uniquely define the parameter ε of the surface film.

B. Eddy currents on the fluid surface and in the bulk

Next we turn to the nonlinear analysis, and here motivated by recent experiments [4–6] we consider
two monochromatic orthogonal standing waves propagating perpendicularly to each other:

h = H1 cos(ωt) cos(kx) + H2 cos(ωt + ψ) cos(ky). (27)

One does not need to take into account viscous corrections to this expression corresponding to the
wave spatial decay, which have relative magnitude of the order of O(Dγ ) [see Eq. (11)], since the
corrections will produce parametrically smaller contribution to the generated eddy currents. The
phase shift ψ is related to different boundary conditions for the standing waves in the X and Y

directions. Substitution of Eq. (27) into Eq. (24) leads to an expression for eddy currents that does
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FIG. 2. Spatial structure of the generated eddy currents (28), which are produced by two orthogonal standing
waves (27), propagating perpendicularly to each other. The colors represent the intensity �L of eddy currents
in arbitrary units. Centers of vortices (where the vorticity is maximized) are located in the nodes of the wave
pattern. Neighboring vortices rotate in the opposite directions.

not depend on time,

�L = −
[

ε2ekz
√

2

2γ (ε2 − ε
√

2 + 1)
+

√
2ekz

√
2 + e2kz

]
H1H2ωk2 sin(kx) sin(ky) sin ψ, (28)

and corresponds to a time-asymptotic value of the Lagrangian vorticity. The relative accuracy of
Eq. (28) is O(

√
γ ), and the situation is similar to that for expression (25), but here we omitted small

terms. The sum of the first and the second terms correspond to the Eulerian vorticity, and the last
term represents the contribution due to Stokes drift. Note that Z dependence of these contributions
is different. The surface film modifies the intensity of the eddy currents, leaving their X-Y structure
the same as compared to the free surface case [4]; see Fig. 2. If ε � √

γ , then the first term in
expression (28) is leading. The limit ε � 1 gives the answer for the case of fluid covered by the
almost incompressible surface film [7], and then the vorticity is proportional to 1/

√
ν. In the opposite

case of an almost free surface, ε � √
γ , the first term in expression (28) can be neglected, and then

the vorticity does not depend on the viscosity. To obtain the intensity of the eddy currents on the
fluid surface one should set z = 0 in expression (28).

The dependence �L ∝ sin ψ stated in Eq. (28) immediately follows from the fact that the
generation of eddy currents is a nonlinear second-order effect, which was proved experimentally
in papers [4,5,10], and that the vortices’ centers (where the vorticity is maximized) are located
in the nodes of the wave pattern, which was also demonstrated experimentally in papers [4–6].
Indeed, averaging over time of a product of two monochromatic phase-shifted functions must be
proportional to sin(ψ + α), where ψ is the phase shift and α is some possible correction, and
therefore �L ∝ sin(ψ + α). Now, let us prove that for two orthogonal standing plane waves (27) the
parameter α is equal to πm,m ∈ Z. Consider the symmetric situation, when the phase shift ψ is
equal to zero and when the amplitudes of surface waves are equal to each other. Then we can find
any antinode of the wave pattern (like the center point in Fig. 2) and consider the rotation by an angle
π/2 around the vertical axis passing through that point. With this transformation, the wave field does
not change, but the eddy currents must change the sign. Therefore, the intensity of the eddy currents
must be equal to zero, and it proves that sin(α) = 0 and thus α = πm,m ∈ Z.

Let us discuss the correspondence between the experimental data and the dependence �L ∝ sin ψ .
In the paper [10], where the authors studied the eddy currents in a thin smectic film performing
transverse oscillations, it was reported that when the phase shift ψ changes a sign, then the eddy
currents change their direction. In the other system [5], when the surface waves were excited in
the deep water, the dependence �L ∝ sin ψ was confirmed quantitatively. However, the obtained
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law (28) cannot be applied to the experimental data directly, since the measurements were carried
out after a time t ∼ 15 s from the onset of excitation of the surface waves. The time is large as
compared to the setting time of the wave pattern, and thus the Stokes drift is determined by Eq. (23)
as before. But the time is small compared to the setting time of the Eulerian vorticity, that is, the
viscous diffusion time, t � 1/νk2. Indeed, the Eulerian vorticity is generated in the viscous sublayer
according to Eq. (13), and then it extends due to the viscosity in the fluid bulk. Thus, one should take
into account that the waves were absent before the excitation, h = 0 at t < 0 in expression (27), so
the Eulerian part of the vorticity spread only to a depth d ∼ √

νt out of the viscous sublayer at the
time of measurements; see Eq. (13). Hence, the Reynolds number (18) should be now evaluated as
Re ∼ �Ld2/ν ∼ �Lt (we have used the fact that the nonlinear velocity field is two-dimensional)
and it remains of the order or less than unity according to the experimental data. Therefore, the
measurements were carried out in a weakly nonlinear regime, and our general arguments based on
the symmetry consideration remain valid and they explain the experimental data. Note also that the
absolute value of the measured vorticity cannot be directly compared with expression (28), since the
Eulerian contribution is suppressed in comparison with its time-asymptotic value.

In a different study of the same system [6], the authors observed that the surface flow becomes
disordered and contains a large-scale contribution of size � 1/k but remains stationary when the
phase shift |ψ | < 50◦. It was reported that the dependence of the vortex-grid amplitude on the phase
shift ψ does not correspond to expression (28) for these angles. We speculate that the large-scale flow
may be related to an imperfection of the excitation process since the symmetry of the flow does not
correspond to the symmetry of two orthogonal standing waves (27). According to the experimental
data, when the phase shift becomes sufficiently small, these additional large-scale currents increase
in amplitude and deform the predicted regular small-scale pattern. Indeed, the large-scale velocity
dominates at small ψ , and thus its typical amplitude is

√
E, where E is the mean velocity squared.

Therefore the advection time by the large-scale velocity is 1/k
√

E ∼ 2 s at a scale 1/k, and it is small
as compared to the vortex-grid viscous setting time 1/νk2 ∼ 150 s. This means that the nonlinear
interaction between the large-scale and small-scale velocity components of the mass transport is
essential, and the result (28) obtained in weakly nonlinear regime is not applicable.

Next, let us discuss the amplitude of the generated eddy currents. Comparing expressions (28) and
(25) one can see that the intensity of the eddy currents is closely related to the damping of surface
waves. Both these quantities increase parametrically when ε � √

γ in comparison with the free
surface case [4]. The surface film leads to the additional tangential stresses, which parametrically
increase the nonpotential contribution to the velocity field and the horizontal vorticity, and therefore
also increase the dissipation of energy. Now the main dissipation of energy occurs in the viscous
sublayer. The vertical vorticity is generated due to the rotation of horizontal vorticity, and for this
reason it also increases. Note that the intensity of eddy currents has a maximum when ε = √

2. The
physics behind this maximum is the same as in the case of amplification of the damping of surface
waves.

The experimental data for capillary waves [4] show considerable excess of the Lagrangian vorticity
on the fluid surface as compared to the theoretical result for the free surface case. Indeed, using this
data one obtains that the factor in the square brackets in expression (28) is equal to about 13, while the
theory leads to the factor 1 + √

2 for ε = 0 and z = 0. In the experiment, the stationary regime was
examined, and the Reynolds number (18) was less or of the order of unity. The similar discrepancy
can be observed for gravitational waves [5], although the measurements were made in a transient
nonstationary regime. Based on the developed theory, we would like to speculate that the discrepancy
can be attributed to the influence of a film presented on the fluid surface, but further experimental
studies are required. The other possible reason for the discrepancy is the influence of capillary effects
on the motion of floating particles [17]. The latter effect could be eliminated if the measurements
are carried out in the fluid bulk. Note that for the discussed experiment [4], the model of the almost
incompressible film yields a factor of about 10.5. However, the surface film of finite elasticity can
produce more intense eddy currents. The maximum value of the factor is approximately 18.7, and it
corresponds to ε = √

2.
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To conclude we would like to add that the Stokes drift alone calculated for an ideal fluid (produced
by the potential part of velocity) explains the generation of eddy currents qualitatively since it leads
to the same spatial structure of the measured vertical vorticity [6]. This contribution was missed
in Ref. [4], and it was pointed out to us by Oliver Buhler (private communication). The consistent
account of viscosity shows that it is significant in the calculation of Stokes drift since it produces a
correction inside the viscous sublayer; see expression (23) and Ref. [7]. In the free surface case this
correction changes the sign of the Stokes drift contribution on the fluid surface; in the contaminated
case, when the fluid surface is covered by a thin liquid film with high compression modulus, ε � √

γ ,
the viscous correction is leading. Nevertheless, the viscous correction to the Stokes drift seems to
be unphysical, because it is completely compensated by an analogous correction into the Eulerian
vorticity; see expression (24). As a result, the total Lagrangian vorticity is a sum of contributions
from Eulerian motion and Stokes drift, which both penetrate to a depth of the order of 1/k and have
the same sign. Also, we would like to stress that the contribution associated with the Eulerian vertical
vorticity [see the first term in expression (24)] is crucial to explain the phenomenon quantitatively.
If the surface is covered by a thin film with a high compression modulus, ε � √

γ , then one can
neglect the second term in expression (24) and the Eulerian vorticity is leading, while in the case of
the almost free surface, ε � √

γ , both contributions are of the same order.

VII. CONCLUSION

To summarize, we studied how a thin insoluble film with zero shear elasticity and small shear and
dilational viscosities presented on a fluid surface modifies the wave motion and affects the nonlinear
generation of eddy currents. We showed that the presence of the film significantly changes the velocity
field in a viscous sublayer (8) and increases the damping of the surface waves (25) in comparison
with the free surface case; see Fig. 1(a). We also found that the ratio of amplitudes of horizontal and
vertical velocities on the fluid surface (26) can take any value from 0 to

√
2 depending on the film

properties; see Fig. 1(b). Based on these observations we propose two experimental methods to infer
the film properties by analyzing the wave damping and the motion of floating passive tracers. Let us
stress that all the results are valid for both capillary and gravitational waves.

We also generalized the theory of vertical vorticity generation [4], taking into account compress-
ibility of the film. We obtained the explicit expression (15) for the vertical vorticity 
z in terms of
the surface elevation h(t,x,y) and established the applicability condition (18) of our approach. We
also analyzed the motion of passive tracers in the fluid bulk and calculated the vortical contribution
to the motion of these tracers associated with the Stokes drift (23). We analyzed the expressions and
obtained the compact formula (28) suitable for describing the experimental data. The results form a
quantitative basis for the analysis of eddy currents, which are generated on the fluid surface and in
the bulk due to nonlinear interaction of waves. The resent experimental progress in the field [4–6]
encourages us to think that a test of our theoretical findings is something we will see in the near
future.
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APPENDIX A: GRAVITY-CAPILLARY SURFACE WAVES

In this section we linearize the system of equations (1)–(5) and find a solution in the form of a
plane wave ∝ exp(ikαrα − iωt) corresponding to the gravity-capillary surface wave, where ω is the
wave frequency and k = (k2

x + k2
y)1/2 is its wave number. The linearized Navier-Stokes equation (1)
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has a form

∂tv = −∇P/ρ + ν∇2v. (A1)

By taking the divergence and using the incompressibility condition div v = 0, we find that the pressure
P should be a solution of the Laplace equation ∇2P = 0,

P = P0e
kzeikαrα−iωt , z � 0. (A2)

Substituting the solution (A2) into the linearized Navier-Stokes equation (A1), we find(
∂t + νk2 − ν∂2

z

)
ṽα = −ikαP0e

kz/ρ, (A3)(
∂t + νk2 − ν∂2

z

)
ṽz = −kP0e

kz/ρ, (A4)

where vi = ṽi exp(ikαrα − iωt). The system of equations has a solution, which is a sum of forced
(potential) and eigen (solenoidal) terms

ṽα = kαP0

ρω
ekz + Ãαez, ṽz = −ikP0

ρω
ekz − ikαÃαez, (A5)

where we have used the incompressibility condition ikαṽα + ∂zṽz = 0, and we have also introduced
 =

√
k2 − iω/ν (with a positive real part). To find the values of constants Ãα we should use the

boundary conditions.
In the linear approximation the boundary conditions should be posed at z = 0. Let us denote the

equilibrium values of the film surface density and the surface tension as n0 and σ0 correspondingly.
Then n = n0 + δn, σ = σ0 + σ ′(n0)δn, and the boundary conditions (4) and (5) give

ρν(∂αvz + ∂zvα) = σ ′(n0)∂αδn, (A6)

∂t δn + n0∂αvα = 0. (A7)

Next, by substituting solution (A5) into Eqs. (A6) and (A7), one obtains

δñ = n0

ω

(
k2P0

ρω
+ kαÃα

)
, Ãα = −kαP0

ρω
D, (A8)

where δn = δñ exp(ikαrα − iωt) and parameter D depends on the compressibility properties of the
surface film:

D = 2iγ − ε

iγ 2+k2

k
− ε

, ε = −n0σ
′(n0)

ρ
√

νω3/k2
. (A9)

The relation between the pressureP0 and the surface elevationh can be obtained from the kinematic
boundary condition (2). In the linear approximation it takes the form ∂th = vz and should be posed
at z = 0. Finally, we obtain

P0e
ikαrα−iωt = iρω∂th

k
(
1 − k


D

) . (A10)

By combining relations (A5), (A8), and (A10), we can rewrite the expression for the velocity field
in terms of the surface elevation h:

vα = (ekz − Dez)

k
(
1 − k


D

) ∂α∂th, vz =
(
ekz − k


Dez

)
(
1 − k


D

) ∂th. (A11)

The last boundary condition (3) allows one to obtain the dispersion law of the gravity-capillary
waves. In the linear approximation it takes a form

P − 2ρν∂zvz = ρgh − σ0∇2h, (A12)
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and then one can find

ω2 =
(

1 − k


D

)(
gk + σ0

ρ
k3

)
− 2i(1 − D)νk2ω. (A13)

Let us note that we are interested in the behavior of weakly decaying waves, i.e., the parameter
γ =

√
νk2/ω � 1 and therefore |k/| ∼ γ � 1. Moreover, the parameter ε is real because we have

assumed that there is no time lag between changes in n and σ (n). Thus, the absolute value of the
parameter D is of the order or less than unity. Then in the main approximation with respect to the
parameter γ � 1, we obtain

ω2 = gk + (σ0/ρ)k3. (A14)

One can also find the small imaginary part of the wave frequency ω, which describes the wave
damping. By using expression (A13) and approximate relation k/ ≈ γ eiπ/4, one finds

Im ω

ω
= − γ

2
√

2
(ReD + ImD) − γ 2 + O(Dγ 2), (A15)

where only leading terms must be kept. In particular, this means that if ReD + ImD ∼ 1, then it is
incorrect to keep the second term in the expression, since terms of the same order were omitted in
deriving (A15). On the other hand, if ReD + ImD ∼ γ , then the first two terms in Eq. (A15) are
comparable to each other and the omitted correction is small in comparison with any of them. Note
that the condition γ � 1 indeed means that the waves are weakly decaying.

APPENDIX B: SOLUTION OF THE VORTICITY EQUATION

The vertical vorticity 
z is generated due to nonlinear interaction of surface waves in the viscous
fluid. By using the z component of Eq. (6) and keeping only the second-order terms with respect to
the wave steepness, one obtains

(∂t − ν∇2)
z = (� · ∇)vz, (B1)

where we take into account that 
z is zero in linear approximation; see expression (10). Using the
notations, which were introduced in Sec. III, one can rewrite the equation in the form(

∂2
z − ̂2

)

z = −f, f = ν−1
α∂αvz. (B2)

This equation should be supplemented by the boundary condition (7). In the linear approximation the
components of the unit vector normal to the surface are lα = −∂αh, lz = 1, and the curvature tensor
has nonzero components Kαβ = −∂α∂βh. Keeping all second-order terms in the wave steepness, we
obtain the following boundary condition:

(∂z
z − ∂αh∂z
α)
∣∣
z=0 + εαγ (∂αvβ + ∂βvα)∂β∂γ h

∣∣
z=0 = 0, 
z(−∞) = 0. (B3)

The solution of Eq. (B2) is 
z(z) = êzA(z) + e−̂zB(z), where

∂zA = −̂−1e−̂z(f/2), ∂zB = ̂−1êz(f/2). (B4)

By using expressions (8) and (10) for the velocity field and the horizontal vorticity in the linear
approximation, up to the first two orders in the parameter γ � 1, we obtain

f = ν−1εαβ

([
̂D̂

k̂
+ D̂2

]
êz∂β∂th

)([
ek̂z + k̂

̂
D̂(ek̂z − êz)

]
∂α∂th

)
. (B5)
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The second terms in the square brackets should be kept only if the estimate |D| � γ is valid.
Integrating relations (B4), we find under the same approximation in the parameter γ � 1


z(z) = êzF + εαβ

[
k̂2D̂2

2k̂1
+ ̂1

k̂1

(
1 + k̂2

̂2
D̂2 + k̂1

̂1
D̂1 − 2

k̂2

̂1

)]
D̂1e

(̂1+̂2)z∂β∂th∂αh, (B6)

where operators with subscript “1” or “2” act only on the first or the second multiplier h, respectively.
We kept first-order corrections with respect to the parameter γ in expression (B6), since they are
necessary to find the function F from the boundary condition (B3), because the leading terms in
the parameter γ are canceled. The boundary condition in terms of surface elevation h with the same
accuracy reads

∂z
z(0) = εαβ

(
̂2

1 D̂1

k̂1
+ ̂1D̂

2
1

)
∂β∂th∂αh − 2εαβ

(1 − D̂1)

k̂1
∂α∂γ ∂th∂β∂γ h. (B7)

Substituting relation (B6) into boundary condition (B7), we finally obtain


z = εαβ

(
êz ̂D̂

k̂
∂β∂th

)
(ek̂z∂αh) + 2εαβ̂−1êz(1 − D̂2)∂α∂γ h ∂β∂γ ∂t k̂

−1h

+ εαβ̂−1êz

[
D̂1̂1

k̂2

k̂1
− D̂1D̂2

k̂2

2k̂1
(̂1 − ̂2)

]
∂β∂th∂αh. (B8)

The relative accuracy of the expression is O(γ ), and thus only leading terms must be kept (they are
different depending on the film properties and the characteristic frequency of the vertical vorticity).
Let us stress that result (B8) is correct for an arbitrary form of the wave elevation h(t,x,y). In the
particular case of the monochromatic pumping, the frequencies of waves and their wave numbers
are the same, and then the last term proportional to ̂1 − ̂2 is equal to zero.

APPENDIX C: STOKES DRIFT CALCULATION

We conduct direct calculation of Stokes drift in this section. As earlier we assume that the pumping
is monochromatic. By using expression (8) for the velocity field we find the displacement of a passive
tracer in the linear approximation with respect to the wave amplitude and in the leading order with
respect to the parameter γ � 1:

δR0 =
[

(ek̂z − D̂êz)

k̂
∂xh,

(ek̂z − D̂êz)

k̂
∂yh,ek̂zh

]T

+ const, (C1)

where we do not take into account the constant term, since it produces zero correction after
averaging over time in Eq. (22). The velocity gradient tensor Gij (t,r0) = ∂jvi(t,r0) under the same
approximation is given by

Gij =

⎛
⎜⎜⎝

ek̂z−D̂êz

k̂
∂2
xx∂th

ek̂z−D̂êz

k̂
∂2
xy∂th

(
ek̂z − ̂D̂

k̂
êz

)
∂x∂th

ek̂z−D̂êz

k̂
∂2
xy∂th

ek̂z−D̂êz

k̂
∂2
yy∂th

(
ek̂z − ̂D̂

k̂
êz

)
∂y∂th

∗ ∗ ∗

⎞
⎟⎟⎠, (C2)
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and then the vertical vorticity 
S = εαβ∂α〈GβjδR0j 〉, which is produced by the Stokes drift, is equal
to


S = εαβ〈(ek̂z∂β∂th)(ek̂z∂αh)〉 − εαβ

〈(
êz ̂D̂

k̂
∂β∂th

)
(ek̂z∂αh)

〉

+ εαβ

〈[
(ek̂z − D̂êz)

k̂
∂β∂γ ∂th

][
(ek̂z − D̂êz)

k̂
∂α∂γ h

]〉
. (C3)

The first term in expression (C3) describes the contribution produced by the wave motion of ideal
fluid, when ∂x∂yh = 0, e.g., by two waves propagating perpendicularly to each other. The second
term represents the correction, which arises due to the fluid viscosity and the film compressibility.
The last term appears if the excited surface waves are not orthogonal.
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