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As computing power has grown and turbulent flows at increasing Reynolds numbers are
being computed by direct numerical simulations, conventional assumptions on adequate
spatial and temporal resolutions are being continually challenged. We perform a systematic
study of the resolution effects via numerical simulations at various spatial and temporal
resolutions to clarify the proper scaling of dissipation and enstrophy (vorticity squared).
Results show that inadequate resolution in space and/or time leads to overestimation of
the likelihood and intensity of extreme fluctuations in dissipation and enstrophy. In order
to capture rare events accurately, for instance, one needs to have not only grid resolutions
that are increasingly smaller fractions of the Kolmogorov scale as the Reynolds number
increases but also the Courant number that becomes increasingly smaller than that assumed
to be adequate previously. Some comparisons are made with results obtained from an
alternative approach where a stricter criterion for truncation in wave-number space allows
aliasing errors to be removed completely. In contrast to prior work, the present data do
not support the notion that dissipation and enstrophy probability density functions (PDFs)
approach each other in the far tails at high Reynolds number. However the two PDFs are
remarkably similar in form, being well described by stretched exponentials.
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I. INTRODUCTION

Rapid advances in computing power, especially since the beginning of this century, have continued
to enable direct numerical simulations (DNS) of ever-larger magnitude and/or greater physical
complexity, including both homogeneous [1,2] and inhomogeneous turbulent flows [3,4], using
many billions, or even trillions, of grid points. For homogeneous turbulence, the goals pursued by
various authors have included the attainment of as high a Reynolds number as possible to study the
asymptotic properties of small scales, the understanding of turbulent mixing at Schmidt numbers
as high as possible, and to incorporate more physical processes such as stratification and magnetic
fields that typically require a much wider parameter space to be addressed. However, it is understood
that no simulation is completely error-free, especially where some more sensitive quantities (such
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as higher order moments or the statistics of extreme fluctuations) are concerned. Consequently, it
is important to identify and address limitations in current practices in the simulations, and use this
knowledge to clarify how the tremendous resources needed at the next level can be best utilized.

In general, accuracy in DNS depends on a combination of truncation (discretization) errors in
space and time, aliasing errors arising from nonlinear products while using pseudospectral methods,
as well as limitations in statistical sampling. A common approach to obtain higher accuracy is to
increase the spatial resolution, while keeping key physical parameters (such as the Reynolds number)
unchanged [5,6]. For production simulations that are already pushing the limits of the state-of-the-art
computing facilities, further grid refinement is clearly very challenging. At the same time, for a given
spatial resolution it is useful to investigate the effects of aliasing errors on small-scale quantities,
and of errors from finite temporal resolution (which is connected to spatial resolution when explicit
numerical schemes are used for integration in time). In particular, while most discussions [7,8] of
resolution requirements have been focused on spatial grid spacing, time-stepping errors may also be
very significant when fast-changing events of high amplitude occur, or when the small-scale structure
is swept through the solution domain rapidly by the large scales [9].

In this paper we focus on the effects of both spatial and temporal resolutions on events of extreme
amplitude in the energy dissipation rate and enstrophy, which are defined respectively as

€ = ZVSUSU, Q= w; W; (1)

(where v is the kinematic viscosity, s;; is the strain rate, w; is the vorticity). The importance of
these quantities in intermittency theories is well established [10]. We take two approaches. First, we
take a number of high-resolution datasets, apply a filter that removes high wave numbers beyond a
certain cutoff, and observe the effect of this cutoff on various statistics of dissipation and enstrophy
fluctuations. These comparisons provide strong evidence that regardless of the spatial resolution,
results on extreme fluctuations are strongly associated with high wave-number modes that are not
completely free of aliasing errors. Although less intermittent than enstrophy (at least at Reynolds
numbers covered so far), dissipation fluctuations are found to be more sensitive to the choice of cutoff
wave number in this filtering procedure. Second, to include the effects of time-stepping errors, we
compare results on extreme events of dissipation and enstrophy from simulations at different grid
resolutions and at different choices of the time step (At). Even simulations over short time spans (say,
of the order of 10 Kolmogorov timescales) are helpful in this regard, because they allow us to revisit,
with some degree of certainty, the issue of whether extreme events in dissipation and enstrophy truly
scale in the manner described in [1,11].

The remaining sections of this paper are organized as follows. In Sec. I we first provide a
brief summary of the numerical algorithms employed, and of the measures of spatial and temporal
resolution applicable to our simulations. Results at different levels of spatial and temporal resolution
at multiple Reynolds numbers are presented in Sec. III, ultimately leading to a new interpretation of
the likelihood and magnitude of extreme events in dissipation and enstrophy using the best results
available at a given Reynolds number. Finally, in Sec. IV, we summarize the findings of this work
and briefly discuss their implications for future research.

II. NUMERICAL METHODS, RESOLUTION IN SPACE AND TIME

Although the approaches adopted here are general, we focus on results from direct numerical
simulations (DNS) of incompressible isotropic turbulence on a three-dimensional (3D) periodic
domain. The simulations are forced by maintaining the energy spectrum E (k) at low wave numbers
[12] (k < kp, where kp = 3) at values based on long-time averages in prior simulations that used
stochastic forcing [13]. Provided the forcing scales are sufficiently far removed from those ranges
associated with the large dissipation and enstrophy fluctuations, we may expect the details of the
forcing to have no significant impact on the issues under discussion. The Reynolds number is varied
by changing the viscosity. We use a massively parallel implementation of a well-known Fourier
pseudospectral algorithm [14], which uses both phase shifting and truncation in wave-number space
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for control of aliasing errors. On an N3 domain with length 277 units on each side the highest resolvable
wave number is kmax = ~/2N /3. In simulations of this type spatial resolution of the small scales is
often expressed by the nondimensional parameter ky.y 1, where n = (v3/(€))!/# is the Kolmogorov
length scale. Here angled brackets represent averaging in space. However, since the turbulence is
also statistically stationary, time averaging is also applicable when evaluating statistics such as the
value of 1 used to quantify spatial resolution, and, also later, when results on probability density
functions (PDFs) of dissipation and enstrophy are shown. The ratio between the grid spacing and 7,
can be written as

Ax N2 2m 296

n 3 kmax 77 kmax r’ .
For low-order statistics a value of k.1 of order 1.5 (without truly resolving the smallest scales)
may be adequate. However, because of intermittency, larger values of kn.x7 are required for higher
order statistics influenced by the occurrence of dissipation fluctuations much larger than the mean,
especially at higher Reynolds number.

For an existing DNS velocity saved from a prior simulation we can readily apply a series of sharp
spectral cutoffs in wave-number space,

2

k) if k| < AL < Kinax,

o' (k) = {O otherwise, &)

where it is convenient for cutoff wave number ké to be reduced monotonically from ky,,x downwards.
The filtering operation embodied here can also be interpreted as a reduction of grid resolution from
N3 to (3ki/+/2)? grid points. Each truncated velocity field can be used to compute the statistics
of quantities such as dissipation and enstrophy, with contributions from velocity modes of wave
numbers higher than k' removed. This post-processing calculation requires far less resources than
a new simulation at a different grid resolution. If a statistic in question, such as the PDF of the
normalized dissipation rate €/(e) differs strongly between results at two different resolution levels
(corresponding to k. and ki“ , say) then this result is sensitive to resolution. This sensitivity is likely
to be substantial for nonlinear quantities, such as dissipation rate fluctuations, which (by the nature of
Fourier transforms of nonlinear products) have spectral content beyond k! In contrast, the difference
should be weak for quantities dominated by the large scales with no intermittency, such as the kinetic
energy and the averaged dissipation rate ((€)).

When Fourier pseudospectral methods are used the Navier-Stokes equations are transformed to
ordinary differential equations in wave-number space, which are advanced in time using explicit
Runge-Kutta (RK) schemes for the advective terms, while viscous terms are treated exactly via an
integrating factor. We use a second-order (RK2) scheme, with the time step subject to a constraint
for numerical stability expressed in terms of the Courant number,

C=At|:M+M+Mi| ) 4)
Ax Ay Az«
where the maximum is taken over all (N?) grid points. The expression within square brackets in
Eq. (4) is arandom variable, which (with Ax, Ay, Az all equal) can be expected to scale with u'/Ax,
by a coefficient, say 8, which itself is determined by the (Gaussian) probability distribution of the
velocity fluctuations. (In our simulations 8 ~ 12, which could correspond to samples where all three
velocity components take values 4 times the standard deviation simultaneously.)

It is helpful to recast the time increment At in terms of the Kolmogorov timescale t,,. Using the

classical isotropy relation (€) = 15v((du/dx)?) then gives

At /T, = (C/B)15)*(Ax/mR, ™2, (5)

where 7, is the Kolmogorov timescale, and R, = u'A/v is the Taylor-scale Reynolds number. This
shows that (for fixed C) At/t, is proportional to Ax/n but decreases as R, V2.
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In simulations at high R;, it is typical for At/t, to be order 1% of less. However, as we shall see
later, although (in contrast to Ax/n) At/t, is much smaller than unity, time-stepping errors can still
be significant. This suggests, that 7, is, in fact, not the smallest timescale that needs to be resolved.
Instead, two smaller timescales are 7/u’, which characterizes advective transport of the small scales
by the large-scale motions [9], and Ax/u’, which is a numerical advection timescale determined by
the grid spacing. With the relation C = Su’At/Ax as well as Eq. (2) we can write

. C 3
AIOIO S g

This relation suggests a higher kp,x 7 may allow the use of a higher Courant number; and that a lower
Courant number may have effects somewhat similar to that of a higher k1, which is to be tested
in the work presented in this paper.

In addition to the size of the time step, it is clear that the time-stepping error also depends
on the details of the time-stepping scheme and the alias-removal technique applied. To facilitate
comparisons with prior work [1,11] we have chosen to focus here on results obtained using RK2
integration. Numerical tests using a fourth-order (RK4) scheme do appear to give smaller errors, as
expected. However, for the highly nonlinear quantities in this paper, the presence of residual aliasing
errors of order (At)? in Rogallo’s algorithm precludes a clear demonstration of fourth-order accuracy
even if RK4 integration were employed in the DNS.

Regardless of the accuracy of numerical methods employed, a question sometimes asked is
whether numerical results are significantly affected by finite machine precision. While results given
in this paper are for single precision, we have made comparisons of single and double precision for
the peak dissipation and enstrophy values studied in detail in Sec. III B. For R, ~ 390 on a 1024 grid
the maximum differences between peak values obtained at single versus double precision are within
0.1% and 0.16% at C = 0.6 and C = 0.15, respectively, over a time span of 10 7,,. This percentage
is likely to be higher in the case of simulations at higher grid resolution or a greater number of time
steps (due to the use of smaller step size or if a longer simulation is desired). However, we have
found no systematic tendency for peak dissipation or enstrophy values to be higher or lower at either
level of machine precision. This indicates net effects on the results given in Sec. III below are weak,
certainly much weaker than the effects of spatial and temporal resolution, provided the results are
averaged over a significant period of time. This finding is also consistent with comparisons using
4096* and 8192 simulations in Ref. [1]. It is possible that machine precision has greater impact in
other types of turbulent flows where fewer modes of averaging are available.

(6)

III. NUMERICAL RESULTS

Our approach in this investigation involves two key elements, both focused on the statistics of
fluctuations of dissipation rate and enstrophy, which prior work has shown to possess fluctuations of
extremely large magnitude. First, using the filtering operation defined earlier in Eq. (3), we assess
the degree to which the far tails of the PDFs of dissipation and enstrophy may be contaminated by
aliasing errors that arise when these nonlinear quantities are formed. Second, for a given Reynolds
number we perform a series of short simulations where spatial and temporal resolutions are varied
via kmax 7 and the Courant number, respectively. Simulations of large k.1 (more grid points) and
low C (more time steps) are the most accurate, but also inherently expensive. However, with samples
of extreme dissipation and enstrophy characterized by very short timescales, simulations of time
span in the order of 10 ,,, with statistics extracted several times per t,, appear to be sufficient for our
purposes. At the same time, since resolution requirements for studies of small-scale intermittency are
known to become more stringent at higher Reynolds numbers [7,15], it is important to perform these
analyses at more than one Reynolds number. In consideration of these issues, we have performed
a comprehensive series of tests at R; close to 390 and 650, up to 4096 and 8192° grid points
respectively, as listed in Table 1.
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TABLE I. Resolution parameters and values of At as percentage of 7, for simulation datasets at two values
of the Reynolds number. Since the simulation time spans used here are short, the numbers shown are subject
to statistical variability associated with the instantaneous snapshots used as initial conditions. The datasets
correspond to forced simulations at R, of 390 and 650 in a collection of prior publications, including Ref. [15].

R; ~ 390 R, =~ 650

kmax1 N C=06 C=03 C=0.15 N C =06 C=03 C=0.15

1.33 1024 1.31 0.699 0.349 2048 0.646 0.484 0.238
2.67 2048 0.609 0.333 0.165 4096 0.411 0.236 0.116
5.38 4096 0.327 0.164 0.082 8192 0.205 0.102 0.062

A. Filtering and resolution effects on dissipation and enstrophy

A long-standing question in intermittency theory is whether fluctuations of dissipation and
enstrophy (both being measures of the small scales of turbulence) scale similarly with increasing
Reynolds number [16,17]. The shapes of their PDFs are of particular interest, since they provide
surrogates for “extreme events.” Although their behaviors in the high Reynolds number limit are not
yet established, data available so far do show that enstrophy is more intermittent than dissipation,
with wider tails in the PDF. It may seem reasonable, thus, to suppose the statistics of enstrophy to
be more sensitive to resolution than those of the dissipation.

Figures 1(a) and 1(b) show, in both linear-log and log-log scales, a comparison of PDFs of
dissipation and enstrophy at different levels of spatial resolution, obtained by applying the filtering
proposed in Sec. II. In frame (a), for both variables, the tails of the PDF become systematically
narrower as the resolution is reduced. This implies contributions to the wide tails observed mostly
reside in the wave numbers that are close to ky.x, Which are also most prone to contamination from
aliasing errors when high-order quantities are computed. The differences observed here are stronger
for dissipation than for enstrophy; that is, even though less intermittent, the dissipation is more
sensitive to resolution than enstrophy. If this sensitivity is different in magnitude for dissipation and
enstrophy, it becomes necessary to revisit the conclusions from recent work [1,11] on whether the
PDFs of the two quantities approach each other as the Reynolds number increases. In part (b) of
this figure, where the x axis is extended further than in (a), a regime of power-law roll-off (linear
on log-log scales) can be seen in the unfiltered results [€¢/(e) = O(1000) or higher]. This feature
disappears when the velocity field is truncated at k. = 0.75km.x. An additional effect of the filtering
is that at moderately intense fluctuations (say, 100 < €/(€) < 500) the PDF also shifts inwards when

PDF |
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€/(e), /() €/(e), /()
FIG. 1. PDFs of normalized dissipation rate (red) and enstrophy (blue) in (a) linear-log scales and (b)

log-log scales, at R, = 650, 4096°, kyaxn) & 2.8, C = 0.6. Results are computed from velocity fields filtered at
ko/kmax = 1,0.75, and 0.5, in the direction of the arrows.
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FIG. 2. PDFs of normalized dissipation rate (red) and enstrophy (blue) in (a) linear-log scales and (b) log-log
scales, obtained from unfiltered velocity fields in simulations at R; = 650, C = 0.6. Grid resolutions 20483,
4096°, and 81923 corresponding to ka1 A 1.4, 2.8, and 5.6, increasing in the directions of the arrows.

more of the highest wave-number modes are removed by filtering, but this effect is more gradual
with respect to changes in k./kmax. Finally we also note, in frame (b), that at very small € or 2
both PDFs exhibit robust power laws with positive exponents. This last feature can be explained as
a consequence of velocity gradients in quiescent zones of the flow behaving as Gaussian random
variables [11].

While filtering is a useful diagnostic tool as demonstrated above, obtaining accurate results
requires simulations at higher resolution. In Figs. 2(a) and 2(b) we compare the PDFs in a manner
similar to that in Fig. 1, using only unfiltered results at nominally the same Reynolds number but
three different spatial resolutions. In frame (a) improved resolution in space is seen to reduce the
likelihood of large fluctuations up to several thousands times the mean value, again with dissipation
showing greater sensitivity. In frame (b) we again use log-log scales, with the scale on the x axis
adjusted so that behavior at the furthest tails can be examined more clearly. As the spatial resolution
is improved, the numerically spurious power-law behavior near the tails is still present, although now
shifted towards even larger fluctuations. This shows, at the least, that improving spatial resolution
alone does not remove all possible numerical errors.

To understand why dissipation is more sensitive to resolution, we note that, whereas both € and
Q2 are derived from velocity gradients, longitudinal velocity gradients contribute to € only. It is
well known that in incompressible turbulence longitudinal velocity gradients are negatively skewed
but transverse gradients, while symmetric, are more strongly non-Gaussian. In Fig. 3 we compare
filtered and unfiltered results on the PDFs of longitudinal and transverse velocity gradients, as well
as the PDF of a single vorticity vector component. All three variables display narrower tails when
the filtering is applied, showing again that the occurrence of very large velocity gradients can be
overestimated because the velocity field in the high wave-number modes are in turn contaminated
by aliasing errors. It is also clear that the longitudinal gradients are more sensitive to resolution
effects, while vorticity (which consists of transverse gradients alone) shows a sensitivity similar to
the transverse gradients themselves.

Further insight on the contrasts between resolution effects on longitudinal and transverse velocity
gradients can be had by considering one-dimensional spectra, as follows. Since incompressibility
requires @t L k, at high & = |k| most of the spectral content of #i; resides in wave-number vectors
orthogonal to the k; axis, i.e., mostly modes with small k; but large k, = v/k3 + k3 (such that k is
significantly greater than k). Thus, for a given k; more energy is removed in # than #i, and #i; when
truncation based on k is applied. This kinematic effect causes the longitudinal spectrum (of #; in
k1) to be affected more by the truncation than the transverse spectrum (of i, or #i3 in k;). We can
also make use of the relations [18] for longitudinal and transverse energy spectra in incompressible

064603-6



EFFECTS OF FINITE SPATIAL AND TEMPORAL ...

1
180 T T 1
107"
1072
107°
107
107°
107
PDF 10'7
107°
107°
10-10
10"
10-12

10-13
—14 ] ] ] ]

-100 -80 -60 —40 -20

ol ool ool ool vl vl o oo ool ool ool vl vl vl

L LU RL L RL L RL L BL LU RU L R L B

|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0

ey
o L
o

20 40 60 80

Random variable

FIG. 3. Standardized PDFs of longitudinal (red) and transverse (blue) velocity gradients as well as vorticity
(green), obtained from 17 snapshots in simulation with R, ~ 650, 4096, C = 0.6. Resolution levels k. / kyax =
1 and 0.5 (decreasing in the directions of the arrows).

isotropic turbulence,

= E(k 1 [*Ek
E“(kl)=/ %(1 — ki /k*)dk, Ex(ki) = 5/ %(Hk%/kz)dk, 7
k] kl

where E (k) is the 3D energy spectrum function. If the spectrum is truncated at k = k, the longitudinal
spectrum for k; close to k. can be approximated as

Ek)) [*
1 Ji

which further simplifies to E;(k;) = E(k)(Ak/ k1)?, where Ak = k. — k. Similar reasoning leads
to Ex (ki) =~ E(k1)(Ak/ k) and hence the ratio of longitudinal to transverse spectrum at k; close to
the cutoff becomes

Eqi(ky) =~

(1 — k7 /%) dk, (8)

Enk) Ak ke —k (Ak < k) ©)
Exk)) ki Kk o

Figure 4 shows results on E;(k;), Ex(k;), and their ratio. The stronger sensitivity of the high
wave-number region of Eq;(k;) [compared to E»;(k;), in (a) of the figure] to the spectral cutoff is
consistent with the finding that the statistics of longitudinal velocity gradients are more sensitive to
resolution than those of the transverse gradients. In addition, in (b), for k; close to each choice of the
cutoff k., the estimate (9) is seen to agree very well with actual data on the ratio Ey;(k;)/Ex (k).

B. Tests of spatial and temporal resolution

While comparisons of results obtained before and after filtering help identify the sensitivity to
resolution effects, it is still important to obtain new results at spatial and temporal resolution better
than previously practiced. It would be ideal if some degree of convergence can be achieved with
respect to spatial or temporal resolution if the grid spacing and time step are made increasingly
smaller. To reach this objective we need to minimize a third source of uncertainty, namely that of
statistical sampling. Since extreme events are of very short duration, our test simulations do not
need to span a long period of time for a sufficient number of independent samples to be taken; yet
sampling requirements are met by calculating dissipation and enstrophy frequently, and on the fly, at
regular output steps in the DNS code. We also find it useful to follow the time evolution of simpler
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FIG. 4. (a) Longitudinal (red) and transverse (blue) 1D spectra, and (b) the ratio E,(k;)/ E»(k;) (magenta
for actual data, green for estimate at k; close to k), with truncation levels k./ky.x = 1, 0.75, and 0.5 in the
direction of the arrows. The plots are based on the same simulation datasets as in Figs. 1 and 2.

diagnostic quantities, namely the peak values of €/(€) and €2/(€2) taken over all grid points in the
simulation.

Figure 5 shows the evolution of peak €/(¢) and €2/(€2) over a period of order 107,, at R; ~ 390,
at different spatial and temporal resolutions as indicated earlier in Table I. Each frame shows the
peak values (over all grid points) of €/(€) or €2/(S2) with Courant number varied for a given spatial
resolution. Generally these simulations are conducted with initial conditions taken from a prior
instantaneous snapshot obtained at relatively low ky.xn and high C. In most cases the effects of
improved resolution are quickly apparent (within 0.5 7, or less). It can be seen that the Courant number
has a major effect: C = 0.6 gives considerably higher peak values of both €/(¢) and 2/(€2) except

€/(€) Q/(Q)
T s e s B e s A
kmaq:'ﬂ ~ 14 103} : i : i 4 103 W“\/ E
102 P S S S 102 S S S S S

104 L 4 104 4
kmaz = 2.8 103 4 103 E

102 S S S 102 S S

104 | 4 104 4
.
kmal"’]%‘)'G 103W 3 103L\//\/Wf E
102 L L L L L L L L L 102 L L L L L L L 1 1
0o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
t/m t/my

FIG. 5. Comparison of peak €/ (€) (left) and 2/(£2) (right) for results obtained at different Courant numbers,
R, ~ 390, over time spans in the order 10 t,. Different colors represent C = 0.6 (red), 0.3 (green), and 0.15
(blue). From top to bottom kyqn & 1.4, 2.8, and 5.6 (grid resolutions 10243, 20483, 4096%). In many places
lines in green and blue are almost coincident (with only blue being directly visible).
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FIG. 6. Same data as Fig. 5, but with data for different k. 1 =~ 1.4 (red), 2.8 (green), 5.6 (blue) shown in
the same frames at each given choice of the Courant number. From top to bottom: C = 0.6, 0.3 and 0.15.

at high spatial resolution (kpaxn7 = 5.6), while results for C = 0.3 and 0.15 agree very closely. Since
there is no doubt that a lower C gives more accurate results, this comparison implies that observed
peak values are overpredicted (hence spurious) in the case of C = 0.6. Closer observation shows the
contrast between C = 0.6 and C = 0.3 is apparently greater for dissipation than enstrophy, which
is consistent with results in Sec. III A that dissipation is the more sensitive quantity. At sufficiently
low C the peak values are also remarkably steady in time, and somewhat higher for enstrophy than
dissipation, especially at low C (e.g., the time-averaged peak values in the lowermost frames are
about 480 for €/(e) and 1020 for ©2/(S2), respectively). Overall it appears clear that simulation
segments of 107, are sufficiently long for the present purposes.

One implication of this discussion is that attempts to produce more accurate results by improving
spatial resolution may not be adequate unless one improves temporal resolution as well. To see this
more clearly, in Fig. 6 we have replotted data from Fig. 5, but with each frame now holding results
for a given C but for different values of ky.x 7. If the effect of improved spatial resolution is to allow
larger local gradients to be captured then the peak values should increase with k1. This trend
is supported by our results for C = 0.3 and 0.15. For data at these two Courant numbers, the peak
values at k.17 = 2.8 and 5.6 still differ more significantly in the case of the dissipation, which again
suggests that dissipation is more sensitive to resolution than enstrophy.

It is now well understood, from both theory [7] and computation [15], that spatial resolution
requirements for the study of intermittency become more stringent with increasing Reynolds number.
A similar trend can be expected for temporal resolution A¢, which has been cast in Sec. I in terms of
the advective timescale n/u’ [Eq. (6)] rather than the Kolmogorov timescale 7, [Eq. (5)]. However,
neither of these estimates allows for the effects of intermittency, which may be felt via extreme
velocity gradients of even smaller timescales. There is thus a possibility that, for a given k7, the
time step At to ensure accuracy corresponds to a Courant number that is lower than suggested by these
estimates, especially as the Reynolds number increases. To answer this question we show in Fig. 7
data similar to Fig. 6, but at R, ~ 650. The comparison between these two figures is consistent with
the expectation that extreme events intensify when the Reynolds number is increased. Differences
between the results at kp,xn 2.8 and 5.6 (with C fixed) become much more substantial, perhaps
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FIG. 7. Similar to Fig. 6, but at R, = 650, at grid resolutions 20483, 4096, 81923 for kman ~ 1.4 (red),
2.8 (green), 5.6 (blue). From top to bottom: C = 0.6, 0.3 and 0.15.

somewhat erratic, even at the lowest C (0.15) that we have tested in detail. Results at C = 0.3 and
C = 0.15 agree closely but not as closely as in Fig. 6. This change in level of agreement may be
interpreted as indicating that, as Reynolds number increases, a lower Courant number is required to
maintain a similar level of temporal accuracy.

The effects of spatial and temporal resolution on the peak values of dissipation and enstrophy,
considered above, are expected to carry over directly to the behavior of the respective PDFs at
extreme values of these variables. Since the peak dissipation and enstrophy signals studied above
exhibit statistical stationarity in time beyond a certain initial transient, it is appropriate to take averages
of the PDF results over time after excluding, say, the first 1/4 of the time period tested. In Fig. 8 we
plot the PDFs at different k,xn with C fixed at 0.15. Most of the curves shown are quite smooth,
suggesting adequate sampling, although of course sampling limitations are always present at extreme
values where the number of samples falling into “bins” of finite size is sensitive to the statistical
variability of the simulations of modest length employed in this paper. At R; =~ 390 (top row in
this figure) results on both dissipation and enstrophy suggest that a strong degree of convergence in
spatial resolution has been achieved, with the main difference between ky.xn ~ 2.8 and 5.6 being
that the tail of the PDF stretches out wider as larger samples are captured on a finer grid. At R, =~ 650
(middle row in this figure) the relative positions of lines in green and blue follow the expected trend
less closely than at R, = 390. To check on this feature we have verified the accuracy of the green
line by comparing it with results in another simulation with C further reduced to 0.075 (and finding
little significant difference). This test shows the differences between the lines in green and blue noted
here are primarily statistical in nature, which can be manifested via a sensitivity to initial conditions
as well as to the time spans used for averaging in the simulations. Overall it is clear that the extreme
values for enstrophy are more probable than for dissipation, while both of them increase with the
Reynolds number. However, sensitivity to spatial resolution is strong only for sample values beyond
a certain threshold, which itself increases with the Reynolds number, and is higher for enstrophy
than for dissipation.

We recall earlier in Fig. 2(b) that PDF data obtained from simulations at inadequate temporal
resolution (C = 0.6) were characterized by an the unphysical “power-law decay” feature. The bottom
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row of Fig. 8 shows the same data as in the middle row, but on log-log scales and in a format similar
to that in Fig. 2(b). It is clear that, with improved temporal accuracy at C = (.15, the unphysical
result seen earlier is no longer observed.

It is understood that the sensitivity of results on extreme dissipation and enstrophy to spatial and
temporal resolution is closely connected to the presence of aliasing errors, which in Rogallo [14] are
not completely removed. Both dissipation and enstrophy fluctuations are obtained by differentiating
in Fourier space, followed by transforming to physical space and taking the squares of strain rates and
vorticity components formed in this process. Contributions from aliased modes are amplified when
these squares are taken, and even more so when higher powers corresponding to higher moments
are considered. However, it is possible, although expensive, to remove aliasing errors entirely from
this calculation by modifying the simulation procedure such that the velocity field itself is alias-free.
We consider first an N3 grid, and truncate at half of the usual kp,x = V2N /3 before derivatives
are formed. Equivalently, to obtain alias-free results at a resolution equivalent to an N* grid, we
perform a simulation using (2N)? grid points but remove all spectral content (that may form as a
result of nonlinearities in the Navier-Stokes equations) at k > V2N /3 (i.e., kmax Of the N3 grid) at
every Runge-Kutta substage. The resulting numerical solution is free of aliasing errors, although
truncation errors due to finite Ax and At remain. Figure 9 compares production DNS results at a
low C with alias-free results at a higher C. The agreement is clearly excellent. In particular, since in
Rogallo’s scheme aliasing errors vary as (At)?, aliasing errors are reduced by a factor of 16 when C is
reduced from 0.6 to 0.15, thus bringing the numerical solution close to alias-free results at C = 0.6.
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FIG. 9. Comparison of peak dissipation (left) and peak enstrophy (right), between (blue lines) DNS results
at C =0.150n an N° grid with truncation at V2N /3 and (red lines) test results from alias-free simulation at
C = 0.6 ona (2N)? grid also truncated at \f2N/3. Frames (a) and (b): R; =~ 390, N = 1024. Frames (c) and
(d): R, & 650, N = 2048.

Since the alias-free approach requires a (2N)? grid, at a fixed C it requires 16 times more resources
(for a given physical time span) than Rogallo’s scheme at C = 0.6, compared to four times more
when C is reduced from 0.6 to 0.15 with no change in truncation in wave-number space.

C. Re-interpretation of dissipation and enstrophy PDFs at high resolution

With this improved understanding of the effects of finite resolution in both time and space, it
is now useful to revisit the nature of extreme events represented by the far tails of the PDFs of
dissipation and enstrophy. In particular, we are interested in the viability of stretched exponentials
[19,20], and whether there is a definite trend for the tails of these two PDFs to behave similarly at
high Reynolds number [1,11].

If both PDFs behave as stretched exponentials, we may write

fe(€/(€)) ~ expl—=be(e/(€)) ], fa(Q/(R)) ~ exp[—ba(R/(2))"?], (10)

where the dependencies of the coefficients be, y., b, vo on Reynolds number are of interest in
intermittency scaling. Figure 10 shows the best results available for dissipation and enstrophy PDFs
at two different Reynolds numbers, mostly free from shortcomings of inadequate resolution. Solid
lines in red and blue represent the present DNS results, while dashed lines in the same colors represent
curve fits of the forms given in Eq. (10). The current results show clearly that, as Reynolds number
increases, the far tails of the PDFs remain different, and that the most extreme values of enstrophy
continue to be higher than those of dissipation. This revises the conclusion of [1]. The curve fits
appear to agree with the DNS data very well. The coefficients used are (i) b, = 6.76, bg = 5.47,
ce = Yo = 0.25 at R, ~ 390; and (ii) b, = 6.25, bg = 5.0, ¢ = yo = 0.225 at R, =~ 650. These
values are chosen empirically while taking y. = yq, based on prior work [15] and recognizing that
smaller values of both the premultipliers (b, b)) and exponents (), yq) can represent PDFs of wider
tails.

The fact that dissipation and enstrophy PDFs have different tails even at asymptotically high
Reynolds numbers does not contradict any known result; we know only that the two quantities are
equal on the mean in homogeneous turbulence. It is, however, interesting to note that the two PDFs
possess a similarity in shape. For example, the tails of the PDF of 2¢/(¢) appear to follow those
of Q/(2) quite closely, at least on the semilogarithmic scales. It is entirely plausible that better
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agreement for different parts of the two tails can be had with different, amplitude-dependent scaling
factors (suggesting different multifractal structures for the two quantities) but a deeper understanding
of this possibility requires future work.

IV. CONCLUSIONS AND DISCUSSION

A systematic study using a combination of spectral filtering and numerical simulations at enhanced
spatial and/or temporal resolution is presented, in order to clarify the proper behavior of the scaling
of dissipation and enstrophy PDFs in forced incompressible isotropic turbulence. It is understood
that, even in the largest simulations achievable at present, not all results are equally reliable, and
accuracy in results such as high-order moments of highly intermittent quantities is inevitably more
difficult to achieve. A major motivation in this paper is to reevaluate the numerical fidelity of prior
results concerning the occurrence of extreme events in fluctuations of the energy dissipation rate and
enstrophy, in DNS datasets with the number of grid points reaching 81923 and higher. While long
simulations at optimal resolution and largest problem sizes are still prohibitively costly, we are able
to draw useful conclusions from short simulations (per Table I) using 10243 to 8192 grid points at
modestly high Taylor-microscale Reynolds numbers (390 and 650).

A procedure of removing higher wave-number modes in the velocity field via a series of sharp
spectral filters is shown to lead to substantially narrower tails of the PDFs of dissipation and
enstrophy, while exposing symptoms of inaccuracies (as in Figs. 1 and 2) that arise because of
insufficient resolution. Although less intermittent than enstrophy (at least at the Reynolds numbers
for which results are available), dissipation is more sensitive to inadequate resolution, as a result of
incompressibility constraints applicable to longitudinal velocity gradients.

While concerns for limited spatial resolution (relative to the Kolmogorov length scale, 1) are
well known since the time it was discussed in Ref. [7], the issue of temporal resolution (beyond
numerical stability) appears to have received less attention. However, our results for the far tails of
the PDFs of dissipation and enstrophy, and their corresponding peak values extracted on the fly from
the simulations, show strong sensitivity to temporal resolution as well, even when time step (Af) is
well under 1% of the Kolmogorov timescale. Instead, A must be small compared to the timescale
of advective turbulent transport over one grid spacing, Ax. A sufficiently low Courant number (C),
itself depending on the details of the time integration scheme, is thus necessary for the benefits of
improved spatial resolution to be fully realized, for example as seen in Fig. 8 where both dissipation
and enstrophy PDFs converge in the limit of high spatial resolution. Very good agreement has
been demonstrated between simulation results at C = 0.15 with aliasing errors minimized through a
small time step, by employing a more expensive approach where enforcement of a more conservative
truncation criterion in wave-number space can be used to obtain alias-free results.
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In summary, we have presented here a critical examination of the effects of both spatial and
temporal errors on extreme events in small-scale turbulence. Full benefits of improved spatial
resolution may not be attained unless temporal resolution is also adequate. We conclude that the
likelihood and strength of extreme events in dissipation and enstrophy (especially the former) reported
in our prior work have been, as a result of the numerical issues addressed in this paper, overestimated.
With these numerical issues now clarified, we note that data in highly resolved simulations do not
support a theoretical prediction that the PDFs of dissipation and enstrophy approach each other in
the high Reynolds limit. However, the two PDFs are consistently similar in form.

Since the numerical errors addressed in this paper mainly affect extreme fluctuations, other
past conclusions based on moderately intense fluctuations are likely to be not greatly affected. An
important topic in this context is the statistics of local averages of the dissipation rate for various scale
sizes. Since inertial range motions at high Reynolds numbers are large compared to the grid spacing,
they are less sensitive to resolution effects than results in the dissipation range where the most intense
fluctuations occur. A subsequent paper will be devoted to the study of such local averages using DN'S
datasets with up to 16 3843 grid points.
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