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Granular collapse in a fluid: Different flow regimes for an
initially dense-packing
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Laboratory experiments of the granular collapse of an initially dense-packing column in
a fluid are reported. By extracting the temporal evolution of the granular material height
profile, both the dynamics of the granular flow and the final deposit are characterized
depending on the Stokes number St, based on a dissipative process at the grain scale, the
grain-fluid density ratio r , and the aspect ratio a of the initial column. A full description of
the granular collapse including the transient dynamics of the flow and the characterization
of the final shape deposit is proposed. The main contribution of the present study is to
provide (i) the St dependence on the granular collapse beyond the effect of the aspect ratio
a already reported in previous studies, (ii) the characterization of granular flow regimes in
the ((d/Hi)1/2St,(d/Hi)1/2r) plane, where d/Hi is the particle diameter to initial column
height ratio, and (iii) simple correlations to describe the granular collapse which would be
of interest for geophysical purposes.
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I. INTRODUCTION

The prevention of dramatic events involving granular materials remains a challenging task which
is mostly limited by the lack of a general predictive theory for granular flows. In order to progress on
the latter issue, canonical configurations dealing with the situation of dense granular flows have been
extensively studied using laboratory experiments, numerical simulations, and theoretical descriptions
[1]. One such configuration, which accounts for the unsteady nature of debris flows in geophysical
applications, is the slumping of a granular column, initially at rest in a reservoir, on a horizontal or
inclined bottom plane and often referred to as granular collapse (see Fig. 1). The case of a dry granular
flow, i.e., for which the surrounding fluid can be disregarded, typically heavy coarse grains in air, has
been mostly addressed in the literature. Yet many gravity-driven flows encountered in geophysical
situations, such as mudflows, submarine avalanches, or landslides, are concerned with dense granular
flows for which the surrounding fluid can affect the dynamics [2]. Even if generic configurations
of granular-fluid flows have already been addressed in several studies [3–8], the characterization
of these flows remains a challenging issue which can mainly be attributed to the large variety of
phenomena observed in these situations.

The case of a dry granular collapse has been extensively studied in the literature for both
axisymmetric [9,10] and quasi-two-dimensional (quasi-2D) [11–13] geometries. Both configurations
were shown to lead to similar features. In the quasi-2D case, the initial granular column is
characterized by its initial height Hi and the horizontal length of the reservoir Li (see Fig. 1).
When the granular medium is suddenly released on a horizontal plane, it spreads rapidly before
forming a deposit characterized by a final spreading length Lf and a final height Hf located at the
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FIG. 1. Sketch of the experimental setup for the initial condition (granular column maintained by a vertical
gate) and the final state (granular deposit).

back wall of the reservoir. All observations on dry granular collapses show that these final deposit
length scales, considering an appropriate nondimensionalization, depend mostly on the initial aspect
ratio a = Hi/Li . In particular, the dimensionless runout l = (Lf − Li)/Li and height h = Hf /Hi

were shown to have a power-law dependence on a such as

l ∼
{
a for a < alc

aα for a > alc,
(1)

h ∼
{

1 for a < ahc

aβ for a > ahc,
(2)

where α ∼ 0.7 ± 0.1 and β ∼ −0.6 ± 0.1 are the exponents at large aspect ratio, alc ∼ 3 ± 1, and
ahc ∼ 0.8 ± 0.2 [11–19]. Note that no formal model has yet been proposed to explain the values of
α and β. Also, prefactors of these scaling laws are more difficult to quantify as they strongly depend
on the local interaction between grains, such as the nature of the granular material [12,17] or the
pore fluid pressure in the system [20].

The case of a dense granular collapse influenced by a surrounding fluid has received less attention.
Thompson and Huppert [5] found that the surrounding fluid did not influence significantly the final
runout and height compared to the dry case, even if the transient dynamics could highlight some
different features. Yet numerical simulations have shown that the runout length, while keeping a
power-law dependence on a, can be two times shorter in a viscous-dominant case than in the dry
case [8]. Moreover, the initial volume fraction of the granular column has been shown to play a
major role in both the dynamics of the granular flow and the shape of the final deposit, while it did
not affect significantly the final shape of the deposit for the dry case [7,21]. Then, in the case of a
viscous-dominant immersed granular collapse, an initial loose-packing fraction highlights the rapid
dynamics and long spread of the granular mass while an initial dense-packing fraction leads to a slow
dynamics and a smaller final runout length. This phenomenon has been attributed to a pore pressure
feedback on the granular flow at least at the early stages of the collapse [6,22]. It is therefore strongly
linked to the viscosity of the surrounding fluid and the permeability of the granular medium. It can be
noted that the influence of positive pore fluid pressure in the case of a low-density and low-viscosity
interstitial fluid has also been reported in the literature through laboratory experiments [20,23]. In
this case, the pore pressure is controlled by fluidizing the initial granular column. The dynamics
of the propagating media as well as the characteristics of the final deposit were also shown to be
different from the dry granular collapse, in particular, with an enhancement of the spreading length.
The role of the surrounding fluid in the granular collapse, and more particularly the transition from
viscous-dominated flow to a dry configuration, remains uncertain and still deserves experimental
investigation.

In order to distinguish the collapse configurations mentioned above and to qualify the transition
from a viscous to a dry configuration, the granular-fluid flow can be decomposed in three different
regimes (free-fall, viscous, and inertial) according to the definition of Courrech du Pont et al.
[3]. In the case of a rotating-drum configuration, these regimes were shown to depend on two
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dimensionless numbers, the Stokes number St and the grain-fluid density ratio r . The definitions of
these dimensionless numbers are usually based on different ratios of timescales obtained from the
dynamics of a single grain submitted to a driving force F and a drag force FD , which is opposed to
the grain motion [3,4]. In this way, the conservation of momentum on a single grain may be written

π

6
ρpd3 dvp

dt
= F − FD, (3)

where ρp is the density, d is the diameter, and vp is the velocity of the particle. Different choices
for these forces can be found in the literature depending on the direction along which Eq. (3)
is considered, either the main flow direction or the compression direction, the latter being mostly
perpendicular to the first one for avalanche configurations [3,4]. In any case, the key idea is somehow
similar. In particular, FD is defined to be either a viscous or an inertial drag force depending on the
flow regime. Three different timescales can then be defined: a viscous (inertial) timescale τv (τi)
that a particle needs to reach its viscous (inertial) limit velocity and a free-fall timescale τff that
a particle would need to travel prior the following solid collision when drag can be neglected. The
dimensionless numbers are then defined as St = τv/τff and r = τi/τff for the Stokes number and
the grain-fluid density ratio, respectively. Following Courrech du Pont et al. [3], one defines the
distance between consecutive solid contacts in a dense granular flow as the grain diameter d, the
viscous drag force as FD = 3πμf dvp, and the inertial drag force as FD = (π/8)CDρf d2v2

p, where
ρf and μf are the density and the dynamic viscosity of the ambient fluid, respectively, and CD is a
constant drag coefficient in the inertial regime. One therefore obtains

St = 1

18μf

(
3ρpF

π

)1/2

, r =
(

4ρp

3CDρf

)1/2

. (4)

We assume that individual grains are driven by their own weight along the slope of an avalanche
during the collapse. As this slope varies along the flow, we write the associated driving force along
the maximum slope which is the vertical axis (y axis in Fig. 1) as F = (π/6)�ρgd3. In the following,
we therefore define the two dimensionless numbers as

St = 1

18
√

2

(ρp�ρgd3)1/2

μf

, r =
(

ρp

ρf

)1/2

, (5)

assuming a constant drag coefficient CD as in Ref. [3]. Thus, the Stokes number St prescribes the
relative importance of particle inertia and fluid viscous effects while r is related to the fluid-grain
density ratio. These two dimensionless numbers govern the grain dynamics in an elementary falling
process and allow one to indicate the dominant process at the grain scale. According to the values
of St and r , the three above-mentioned regimes can be obtained as follows. For St � 1 and r � 1,
the ambient fluid has no effect on the dynamics of the granular avalanche and this is the free-fall
regime, which corresponds usually to the well-known dry case. For St � 1 and r � 1, the gravity
term is balanced by the inertial fluid drag force. The grain reaches its inertial limit velocity and is
therefore associated with the inertial regime. It can be noted that the notation inertial regime refers
here to a dominant contribution of fluid inertia to the dynamics, which is different from grain inertia.
Moreover, in the case of immersed granular flows, the solid phase is usually denser than the fluid
phase, r being therefore always larger than one and its smallest value of order one. A fully inertial
regime is therefore not expected for a granular flow in this asymptotic consideration. However, a
transition between a dry-dominated regime towards an inertial-dominated regime can be obtained
for r decreasing to one [3]. For St � 1, the viscous effects are important and the grain reaches its
Stokes limit velocity. This regime is thus referred to as the viscous regime.

In geophysical applications, the above-mentioned granular flow regimes can be encountered
depending on grain and fluid characteristics [2]. Most dry granular flows in air, as rockfalls, subaerial
landslides, or pyroclastic flows, lead to large values of the Stokes number and the grain-fluid density
ratio, i.e., St ∼ [102,108] and r ∼ 40–50. These situations can be related to the free-fall regime,
where the surrounding fluid can be neglected. In the case of submarine avalanches, the density ratio is
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characterized by r ∼ 1.5 while the Stokes number can be found in the large range of St ∼ [10−1,106].
In these situations, the dynamics of the flow can belong to the inertial regime or the viscous regime,
depending strongly on the grain size, and the influence of the fluid should therefore not be disregarded.
Other atmospheric situations, such as snow avalanches or dust storms, can also lead to the situation
of the inertial regime for which r remains moderate and St � 1. In several geophysical applications,
such as lahars, some debris flows, and also snow avalanches under certain conditions, the interstitial
fluid in the granular matrix differs from the ambient fluid. In these more complex situations, the
influence of the surrounding fluids also has to be considered but leads to more complex physics
including the density ratio and viscosity ratio between the two fluid phases. This reacher situation
also suffers a lack of knowledge of the characteristics of the different regimes mentioned previously.
The simpler case of the granular medium immersed in a single fluid still deserves specific attention.

In the literature, most studies of granular collapses deal with the free-fall regime [9–15,17,18,24–
26]. The viscous regime has been investigated in detail by Rondon et al. [7], mostly focusing on the
role of the initial volume fraction, while the inertial regime has only been mentioned in 2D numerical
studies [8,27]. Laboratory experiments are therefore still needed to characterize the flow properties
in these different regimes and their associated transition. For instance, the description of the regimes
has been discussed in terms of the local dynamics of a single grain. Its influence on the macroscopic
flow, involving a granular material as the collapse, is then still uncertain. In the light of the previous
studies, the present work then focuses on an experimental description of the collapsing flow and
the associated final deposit by varying the three independent dimensionless parameters (a,St,r). For
the sake of clarity, the initial configuration considered here is always an initially dense-packing.
Accordingly, the pore pressure induced by the initial decompaction of the granular medium prior
flowing is negative [7].

The paper is organized as follows. In Sec. II the experimental setup and materials used are
presented as well as observations of the granular collapse in a fluid. Then the scalings of the runout
length and final height (Sec. III) and the spreading dynamics (Sec. IV) are described. Finally, a fine
characterization of the morphology of the final deposit is given with the development of a simple
predictive model (Sec. V).

II. LABORATORY EXPERIMENTS OF GRANULAR COLUMN COLLAPSE IN A FLUID

A. Experimental setup

The experiments are conducted in a horizontal transparent channel of rectangular cross section.
The channel is 2 m long, 0.35 m high, and 0.20 m wide along with the streamwise x, vertical y, and
spanwise z coordinates, respectively (see Fig. 1). On one side of the channel x = 0, a finite-volume
reservoir is delimited by a sluice gate located at x = Li . Two different reservoir widths are used,
Li = 3 and 10 cm. The initial height Hi of the granular column varies from 2 to 30 cm, leading to an
aspect ratio a = Hi/Li in the range a = [0.2,10]. At time t = 0, the sluice gate is removed and the
granular column is released on the smooth bottom plane. The height profile h(x,t) is extracted from
image analysis using a classical shadowgraphy method. For this purpose, the 2D flow in the (x,y)
plane is recorded using a Lavision 2560 × 2160 pixels camera and a backlight source on the opposite
side of the channel. The obtained resolution is around 400 μm pixel−1, which leads to an accuracy
of the height profile less than the grain diameter. The acquisition rate of the camera is between 10
and 200 Hz, depending on the flow timescale. The extraction process is performed using a MATLAB

routine.
The granular medium is composed of spherical glass beads manufactured by Sigmund Lindner

GmbH and listed as type S (soda lime glass beads) and type P (borosilicate glass beads). The
measured densities of the beads are ρp = 2500 ± 50 and 2230 ± 30 kg m−3 and the grain diameters
are d = 3.15 ± 0.3 and 3.00 ± 0.02 mm, respectively. In the dry case, type S grains of diameter
d = 1.15 ± 0.15 mm have also been used. For all types of particles, the repose and avalanche angles
were estimated using two methods. First, the variation of the slope, along a granular pile built by
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TABLE I. Set of parameters for each experimental series. The Stokes number St and the fluid-grain density
ratio r are defined according to (5).

Glass beads Ambient fluid St r Regime Label

d = 1 mm μf = 1.8 × 10−5 Pa s 540 46 free-fall FF
ρp = 2500 kg m−3 ρf = 1.2 kg m−3

d = 3 mm μf = 1.8 × 10−5 Pa s 2500 43 free-fall FF
ρp = 2230 kg m−3 ρf = 1.2 kg m−3

d = 3 mm μf = 10−3 Pa s 33 1.5 inertial I
ρp = 2230 kg m−3 ρf = 1000 kg m−3

d = 3 mm μf = 26 × 10−3 Pa s 1.5 1.6 viscous inertial VI
ρp = 2500 kg m−3 ρf = 1027 kg m−3

d = 3 mm μf = 375 × 10−3 Pa s 0.1 1.5 viscous V
ρp = 2500 kg m−3 ρf = 1066 kg m−3

slowly pouring beads just above the top of the pile, was considered as being delimited by these two
angles. The second method consists in slowly tilting a rectangular plexiglass box, initially filled with
a horizontal granular bed of height of a few grains. Using these two methods, the angle of repose
and the angle of avalanche were found to be αr = 22 ± 1◦ and αa = 28 ± 2◦, respectively. In this
study, the initial volume fraction of the granular column is constant and equal to φ ∼ 64 ± 2%, i.e.,
a dense-packing, for all experiments considered here. The influence of the initial volume fraction in
the viscous regime has already been reported by Rondon et al. [7] and it is therefore not discussed
further here.

For collapse experiments with a liquid phase, the channel is filled up to a height equal to about
35 cm with a mixture of water and Ucon oil 75H90000. The dynamic viscosity of this mixture
depends on the relative concentration of Ucon oil and water, which is characterized by the mass
fraction cm = mo/(mo + mw), with mo and mw the mass of oil and water, respectively. The mass
fraction cm is varied from 0% (pure water) to 40%, which corresponds to a variation of viscosity in the
range μf = [1,375] cP. The viscosity of the fluid mixture is obtained by rheometric measurements
using a cone-plate geometry in a Haake Mars III rheometer with an accuracy less than 5%. Also,
the fluid density is measured by a DMA 35 Anton Paar electronic densimeter with an accuracy of
±0.5 kg m−3.

Table I lists the set of fluid and grain properties used in the experiments. According to the
definitions (5), St and r are constant for a given set of fluid-grain properties (reported in Table I) and
they are therefore varied independently of the value of a. Series of experiments are labeled according
to the expected flow regime depending on the (St,r) values and defined by Courrech du Pont et al.
[3]. In particular, the different series of experiments performed in the present study will be referred to
as regime FF in the free-fall regime, regime I in the inertial regime, regime V in the viscous regime,
and regime VI at the transition between the viscous and the inertial regimes (see Table I for details
of the fluid mixture and grain properties). The corresponding values of (St,r) are reported in Table I
and the series of experiments are also represented by a symbol in the (St,r) plane in Fig. 2.

B. Observations of the granular collapse

The typical evolution of the granular collapse for regime FF, regime V, and regime I is shown
for three different aspect ratios a = 0.5, 1, and 9, in Fig. 3. In particular, snapshots of the granular
flow at tf /3, 2tf /3, and tf , with tf the final time at which the granular medium comes to rest, are
reported. See also the available movies corresponding to granular collapses for regime FF, regime V,
and regime I, with a constant aspect ratio, i.e., a = 1. In the latter case, a granular collapse at large
aspect ratio, i.e., a = 9, is also shown [28].
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FIG. 2. Granular-fluid flow regimes in the (St,r) plane according to (5). Stars and circles correspond to the
experimental series performed in the present study and in Ref. [7], respectively.

One can first note that the shape of the final deposit depends on both the aspect ratio a and the
considered regime (St,r). More specifically, a affects the trapezoidal vs triangular shape according
to the definition of [7] for the range of parameters considered here. Note that even if the final deposit
can be clearly simplified to such simple geometries in regime V, the final deposit shape is slightly
more curved at the front for the two other regimes, i.e., regimes FF and I. Curvature of the final shape
deposit can therefore be attributed to inertia in the dynamics of the granular-fluid flow. However, a
clear distinction can be made between two situations such as h(x = 0, t = tf ) = h(0, 0) (referred to
as a trapezoid) and h(0, tf ) < h(0,0) (referred to as a triangle). Using this formalism, the transition
from the trapezoid to the triangle occurs around a ∼ 0.75, in the range of parameters considered here.
Note that St and r have probably a small influence on this transition, but it is difficult to conclusively
determine this specific dependence. However, at each a, the spreading length clearly increases with

FIG. 3. Snapshots of the granular collapse for regime FF, regime V, and regime I for three different aspect
ratios and at three different times.
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FIG. 4. (a) Dimensionless runout length (Lf − Li)/Li (inset Lf /Li) and (b) final height Hf /Li (inset
Hf /Hi) as a function of the aspect ratio a for regime FF (black), regime I (blue), regime VI (red), and regime V
(brown). Circles and squares correspond to experiments performed with reservoir widths of Li = 10 and 3 cm,
respectively.

St while the effect of r is marginal on this length. In fact, the influence of r is more clearly observed
in the transient flow which highlights a thicker front for r ∼ 1.5 (second and third rows) than for
r ∼ 45 (first row), whatever a. This effect of r on the front thickness is comparable to the case of a
pure fluid gravity current (i.e., the intrusion of a heavy fluid in a lighter fluid) which exhibits a similar
front shape difference between a large density ratio, well known as dam break flows, and a smaller
density ratio [29,30]. To conclude, one can notice that regime I highlights specific surface shapes
during the transient flow (see a = 1 in Fig. 3) and even on the final deposit (see a = 9 in Fig. 3).
In the latter case, a deposit somehow similar to the Mexican-hat structure observed for fluidized
[20,31] and nonfluidized [14,15,17,26] dry collapses is obtained. Note, however, that in nonfluidized
dry cases, this specific deposit is usually observed at larger a.

These observations highlight the diversity of behaviors which can be obtained for the collapse
of granular column in a liquid, clearly controlled by the dimensionless parameters (a,St,r). The
influence of these dimensionless parameters on both the dynamics of the front and the final deposit
shape are more deeply investigated in the following.

III. RUNOUT LENGTH AND FINAL HEIGHT

Following previous studies on dry granular collapses, the final deposit is characterized by its
runout length Lf , which is the final front position at y = 0, and its final height Hf corresponding to
the height of the granular material at x = 0. Figure 4 shows these two quantities, in a dimensionless
form, as a function of the initial aspect ratio a for regime FF (black symbols), regime I (blue symbols),
regime VI (red symbols), and regime V (brown symbols), respectively. In particular, the classical
dimensionless runout length (Lf − Li)/Li [Fig. 4(a)] and final height Hf /Li [Fig. 4(b)] as well as
Lf /Li [inset of Fig. 4(a)] and Hf /Hi [inset of Fig. 4(b)] are shown. As often observed for the dry
granular collapse, these dimensionless lengths highlight a power-law dependence on a with distinct
behaviors at small and large a (see Sec. I). This trend is recovered here for the different regimes even
if some unexpected features are observed, particularly for regimes I and VI, which will be discussed
more thoroughly further on in the paper. The runout length is shown here to be restricted to a range of
values bounded by the dry regime (regime FF) on the upper side and the viscous regime (regime V)
on the lower side [see Fig. 4(a)]. These two limiting curves highlight scaling laws depending on a. In
particular, for a � 2, the runout length increases linearly with the aspect ratio, (Lf − Li)/Li = λ1a

with λ1 = λFF
1 ∼ 2.7 ± 0.3 and λ1 = λV

1 ∼ 1.5 ± 0.1 for regimes FF and V, respectively. For a � 2,
the runout length evolves as (Lf − Li)/Li = λ2a

α with α ∼ 0.64 ± 0.02 and λ2 = λFF
2 ∼ 3.7 ± 0.3
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FIG. 5. Dimensionless runout Lf /Li as a function of St for r ∼ 1.5 and a = [0.5,9]. Circles and squares
correspond to experiments performed with reservoir widths of Li = 10 and 3 cm, respectively.

and λ2 = λV
2 ∼ 1.9 ± 0.1 for regimes FF and V, respectively. An important observation that can be

made is that the runout length is significantly shorter in regimes V and VI than in regimes FF and I,
highlighting the St dependence mentioned in the preceding section, while the exponent α does not
vary significantly. Another scaling which has been shown to be pertinent to characterize the final
length of the collapse, at least for a triangle deposit, is the dimensionless length Lf /Li [7]. The scaled
runout length Lf /Li is plotted as a function of a for the different regimes in the inset of Fig. 4(a).
Again, the overall trend is similar for the different regimes. In regime V, one obtains Lf /Li ∼ a1/2, in
accord with previous results in the literature [7]. More surprisingly, this scaling also looks pertinent
for the other regimes, at least for the dry case, but with a varying scaling factor between small a and
large a. Unfortunately, these scaling laws for the runout remains a challenging task, as the range of
a that can be covered in laboratory experiments is limited [see the 2/3 power law reported in the
inset of Fig. 4(a), which is hardly distinguished from a 1/2 power law].

Figure 4(b) shows the dimensionless final height Hf /Li as a function of the aspect ratio a.
For a � 0.75, the final deposit has a trapezoidal shape leading to Hf = Hi . The initial height at
x = 0 is therefore not affected by the collapse. For a � 0.75, the trend is more complicated and it
can depend on the considered regime. However, except for regime I, Hf /Li evolves as Hf /Li =
λ3a

β , with (λ3,β) = (λFF
3 ,βFF) = (λVI

3 ,βVI) = (0.80 ± 0.07,0.35 ± 0.04) and (λ3,β) = (λV
3 ,βV) =

(0.87 ± 0.03,0.48 ± 0.02). In regime I, Hf /Li is similar to the case of regimes FF and VI for
a � 2. For 2 � a � 5, it remains constant and then decreases with a at larger aspect ratio. The
former observation clearly highlights the influence of r at large St on the final deposit mentioned in
Sec. II B. The inset of Fig. 4(b) shows the dimensionless final height Hf /Hi as a function of a. For
a � 0.75, the trapezoidal shape leads to Hf /Hi = 1, while for a � 0.75, Hf /Hi decreases with a

following different slopes depending on the considered regime. The −2/3 scaling obtained for dry
granular collapses in the quasi-2D geometry [13] is reported here for comparison [solid black line
in the inset of Fig. 4(b)]. A comparison with results obtained by Rondon et al. [7], in the case of
a viscous regime for different initial volume fraction φ, is detailed in the Appendix. Surprisingly,
it shows that decreasing φ (constant St) or increasing St (constant φ) leads to similar behaviors
regarding the scaling laws of the final runout. It therefore opens the way to several discussions of the
role of the pore pressure on the global dynamics of the collapse. With the set of experiments obtained
by Rondon et al. [7], Roche et al. [20], and the present study, it would require specific attention to
conclusively determine this role.

In Fig. 5, the dependence of the dimensionless runout length Lf /Li on the Stokes number St is
shown. Here the grain-fluid density ratio is fixed, i.e., r ∼ 1.5, and the aspect ratio is in the range
a = [0.5,9]. As already mentioned, the spreading length quantified as Lf /Li increases with St and
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FIG. 6. Temporal evolution of the front position xf − Li for regime V; the inset shows a comparison for
regime FF (black), regime I (blue), regime VI (red), and regime V (brown), with a = 1. The dashed lines
represent the runout length Lf − Li . The trigger time Tt and the time t95 are indicated.

the evolution is more pronounced at large a. Moreover, while Lf /Li roughly increases by a factor 5
when a is increased over a decade, it only increases by a factor 2 or less when St is varied over three
decades, explaining probably why the influence of the aspect ratio has been more widely reported in
the literature than the influence of the Stokes number. However, in geophysical applications, St can
vary over several decades depending on the density and size of the grains (see Sec. I), its influence
on the spreading length therefore being significant.

IV. DYNAMICS OF THE SPREADING

A. Flow regimes and physical processes

The dynamics of the granular flow is analyzed here through the temporal evolution of the front
position. In particular, the position xf − Li is plotted as a function of the time for regime V with
a = 1, in Fig. 6, as a typical example of this evolution. A comparison with the other regimes is also
shown in the inset of Fig. 6 with regime FF (black symbols), regime I (blue symbols), regime VI
(red symbols), and regime V (brown symbols).

This evolution is decomposed into the following stages. First, the front remains nearly frozen
from t = 0, i.e., the opening of the sluice gate, to t = Tt , referred to as the trigger time. Here the
trigger time Tt is defined as the time at which the front has traveled on the width of the sluice gate
[i.e., xf (t = Tt ) − Li = 2 cm]. This extraction method allows an objective measurement without
affecting significantly the results discussed in the following. Then the most significant evolution of
the granular medium occurs during a second stage, i.e., the collapse phase, until the front reaches
its maximum length Lf , i.e., the granular media stops. In order to quantify the end of the second
stage of the collapse, we define the time t95 when the front position of the collapse reaches 95% of
the runout length Lf (see Fig. 6). The two above-mentioned times Tt and t95 clearly decrease with
increasing (St,r), i.e., from regime V to regime FF, leading to a smooth or a sharp trend of the front
evolution (see the inset of Fig. 6).

For the first stage, the trigger time Tt is similar to the one mentioned by Rondon et al. [7] in the
case of an initial dense granular packing. We recall here that the initial packing of each experiment
is constant with φ ∼ 64%. This time is related to the time that the granular column needs to expand
prior to collapse. This expansion is delayed by the viscous dissipation in the granular porous media.
Figure 7(a) shows the trigger time Tt as a function of the initial height Hi for regime FF (black
symbols), regime I (blue symbols), regime VI (red symbols), and regime V (brown symbols). One
can conclude that Tt is nearly Hi independent, i.e., independent of a in the range of parameters
considered here, and that it is mostly controlled by the flow regime, i.e., (St,r). A constant value 〈Tt 〉
[dashed lines in Fig. 7(a)] can be therefore defined in each regime which is reported as a function of
St in Fig. 7(b). Note that in the present set of experiments it was not possible to vary the grain-fluid
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FIG. 7. (a) Trigger time Tt as a function of the initial height Hi for regime FF (black), regime I (blue),
regime VI (red), and regime V (brown). The dashed lines represent the mean value 〈Tt 〉 for each regime. (b)
Dimensionless trigger time 〈Tt 〉/τff , with τff = (2ρpd/�ρg)1/2, as a function of the Stokes number St. The
white and gray areas correspond to experiments with r ∼ 1.5 and 45, respectively.

density ratio r at a constant value of the Stokes number St; thus no conclusions could be drawn
about the influence of r , even if it does not seem to significantly modify the trigger time at large St
in the range of parameters considered here [see Fig. 7(b) in which white and gray areas correspond
to r ∼ 1.5 and 45, respectively]. However, a clear dependence on St is obtained here. In particular,
the trigger time 〈Tt 〉/τff , where τff = (2ρpd/�ρg)1/2 is the free-fall timescale of a grain over d, is
shown to decrease with increasing St. This observation is then consistent with a viscous dissipation
during the expansion which is significant at small St and tends towards unity, i.e., the free-fall
timescale, at large St. The influence of a dense packing on the initial stage of the collapse reported
by Rondon et al. [7] for a viscous regime (i.e., at low St) can then be quantified as a function of St.
Note that the asymptotic value obtained at large St, 〈Tt 〉/τff ∼ 3, slightly above one, is affected by
the measurement method of the trigger time described previously. Nevertheless, the general trend
reported here remains robust.

The second stage of the collapse is characterized by the time t95 prior to the granular medium
coming to rest. Strictly speaking, the second stage lasts for t95 − Tt and we consider this time
difference in the following. In order to validate the relevance of the different regimes mentioned
previously for this configuration, we thus analyzed the evolution of t95 − Tt as a characteristic
timescale of the granular collapse. As discussed by Courrech du Pont et al. [3], the time of the granular
collapse should depend on the corresponding regime. It should therefore be predicted according to the
considered flow regime. If we consider U∞

V (I) the limit velocity that a single grain reaches when it is
submitted to a driving force F in the viscous (inertial) regime and the characteristic length Lc traveled
during the collapse time, the characteristic time can be defined as TV = Lc/U∞

V = 3πμf dLc/F

and TI = Lc/U∞
I = Lc(πCDρf d2/8F )1/2 for the viscous regime and inertial regime, respectively.

In the case of the free-fall regime, as no limit velocity exists, the characteristic time is defined
as TFF = (Lcρpπd3/3F )1/2, which corresponds to the time that a particle needs to travel on the
characteristic length Lc with a constant acceleration induced by a constant force F . In order to
predict simple scalings for these characteristic times from the initial condition, we choose here
Lc = Hi , i.e., the initial height, and F = (π/6)�ρgd3, i.e., the weight of a single grain. Note that
with these definitions, one has simply TFF = (Hi/d)1/2τff . We therefore obtain

TFF =
(

2ρpHi

�ρg

)1/2

, TI =
(

3CDρf H 2
i

4�ρgd

)1/2

, TV = 18μf Hi

�ρgd2
. (6)

The time t95 − Tt normalized by these different characteristic times (6) is plotted as a function of
the normalized initial height Hi/d for regime FF (black symbols), regime I (blue symbols), regime VI
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FIG. 8. Dimensionless collapse time t95 − Tt as a function of the normalized initial height Hi/d for regime
FF (black), regime I (blue), regime VI (red), and regime V (brown). The characteristic times TFF, TI, and TV

are defined according to (6). Circles and squares correspond to experiments performed with reservoir widths of
Li = 10 and 3 cm, respectively.

(red symbols), and regime V (brown symbols) in Fig. 8. The drag coefficient is considered constant,
i.e., CD = 0.4, according to the definition given by Cassar et al. [4], corresponding to the value of
CD of a single sphere in a uniform flow at large particle Reynolds number [32]. One can conclude
from Fig. 8 that the collapse time for regimes FF and V only scales with TFF and TV, respectively
(black and brown symbols in Fig. 8), supporting the expected classification proposed by Courrech
du Pont et al. [3] in these cases. On the other hand, it is more difficult to conclude for regimes I
and VI, for which the timescale is not clear. For regime I, the time TI seems to be as pertinent as
the time TFF, at least at small a, meaning that TI and TFF are of the same order, with in particular
TFF ∼ TI ∼ 0.1 s, obtained here from (6) with the present set of parameters. For regime VI, it is not
surprising to obtain that both TV and TI are of the same order, with TV ∼ TI ∼ 0.1 − 1 s in this case,
as these two timescales should be similar at the transition from viscous to inertial regimes. Also, TFF

is of the same order as TI and TV in this case (TFF ∼ 0.1 s), in agreement with previous conclusions
mentioned for regime I. It is worth mentioning that the smallest value of the fluid-grain density ratio
considered here is r ∼ 1.5 (glass beads in a liquid). More specifically, for regimes VI and I, that
means the inertial limit velocity is hardly reached between consecutive grain contacts, according to
the definition (5) of the density ratio. In fact, regime I is at the limit between the inertial and free-fall
regimes, while regime VI is close to the point of coexistence of the three regimes. For heavy grains
and at large St, the flow is then never expected to belong to a regime in which fluid inertia overcomes
significantly the weight of the grains. Usually, the granular medium remains quite dense during the
whole duration of the collapse, which explains the similarity between regimes I and FF.

Nevertheless, beyond this general observation, Fig. 3 showed that the dynamics and the final
deposit of the granular collapse could highlight the observable difference between regimes FF and I.
For instance, at large a, more particles are evacuated from the initial reservoir in regime I compared
to regime FF, leading to a bulge of the final deposit surface. In this way, this suggests that fluid inertia
should be observable and quantified, at least for large a. In fact, the conclusions drawn previously
do not account for the Hi dependence observed in Figs. 8(b) and 8(c). For instance, in regime I and
at large Hi/d, the collapse time t95 − Tt decreases towards the expected time TI [see blue symbols
in Fig. 8(b), in which (t95 − Tt )/TI tends to 1 when Hi/d increases] while it remains always larger
that TFF independently of Hi/d [see blue symbols in Fig. 8(a)]. In this case, fluid inertia becomes
dominant when increasing Hi/d and this can be explained as follows. At large Hi/d, most of the
column falls down only in the vertical direction due to the mass of grains drained away at the bottom
during the collapse, as reported by Staron and Hinch [14]. During this stage, the intensity of the
contact network can be expected to vanish as particles fall similarly. In this case, the definitions
of the Stokes number St and the fluid-grain density ratio r [Eq. (5)] given in Sec. I are no longer
pertinent. Indeed, the viscous time and the inertial time that a grain needs to reach its limit velocity
now have to be compared to a free-fall time over the total height of the initial column Hi , instead of
the grain diameter d. In this case, the zone of influence of the different regime has to be discussed in a
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FIG. 9. Maximum front velocity Um normalized by different characteristic velocities UFF, U∞
I , and U∞

V

defined according to (7) as a function of the normalized initial height Hi/d for regime FF (black), regime I
(blue), regime VI (red), and regime V (brown).

((d/Hi)1/2St,(d/Hi)1/2r) plane. Then, for a series of experiments with a constant (St,r), (d/Hi)1/2r

decreases with the increase of the initial height Hi and the flow could then reach its inertial regime
as long as (d/Hi)1/2St remains large. For regime VI, the same conclusions can be drawn. In this
case, (d/Hi)1/2St and (d/Hi)1/2r decrease similarly, explaining that it remains at the limit between
the viscous and inertial regimes while it separates from the free-fall dynamics at large Hi/d.

Note that to confirm the previous description of the dynamics based on the collapse timescale,
the maximum front velocity Um reached during the granular flow can also be analyzed in a similar
way. In each regime considered, the evolution of the front velocity can be defined as an acceleration
followed by a deceleration and no constant-velocity phase is observed (not shown here), as reported
by Staron and Hinch [17] in the dry case. In the following, we define the velocity scales as the
limit velocity U∞

V (I) in the viscous (inertial) regime and the characteristic velocity UFF, at t = TFF,
considering the fall of a single grain under gravity and without drag dissipation. We therefore obtain

UFF =
(

2�ρgHi

ρp

)1/2

, U∞
I =

(
4�ρgd

3CDρf

)1/2

, U∞
V = �ρgd2

18μf

. (7)

Figure 9 shows the maximum front velocity Um normalized by the velocity scales defined
according to (7) as a function of the normalized initial height Hi/d for regime FF (black symbols),
regime I (blue symbols), regime VI (red symbols), and regime V (brown symbols). The trends are
similar to the one observed for the characteristic times. The same conclusions can be drawn which
support the physical interpretation given previously on the flow dynamics of the collapse.

These results are now summarized in the ((d/Hi)1/2St,(d/Hi)1/2r) plane to support the previous
discussion. First, in order to identify the most pertinent granular flow regime for each experiment
performed in this study, we define the minimum dimensionless timescale as

T − = min

[
t95 − Tt

TFF
,
t95 − Tt

TI
,
t95 − Tt

TV

]
. (8)

The value of T − can be extracted from Fig. 8. As all the ratios in the definition (8) are larger than
one, the value of T − then corresponds to the ratio whose value is closest to one. This therefore gives
us first the most pertinent regime according to the minimum ratio obtained and then a quantification
of its relevance according to the value of T −, with an increasing confidence of the relevance when
T − is actually reaching one. It can be noted that a similar approach could be done with the maximal
front velocity Um leading to the same conclusions. Figure 10 shows the regimes obtained in the
((d/Hi)1/2St,(d/Hi)1/2r) plane. Symbols correspond to each individual experiment in this parameter
space. In particular, black symbols, blue symbols, and brown symbols correspond to T − = (t95 −
Tt )/TFF, T − = (t95 − Tt )/TI, and T − = (t95 − Tt )/TV, respectively. The size indicates the deviation
of T − from 1, in particular, the size of the symbol increases when T − → 1. Note that, in such a
representation, each set of experiments for regimes FF, I, VI, and V are still visible (symbols align on
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FIG. 10. Granular flow regimes in the ((d/Hi)1/2St,(d/Hi)1/2r) plane with St the Stokes number and r

the grain-fluid density ratio defined according to (5). Symbols (colors and sizes) correspond to the minimum
dimensionless collapse time T − according to (8) and determined from Fig. 8 with, in particular, black symbols
for T − = (t95 − Tt )/TFF, blue symbols for T − = (t95 − Tt )/TI, and brown symbols for T − = (t95 − Tt )/TV.
The size indicates the deviation of T − from 1 (see the legend).

inclined lines). Then, in this parameter space, a change in color indicates a transition from one regime
to another, while the size of the symbols indicates the distance to this transition. It can be noted that
the set of experiments for regimes FF and V indeed belongs to the corresponding expected regime.
Regime VI belongs to a viscous regime with this definition. Moreover, the size of the symbols are
observed to decrease when approaching transitions from one regime to another. One of the most
interesting observations with this representation is associated with the set of experiments initially
denoted as regime I according to the definition of (St, r) at the grain scale [Eqs. (5)], which is
now shown to cross the transition from the inertial to the dry regime as ((d/Hi)1/2St, d/Hi)1/2r)
increases (see blue and black symbols in the bottom right pannel of Fig. 10). Figure 10 then allows
us to extract a more refined estimation of the transition in this new ((d/Hi)1/2St,(d/Hi)1/2r) plane
for the collapse configuration, with in particular (d/Hi)1/2rc ∼ 0.4 from free-fall to inertial regimes,
(d/Hi)1/2Stc ∼ 1 from free-fall to viscous regimes, and Rec = Stc/rc ∼ 2.5 from inertial to viscous
regimes, in agreement with the critical Reynolds number suggested by Courrech du Pont et al. [3].

B. Simple St scaling of the flow dynamics: A geophysical purpose

The description of geophysical flows necessitates the use of simple parametrizations modeling the
main features of the physical processes involved in the configuration considered. In this sense, the
results shown in Figs. 8(a) and 9(a) suggests a possible rough description of the dynamics of granular
avalanches in a fluid with a classical free-fall scaling, at least for regimes FF, I, and VI and in the range
of parameters considered here, regardless of the finer description proposed previously. Indeed, these
scalings are already used relevantly in many gravity-driven flows such as gravity currents, dam break
flows, dry granular collapses, or even fluidized granular flows [13,23,30,33]. In Fig. 11(a), Um is thus
plotted as a function of the free-fall velocity UFF = (2�ρgHi/ρp)1/2 for regime FF (black symbols),
regime I (blue symbols), regime VI (red symbols), and regime V (brown symbols). It is indeed shown
here that such a free-fall scaling for the velocity remains roughly acceptable for all the experiments
performed here [see the dashed lines in Fig. 11(a), which all have a slope 1, i.e., corresponding to a
linear dependence of Um with UFF]. The prefactor of this scaling (i.e., the prefactor associated with
the linear trend of each dashed line) would therefore only be a function of St, i.e., Um = ζ (St)UFF.
The evolution of ζ as a function of St is shown in Fig. 11(b). It can be observed that ζ decreases
with decreasing St, which quantifies the viscous dissipation in the system. Extrapolating the trend
observed in Fig. 11(b), ζ could be found to about 1, for St ∼ 106, which is the upper value usually
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FIG. 11. (a) Maximum front velocity Um as a function of the free-fall velocity UFF = (2�ρgHi/ρp)1/2 for
regime FF (black), regime I (blue), regime VI (red) and regime V (brown). (b) Evolution of ζ = Um/UFF as a
function of the Stokes number St. The parameter ζ is obtained from the prefactor of the linear fit [dashed lines
in Fig. 11(a)]. White and gray areas correspond to r ∼ 1.5 and 45, respectively.

obtained for dam break flows for which the influence of viscous and/or frictional dissipation is small
(as gravity current, turbidity current, or fluidized bed [23], for instance). Below St ∼ 0.1, the velocity
of the system is found to be zero. It is actually the limit of the assumptions used here; the system can
then be considered as fully viscous. While ζ is clearly a function of St here, it could also depend on r

[see Fig. 11(b), in which white and gray areas correspond to r ∼ 1.5 and 45, respectively], but cannot
be highlighted with the set of available parameters. Such a rough description accounts for the simplest
influence of the surrounding fluid on the dynamics of a granular mass slumping under the influence
of the gravity standing for a classical free-fall scaling for inertial or dry configurations towards the
dissipation induced by viscosity. This parametrization would need further investigation, which is
beyond the scope of the present paper, to propose a robust correlation for the function ζ (St,r) and the
range of parameters of validity. This could probably only be achieved with numerical simulations.

V. MORPHOLOGY OF THE FINAL DEPOSIT

In the previous sections, the influence of the dimensionless numbers (a,St,r) has been shown to
play a role in the dynamics of a granular collapse and/or the shape of the final deposit obtained. In this
section, the morphology of the final deposit is characterized in the range of parameters considered.
In Fig. 12, the characteristics of the final deposit are recalled for a trapezoidal form, with the final
height Hf and the runout length Lf , the angles αs and αf at the summit and at the foot, respectively,
and xc corresponding to the longitudinal position of transition from a constant height profile to a
decreasing height profile (xc = 0 for a triangular deposit).

FIG. 12. Sketch of a final trapezoidal deposit with the runout length Lf and the final height Hf , the angles αs

and αf at the summit and at the foot, respectively, and xc corresponding to the longitudinal position of transition
from a constant height profile to a decreasing height profile.
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FIG. 13. Height profile h/Hf as a function of (x − xc)/(Lf − xc) for (a) regime FF, (b) regime I, (c) regime
VI, and (d) regime V. The dashed lines represent h/Hf = 1 − (x − xc)/(Lf − xc).

A. Shape of the deposit

The shape of the final deposit can be regarded as a function of the regime considered. Figure 13
shows the height profile h/Hf as a function of (x − xc)/(Lf − xc) for regime FF [Fig. 13(a)], regime
I [Fig. 13(b)], regime VI [Fig. 13(c)], and regime V [Fig. 13(d)]. All the aspect ratios are reported
here except in regimes I and VI for which a is limited to a � 1 and 4, respectively. For these two
sets of experiments, spatial oscillation of the granular surface appears above these aspect ratios. This
specific situation will be discussed in more detail in Sec. V C. In Fig. 13, one can first observe that,
in each case, these dimensional height profiles nearly match on a single curve for all a. Moreover,
for decreasing St, these self-similar profiles tend towards a straight line [from Figs. 13(a)–13(d)],
i.e., a constant angle along the slope of the deposit (dashed lines).

The center of mass (xG,yG) can be analyzed as a quantification of this similarity in the final
deposit and it is defined as

xG = 1

A

∫ xf

0
xh(x,t)dx, yG = 1

A

∫ xf

0

h(x,t)2

2
dx, (9)

where xG and yG are the longitudinal and vertical positions of the center of mass and A =∫ xf

0 h(x,t)dx is the area of the granular material. Initially at the position (xG(t = 0),yG(t = 0)) =
(Li/2,Hi/2), the longitudinal position xG increases while the vertical position yG decreases during
the spreading of the granular mass until it stops at the position of the final state (xG

f ,yG
f ).
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FIG. 14. Dimensionless vertical position of the mass center (2yG
f − Hi)/Hi as a function of its horizontal

position (2xG
f − Li)/Li for regime FF (black), regime I (blue), regime VI (red), and regime V (brown). Symbols

correspond to the final state ((2xG
f − Li)/Li,(2yG

f − Hi)/Hi) while the dashed lines correspond to the temporal
trajectory ((2xG − Li)/Li,(2yG − Hi)/Hi) of the center of mass. The inset corresponds to 2yG

f /Hi as a function
of 2xG

f /Li and the dashed line is 2yG
f /Hi = (8/9)(Li/2xG

f ), which is the position of the mass center of any
triangle having a surface HiLi .

Figure 14 shows the dimensionless vertical position (2yG − Hi)/Hi of the center of mass as
a function of its horizontal position (2xG − Li)/Li for regime FF (black symbols), regime I (blue
symbols), regime VI (red symbols), and regime V (brown symbols). In this figure, symbols correspond
to the final state of the mass position ((2xG

f − Li)/Li,(2yG
f − Hi)/Hi). For comparison, the

evolution of the position of the center of mass ((2xG − Li)/Li,(2yG − Hi)/Hi) during the collapse
is also shown for a few runs in the different regimes (dashed lines). At this scale of observation, all
results match on the same leading curve. This means that, at least at leading order, the center of mass
of the granular media follows a universal curve, the only difference between the different aspect
ratios and flow regimes being its final position on this curve. These general observations emphasize
the geophysical parametrization discussed in the preceding section, accounting for a simple process
of fluid dissipation on the granular collapse. Once again, depending on the expected accuracy of the
model, such an assumption could hold.

The inset of Fig. 14 shows 2yG/Hi as a function of 2xG/Li and the dashed line corresponds to
2yG

f /Hi = (8/9)(Li/2xG
f ), which is the position of the center of mass of any triangle having a

surface HiLi . As observed here, this simple geometry leads to a good prediction of the final shape
of the deposit. One can observe that, at large 2xG/Li , corresponding to increasing a and/or St, the
solution deviates from the experimental results. This discrepancy can be associated with the curvature
of the deposit, as observed in Fig. 13(a), for instance. We can note that, as the bottom plane is a
smooth wall, the curvature of these profiles is slightly intensified at large St. However, whatever the
roughness imposed at the bottom, such concavity is always obtained [7,10]. We therefore assert that
the present observation is representative of any collapse in a liquid, even if a modification of the
roughness would probably slightly modify the obtained curvature. This curvature could therefore be
mostly attributed to inertia on the dynamics of the collapse which tends to disappear when St vanishes.
In the latter case, the dynamics can be assumed to be quasistatic. The final constant slope obtained
is therefore close to an angle of equilibrium of the granular material and this will be discussed in
Sec. V B. For now, we propose a deeper investigation of the slope angle as a function of St.

As the shape of the final deposit can be more or less curved, we propose here to define two angles
to characterize it. In particular, one defines an angle αs close to the summit, i.e., at x = xc, and an
angle αf at the foot, i.e., at x = Lf , of the final deposit (see Fig. 12). These two local angles, i.e.,
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FIG. 15. Local angles αs at the summit (closed symbols) and αf at the foot (open symbols) as a function of
the aspect ratio a for (a) regime FF, (b) regime I, (c) regime VI, and (d) regime V.

αs (closed symbols) and αf (open symbols), are shown in Fig. 15 as a function of a for regime
FF [Fig. 15(a)], regime I [Fig. 15(b)], regime VI [Fig. 15(c)], and regime V [Fig. 15(d)]. As in
Fig. 13, only deposits with smooth shape are considered here, the analysis of other inertial cases
being postponed to Sec. V C. As expected, αf < αs except for regime V, in which αf = αs . Also, the
discrepancy αs − αf increases with the Stokes number. One first observes that αs is almost constant
at small a with a value which is comparable to the angle of repose of the granular material (solid
lines). When the aspect ratio a increases, the angle αs suddenly decreases above a ∼ 1 for all the
regimes (when available) and eventually saturates to a slightly smaller value. This decrease, even
if quite small [only 3◦ in Fig. 15(d)], is above the measurement accuracy and it is systematically
observed. This observation is not explained here, but it seems to be correlated to the transition from
trapezoidal to triangular deposit shape, when the point xc (see Fig. 12) reaches the back wall of the
reservoir. Note, on the other hand, that αf decreases at small a until it reaches a constant value with
the same transition a ∼ 1. However, the a dependence of αs and αf remains small compared to the
difference between these two angles as well as the evolution of αf with St.

The average values 〈αs〉 and 〈αf 〉 over a is reported in Fig. 16 as a function of St. One observes,
as previously mentioned, that 〈αs〉 is roughly constant and about equal to the angle of repose of the
granular material, i.e., 〈αs〉 ∼ αr (solid lines in Fig. 16). On the other hand, 〈αf 〉 decreases with the
increase of St quantifying the curvature of the deposit shape profiles. At large St, the lower value of
〈αf 〉 illustrates the stretching of the deposit due to the inertia flow. At low St, 〈αf 〉 tends towards 〈αs〉
and then 〈αs〉 ∼ 〈αf 〉 ∼ αr . This means that inertia becomes negligible and that the system evolves
in a quasistatic state towards its final deposit with a constant angle equal to about the angle of repose.

064305-17



ALEXIS BOUGOUIN AND LAURENT LACAZE

FIG. 16. Average values 〈αf 〉 (open symbols) and 〈αs〉 (closed symbols) as a function of St.

B. Predictive model for the final deposit

In the preceding section, we show that the granular material tends towards its final deposit with
a quasistatic state for decreasing St. This corresponds to a constant final slope of the deposit close
to the angle of repose αr . Combining this result with a final deposit described with a trapezoidal
or a triangular shape as a function of a, one can therefore obtain a simple prediction of the final
runout length and final height in the St → 0 limit [7]. For this purpose, one assumes that the angle of
repose αr is associated with a constant coefficient of friction μd as μd = tan αr . Based on the mass
conservation between the initial and the final states, one can show that the trapezoid and the triangle
lead to the following scalings, respectively:

Lf − Li

Li

= a

2μd

,
Hf

Li

= a, (10)

Lf

Li

=
√

2a

μd

,
Hf

Li

=
√

2aμd. (11)

These two solutions explain the scaling laws obtained for the granular collapse and are presented in
Sec. III. In particular, the linear dependence of (Lf − Li)/Li with a in the solution (10) is consistent
with results obtained at small a shown in Fig. 4(a) at which the trapezoidal shape is more likely to
be observed. On the other hand, the solution (11) obtained for a triangle is usually observed at larger
a. This scaling law is indeed consistent with results obtained in the inset of Fig. 4(a). As observed in
the inset of Fig. 4(a), the triangular scaling with Lf /Li ∼ a1/2 is shown to be pertinent on a larger
range of a, which makes it more pertinent for the range of parameters considered here. We then focus
on this specific shape in the following.

Once inertia is not negligible, for St � 1, the curvature of the final deposit is more pronounced. If
one assumes that the slope of the deposit is not constant anymore but that the height profile h(x) can
be defined as a second-order polynomial in x for the final deposit, with a fixed angle at x = 0 equal
to the angle of repose (see 〈αs〉 in Fig. 16), then one obtains h(x) = (μd − Hf /Lf ) x2

Lf
− μdx + Hf .

Assuming that the slope at the foot, i.e., at x = Lf , is associated with a coefficient of friction
μSt = tan αf which decreases with increasing St (see 〈αf 〉 in Fig. 16), one obtains for the triangle
the scaling

Lf

Li

=
√

6a

μd + 2μSt
,

Hf

Li

=
√

3a(μd + μSt)2

2(μd + 2μSt)
, (12)
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FIG. 17. (a) Dimensionless runout length Lf /Li and (b) final height Hf /Li as a function of the aspect
ratio a = Hi/Li for regime FF (black), regime I (blue), regime VI (red), and regime V (brown). Symbols
are experiments and lines are predictive models (12) (solid lines) and (13) (dashed lines). In the latter cases,
μd = tan αr , where αr = 22◦ is the angle of repose, and μSt = tan〈αf 〉, where 〈αf 〉 is the mean angle at the foot
of the deposit and determined from Fig. 16.

which becomes in the asymptotic limit μSt → 0 when St → ∞,

Lf

Li

=
√

6a

μd

,
Hf

Li

=
√

3aμd

2
. (13)

The predictive models (12) and (13) are compared to experimental results in Fig. 17. In particular,
the dimensionless runout length Lf /Li [Fig. 17(a)] and the final height Hf /Hi [Fig. 17(b)] are plotted
as a function of the aspect ratio a for regime FF (black symbols), regime I (blue symbols), regime VI
(red symbols), and regime V (brown symbols). Experiments are represented with symbols while the
predictive models (12) and (13) correspond to solid lines and dashed lines, respectively. It can be first
noted that the model predicts a longer runout length at large St than otherwise. Also, the predicted
discrepancy has the same order of magnitude as for experimental results. However, at large a, this
model underestimates (overestimates) the runout length Lf /Li (the final height Hf /Li), which can
be attributed to the simplicity of the description of the height profile with a second-order polynomial
in the triangle case. Surprisingly, we can note that, at low a, the runout length Lf /Li is well predicted
by the proposed model, yet the latter does not consider the trapezoidal shape of the final deposit.

C. Final morphology in the fluid inertial regime

In the previous sections, the final deposit for regimes I and VI at large a was disregarded. The
reason for that was the observation of a spatial oscillation, a bump, of the final deposit surface, which
appears above a ∼ 1 and 4, respectively. This specific deposit shape has already been observed in the
dry case, as well for initially fluidized granular flows [20,31] as for granular collapses [14,15,17,26].
The spatial structure makes the analysis more complex and some of the arguments used previously are
not valid. Note that this feature is another signature of the fluid inertia on the granular flow dynamic
as it is mostly observed in regime I for a large enough, i.e., for (d/Hi)1/2rc � 1 (see Fig. 10). In
this case, a decrease of the final height Hf /Li with increasing a is then observed, while it is usually
increasing for other regimes [see Fig. 4(b)]. This trend appears to be linked to the appearance of
a surface bump close to the collapse front, most of the mass being transferred from the back wall
x = 0 to a location closer to the front position (see the final deposit in the inertial regime with a = 9,
Fig. 3, and the movie in the Supplemental Material [28]). We then briefly describe the shape of this
observed surface bump in the following. For this purpose, as the final deposit mostly highlights a
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FIG. 18. Height profile h/hb as a function of x/Lf for regime I. The aspect ratio is in the range a = [1,9]
(from black to light gray, respectively). The inset shows hb/Li as a function of a. No bump is observed in the
gray area.

local maximum at x > 0 in this case, the final deposit is thus characterized, among previous scalings,
by the final height hb of this local maximum at xb > 0.

Figure 18 shows the dimensionless height profile h/hb as a function of x/Lf for regime I. The
aspect ratio is in the range a = [1,9] (from black to light gray, respectively). For 0 < x/Lf < 0.5,
it can be noted that h/hb decreases for increasing a. On the other hand, for 0.5 < x/Lf < 1, the
dimensionless height profile is similar to whatever the value of a is in the range of parameters
considered here. This latter observation is similar to the similarity of the height profiles mentioned
in the preceding section, but now only holds for the region in front of the bump. These observations
clearly reveal that for increasing aspect ratio, the mass is transferred from the back wall, at x = 0, to
the front position, at x = Lf . Moreover, the shape similarity property of the final deposit described in
previous sections for simpler deposits is shown to hold close to the front for more complex deposits.
The inset of Fig. 18 shows the evolution of hb/Li as a function of a. For a < 1, i.e., the gray area, no
bump is observed on the final deposit. Above this value, the dimensionless height hb/Li increases
with a. Note that this corresponds to the range of a in which Hf /Li was shown to decrease with
increasing a [see Fig. 4(b)]. We find here that this evolution of hb with a follows a simple power law
hb/Li ∼ a2/3.

VI. CONCLUSION

Laboratory experiments on the collapse of a dense granular column in a fluid have been
investigated. In particular, the viscosity and the density of the surrounding fluid were varied. Both the
dynamics of the granular flow and the final deposit of the granular medium have been characterized
due to the temporal evolution of the granular height profiles. More specifically, this present study
focused on the influence of the Stokes number St, the grain-fluid density ratio r , and the aspect ratio
a of the initial granular column. First, it was shown that the runout length Lf and the final height Hf

of the final deposit are mainly controlled by a and St. The runout length is restricted to an interval
limited by the dry regime and the viscous regime. With appropriate scaling, it follows simple power
laws with a, i.e., (Lf − Li)/Li = λ1a for a � 2 and (Lf − Li)/Li ∼ λ2a

0.64 for a � 2, while St
modifies only the prefactors λ1 and λ2. Also, the final height has a power-law dependence on a

except for the inertial regime, at large a, where the final deposit shape is more complex. It was shown
that this observed modification of the final height scaling laws for a fluid inertial regime is associated
with the appearance of a surface bump transferring mass from the back wall x = 0 towards the
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collapse front. This dimensionless bump height has been shown to be a power law of a similar to
the one obtained for Hf /Li when no surface bump is observed. Furthermore, the collapse dynamics
of the granular column is strongly affected by the surrounding fluid. Initially, a trigger time, i.e., an
expansion time that the dense granular medium needs to flow, was observed which increases with
decreasing St. Following this initial stage, the granular column collapses with a characteristic time
dependent on the regime considered. More specifically, a map of granular flow regimes (free-fall,
inertial, and viscous) was proposed in the ((d/Hi)1/2St,(d/Hi)1/2r) plane defined herein. Moreover,
a simple correlation of the maximum velocity of the collapse with the classical free-fall velocity,
involving dissipation through the Stokes number, was provided. Finally, a deep investigation of the
characterization of the deposit morphology was proposed. The temporal evolution of the position
of the center of mass was shown to follow a universal curve and only its final state is affected by
the considered regime and the aspect ratio. Then, as a result of the concave shape of the deposit,
two angles, at the summit and at the foot of the avalanche slope, were defined. The first angle is
close to the angle of repose of the granular material, while the second angle depends strongly on the
Stokes number. Considering this St dependence, a simple predictive model for a triangular deposit
was proposed in the interest of geophysical applications.
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APPENDIX: COMPARISON TO THE EXPERIMENT OF REF. [7]

In a previous study on the immersed granular collapse, Rondon et al. [7] studied the role of (φ,a)
in the viscous regime, for (St,r) ∼ (0.03–0.07,1.6). This appendix aims to compare their results
with the present study in order to discuss the relative influence of φ (from [7]) and St (present study)
on the granular collapse configuration. In particular, this comparison is based on the characteristics
of the final shape deposit, which are the runout length and the final height. Figure 19 shows the
normalized runout length Lf /Li [Fig. 19(a)] and the final height Hf /Hi [Fig. 19(b)] as a function
of the aspect ratio a. Pluses correspond to experiments performed in the present study for regime
FF with (St,r,φ) = (540–2500,43–46,0.64) (black) and regime V with (St,r,φ) = (0.1,1.5,0.64)

FIG. 19. (a) Dimensionless runout length Lf /Li and (b) final height Hf /Li as a function of the aspect ratio
a = Hi/Li . Pluses correspond to experiments performed in the present study, with φ ∼ 0.64, for regime FF
(black) and regime V (brown), while circles are extracted from Ref. [7] with φ = 0.60 (closed) and φ = 0.55
(open) in the case of a granular collapse immersed in a viscous fluid.
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(brown), while brown circles are extracted from [7] with (St,r,φ) = (0.03–0.07,1.6,0.6) (closed)
and (St,r,φ) = (0.03–0.07,1.6,0.55) (open). It can be first noted that for similar φ, St, and r , i.e.,
(St,r,φ) = (0.1,1.5,0.64) in our study (brown pluses) and (St,r,φ) = (0.03–0.07,1.6,0.6) in [7]
(brown closed circles), results are in very good agreement for both the final spreading length and
final height. This observation supports again the pertinence of the dimensionless numbers used, as
different fluid-grain properties were used by Rondon et al. [7]. Moreover, it can observed that for
decreasing φ (from closed to open circles) or for increasing St (from brown to black pluses), the
dimensionless runout length Lf /Li increases (the dimensionless final height Hf /Li decreases). In
both cases, this can be attributed to the influence of the ambient fluid on the dynamics of the granular
medium, leading to a decrease of viscous dissipation when St increases or a modification of the pore
pressure when φ decreases [7]. These two phenomena are somehow linked as the inward fluid flow
induced by a negative pore pressure when φ is about the random close packing tends to disappear
when φ decreases. The viscous dissipation due to this inward flow on the granular dynamics then
only exists when the granular motion implies a decompaction of the medium, i.e., when φ is close
to the close packing, and is only significant when the fluid properties are such that viscous effects
are important, i.e., at small St. This is probably the reason why the two cases, large St and small φ,
compare well for the runout length in Fig. 19(a), even if some other processes differ from the two
situations.
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