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We study hydrodynamic fluctuations in a compressible and viscous fluid film confined
between two rigid, no-slip, parallel plates, where one of the plates is kept fixed while the
other one is driven in small-amplitude, translational displacements around its reference
position. This jiggling motion is assumed to be driven by a stochastic, external, surface
forcing of zero mean and finite variance. Thus, while the transverse (shear) and longitudinal
(compressional) hydrodynamic stresses produced in the film vanish on average on either
of the plates, these stresses exhibit fluctuations that can be quantified through their
equal-time, two-point, correlation functions. For transverse stresses, we show that the
correlation functions of the stresses acting on the same plate (self-correlators) as well as
the correlation function of the stresses acting on different plates (cross correlators) exhibit
universal, decaying, power-law behaviors as functions of the interplate separation. At small
separations, the exponents are given by −1, while at large separations, the exponents are
found as −2 (self-correlator on the fixed plate), −4 (excess self-correlator on the mobile
plate), and −3 (cross correlator). For longitudinal stresses, we find much weaker power-law
decays in the large separation regime, with exponents −3/2 (excess self-correlator on the
mobile plate) and −1 (cross correlator). The self-correlator on the fixed plate increases and
levels off upon increasing the interplate separation, reflecting the nondecaying nature of
the longitudinal forces acting on the fixed plate.

DOI: 10.1103/PhysRevFluids.3.064201

I. INTRODUCTION

Effective interactions between nano- and macromolecular bodies in aqueous solutions can broadly
be decomposed into two equally important contributions: The static or equilibrium forces and the
dynamic forces, arising when the system is driven out of equilibrium, such as when the bodies are
in relative motion [1,2]. While the former originate in the disjoining pressure due to direct and/or
solvent-mediated surface forces, operating primarily at the nanoscale, the latter depend on dynamic
molecular processes in the solvent and also on (slow) hydrodynamic stresses as the intervening
solvent is drained or sheared from the liquid film separating the interacting surfaces. The dynamic
forces can thus be relevant over a much wider range of nano- and microscale separations [1–4].
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The extended Derjaguin-Landau-Verwey-Overbeek theory of colloidal stability identifies three
types of static surface interactions [1,2]: The electrostatic interactions depending on the specific
nature of mobile and fixed molecular charges [5], the ubiquitous van der Waals (vdW) interactions,
depending on the dielectric response of molecular materials [6], and solvent-mediated interactions
stemming from the hydrophobic and/or hydration forces between solvent-exposed surfaces [7]. The
dynamic forces are, on the other hand, much more difficult to classify unequivocally. Some of the
equilibrium forces, as is the case with, for instance, the vdW interaction itself, can display an inherent
dynamic component [8,9]. Others may exhibit no equilibrium counterpart as are the hydrodynamic
interactions, having significant impact on dynamic properties (e.g., spatiotemporal correlations) of
colloids in bulk [1–4] or strongly confined fluids [10,11].

Recent advances in surface-force techniques, such as surface force apparatus (SFA) and atomic
force microscopy (AFM) [1,2], have enabled high-precision determination of both static and dynamic
forces acting between contact surfaces across an intervening layer of simple or complex fluid
(for recent reviews of related techniques and applications, see Refs. [12–19]). Dynamic SFA
usually incorporates two apposed, molecularly smooth, flattened or curved surfaces of relatively
large radii of curvature, with one of the surfaces driven in controlled three-dimensional (linear
or oscillating) motion [12]. This allows for measuring various (generally frequency-dependent)
rheological properties of thin fluid films and gives direct access to shear or compressional forces
exerted on the bounding surfaces by the intervening fluid over a wide range of surface separations and
velocities or frequencies of the imposed surface motion [20–26]. Dynamic AFM has, on the other
hand, emerged as an important tool for probing the local response of hard or soft material interfaces in
liquid media [13–15]. In colloidal-probe AFM [13], a relatively large, cantilever-mounted colloidal
particle oscillates in proximity to an interface, with the power spectrum of the oscillations providing
information on the hydrodynamic and viscoelastic properties of the surrounding liquid and the
probe-surface interactions. The effects of oscillatory external forcing as well as thermal noise in
dynamic AFM, involving colloidal probes or flat microlevers, have been analyzed on various levels
of approximation [13,27–31]. In very recent works, Maali et al. have first analyzed the hydrodynamics
of a vibrating microsphere [32] and then generalized the methodology to a thermally driven vibrating
sphere yielding a thermal-noise AFM probe, where the subnanometer thermal motion of the sphere,
coupled to a spring and dashpot mathematical model, reveals an (elasto)hydrodynamic coupling
between the sphere and a vicinal, hard (mica) or soft (air-bubble), substrate in water [33].

While shear and drainage thin-film flows, caused by small-amplitude oscillatory or stochastic
surface forcing [12–16,24–33], have been a common motif in the SFA/AFM contexts, other
techniques for generating such flow patterns have been developed based on quartz crystal resonators
(QCRs) to probe near-surface fluid properties [2], such as boundary slippage effects [17–19]. QCRs
are used (also in combination with the dynamic SFA [34]) as vibrating fluid substrates, driven at
their resonance frequency to produce unsteady thin-film flows at high frequencies and shear rates
(see the review in Ref. [18]).

In the aforementioned contexts, it is important to analyze first the well-defined limits and only
then proceed to more advanced models to account for the various couplings and feedback [35]. It is
also important to realize that forced motion is in general incompatible with the assumptions of weak
acceleration, requiring one to account for finite compressibility effects, which makes the underlying
hydrodynamic problem more difficult to tackle [36].

Motivated by these advances, we formulate a general framework for surface-driven hydrodynamic
interactions across a compressible and viscous fluid film, mechanically driven, in transverse and/or
longitudinal directions, at one of its two rigid boundaries using an arbitrary external forcing. We focus
on a fluid film with plane-parallel bounding surfaces, which is more yielding toward systematic
calculations. Our primary interest is in the fluctuational behavior of shear and/or compressional
hydrodynamic stresses generated across the film and on the boundaries, when the surface forcing
is stochastic and of arbitrary (thermal or nonthermal) spectral density. The concrete example of
temporally uncorrelated (white-noise) forcing will be analyzed numerically in detail. We show that the
compressible, viscous hydrodynamic coupling between the mobile (forced) and the fixed bounding
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FIG. 1. Side view of a plane-parallel film of a compressible, viscous fluid, driven at its lower boundary
(z = 0) with an external forcing, giving the uniform surface velocity u(t).

surfaces of the film leads to a complicated dependence of the same-plate and cross-plate stress
correlation functions on the intersurface separation (film thickness). This includes decaying power
laws with universal exponents and nondecaying stress variances on the fixed plate due to the acoustic
resonances originating in the compressional modes.

This problem in some sense represents an inverse one with respect to the recently analyzed case
of thermal fluctuating hydrodynamics [37] between two rigid plates, geared toward elucidating
the possible role of the hydrodynamic Casimir-like effects (in analogy with other examples
of nonequilibrium fluctuation-induced forces involving fluctuating classical fields [38–48]). The
hydrodynamic Casimir-like phenomenon was in fact shown to exist only in its indirect “secondary”
form [40]: While the average stress on either of the bounding surfaces is zero, its fluctuations indicate
long-range correlations, as a result of near-equilibrium thermal fluctuations in the confined fluid film.
The forced fluctuations of one of the bounding plates of a confined fluid layer analyzed below are
rather different from the hydrodynamic Casimir-effect phenomenology, and are more closely related
to the so-called Bjerknes interactions in driven acoustic resonators [49,50]. Contrary to the Bjerknes
interactions though, the forcing in our case is not due to a volume-distributed external acoustic field
but is rather exerted on one (or both) of the rigid bounding plates.

We introduce our framework in Sec. II and calculate the relevant hydrodynamic response and
correlations for an arbitrary stochastic surface forcing in Sec. III. The numerical results are given for
the special case of white-noise forcing in Secs. IV and V, followed by the conclusions in Sec. VI.

II. MODEL AND FORMALISM

A. Model geometry and physical description

Let us consider a classical, compressible, viscous fluid film confined between two rigid, parallel
plates of infinite extent in the x-y coordinate plane at vertical locations z = 0 and z = h > 0; see
Fig. 1. The upper plate is kept at rest, while an external surface force per unit area f = f(t) drives
the lower plate in arbitrary, translational, rigid-body movements around its reference plane at z = 0.
As a consequence, the mobile plate exhibits a time-dependent surface velocity, u(t), which is to be
determined consistently and concurrently with the fluid velocity, density, and pressure fields within
the film, i.e., v = v(r; t), ρ = ρ(r; t), and p = p(r; t), respectively.

In its general aspects, the present model is used to capture the elemental features of typical
surface-driven flows in standard surface-force experiments [12–35], but it is also designed as a
first-step model to facilitate an unequivocal elucidation of the basic physics of the problem using
direct analytical calculations. It is nevertheless useful to detail the simplifying assumptions involved.

First, we note that while flattened and/or planar contact surfaces, as in our model, have been used
in dynamic SFA and QCRs (see, e.g., Refs. [1,2,12,20–22,34]), and also in dynamic AFM with wide
flat microlevers [30], experiments often rely on cross-cylindrical or sphere-plane geometries. The
radii of curvature in these applications are, however, very large (around a few mm/cm in SFA and
tens of μm in AFM) as compared to the film thickness (varied in the sub-nm to μm range); see, e.g.,
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Refs. [12–16,20–28,32,33]. For such weakly curved surfaces, the Derjaguin approximation [1,2]
can be used to predict the interaction forces between curved boundaries based merely on the results
obtained in the plane-parallel geometry, or vice versa.

Second, the amplitude of displacements (especially in the z direction) of the mobile plate is
assumed here to be much smaller than the film thickness or, equivalently, |u(t)| is taken be sufficiently
small [51]. This is in fact the typical situation also for the perpendicular (compressional), oscillatory or
noise-driven, surface motions utilized in dynamic SFA-AFM experiments [12–16,24–33]. It enables
one to assume that the interplate separation is fixed on the leading order and also allows for a linearized
treatment of the full Navier-Stokes equations [27–29,31] by setting v = v(1), p = p0 + p(1), and
ρ = ρ0 + ρ(1), where the superscript (1) denotes the first-order fluctuations around the rest values
v = 0, p = p0, and ρ = ρ0.

Third, we neglect possible boundary slippage effects [17–19,24,25,30,32,33] by taking no-slip
boundaries with v(x,y,z = 0; t) = u(t) and v(x,y,z = h; t) = 0.

Finally, we ignore local temperature variations and heat transfer processes in the film [52] (to be
considered elsewhere [53]), the (nonlinear) viscous dissipation [23], and the relaxation effects that
can formally be accounted for by taking frequency-dependent viscosities [37].

B. Linearized fluid-film hydrodynamics

The surface-driven flow problem described above is governed by the following set of equations
to the first order in field fluctuations [37]

η∇2v(1) +
(

η

3
+ ζ

)
∇(∇ · v(1)) − ∇p(1) − ρ0∂tv(1) = 0, (1)

∂tρ
(1) + ρ0∇ · v(1) = 0, p(1) = c2

0ρ
(1), (2)

where c0 is the isothermal speed of sound [54]. These equations are supplemented by the no-slip
boundary conditions v(1)(x,y,z = 0; t) = u(t), v(1)(x,y,z = h; t) = 0. The first-order hydrodynamic
stress tensor is

σ
(1)
jk = η

[∇j v
(1)
k + ∇kv

(1)
j

] − δjk

[(
2η

3
− ζ

)
∇lv

(1)
l + c2

0ρ
(1)

]
, (3)

with j,k,l = x,y,z denoting the Cartesian components.
We drop the superscript (1) for notational simplicity; thus, v(r; t), ρ(r; t), and p(r; t) hereafter

denote only the first-order field fluctuations around the given stationary values. Because of the
one-dimensional nature of the flow, we drop the variables x and y, and use the notation v = (v‖ ,vz),
v‖ = (vx,vy) to simplify Eqs. (1) and (2) as

ρ0∂tv‖ = η∂2
z v‖ , (4)

ρ0∂tvz = −c2
0∂zρ +

(
4η

3
+ ζ

)
∂2
z vz, (5)

∂tρ + ρ0∂zvz = 0. (6)

The different components of the velocity field are thus decoupled, as can be seen by combining
Eqs. (5) and (6) to obtain the standard, attenuated wave equation

∂2
t vz = c2

0∂
2
z vz + ν⊥∂2

z ∂tvz. (7)

Because of the symmetry upon interchanging vx and vy , we restrict our discussions of v‖ only to its
vx component. The relevant nonzero components of the stress tensor include only the transverse and
longitudinal ones

σxz(z; t) = ρ0ν‖∂zvx, (8)

σzz(z; t) = ρ0ν⊥∂zvz − c2
0ρ(z; t), (9)
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where ν‖ = η/ρ0 and ν⊥ = (4η/3 + ζ )/ρ0 are the corresponding transverse (shear) and longitudinal
(compressional) kinematic viscosities, respectively.

Since our formulation is linear, the solutions reported below can linearly be superposed to study
the case with both lower and upper plates undergoing small-amplitude displacements. This is a
straightforward generalization, which we shall not discuss any further.

C. Equation of motion for the mobile surface

Since the lower (mobile) plate is driven by the external force per unit area, f = f(t), causing it to
move with the velocity u = u(t), we can write Newton’s second law for its motion in the frequency
(Fourier) domain as

−ι̇mωũj (ω) = f̃j (ω) − σ̃jz(z = 0; ω)nz, j = x,z, (10)

where m is the plate mass per unit area, and f̃j and ũj are the frequency-domain components of f
and u, respectively. Here, nz = −1 is the z component of the unit vector along the inward normal
to the mobile plate, making −σ̃jz(z = 0; ω)nz the force component per unit area acting on the plate
due to hydrodynamic stresses [37].

We solve Eqs. (5) and (6) with the required boundary conditions to find the solutions for the fluid
velocity and density fields in terms of the surface velocity u(t), which can itself be determined as a
function of f(t) by inserting those solutions into the stress term in Eq. (10). This gives the the desired
final forms of the fluid velocity and density fields as functions of the external forcing f(t).

Our formulation can be implemented with any surface forcing model of either deterministic
or stochastic origins. Stochastic forcing is particularly relevant to the thermal-noise AFM probe
[33], resulting, e.g., from Brownian fluctuations in the setup or ambient fluid. We shall adopt a
Gaussian-distributed stochastic forcing with mean 〈f̃j (ω)〉 = 0 and two-point correlation function
〈f̃j (ω)f̃k(ω′)〉 = 4π G̃j (ω)δjkδ(ω + ω′), where G̃j (ω) are the real-valued and positive forcing spectral
densities. In our numerical analysis later, we shall adopt the white-noise ansatz with G̃j (ω) = Gj (of
dimension [pressure]2 · [time]) taken as constants.

Note that the zero mean taken for the surface forcing implies that the hydrodynamic stresses acting
on the plates due to the fluctuations in the film will be zero on average, 〈σxz(z; t)〉 = 〈σzz(z; t)〉 = 0,
where the brackets 〈· · · 〉 denote ensemble averaging over various realizations of the external forcing.
Yet, the variance and correlation functions (or correlators) of instantaneous stresses can be finite,
characterizing the measurable fluctuation-induced forces mediated by hydrodynamic correlations
between the plates on the leading order. Although these forces resemble the secondary hydrodynamic
Casimir-like forces arising from near-equilibrium thermal fluctuations [40], it is important to note
that the stochastic forcing here can generally be nonthermal, in which case it can produce far-from-
equilibrium stress fluctuations and correlations in the fluid film. To evaluate these correlations, we
first give the solutions to the velocity and density fields in terms of the stress response functions of
the fluid film.

III. RESPONSE TO SURFACE FORCING

A. Velocity and density fields

The velocity and density field fluctuations can be obtained by transforming Eqs. (4) and (7) to the
frequency domain. The governing equations for transverse and longitudinal modes read, respectively,
as

∂2
z ṽx(z; ω) = −α2(ω) ṽx(z; ω), (11)

∂2
z ṽz(z; ω) = −κ2(ω) ṽz(z; ω), (12)

where α2(ω) = ι̇ω/ν‖ and κ2(ω) = ω2/(c2
0 − ι̇ων⊥ ). Here, α and κ give the frequency-dependent

(screening) length scales associated with the shear and compressional modes, respectively. There
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will be two equivalent sets of solutions for α and κ , fulfilling the relations α∗(ω) = ±α(−ω), κ∗(ω) =
±κ(−ω). One can conveniently choose the solutions satisfying these relations with plus signs, giving
real (Re) and imaginary (Im) parts

αR(ω) = αI(ω) sgn(ω) = ±
√

|ω|
2ν‖

, (13)

κR(ω) = ± |ω|√
2

√√√√√
c4

0 + ω2ν2
⊥ + c2

0

c4
0 + ω2ν2

⊥

, (14)

κI(ω) = ± ω√
2

√√√√√
c4

0 + ω2ν2
⊥ − c2

0

c4
0 + ω2ν2

⊥

, (15)

where sgn(·) is the sign function. Now, solving Eqs. (11) and (12) with the required boundary
conditions gives

vx(z; t) =
∫

dω

2π
e−ι̇ωt sin[α(ω)(h − z)]

sin[α(ω)h]
ũx(ω), (16)

vz(z; t) =
∫

dω

2π
e−ι̇ωt sin[κ(ω)(h − z)]

sin[κ(ω)h]
ũz(ω). (17)

The density field fluctuations can be obtained using Eqs. (6) and (17), yielding

ρ(z; t) = ρ0

∫
dω

2π
e−ι̇ωt

[
ι̇κ(ω)

ω

]
cos[κ(ω)(h − z)]

sin[κ(ω)h]
ũz(ω). (18)

It should be noted that the homogeneous parts of the solutions (in the time domain) are discarded
as they depend on initial conditions, being irrelevant in the long-time stationary state to be studied
here.

B. Response and correlation functions

Plugging Eqs. (16)–(18) into Eqs. (8) and (9), we can write the two components of the surface
stress tensor, σ̃jz(z = 0; ω), in terms of the surface velocity components ũj (ω) for j = x,z. Inserting
the results into Eq. (10), we find ũj (ω) in terms of the surface forcing components, f̃j (ω) and, then,
using Eqs. (16) and (17), find the velocity field components vj (z; t) in terms of f̃j (ω) as

vj (z; t) =
∫

dω

2π
e−ι̇ωt R̃j (z; ω)f̃j (ω), (19)

where the velocity response functions are given by

R̃x(z; ω) = sin[α(ω)(h − z)]

ρ0ν‖α(ω)
(
cos[α(ω)h] − m

ρ0
α(ω)sin[α(ω)h]

) , (20)

R̃z(z; ω) = sin[κ(ω)(h − z)]

ρ0ν⊥
(
1 + ι̇

c2
0

ν⊥ω

)
κ(ω)

(
cos[κ(ω)h] − m

ρ0
κ(ω)sin[κ(ω)h]

) . (21)

These play the role of the Oseen tensor components in the considered geometry. We can now express
the stress tensor components in terms of the external forcing as

σjz(z; t) =
∫

dω

2π
e−ι̇ωt χ̃jz(z; ω)f̃j (ω), (22)
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where the stress response functions (analogous to the pressure vector for the Oseen problem [4]) are
given by

χ̃xz(z; ω) = ρ0ν‖∂zR̃x(z; ω), (23)

χ̃zz(z; ω) = ρ0ν⊥

(
1 + ι̇

c2
0

ν⊥ω

)
∂zR̃z(z; ω). (24)

Equations (22)–(24) can be used to evaluate the desired two-point correlators of the stresses across
the fluid film (0 � z,z′ � h) defined as

Cjz(z,z
′; t − t ′) = 〈σjz(z; t)σjz(z

′; t ′)〉, (25)

for j = x,z, where the time homogeneity of the correlators in the stationary state is also explicitly
indicated.

The average in Eq. (25) can be evaluated (Sec. II C), yielding the transverse and longitudinal stress
correlators in the frequency domain in terms of the stress response functions (23) and (24) as

C̃jz(z,z
′; ω) = 2G̃j (ω)χ̃jz(z; ω)χ̃jz(z

′; −ω). (26)

Other relevant quantities include the two-point correlators of density and pressure fluctuations
expressed as

Cρρ(z,z′; t − t ′) = 〈ρ(z; t)ρ(z′; t ′)〉, (27)

Cpp(z,z′; t − t ′) = 〈p(z; t)p(z′; t ′)〉. (28)

These quantities are related through Cpp = Cρρ/c
4
0 [see Eq. (2)]. In the present context, the frequency-

domain forms (or, the spectral densities) of density correlator, C̃ρρ(z,z′; ω), and the corresponding
pressure correlator, C̃pp(z,z′; ω), are found to be related directly to that of the longitudinal stress
correlator as

C̃ρρ(z,z′; ω) = c−4
0 C̃pp(z,z′; ω) = C̃zz(z,z′; ω)

c4
0 + ν2

⊥ ω2
. (29)

The two-point density correlator is of special interest in the context of thermal (near-equilibrium)
hydrodynamic fluctuations in bulk fluids, in which case one uses its frequency and wave-vector
representation to obtain the spectral density of density fluctuations [55,56]. This latter quantity can be
measured through inelastic (polarized) light scattering methods, enabling experimental determination
of hydrodynamic-fluctuation spectra as well as various thermodynamic quantities and transport
coefficients of bulk fluids. Our formulation directly relates the spectral density of hydrodynamic
stress fluctuations on the film boundaries to the spectral density of fluid density fluctuations within
the film. As such, it suggests an alternative method to probe the density fluctuations through the
measurements of surface forces in confined fluids, where standard light scattering methods may be
less suitable.

C. Dimensionless representation

In our later treatment of shear (‖) and compressional (⊥) modes in dimensionless units, we shall
make use of the rescaled variables

z‖ = z

ν‖,⊥/c0
, τ‖ = t

ν‖,⊥/c2
0

and ω‖ = ω

c2
0/ν‖,⊥

, (30)
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as well as the rescaled interplate separation (rescaled film thickness) and the dimensionless mass per
unit area of the mobile plate, respectively, as

h‖ = h

ν‖,⊥/c0
and γ‖ = m

ρ0ν‖,⊥/c0
. (31)

Using the definitions in Eqs. (13)–(15), the parameter α(ω) can be rescaled as ν‖α(ω)/c0 → ξ (ω‖),
where

ξ (ω‖) = ±
√ |ω‖ |

2
[1 + ι̇ sgn(ω‖)], (32)

while κ(ω) can be rescaled as ν⊥κ(ω)/c0 → �(ω⊥) = �R(ω⊥) + ι̇�I(ω⊥), with real and imaginary parts

�R(ω⊥) = ±|ω⊥|√
2

√√√√√
1 + ω2

⊥ + 1

1 + ω2
⊥

, (33)

�I(ω⊥ ) = ± ω⊥√
2

√√√√√
1 + ω2

⊥ − 1

1 + ω2
⊥

. (34)

The spectral densities of external surface forcing are rescaled as G̃x(ω)/Gx → G̃‖ (ω‖) and G̃z(ω)/Gz →
G̃⊥ (ω⊥).

The transverse and longitudinal stress response functions (23) and (24) are dimensionless and
can be re-expressed in rescaled coordinates immediately as χ̃xz(z; ω) → χ̃‖(z‖ ; ω‖) and χ̃zz(z; ω) →
χ̃⊥(z⊥ ; ω⊥) with explicit forms given by

χ̃‖(z‖ ; ω‖) = − cos[ξ (ω‖)(h‖ − z‖)]

cos[ξ (ω‖)h‖] − γ‖ξ (ω‖) sin[ξ (ω‖)h‖]
, (35)

χ̃⊥(z⊥ ; ω⊥) = − cos[�(ω⊥)(h⊥ − z⊥)]

cos[�(ω⊥)h⊥] − γ⊥�(ω⊥) sin[�(ω⊥)h⊥]
. (36)

The transverse and longitudinal stress correlators in the time domain, Eq. (25), are rescaled by
the characteristic stress variances 2Gxc

2
0/ν‖ and 2Gzc

2
0/ν⊥ as

Cxz(z,z′; t − t ′)
2Gxc

2
0

/
ν‖

→ C‖(z‖ ,z
′
‖ ; �τ‖), (37)

Czz(z,z′; t − t ′)
2Gzc

2
0

/
ν⊥

→ C⊥(z⊥,z′
⊥ ; �τ⊥ ), (38)

where we have defined �τ⊥ = τ⊥ − τ ′
⊥ and �τ‖ = τ‖ − τ ′

‖ . These time-dependent (real-valued) stress
correlators are to be calculated from the Fourier-transform relations

C‖(z‖ ,z
′
‖ ; �τ‖) =

∫
dω‖

2π
e
−ι̇ω‖�τ‖ C̃‖(z‖ ,z

′
‖ ; ω‖), (39)

C⊥(z⊥ ,z′
⊥ ; �τ⊥ ) =

∫
dω⊥

2π
e−ι̇ω⊥�τ⊥ C̃⊥(z⊥ ,z′

⊥ ; ω⊥), (40)

and also by making use of the frequency-domain expressions for C̃‖(z‖ ,z
′
‖ ; ω‖) and C̃⊥(z⊥ ,z′

⊥ ; ω⊥),
themselves following from the dimensionless form of Eq. (26) as

C̃‖(z‖,z
′
‖ ; ω‖ ) = G̃‖(ω‖)χ̃‖(z‖ ; ω‖)χ̃‖(z

′
‖ ; −ω‖ ), (41)

C̃⊥ (z⊥,z′
⊥ ; ω⊥) = G̃⊥ (ω⊥)χ̃⊥(z⊥ ; ω⊥)χ̃⊥(z′

⊥ ; −ω⊥ ). (42)
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FIG. 2. The self- and cross correlators of the transverse stresses acting on the plates as functions of the
redefined dimensionless frequency, ω‖h

2
‖ , for fixed h‖/γ‖ = 5.

Since ξ (−ω‖) = ξ ∗(ω‖) and �(−ω⊥) = �∗(ω⊥) (Sec. III A) and, hence, χ̃‖ (z‖ ; −ω‖ ) = χ̃∗
‖ (z‖ ; ω‖ )

and χ̃⊥(z‖ ; −ω‖ ) = χ̃∗
⊥ (z‖ ; ω‖), the stress correlators are found to be symmetric with regard to

interchanging their spatial (first and second) arguments and concurrently reversing the sign of their
frequency and time (third) argument (or, by taking their complex conjugates); i.e., C̃‖(z‖ ,z

′
‖ ; ω‖) =

C̃‖(z
′
‖ ,z‖ ; −ω‖ ) = C̃∗

‖ (z′
‖ ,z‖ ; ω‖ ) and C̃⊥(z⊥ ,z′

⊥ ; ω⊥ ) = C̃⊥(z′
⊥ ,z⊥ ; −ω⊥ ) = C̃∗

⊥ (z′
⊥ ,z⊥ ; ω⊥ ). Formally, similar

symmetry relations hold in the time domain for C‖(z‖ ,z
′
‖ ; �τ‖) and C⊥(z⊥ ,z′

⊥ ; �τ⊥), and also for the
density and pressure correlators as implied by Eq. (29). It should also be noted that the same-point
correlators, C̃‖(z‖ ,z‖ ; ω‖ ) and C̃⊥ (z⊥,z⊥ ; ω⊥), are nothing but the local variances of stress fluctuations at
a given frequency. They are evidently real valued and positive and, as such, ensure the stability of
our linear-fluctuation analysis.

For the sake of concreteness in our numerical analysis below, we set the forcing spectral densities
equal to one, G̃‖ (ω‖) = G̃⊥(ω⊥) = 1, equivalent to adopting the white-noise ansatz for the surface
forcing as noted before.

IV. TRANSVERSE STRESS CORRELATORS

We start our analysis by focusing first on the transverse hydrodynamic stresses produced by the
white-noise external surface forcing. The two-point correlator in the frequency domain, C̃‖(z‖ ,z

′
‖ ; ω‖),

can be shown to be only a function of the redefined dimensionless frequency and coordinate variables
ω‖h

2
‖ and z‖/h‖ and the rescaled parameter h‖/γ‖ . By setting z‖ ,z

′
‖ = {0,h‖ }, we obtain the same-plate

and cross-plate correlators, which we shall refer to as self- and cross correlators, respectively, as

C̃‖(0,0; ω‖ ) = |χ̃‖(0; ω‖ )|2, C̃‖(h‖,h‖ ; ω‖ ) = |χ̃‖(h‖ ; ω‖)|2,
C̃‖(0,h‖ ; ω‖) = C̃∗

‖ (h‖,0; ω‖ ) = χ̃‖(0; ω‖)χ̃
∗

‖ (h‖ ; ω‖ ). (43)

In Fig. 2, we show the self-correlators, C̃‖(0,0; ω‖ ) and C̃‖(h‖ ,h‖ ; ω‖), and the real part of the cross
correlator, Re C̃‖(0,h‖ ; ω‖ ) (being the only part that contributes to the cross correlator in the time
domain) as functions of ω‖h

2
‖ for h‖/γ‖ = 5. As seen, the three quantities exhibit rapid monotonic

decrease with the frequency from their maximum value of one at zero frequency, fulfilling the
inequalities Re C̃‖(0,h‖ ; ω‖) � C̃‖(h‖,h‖ ; ω‖ ) � C̃‖(0,0; ω‖ ) across the frequency domain.

These behaviors can be understood by noting that the characteristic frequencies of the transverse
modes occur at the poles of the transverse response function χ̃‖ over the complex frequency (ς )
plane. These poles are found to fall onto the lower-half imaginary axis, reflecting the diffusive nature
of the shear modes in the hydrodynamic regime (Appendix A). The singular part of the transverse
response functions in the proximity of a given pole ς (n)

‖ [see Eq. (A3)] behaves as χ̃‖ ∼ 1/(ω2
‖ +

[Im ς − Im ς (n)
‖ ]2). Thus, along the real-valued frequency axis ω‖ = Re ς , χ̃‖ takes a Lorentzian
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FIG. 3. Profiles of the rescaled, equal-time, transverse stress correlators h2
‖ C‖ (z‖ ,z‖ ) and h2

‖ C‖ (0,z‖ ) across
the fluid film (0 � z‖ � h‖ ) for fixed h‖/γ‖ = 5.

form peaked around ω‖ = 0 as all of the poles are purely imaginary, explaining the monotonically
decreasing behaviors in Fig. 2.

A. Equal-time transverse stress correlators

The equal-time transverse correlators are obtained by setting �τ‖ = 0 in Eq. (39), in which case
we drop the time (third) argument by redefining our notation as C‖(z‖ ,z

′
‖ ) ≡ C‖(z‖,z

′
‖ ; �τ‖ = 0). Hence,

C‖(z‖ ,z
′
‖ ) =

∫
dω‖

2π
χ̃‖(z‖ ; ω‖ )χ̃

∗
‖ (z′

‖ ; ω‖). (44)

When rescaled with the interplate separation as h2
‖ C‖(z‖ ,z‖) and h2

‖ C‖(0,z‖), these correlators will be
functions of z‖/h‖ and h‖/γ‖ only. As seen in Fig. 3, both of these correlators vary within a relatively
small range of values across the film. Although this may naively appear as indicating an approximate
power-law behavior of C‖ ∼ h−2

‖ at any point across the film, we find a more diverse set of power-law
behaviors for the self- and cross correlators of the stresses acting on the plates.

It should be noted that the frequency integrals discussed above converge sufficiently
rapidly and therefore remain finite. For numerical expediency, and as a check on the self-
consistency of the continuum approach used here (see Appendix B for details), it is conve-
nient to introduce a high-frequency cutoff ω∞

‖ , which can conveniently be taken as ω∞
‖ = 1.

In general, the numerical outcomes for C‖(h‖,h‖) and C‖(0,h‖) remain unaffected by the precise
choice of the frequency cutoff, when the latter is sufficiently large. The self-correlator on the mobile
(lower) plate, C‖(0,0), however, tends to a constant predominantly determined by the forcing spectral
density as the interplate separation is increased. To eliminate such spurious effects, we subtract
this limiting value that represents the self-interaction of the mobile plate in the bulk by defining the
excess correlator as �C‖(0,0) = C‖ (0,0) − limh‖→∞ C‖(0,0). In all cases, our numerical results remain
independent of the choice of the frequency cutoff, when the latter is large enough, but it is still kept
within the regime consistent with the continuum hydrodynamic description (Appendix B).

As the log-log plots in Fig. 4 show, the stress correlators fall off rapidly as power laws of the
rescaled interplate separation, h‖ , in all cases [Figs. 4(a) to 4(c)], when h‖ is sufficiently large. In fact,
one can discern distinct power-law regimes for both small and large values of h‖ as γ‖ is varied. As
noted before, the key parameter here is the ratio h‖/γ‖ . We find the power-law behaviors as

C‖(h‖,h‖) ∼
{

h−2
‖ h‖/γ‖ � 1,

h−1
‖ h‖/γ‖ � 1,

(45)

�C‖(0,0) ∼
{

h−4
‖ h‖/γ‖ � 1,

h−1
‖ h‖/γ‖ � 1,

(46)
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FIG. 4. Log-log plots of equal-time transverse stress (self- and cross) correlators C‖ (h‖ ,h‖ ), �C‖ (0,0), and
C‖ (0,h‖ ), in panels (a)–(c), respectively, as functions of the dimensionless interplate separation, h‖ , for γ‖ =
2,10,30, and 100.

C‖(0,h‖) ∼
{

h−3
‖ h‖/γ‖ � 1,

h−1
‖ h‖/γ‖ � 1.

(47)

Because of the cumbersome form of the integrand in Eq. (39) (involving factors with implicit and
complex-valued dependence on ω‖), we were not able to derive the scaling forms analytically. They
have rather been confirmed numerically, with the reported universal exponents being accurate within
a margin of error <5%. These power laws reflect the more fundamental scale-invariant forms admitted
in general by each of the above transverse stress correlators in terms of their two main parameters
as C‖ = h−2

‖ F(γ‖/h‖), where C‖ stands for either of the quantities C‖(h‖ ,h‖), �C‖(0,0), or C‖(0,h‖) and
F(·) is the corresponding universal function. For these three cases, the universal functions can be
calculated numerically for a wide range (several decades) of their arguments with the results, shown
in the log-log plot of Fig. 5, clearly demonstrating the crossover between two distinct power-law
regimes: These regimes appear as straight lines for small and large h‖/γ‖ for each one of the three
plotted curves. The numerical values of the slopes match the corresponding exponents given in
Eqs. (45)–(47) plus two.

V. LONGITUDINAL STRESS CORRELATORS

The longitudinal stress correlators show distinct features as compared with their transverse
counterparts. As seen from the frequency-domain plots in Figs. 6(a) to 6(c), the longitudinal self-
and cross correlators exhibit well-developed peaks, representing acoustic resonances due to the
compressional modes excited by the external surface forcing in the fluid film. These modes are

FIG. 5. The rescaled universal forms of the three equal-time transverse stress correlators, as indicated on the
graph [see also Figs. 4(a)–4(c)], as functions of h‖/γ‖ , demonstrating the crossover between the two power-law
regimes found at small and large values of h‖/γ‖ in each case.
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FIG. 6. Log-log plot of the longitudinal stress self-correlator C̃⊥ (h⊥ ,h⊥ ; ω⊥ ) in panel (a) and linear plots of
the excess longitudinal stress (self- and cross-) correlators �C̃⊥ (0,0; ω⊥ ) and Re C̃⊥ (0,h⊥ ; ω⊥ ) in panels (b) and
(c), respectively, as functions of the dimensionless frequency, ω⊥ , for fixed γ⊥ = 2 and h⊥ = 10,30, and 50 as
indicated on the graphs.

associated with the poles of the corresponding response functions in the complex frequency plane (see
Appendix A). The peaks observed along the real-frequency axis, ω⊥ , in Fig. 6 are indeed produced
by the first few compression poles [for instance, the four peaks seen for h⊥ = 50, blue curve, in
C̃⊥(h⊥ ,h⊥ ; ω⊥), Fig. 6(a), coincide with the loci of the first four poles with 0 � n � 3]. The number of
peaks and their heights grow and their loci shift to smaller frequencies as the interplate separation,
h⊥ , is increased (and/or as γ⊥ is increased). At a given interplate separation, the longitudinal stress
correlators take their largest values at the first peak, which gives the dominant contribution to the
frequency integrals. This signifies the prevalence of low-frequency acoustic resonances at larger
interplate separations and the major role of the corresponding acoustic modes propagating across the
film in intensifying fluctuations and correlations of the longitudinal stresses exerted on the confining
plates [the higher order acoustic modes are more strongly attenuated as higher order peak heights
are suppressed by one or even few orders of magnitude as seen in Fig. 6(a)].

Although such acoustic resonances strengthen the longitudinal stress correlator on the upper
(fixed) plate, C̃⊥(h⊥,h⊥ ; ω⊥ ), which thus remains consistently above its zero-frequency value of one
for a wide range of frequencies, sound absorption becomes gradually dominant (as the imaginary
parts of the compression poles become large; Appendix A), causing the stress correlator to fall off
to zero at sufficiently high frequencies [for h⊥ = 50 in Fig. 6(a), this occurs on approach to, but well
before, the chosen upper frequency cutoff of ω∞

⊥ = 1; see Appendix B]. In the case of �C̃⊥ (0,0; ω⊥ )
and C̃⊥(0,h⊥ ; ω⊥ ) in Figs. 6(b) and 6(c), the correlators can take both positive and negative values. The
negative values of these quantities represent out-of-phase (or anti-) correlations occurring in certain
intervals along the real-frequency axis.

A. Equal-time longitudinal stress correlators

The equal-time longitudinal stress correlators defined through Eq. (40), and denoted more
compactly as C‖(z⊥ ,z′

⊥) ≡ C‖(z⊥ ,z′
⊥ ; �τ⊥ = 0), can be evaluated from

C⊥(z⊥ ,z′
⊥) =

∫
dω⊥

2π
χ̃⊥(z⊥ ; ω⊥ )χ̃∗

⊥ (z′
⊥ ; ω⊥). (48)

Unlike their transverse counterparts, these correlators do not in general admit scale-invariant forms.
In Fig. 7, we show C⊥(z⊥ ,z⊥ ) and C⊥(0,z⊥) as functions of z⊥/h⊥ for fixed h⊥ = 50 and γ⊥ = 2. It is
interesting to note that while the different-point (z⊥ �= z′

⊥) correlator levels fall off rapidly to a limiting
value smaller than the reference value of C⊥ (0,0), the same-point correlator of longitudinal stresses
increases almost linearly as one moves away from the lower (mobile) plate toward the upper (fixed)
plate, where it takes its largest value. This indicates stronger hydrodynamic stress fluctuations closer
to the fixed plate and pronounced, nondecaying, rms values for the longitudinal stresses acting on it
even at relatively large separations.
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FIG. 7. Profiles of the equal-time longitudinal stress correlators C⊥ (z⊥ ,z⊥ ) and C⊥ (0,z⊥ ) across the fluid film
(0 � z⊥ � h⊥ ) for fixed h⊥ = 50 and γ⊥ = 2.

This nondecaying behavior is more clearly seen from the plot in Fig. 8(a). Here, the equal-time
longitudinal correlator, C⊥(h⊥ ,h⊥), is shown to increase to a saturated maximum level, depending on
the dimensionless mass parameter γ⊥ . The reason for this behavior is that as h⊥ is gradually increased
(starting from its minimum base value of h⊥ = 1), the characteristic frequency corresponding to
the first compressional mode decreases and falls below the cutoff frequency of ω∞

⊥ = 1, making it
realizable and relevant in the hydrodynamic domain, manifesting itself also as a gradual increase
in C⊥(h⊥ ,h⊥). As h⊥ is further increased, the first characteristic frequency (whose locus over the
real-frequency axis scales as h−1

⊥ , as is characteristic to acoustic modes) decreases further toward
the low-frequency regions, where sound attenuation is subdominant. As such, the corresponding
acoustic resonance leads to a strongly propagating acoustic mode across the fluid film, creating a
pronounced first peak in the stress-correlator plots in the frequency domain [Fig. 6(a)], bringing
C⊥(h⊥ ,h⊥) up to a saturation level [Fig. 8(a); see also Fig. 10(b) in Appendix B]. The crossover to the
saturation regime in C⊥(h⊥,h⊥ ) occurs roughly at h⊥ ∼ γ⊥ .

In the case of the longitudinal stress correlators �C⊥(0,0) and C⊥(0,h⊥), shown in Figs. 8(b)
and 8(c), and in analogy with our discussion of the power-law behaviors in the case of transverse
correlators, we find power-law behaviors in the regime of large interplate separations, h⊥/γ⊥ � 1,
with universal exponents as

�C⊥(0,0) ∼ h−3/2
⊥ , (49)

C⊥(0,h⊥) ∼ h−1
⊥ . (50)

The excess stress correlator on the lower (mobile) plate is defined here as �C⊥(0,0) = C⊥(0,0) −
limh⊥→∞ C⊥(0,0).

FIG. 8. Log-log plots of equal-time longitudinal stress (self- and cross) correlators C⊥ (h⊥ ,h⊥ ), �C⊥ (0,0),
and C⊥ (0,h⊥ ), in panels (a)–(c), respectively, as functions of the dimensionless interplate separation, h⊥ , for
γ⊥ = 2,10,30, and 100.
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In all cases discussed above, the main contribution to the longitudinal correlators comes from the
fluctuations and correlation produced in the film through the pressure (second) term in Eq. (9) rather
than the viscous stress (first) terms.

VI. DISCUSSION AND CONCLUSION

We have studied hydrodynamic correlations and fluctuation-induced interactions mediated
between the no-slip bounding surfaces of a planar film of a compressible and viscous fluid, driven
externally at one of its boundaries (lower plate) by a stochastic surface forcing of arbitrary spectral
density, while the other (upper) plate is kept fixed. We develop general analytical results within
the linear hydrodynamic scheme and numerically analyze the outcomes for the special case of a
Gaussian white-noise forcing. The stochastic surface forcing leads to fluctuating transverse (shear)
and longitudinal (compressional) hydrodynamic stresses within the film and on the bounding surfaces.
To bring out the hydrodynamic fluctuation-induced effects more clearly, we conveniently assume
that the external forcing has a zero mean; hence, the resulting hydrodynamic stresses also vanish on
average, and their two-point correlators embody the hydrodynamic correlation effects.

We show that the same-plate (self-) and cross-plate (cross) correlators of the transverse stress
exhibit two distinct regimes of power-law behaviors at small and large interplate separations h,
with different, yet universal, scaling exponents. In the case of longitudinal stress correlators, the
power-law dependencies are obtained only for the large-separation behavior of the (excess) self-
correlator on the mobile plate, �C⊥(0,0), and the cross correlator, C⊥(0,h), with power-law decays
being expressively weaker than those of the transverse correlators. The spectral analysis of the
longitudinal stress correlators reveals distinct underlying differences with the transverse ones due
to the prevalence of propagating, underdamped, acoustic modes in the confined geometry [10]. The
longitudinal stress self-correlator at the fixed plate, C⊥(h,h), thus displays a thoroughly different
behavior: It increases with h and saturates at a finite value, representing a constant, longitudinal, rms
stress σ rms

⊥ = √
C⊥(h,h) at sufficiently large h. This feature indicates the existence of nondecaying,

longitudinal, hydrodynamic fluctuation forces, acting on the fixed plate. This can be contrasted with,
e.g., the transverse stresses on the fixed plate, whose rms decays with the interplate separation as
σ rms

‖ ∼ h−1 for large h.
The nondecaying behavior of C⊥(h,h) emanates directly from the excitation of the acoustic

modes (acoustic resonances) and sets in at the appearance of the first peak in the corresponding
spectral representation (Sec. V). Indeed, one can directly verify that the dominant contribution to
C⊥(h,h) comes from the compressional term in the longitudinal stress [second term in Eq. (9)].
Such long-ranged, sound-mediated, hydrodynamic correlations have also been found in the context
of the correlations between Brownian particles (colloids) in strongly confined quasi-one- and
two-dimensional geometries (see Ref. [10] and references therein; see also Ref. [11] for recent
experiments on nondecaying colloid-colloid correlations based on the displacement of the intervening
fluid column between the colloids in narrow channels). It should be further noted that our analysis is
focused on the stationary-state behavior of the system, implying that the film thickness is traversed
by recurring propagations of underdamped sound waves of varying (random) amplitude, continually
excited by the longitudinal component of the external forcing applied to the mobile plate. This process
generates and maintains a finite and stationary (nondecaying) compressional rms stress on the fixed
plate.

The power-law relations obtained here for the (generally nonthermal) surface-driven stress
correlators assimilate to the “secondary” hydrodynamic Casimir-like forces, analyzed previously
in the context of thermal fluctuations in a fluid film with fixed boundaries [40]. Such nonequilibrium
fluctuation-induced, or Casimir-like effects have been of considerable interest in other soft-matter
contexts in recent years [38–48]. It is also important to note that the rms of the fluctuation-induced
forces predicted here exhibits a stronger long-ranged character than the standard electromagnetic
vdW-Casimir forces [6,8]. In the case of the longitudinal stresses on the fixed plate, our results
[Fig. 8(a)] give a rescaled rms stress of the order 1 over the range of rescaled separations h⊥ ∼ 10–102
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for a wide range of values for γ⊥ . Thus, for the parameter values relevant to water (see Appendix B),
we predict a longitudinal rms stress (pressure) of the order of the rms surface forcing, σ rms

⊥ /
√

σf ∼ 1,
over the range of interplate separations, or film thicknesses, h ∼ 2.6 × (10–102) nm. Here, σf

stands for the surface forcing variance in the time domain (related to the forcing spectral density as
σf = 2Gzω

∞; see Eq. (38), Sec. II C and Appendix B). Being an externally controlled quantity, σf

can be adjusted arbitrarily to obtain the experimental resolution required for the verification of our
predictions. The force-measurement precision within the dynamic SFA and AFM techniques can
be better than 10 nN and 10 pN, respectively [1,2,13,16]; hence, in the later case (of thermal-noise
AFM), even the effects due to ambient thermal noise have been detectable [2,13,14,27,29–31,33].

Despite its geometric simplicity, our model captures the essential features of typical dynamic
SFA-AFM setups [12–35] (see Sec. II A for further details). While these techniques have widely
been used in the study of the rheological properties of fluid films, substantial focus has been on
their utility in high-precision determination of shear and/or compressional forces produced on the
bounding surfaces confining a fluid film, where one of the surfaces is forced in linear or oscillatory
motion. In dynamic SFA, the bounding surfaces are usually taken as two apposed, weakly curved,
crossed cylinders (sometimes with large flattened contact areas exposed to the intervening fluid
[1,2,12,20–22,34]) or a sphere and a plane, with the radii of curvature in either case (of the
order of a few mm or cm) being much larger than the film thickness (in the range of sub-nm to
μm, or larger) [12,15,16,20–26]. In dynamic AFM, wide flat microlevers [30], or relatively large,
cantilever-mounted spheres (of radius up to tens of μm) [2,13–16,27,28,32,33] are used in forced
oscillations or in spontaneous (thermal) stochastic motions next to a planar substrate, probing the local
surface properties, the hydrodynamic-viscoelastic properties of the surrounding fluid, and also the
hydrodynamic interactions mediated between the probe and the substrate. The typical film geometries
and modes of surface motions employed in the aforementioned setups therefore appear well-suited
for testing our theoretical predictions. The main assumptions made within our analytical approach
(e.g., using small-amplitude oscillations and linearized hydrodynamic treatment) are also directly
relevant to the mentioned experimental setups and also agree with previous modeling approaches
[12–16,24–33]. To the best of our knowledge, however, the surface-force experiments have so far
been focused merely on the net force mediated between the fluid film boundaries as opposed to force
fluctuations and correlations. The predicted behaviors for these latter quantities can be examined by
scrutinizing the readily available rms of the experimentally detected forces as a function of the film
thickness.

Our work thus lays out a self-consistent and systematic hydrodynamic-fluctuations approach,
incorporating the often-ignored finite compressibility of the fluid film, which is important in the
understanding of the sound-mediated effects. It also places the study of hydrodynamic surface forces
induced by externally driven thin films within the newly emerging context of nonequilibrium Casimir-
type phenomena.

By connecting the spectral density of hydrodynamic stresses acting on the surface boundaries and
the spectral density of fluid density fluctuations in the film [see Eq. (29)], our analysis also suggests
an alternative method to probe the density fluctuations through the measurements of surface forces
in confined fluid films, where standard light scattering methods may be less suitable.

Finally, we note that our numerical results are given here only for the case of white-noise
forcing. Other examples of external forcing (such as colored or 1/f noises) can straightforwardly
be analyzed using the more general analytical formulas presented (Sec. III). Other possible avenues
that can be explored within the present context include the surface curvature effects, the fluid thermal
conductivity [53], and possibly also the role of nonlinear effects such as viscous dissipation [23].
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APPENDIX A: HYDRODYNAMIC MODES

The transverse (longitudinal) hydrodynamic modes are given by the poles of the transverse
(longitudinal) response functions, occurring only in the lower half of the complex frequency (ς )
plane, at the roots of the equation,

cos[ϒ(ς )] − �ϒ(ς ) sin[ϒ(ς )] = 0, (A1)

where we have used Eqs. (35) and (36) and the definitions

� = γ‖/h‖ , ϒ(ς ) = ξ (ς )h‖ : (shear),

� = γ⊥/h⊥ , ϒ(ς ) = �(ς )h⊥ : (compression). (A2)

The parameter ϒ(ς ) can be expressed in terms of its real and imaginary parts as ϒ(ς ) = ϒR(ς ) +
ι̇ϒI(ς ).

For shear modes, Eq. (A1) admits a series of roots only on the imaginary axis, whose loci can
be estimated analytically by looking at two limiting cases. For � � 1 (large dimensionless mass
parameter for the mobile plate, γ‖ , or small dimensionless interplate separation, h‖) and, on the
leading order, Eq. (A1) takes the approximate form exp[2ι̇ϒ(ς )] � 1 or, equivalently, ϒR(ς ) � nπ

and ϒI(ς ) � 0, where n is an integer. For � � 1, we find the approximate leading-order equations
ϒR(ς ) � (n + 1/2)π and ϒI(ς ) � 0. Using the definitions in Eqs. (32) and (A2), the shear modes
are located as

ς (n)
‖ � −ι̇

π2

h2
‖

×
{

(n + 1/2)2 h‖/γ‖ � 1,

n2 (n �= 0) h‖/γ‖ � 1.
(A3)

For compressional modes, the roots of Eq. (A1) can have both finite real and finite imaginary parts.
The approximate loci of the roots can be obtained for � � 1 and � � 1 using limiting arguments
analogous to those discussed above for the shear modes. Using the definitions in Eqs. (33), (34), and
(A2), we arrive at ς2 + ι̇ςq2

n − q2
n � 0, solving which gives the roots ς (n)

⊥ as

ς
(n)
⊥ � ±|qn|

2

√
4 − q2

n − ι̇
q2

n

2
, (A4)

where we have

qn = π

h⊥
×

{
n + 1/2 h⊥/γ⊥ � 1,

n (n �= 0) h⊥/γ⊥ � 1.
(A5)

These poles exhibit a finite real part (representing sound propagation with a finite phase velocity)
and a finite imaginary part (representing a finite lifetime due to sound absorption) for |qn| < 2, or,
equivalently, |n + 1/2| < 2h⊥/π , when h⊥/γ⊥ is sufficiently large. These poles exhibit two distinct,
mirror-symmetric, left and right branches with negative and positive real parts, shown in Fig. 9 by
red and blue symbols, respectively. The poles with larger order in n become purely imaginary and the
corresponding compressional modes become diffusive. The diffusive poles stemming from the right
branch densely accumulate in a short interval just below −ι̇, and gradually approach the latter as a
limiting value, when |n| → ∞; while, those stemming from the left branch spread with increasingly
large separations over the imaginary axis, tending to −ι̇∞. The real part of the poles never exceeds
1 in magnitude on either branch, irrespective of the other parameter values; thus, all of the poles fall
within the frequency integration domain |ω⊥| � ω∞

⊥ = 1.
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FIG. 9. Poles of the longitudinal stress response functions in the complex frequency (ς ) plane for h⊥ = 50
and γ⊥ = 2. The poles are shown up to the order |n| � 36, of which the last four poles fall over the imaginary
axis (become purely diffusive). The rest of the poles (shown in two left and right branches in red and blue colors,
respectively) represent partially attenuated acoustic modes propagating across the film.

APPENDIX B: CUTOFF AND OTHER PARAMETER VALUES

Although the frequency integrals appearing in the analytical results are originally defined over the
whole real axis, it is clear that the hydrodynamic description breaks down for very large frequencies,
or at very small length scales below a microscopic cutoff a. In our numerical analysis, we impose an
upper frequency cutoff ω∞ and take the integrals over the range |ω| � ω∞; for consistency, we also
limit the range of film thicknesses to h � a. Nevertheless, it is important to note that the frequency
integrals in our analysis of the stress correlators, Eqs. (44) and (48), are found to converge sufficiently
rapidly, giving finite results as the cutoff is taken to infinity. The introduction of a cutoff is important
as it enables us to ensure that our results are primarily determined by the frequencies that fall within
the hydrodynamic regime.

For the most part, we set the microscopic length-scale cutoff a = ν‖,⊥/c0 with the corresponding
frequency cutoff ω∞ = c2

0/ν‖,⊥ for the shear and/or compression modes. In dimensionless units,
we have a‖,⊥ = 1 and ω∞

‖,⊥ = 1 (Sec. III C). For the parameter values relevant to water, e.g., η �
8.9 × 10−4 Pa s, ρ0 � 997 Kg m−3, c0 � 1496.7 m s−1 at 25 ◦C [57] and assuming ζ � 3η [58], the
length scale and frequency cutoffs for the shear (compression) modes are found approximately
a � 0.6 nm (2.6 nm) and ω∞ � 2.5 × 1012 s−1 (0.6 × 1012 s−1), respectively. These values agree
with recent studies indicating validity of the continuum hydrodynamic description in water down to
scales of around one nanometer [19]. In other words, in the present context, taking the dimensionless
frequency cutoffs larger than ω∞

‖,⊥ ∼ 1 may not be justified.
We show the exemplary cases of equal-time self-correlators on the fixed plate, C‖(h‖ ,h‖) and

C⊥(h⊥ ,h⊥), as functions of the corresponding dimensionless frequency cutoffs in Fig. 10 for selected
values of the dimensionless system parameters as indicated on the graphs. As seen, the plotted
quantities saturate to a limiting cutoff-independent plateau when the corresponding cutoff is large
enough. For the slowest rate of convergence to the plateau levels, which is obtained for the lowest
admissible value of the interplate separation h‖ = h⊥ = 1 (or h = a), we find that the saturations
in C‖(h‖ ,h‖) and C⊥(h⊥ ,h⊥) occur roughly around ω∞

‖ = ω∞
⊥ = 1, when γ‖ = γ⊥ = 2. The results for

larger values of h‖ and h⊥ and/or larger values of γ‖ and γ⊥ show faster convergence trends to their
cutoff-independent values. The saturations occur roughly at ω∞

‖ ∼ h−2
‖ (ω∞

⊥ ∼ h−1
⊥ ) for the transverse

(longitudinal) correlators. These observations confirm that our numerical choices for the length and
frequency cutoffs are consistent with those expected experimentally [19] and yet they are large
enough to give the desired saturation (plateau) values for the numerical outcomes.

It is also to be noted that for longitudinal correlators, the saturation is rather abrupt, occurring
when the cutoff ω∞

⊥ exceeds the locus of the first peak along the real-frequency axis [Fig. 6(a)]. In
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FIG. 10. Log-log plots of equal-time self-correlators on the fixed plate, C‖ (h‖ ,h‖ ) and C⊥ (h⊥ ,h⊥ ), in panels
(a) and (b) respectively, as functions of the corresponding dimensionless frequency cutoffs for different values
of the dimensionless system parameters as indicated on the graphs.

other words, the longitudinal frequency integrals quickly saturate to their cutoff-independent values
as soon as the integration domain, |ω⊥| � ω∞

⊥ , is wide enough to include the first peak (first excited
acoustic mode), as this peak gives the major dominant contribution to the frequency integrals.
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