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Hydrodynamic bifurcation in electro-osmotically driven periodic flows
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In this paper, we report an inertial instability that occurs in electro-osmotically driven
channel flows. We assume that the charge motion under the influence of an externally applied
electric field is confined to a small vicinity of the channel walls that, effectively, drives a
bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially
periodic wall velocity modulations in a two-dimensional straight channel numerically. At
low slip velocities, the bulk flow consists of a set of vortices along each wall that are
left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability
through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-
right symmetric base flow has a rather strong mean component along the channel, which is
similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds
numbers of about 20–30, and we discuss its potential applications in microfluidic devices.
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In microfluidic devices, the use of electric fields as a means of driving flow via electro-osmosis is
an intriguing alternative to using pressure drops or moving surfaces [1–4]. Electro-osmosis occurs
when the ions in a double layer next to a charged surface are set in motion by an electric field,
and the ions drag the solvent with them, producing bulk flow. Such flows are especially suitable for
microfluidic applications, in which microfabrication techniques allow for control and patterning of
electric and dielectric properties of channel surfaces. In this way, not only can bulk flow be generated
to transport analytes, but patterned flow fields can be imposed, allowing, for example, for creation
of microfluidic mixers [5]. Such flows may also assist in separating particles or cells, possibly both
modulating and augmenting the inertial forces that produce size-dependent cross-stream drift [6].
Even if uniform charge density is intended for a surface, some variation in charge is unavoidable,
especially given the difficulty in controlling precisely the surface chemistry producing the charge,
and this will give rise to nonuniform electro-osmotic flows even in a straight channel. One of the
conceptually simpler nonuniform electro-osmotic flows that can be produced is generated by a
sinusoidally periodic surface charge on each side of a straight channel [7]; see Fig. 1. This charge
pattern leads to a spatially periodic charge in the double layer adjacent to the boundaries. When a
voltage is applied along the channel, the velocity near the surface varies periodically as well and acts
like a periodic “slip” velocity along the surface, generating a complex cellular flow in the fluid in the
channel. This flow is attractive as a simple boundary condition (straight walls, periodic charge) that
nevertheless generates a complex flow (see Refs. [8–11], for example), and that, moreover, has an
analytic solution in the limit of creeping flow and thin double layers [7]. It is easy to add a uniform
surface charge density to the periodic charge, mimicking, for example, an imperfectly treated surface
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FIG. 1. Electro-osmotically driven periodic flow; after Ajdari [7].

with charge nonuniformity. A periodic deviation from a uniform charge might produce a deviation
in the mean flow rate in the channel owing to nonlinear coupling between the flow produced by
the uniform charge and that produced by the periodic charge variations. If the wall charge varies
sinusoidally around zero, the electro-osmotic flow that is generated is periodic, and in the Stokes
flow limit has no net flow direction.

Here we consider the effect of inertia on this simple flow. We employ a spectral method to solve
the two-dimensional Navier-Stokes equations, and find, surprisingly, for the case of zero average
surface charge, so that the Stokes flow is periodic with no net flow, that at a modest Reynolds number
Re = v0L/ν of around 20 there is a bifurcation to a secondary flow with a nonzero mean flow,
even when there is no mean flow induced by the boundary conditions themselves. Here, v0 is the
characteristic velocity, L is the half-width of the channel, and ν is the kinematic viscosity of the
fluid. The presence of this bifurcation means that, even for a boundary condition with no mean
surface charge and hence no mean current, a rectified mean flow can be produced through a purely
oscillatory boundary condition. The direction of the mean flow, to the right or the left, is arbitrary
but could be imposed by adding some small bias to the initial oscillatory flow, either electrically,
geometrically, or in some other way. Such a hydrodynamic instability in a periodically patterned
electro-osmotic flow was alluded to in an earlier work co-authored by one of the present authors
[12], and here we study it in detail. This bifurcation is of interest in its own right but might also
be a means of generating rectified flow in a channel with no net imposed current. In fact, since
the base flow is completely periodic, the applied voltage along the channel could in principle also
be alternating, without changing either the zero net current or the direction of the resulting flow.
To reach the bifurcation condition with a wall charge that varies with position sinusoidally around
zero, the Reynolds number must reach a value of close to 20, which, for water with ν = 10−6 m2/s,
requires a flow velocity and channel width 2L that are relatively large. The flow velocity v0 is given
by σ0E/μκ , where σ0 is the amplitude of the surface charge density, E is the electric field imposed
parallel to the walls, μ is the fluid viscosity, and κ is the inverse Debye length at the wall [7], where
typical values are σ0 ∼ 1 charge/nm2, μ = 10−3 Pa s, and κ−1 = 10 nm. Under these conditions, a
field of 104 V/m would yield a velocity of 10−2 m/s, and so a channel of width 2L = 2 mm would
suffice to yield an instability. Note that the channel depth would need also to be comparable with or
larger than this scale to prevent viscous suppression of the instability. The power necessary to drive
the base flow at the critical Reynolds number can be estimated as μv2

0κ
2(2κ−1w�), where v0κ is the

typical shear rate across the Debye layer and 2κ−1w� is the volume of the near-wall region where
most of the viscous dissipation takes place. Here, � and w are the length and width of the channel,
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respectively, and we accounted for strong shear occurring next to two walls. For a square channel,
w = 2L, the power per unit length along the channel is therefore 0.04 J/(m s), which is well within
the realistic range.

The instability presented here is distinct from well-known electrokinetic flow instabilities that
result from coupling of electric fields and ionic conductivity gradients [13–16], since there are no
ionic conductivity gradients considered in what we report here. Such gradients can arise when a core
fluid flow is focused by a “sheath” fluid introduced at the walls of a microfluidic device, if the two
fluids have differing ionic strengths. An instability occurs in such flows at a critical electric current
Rayleigh number of Rae = (εE2

ad
2/Dμ)((γ − 1)/γ )|grad∗σ ∗|max = 205, as reported by Posner and

Santiago [14] and Posner et al. [16]. Here ε is the fluid permittivity, Ea is the applied electric field, d
is the channel depth, D is the ion diffusivity, μ is the fluid viscosity, γ is the ratio of core-to-sheath
conductivities, and |grad∗σ ∗|max is the maximum dimensionless conductivity gradient. Note that the
Rayleigh number representing the driving force for this instability disappears when the conductivities
of the two fluids are equal to each other (i.e., γ = 1), since then there is no conductivity gradient to
which the electric field can couple and the above Rayleigh number is zero. If a conductivity gradient
is present, the instability produced by it could in many cases occur at lower field strength than that
needed to produce the inertial instability to be discussed here.

We consider the flow of a Newtonian fluid in a 2D channel forced by a prescribed slip velocity at the
channel walls, similar to Fig. 1. We introduce a Cartesian coordinate system with the x axis pointing
along the length of the channel and the y axis in the wall-normal direction. The walls are located at
y = ±L, so that the total channel width is 2L. The velocity components are v = [u(x,y,t),v(x,y,t)],
and the flow is driven by the following slip velocity at the walls:

u(x,L,t) = v+ cos kx,

u(x, − L,t) = v− cos (kx + φ), (1)

v(x, ± L,t) = 0.

Here, v+ and v− are the maximum slip velocities at the corresponding boundary, k is the wave number
of the slip velocity modulation, and φ is the phase difference between the velocity at the upper and
lower walls. Without loss of generality, we will assume that v+ > v− and use v+ as the velocity
scale. The equations of motion are given by the Navier-Stokes equation

ρ

[
∂v
∂t

+ v · ∇v
]

= −∇p + μ∇2v, (2)

and the incompressibility condition

∇ · v = 0. (3)

Here, ρ and μ are the density and viscosity of the fluid, respectively, and p is the pressure. The
problem is rendered dimensionless by the rescaling of all the variables, where we use the half-width
of the channel L as the unit of length, v+ as the unit of velocity, and L/v+ as the unit of time. We
also introduce the Reynolds number

Re = v+L

ν
, (4)

and the dimensionless wave vector k̃ = kL. In what follows, all variables are dimensionless unless
stated otherwise.

To reduce the number of degrees of freedom, we introduce the stream function � = �(x,y,t),
such that

u = ∂�

∂y
, v = −∂�

∂x
. (5)
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In terms of the stream function, the equation of motion is given by(
∂

∂t
+ ∂�

∂y

∂

∂x
− ∂�

∂x

∂

∂y

)
∇2� = 1

Re
∇4�, (6)

with the following boundary conditions:

∂�

∂y
(x,1,t) = cos k̃x,

∂�

∂y
(x, − 1,t) = ṽ cos (k̃x + φ), (7)

∂�

∂x
(x, ± 1,t) = 0,

where ṽ = v−/v+, and ∇4 is the biharmonic operator.
It is instructive to consider the limit of zero inertia and steady velocity field. In this case, Eq. (6)

reduces to the Stokes equation, ∇4� = 0, that has a simple analytical solution satisfying the boundary
conditions, Eqs. (7),

�0 = 2k̃

sinh2 2k̃ − 4k̃2
[A(x)(1 + y) sinh k̃(1 − y) − B(x)(1 − y) sinh k̃(1 + y)], (8)

where

A(x) = cos k̃x + ṽ
sinh 2k̃

2k̃
cos (k̃x + φ), (9)

B(x) = ṽ cos (k̃x + φ) + sinh 2k̃

2k̃
cos k̃x. (10)

This solution is similar to the one obtained by Ajdari [7]. Although �0 differs from the true solution
to Eq. (6) for any finite amount of inertia, it is nevertheless useful for gaining an insight into the
structure of the flow. In Fig. 2, we plot the velocity profile given by �0 for ṽ = 1 (top row) and
ṽ = 1/3 (bottom row) for three values of the phase difference φ: 0 (left column), π/2 (middle
column), and π (right column). As can be seen from the figure, the flow consists of two arrays of
vortices aligned along each wall with their relative position and strength set by the phase difference
φ and the relative velocity magnitude ṽ, respectively.

To assess the effect of inertia on this solution, we solve Eqs. (6) and (7) numerically using a
Fourier-Chebyshev pseudospectral method [17,18]. We express the stream function as a Fourier
series

�(x,y,t) =
N∑

n=−N

ψn(y,t)eink̃x, (11)

where ψn(y,t) = ψ∗
−n(y,t) to ensure that �(x,y,t) is real, and ∗ denotes the complex conjugate.

At any time t , ψn(y,t) is represented by its values at M Gauss-Lobatto points [18] in the
wall-normal direction, and the y derivatives are taken by multiplying these values with the Chebyshev
pseudospectral differentiation matrix [18]. The nonlinear terms are calculated by performing a
discrete Fourier transform of the stream function to real space, evaluating the nonlinear terms there,
and performing an inverse discrete Fourier transform back to spectral space; the 3/2 rule is used to
avoid aliasing errors and the boundary conditions are implemented using the tau-method [17,18].
For each set of parameters, we check convergence of the velocity field by comparing it at several
resolutions (N,M); convergence was always reached for N = 5 (before dealiasing) and M = 80.
Most of the results presented below are obtained by using the Newton-Raphson algorithm [18] to
solve the time-independent version of Eq. (6). We also performed direct numerical simulations of
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FIG. 2. Velocity profiles given by Eq. (8) for k̃ = π . Vertical axes are positions in the gap (y coordinates),
and the horizontal axes give the distance along the channel in units of k̃x. The top row corresponds to the
symmetric boundary conditions (ṽ = 1), while the bottom row shows the effect of their asymmetry (ṽ = 1/3).
The phase shift φ is (left) 0, (middle) π/2, and (right) π .

Eq. (6) using a fully implicit Crank-Nicolson method [17,18]; for all parameters studied, convergence
was reached for the dimensionless time-step of 10−2. Simulations were started from random initial
conditions for the stream function drawn from a uniform distribution. When assessing stability of a
particular state, the initial conditions comprised the stream function of that state plus some noise.

First, we study how the presence of inertia modifies the Stokes solution, Eq. (8), at relatively
low Reynolds numbers. Using the Newton-Raphson method, we find steady solutions of Eq. (6) and
compare them to the Stokes profile �0. The difference is quantified by calculating the kinetic energy
of the flow, defined as

E = k̃

2π

∫ 2π

k̃

0
dx

1

2

∫ 1

−1
dy

1

2

[(
∂�

∂y

)2

+
(

∂�

∂x

)2
]
, (12)

for the inertial, Ei , and Stokes solutions, Es . In Fig. 3 we plot the ratio Ei/Es for ṽ = 1, φ = 0, and
k̃ = π . The data demonstrate that the inertial contribution to the kinetic energy is only about 4% of
the total kinetic energy at Re = 30, and that that contribution decreases for smaller values of Re. The
difference Ei/Es − 1 scales quadratically with Re (fit not shown), implying that the small inertial
correction to the Stokes profile can be obtained from the leading-order term of the perturbation theory
in Re, even for Re ∼ 30. Visual inspection of the inertial velocity profiles together with the data in
Fig. 3 suggests that the Stokes solution, Eq. (8), is a very good approximation to the actual inertial
solution even at moderate Reynolds numbers.

The situation changes significantly at higher Reynolds numbers. In Fig. 4(left) we plot the velocity
profile for the symmetric boundary conditions at Re = 40 and k̃ = π , and observe that it no longer
possesses a translation-reflection symmetry along the x axis, cf. Fig. 2(top left). This is associated
with the emergence of the zeroth Fourier mode U (y) of the horizontal velocity component u(x,y),
see Fig. 4(right), absent at lower Reynolds numbers. This x-independent mean flow along the x

direction reaches significant amplitudes of about 23% of the maximum slip velocity at the wall.
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FIG. 3. The ratio of the kinetic energies of the inertial and Stokes solutions for ṽ = 1, φ = 0, and k̃ = π as
a function of the Reynolds number Re. The solid line is well approximated by 1 + (Re/151.41)2.

To characterize this new flow state, we introduce a dimensionless order parameter

χ = Re
k̃

2π

∫ 2π

k̃

0
dx

∫ 1

−1
dy u(x,y) ≡ Re

∫ 1

−1
U (y)dy, (13)

which is a two-dimensional flow rate along the channel (in physical units) scaled by the kinematic
viscosity ν of the fluid. In Fig. 5(left), we plot χ as a function of the Reynolds number for ṽ = 1,
φ = 0, and k̃ = π (black line). For low values of Re, the flow is left-right symmetric, there is no
mean flow, and χ = 0, while at larger Re, χ acquires nonzero values, indicating the presence of a
mean flow. The direction of the mean flow is selected by a spontaneous symmetry breaking and can
be in either direction along the channel. The state diagram, Fig. 5(left), therefore has two symmetric
branches, ±χ , typical of a supercritical (pitchfork) bifurcation. By combining the Newton-Raphson
and time-iteration techniques, we have verified that the left-right symmetric solution with χ = 0
is also present for higher values of Re but is linearly unstable. The final flow state with χ �= 0
is stationary and stable with respect to small perturbations. Therefore, we conclude that the new
flow state is a result of a linear instability that sets in at Recrit ≈ 33.3 for this set of parameters.
In Fig. 5(left), we also show the bifurcation diagrams for other values of the phase difference φ

and observe that the lowest Recrit is achieved for φ = π ; the corresponding base profile is shown in
Fig. 2(top right).

The instability thresholds presented above were calculated by imposing a fixed value of k̃, i.e.,
assuming a particular spatial period of the solution. To find the critical condition in an infinitely
long channel, we now study how Recrit depends on k̃. In Fig. 5(right), we plot the nonlinear stability

−1.0 −0.5 0.0 0.5 1.0

y

0.00

0.05
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0.25
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0 π 2π

k̃ x

−1

0

1

y

FIG. 4. Velocity profile at Re = 40 for ṽ = 1, φ = 0, and k̃ = π . (Left) The velocity field in the channel
without its mean profile (zeroth Fourier harmonics). (Right) The mean profile U (y).
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FIG. 5. (Left) The bifurcation diagram, χ vs Re, for various values of φ at k̃ = π . (Right) The critical
Reynolds number Recrit as a function of k̃. For φ = 0, the minimal value of Recrit is Remin

crit = 33.31 at k̃ = 3.3,
while for φ = π , Remin

crit = 21.2 at k̃ = 2.6. In both plots ṽ = 1.

thresholds for two values of φ, and observe that Remin
crit = 21.2 for k̃ = 2.6 and φ = π . The stability

thresholds for other values of φ lie in between the two cases presented in Fig. 5(right), similar to
Fig. 5(left).

We also studied the effect of the asymmetry in the wall slip velocity (not shown), with ṽ either
smaller or larger than unity. For every set of φ and k̃ considered, the corresponding Recrit was found
to be larger than Recrit for ṽ = 1.

As mentioned in the introduction, this instability can potentially be utilized as a means of creating
a unidirectional flow in a microfluidic device, although relatively high transitional Reynolds numbers
and the a priori unknown direction of the flow could make it impractical. We now attempt to assess
whether a modification of the slip boundary condition, Eq. (1), can alleviate both problems. To this
end, we consider the following (dimensional) velocity profile prescribed at the walls,

u(x, ± L,t) = vc ± v cos kx, (14)

where the spatially oscillatory component is the same as in Eq. (1) for the most unstable parameters
(v+ = v− ≡ v, φ = π , and kL = 2.6), and we have introduced vc, the amplitude of a constant slip
velocity in the positive x direction. Here, we study whether a small value of vc can produce a
significant mean flow at Re < Remin

crit . The problem is made dimensionless as before, and we define
additionally another Reynolds number, Rec = vcL/ν, based on the constant slip velocity.

In the absence of the spatially oscillatory component, equations of motion are trivially solved by
a pluglike flow, U (y) = vc (in physical units), which corresponds to the order parameter given by
χc = 2Rec. For Re > 0, we expect that the interaction between the pluglike and spatially oscillatory
components will generate flow rates enhanced beyondχc . In Fig. 6, we present the bifurcation diagram
for the modified boundary conditions, Eq. (14), varying Re but keeping Rec fixed to a particular
value. The Rec = 0 data are the same as in Fig. 5(left) for φ = π . In the presence of a constant
bias, the bifurcation diagram loses its ±χ symmetry, and we only plot the dimensionless flow rate in
the same direction as the bias. For Rec = 0.1 and Rec = 1, the flow rate is dominated by the pluglike
profile at low values of Re, while at larger Re there is an enhancement of the flow rate due to the
instability. The bifurcation diagram now looks like an imperfect pitchfork bifurcation. For yet larger
Rec, the effect of the underlying instability is masked by the presence of a strong bias and only a mild
enhancement is observed. While the presence of the bias clearly enhances the mean flow rate and
breaks the left-right symmetry, the enhancement is mild and it remains to be seen whether there are
practical advantages of generating a steady flow in a microfluidic device by a slip velocity Eq. (14)
instead of a stronger steady component alone.

The results developed here have several implications. First, we find that a periodic variation in wall
charge will have only a small effect on average velocity in a microfluidic device with an otherwise
uniform wall charge, if the periodic component is small (or even modest) in magnitude compared
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FIG. 6. The bifurcation diagram for the modified boundary conditions with a bias, Eq. (14) for φ = π and
k̃ = 2.6. The strength of the bias, Rec, is fixed and the strength of the spatially oscillatory component, Re, is
varied.

to the uniform component. This conclusion seems likely to hold if the nonuniform component is
irregular or nonperiodic, as long as it is significantly smaller than the uniform wall charge. Thus,
surface charge in a microfluidic device does not need to be nearly perfectly uniform to achieve a
uniform flow rate, whose magnitude is set by the average surface charge, a conclusion of importance
in practical applications where wall charging is unlikely to be exquisitely uniform. Second, if a
rectified flow with a sharp onset is desired in a microfluidic device using electric fields to drive the
flow, this can be accomplished by exploiting the bifurcation described here, albeit only for rather
large channel widths and heights (i.e., millimeters) and strong fields. In addition, there may be benefit
in using periodic or nearly periodic flows for separation of particles or cells based on size or other
characteristics, including separations based on inertial forces. These inertial forces are already being
exploited in pressure-driven flows to separate rare circulating tumor cells from white blood cells
[6]. Electro-osmotic flow driven by a periodic wall charge, along with fluid inertial forces, may
expand the options for improving the efficiency of such devices. We note that inertial fluid forces
in pressure-driven microfluidic devices are strong enough to induced circulating Dean flows, which
are of great significance for separating particles and cells. Thus, the addition of electro-osmotically
driven flow, combined with inertial effects, opens multiple new opportunities for separations. Third,
the flows generated by periodic charges may provide a good experimental test of one’s ability to
control elecro-osmotic flow fields and of the ability to created controlled charge at walls. Since the
flow field is readily predicted, including the effect of surface charge amplitude and other parameters,
a measurement of the flow (even without the bifurcation) could be used to validate methods of
controlling surface charge, for example. Fourth, both the circulating primary flow and the secondary
bifurcation flow described here occurs in a geometry of trivial simplicity (a straight channel), which
allows it to be used as a test flow field for exploring various advanced simulating methods, such as
mesoscopic flow simulations [12], and for exploring the behavior of complex fluids in complex flows,
but with simple geometry and boundary conditions [19]. Finally, the flow is essentially completely
viscous prior to the bifurcation and described by an analytical solution to the Stokes equation,
represents a particularly simple and elegant example of a classical forward bifurcation at a very
modest Reynolds number, and is the simplest bifurcation so far presented for electro-osmotic flow.
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