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The slip boundary conditions for the compressible Navier-Stokes equations for a
polyatomic gas are derived from kinetic theory using the ellipsoidal statistical model of
the Boltzmann equation for a polyatomic gas. The analysis, which follows the previous
work by the present authors and others for a monatomic gas [Aoki et al., J. Stat. Phys. 169,
744 (2017)], is based on the Chapman-Enskog expansion and the analysis of the Knudsen
layer adjacent to the boundary. The resulting slip boundary conditions are presented with
explicit slip coefficients for some typical polyatomic gases.
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I. INTRODUCTION

In the present paper, we are concerned with rarefied polyatomic gas flows at small Knudsen
numbers. Here, the Knudsen number is the ratio of the mean free path of gas molecules to the
characteristic length of the considered system. Our aim is to establish the slip boundary conditions
for the compressible Navier-Stokes equations for a polyatomic gas. The study is a continuation of
the recent paper for a monatomic gas by the present authors and others [1].

For rarefied gas flows, for which the Knudsen number takes an arbitrary value, we need, in
principle, to handle the Boltzmann equation. However, because of its complexity, its application to
practical gas flow problems is not an easy task, though some established numerical methods, such as
the direct simulation Monte Carlo (DSMC) method [2,3], are available nowadays [4–10]. In addition,
numerical solution of the Boltzmann equation becomes increasingly difficult as the Knudsen number
becomes small, that is, in the vicinity of the so-called fluid-dynamic limit.

For such flows with small Knudsen numbers, an approach alternative to numerical solution of
the Boltzmann equation is available. It is the so-called slip flow theory. It has long been known that
the combination of the Navier-Stokes equations and appropriate boundary conditions, called the slip
boundary conditions, reproduces the correct overall solutions of the corresponding boundary value
problems of the Boltzmann equation. A complete slip-flow theory had been established by Sone in a
formal but systematic asymptotic analysis of the boundary value problem of the Boltzmann equation
for small Knudsen numbers [11–16]. The reader is also referred to his two books [17,18]. Sone’s
theory, which we may call the generalized slip-flow theory, provides appropriate combinations of
fluid-dynamic-type equations and their slip boundary conditions, which are different depending on the
considered physical situations (see the introduction of Ref. [1]). However, for reasons of theoretical
rigor, the compressible Navier-Stokes equations never appear in this theory. To be more specific,
the latter equations are replaced by the combination of Euler-type and viscous-boundary-layer-type
equations. Nevertheless, the compressible Navier-Stokes equations are general equations that contain
most of the relevant fluid equations, such as the incompressible Euler, Navier-Stokes, and Prandtl’s
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boundary-layer equations, as special cases. Therefore, for the convenience of practical applications,
it is useful to have the correct slip boundary conditions for the compressible Navier-Stokes equations.

The slip boundary conditions for the compressible Navier-Stokes equations are a classical subject,
and some descriptions are found in standard textbooks (see, e.g., Refs. [19,20]). However, it is hard
to find the correct formulas in the general form, with explicit numerical coefficients, that are based
on correct derivation using the Boltzmann equation and can be applied immediately to practical
problems. The paper by Coron [21] would be the exception that provides the outline of the correct
derivation under the assumption that the boundary is at rest. However, it also does not give numerical
values of the coefficients, so that its application to practical problems is not straightforward. This is the
reason why Ref. [1] revisited this classical problem and provided the detailed derivation of the correct
slip boundary conditions for the compressible Navier-Stokes equations for general time-dependent
problems that may include moving boundaries.

Although Ref. [1] is based on the full Boltzmann equation, it restricted itself to the case of a
monatomic gas. Therefore, the associated compressible Navier-Stokes equations do not contain the
bulk viscosity. In the present study, we try to extend the analysis of Ref. [1] to the case of a polyatomic
gas. However, handling the Boltzmann equation for a polyatomic gas is a complicated problem and
is not an easy task. Therefore, we employ the ellipsoidal statistical (ES) model of the Boltzmann
equation for a polyatomic gas, which was proposed in Ref. [22] and rederived in a systematic
manner in Ref. [23]. On the basis of this model, we will derive the slip boundary conditions for the
compressible Navier-Stokes equations for a polyatomic gas. The analysis here tightly follows that
in Ref. [1]. Therefore, we let the present paper have a similar structure as that of Ref. [1] on purpose
in order to increase the readability.

It should be mentioned that some fluid type (or macroscopic) equations beyond the Navier-Stokes
equations have been proposed also for polyatomic gases [24–27] for the purpose of extending the
macroscopic theory to larger Knudsen numbers. In the present paper, however, we adhere to the
compressible Navier-Stokes equations and do not enter discussions on these approaches.

The structure of the paper is as follows. After this introduction, the problem and the assumptions are
stated in Sec. II. Section III is devoted to the formulation of the problem, which contains the detailed
description of the basic equations and boundary conditions. In Sec. IV, the first-order Chapman-
Enskog solution, together with the associated compressible Navier-Stokes equations, is summarized.
The corresponding slip boundary conditions are derived by the Knudsen-layer analysis in Sec. V,
which is the main part of the paper. In Sec. VI, the compressible Navier-Stokes equations and their
slip boundary conditions are presented in the dimensional form. Some concluding remarks are given
in Sec. VII.

II. PROBLEM AND ASSUMPTIONS

We consider a polyatomic ideal gas in contact with solid boundaries of arbitrary but smooth shape.
The gas may extend to infinity, and no external force acts on the gas molecules. We investigate the
unsteady motion of the gas under the following assumptions:

(i) The behavior of the gas is described by the ES model of the Boltzmann equation for a
polyatomic gas [22,23].

(ii) The boundaries do not deform and undergo a rigid-body motion, and the gas-surface
interaction is described by the Maxwell-type diffuse-specular reflection [17,18].

(iii) The mean free path (or the mean free time) of the gas molecules at the reference equilibrium
state at rest is sufficiently small compared to the characteristic length (or the characteristic time) of
the system.

(iv) At the initial time, the boundaries are at rest and have a uniform temperature, and the gas is
in the equilibrium state at rest with the same temperature. After the initial time, the boundaries may
start moving smoothly, and their temperature may change smoothly in time and position. (For the
problems including infinities, the corresponding initial state and slow variations should be assumed
at infinities.)
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We put assumption (iv) for the same reason as in Ref. [1]. That is, we want to avoid the occurrence
of the initial layer and that of the interaction between the initial layer and the Knudsen layer during
the initial stage for the sake of theoretical rigor. However, assumption (iv) can be released if we admit
the inaccuracy during the initial stage with the duration of the order of the mean free time.

III. FORMULATION OF THE PROBLEM

A. Basic equations

Let us consider a polyatomic gas with internal degrees of freedom δ (δ � 2). Let t be the time
variable, X (or Xi) be the position vector in the physical space, ξ (or ξi) be the molecular velocity,
and E be the energy per unit mass associated with the internal modes. We denote the number of
the gas molecules contained in an infinitesimal volume d XdξdE around a point (X, ξ , E) in the
seven-dimensional space consisting of X , ξ , and E by

1

m
f (t, X, ξ , E)d XdξdE, (1)

where m is the mass of a molecule. We call f (t, X, ξ , E) the velocity-energy distribution function
of the gas molecules. It is governed by the ES model of the Boltzmann equation for a polyatomic
gas [22,23], which can be written in the following form:

∂f

∂t
+ ξi

∂f

∂Xi

= Q(f ), (2)

where

Q(f ) = Ac(T )ρ(G − f ), (3a)

G = ρEδ/2−1

(2π )3/2(detT)1/2(RTrel)δ/2�(δ/2)
exp

[
−1

2
(ξi − vi)(T−1)ij (ξj − vj ) − E

RTrel

]
, (3b)

(T)ij = (1 − θ )[(1 − ν)RTtrδij + νpij /ρ] + θRT δij , (3c)

ρ =
∫∫ ∞

0
f dEdξ , (3d)

vi = 1

ρ

∫∫ ∞

0
ξif dEdξ , (3e)

pij =
∫∫ ∞

0
(ξi − vi)(ξj − vj )f dEdξ , (3f)

Ttr = 1

3ρR

∫∫ ∞

0
|ξ − v|2f dEdξ , (3g)

Tint = 2

δρR

∫∫ ∞

0
Ef dEdξ , (3h)

T = 3Ttr + δTint

3 + δ
, (3i)

Trel = θT + (1 − θ )Tint. (3j)

Here, R is the gas constant per unit mass (i.e., the Boltzmann constant kB divided by m), ρ is
the density, v (or vi) is the flow velocity, pij is the stress tensor, Ttr is the temperature associated
with the translational motion, Tint is the temperature associated with the energy of the internal modes,
T is the temperature, dξ = dξ1dξ2dξ3, and the domain of integration with respect to ξ is the whole
space of ξ . The symbol δij indicates the Kronecker delta, and ν ∈ [−1/2, 1) and θ ∈ (0, 1] are the
constants that adjust the Prandtl number and the bulk viscosity. In addition, Ac(T ) is a function of T
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such that Ac(T )ρ is the collision frequency of the gas molecules, �(z) is the gamma function defined
by

�(z) =
∫ ∞

0
sz−1e−sds, (4)

T is the 3 × 3 matrix [the (i,j ) component of which is defined by Eq. (3c)], and detT and T−1 are,
respectively, its determinant and inverse. Here and in what follows, we basically use the summation
convention, i.e., aibi = ∑3

i=1 aibi , a2
i = ∑3

i=1 a2
i , aibj cij = ∑3

i,j=1 aibj cij , etc.
We should note that in Ref. [22], the variable I , which is related to our E as E = I 2/δ , is used

as an independent variable instead of E . See Ref. [28] or Appendix A in Ref. [29] for the relation
between the notation in Ref. [22] and that of the present paper.

The vanishing of the collision term Q(f ) = 0 is equivalent to the fact that f is the following local
equilibrium distribution [22]:

feq = ρEδ/2−1

(2πRT )3/2(RT )δ/2�(δ/2)
exp

(
−|ξ − v|2

2RT
− E

RT

)
. (5)

In addition, for an arbitrary function g(t, X, ξ , E), the following relation holds:∫∫ ∞

0
ϕrQ(g)dEdξ = 0, (6)

where ϕr (r = 0, ..., 4) are the collision invariants, i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1
2 |ξ |2 + E . (7)

It should also be mentioned that the mean free path l0 of the gas molecules in the equilibrium state
at rest at density ρ0 and temperature T0 is given by

l0 = 2√
π

(2RT0)1/2

Ac(T0)ρ0
(8)

for Eq. (2), since Ac(T0)ρ0 is the collision frequency at this equilibrium state.
The initial condition for f [cf. assumption (iv)] is given at time t = 0 by

f (0, X, ξ , E) = f0, (9)

where f0 indicates the equilibrium state at rest with density ρ0 (reference density) and temperature
T0 (reference temperature), i.e.,

f0 = ρ0Eδ/2−1

(2πRT0)3/2(RT0)δ/2�(δ/2)
exp

(
− |ξ |2

2RT0
− E

RT0

)
. (10)

The boundary condition for f [cf. assumption (ii)] is written in the following form:

f (t, Xw, ξ , E) = (1 − α)Rf (t, Xw, ξ , E)

+α
ρwEδ/2−1

(2πRTw)3/2(RTw)δ/2�(δ/2)
exp

(
−|ξ − vw|2

2RTw
− E

RTw

)
,

for (ξ − vw) · n > 0, (11a)

ρw = −
(

2π

RTw

)1/2 ∫
(ξ−vw)·n<0

∫ ∞

0
(ξ − vw) · nf (t, Xw, ξ , E)dEdξ , (11b)

where Xw (or Xwi) is the position of a point on the boundary, vw (or vwi) and Tw are the velocity
and temperature of the boundary at the point Xw, and n is the unit normal vector to the boundary,
pointing into the gas, at Xw. In general, Xw is a function of t , vw is the time derivative of Xw, and the
arguments of Tw and n are (t, Xw). To be consistent with assumption (iv), vw = 0 and Tw = T0 should
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hold at t = 0, and Xw (thus, vw), Tw, and n are assumed to change smoothly with t . In Eq. (11a),
the symbol R indicates the reflection operator defined by

Rg(ξi) = g(ξi − 2(ξj − vwj )njni), (12)

with an arbitrary function g(ξ ) of ξ , and α (0 � α � 1) is the so-called accommodation coefficient,
giving the specular reflection when α = 0 and the diffuse reflection when α = 1. In the present paper,
we exclude the case of specular reflection assuming that α is strictly positive. Note that this boundary
condition satisfies the condition that there is no instantaneous mass flow across the boundary, i.e.,∫∫ ∞

0
(ξ − vw) · nf (t, Xw, ξ , E)dEdξ = 0. (13)

Finally, we should mention that the pressure p and the heat-flow vector qi are given by

p = RρT, (14)

qi =
∫∫ ∞

0
(ξi − vi)

(
1

2
|ξ − v|2 + E

)
f dEdξ , (15)

where Eq. (14) is the equation of state.

B. Dimensionless system

In this subsection, we introduce dimensionless variables and present our basic system in
dimensionless form. Let us denote by L the reference length, by t0 the reference time, and by
p0 = Rρ0T0 the reference pressure, where ρ0 and T0 are the reference density and temperature that
appeared in the initial state, Eq. (10). In the present study, we choose t0 as

t0 = L/(2RT0)1/2, (16)

which corresponds to the so-called fluid-dynamic scaling. Now we introduce the dimensionless
quantities (t̂ , xi , ζi , Ê , f̂ , Ĝ, ρ̂, v̂i , T̂tr , T̂int, T̂ , T̂rel, p̂ij , p̂, q̂i , Âc(T̂ ), xwi , v̂wi , T̂w), which correspond
to the original dimensional quantities (t , Xi , ξi , E , f , G, ρ, vi , Ttr , Tint, T , Trel, pij , p, qi , Ac(T ),
Xwi , vwi , Tw), by the following relations:

t̂ = t/t0, xi = Xi/L, ζi = ξi/(2RT0)1/2, Ê = E/RT0,

(f̂ , Ĝ) = (f,G)/2ρ0(2RT0)−5/2, ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)1/2,

(T̂tr, T̂int, T̂ , T̂rel) = (Ttr, Tint, T , Trel)/T0, p̂ij = pij /p0, p̂ = p/p0, q̂i = qi/p0(2RT0)1/2,

Âc(T̂ ) = Ac(T )/Ac(T0), xwi = Xwi/L, v̂wi = vwi/(2RT0)1/2, T̂w = Tw/T0. (17)

We occasionally use the boldface letters x, ζ , v̂, q̂, xw, and v̂w for xi , ζi , v̂i , q̂i , xwi , and v̂wi ,
respectively.

Then, we obtain the dimensionless form of the ES model (2) as follows:

∂f̂

∂t̂
+ ζi

∂f̂

∂xi

= 1

ε
Q̂(f̂ ), (18)

where

Q̂(f̂ ) = Âc(T̂ )ρ̂(Ĝ − f̂ ), (19a)

Ĝ = ρ̂

π3/2(detT̂)1/2 T̂
δ/2

rel �(δ/2)
Êδ/2−1 exp

[
−(ζi − v̂i)(T̂−1)ij (ζj − v̂j ) − Ê

T̂rel

]
, (19b)

(T̂)ij = (1 − θ )[(1 − ν)T̂trδij + νp̂ij /ρ̂] + θT̂ δij , (19c)
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ρ̂ =
∫∫ ∞

0
f̂ dÊdζ , (19d)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ dÊdζ , (19e)

p̂ij = 2
∫∫ ∞

0
(ζi − v̂i)(ζj − v̂j )f̂ dÊdζ , (19f)

T̂tr = 2

3ρ̂

∫∫ ∞

0
(ζk − v̂k)2f̂ dÊdζ , (19g)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ dÊdζ , (19h)

T̂ = 3T̂tr + δT̂int

3 + δ
, (19i)

T̂rel = θT̂ + (1 − θ )T̂int. (19j)

Here, ε is a quantity of the order of the Knudsen number Kn defined by

ε =
√

π

2
Kn =

√
π

2

l0

L
, (20)

dζ = dζ1dζ2dζ3, and the domain of integration with respect to ζ is the whole space of ζ . The
(dimensionless) pressure p̂ and heat-flow vector q̂i are given by

p̂ = ρ̂T̂ , (21)

q̂i =
∫∫ ∞

0
(ζi − v̂i)(|ζ − v̂|2 + Ê)f̂ dÊdζ . (22)

Corresponding to the statement including Eq. (5), Q̂(f̂ ) = 0 is equivalent to the fact that f̂ is the
dimensionless local equilibrium given by

f̂eq = ρ̂Êδ/2−1

(πT̂ )3/2T̂ δ/2�(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
. (23)

In addition, the dimensionless version of the statement containing Eqs. (6) and (7) reads as follows:
For an arbitrary function ĝ(t̂ , x, ζ , Ê), the relation∫∫ ∞

0
ϕ̂r Q̂(ĝ)dÊdζ = 0 (24)

holds, where ϕ̂r (r = 0, ..., 4) are the dimensionless collision invariants, i.e.,

ϕ̂0 = 1, ϕ̂i = ζi (i = 1, 2, 3), ϕ̂4 = |ζ |2 + Ê . (25)

The dimensionless form of the initial condition (9) is written as

f̂ (0, x, ζ , Ê) = f̂0, (26)

where

f̂0 = [�(δ/2)]−1E(ζ )Êδ/2−1e−Ê , ζ = |ζ | = (
ζ 2
i

)1/2
, E(ζ ) = π−3/2 exp(−ζ 2). (27)
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The boundary condition (11) is nondimensionalized as follows:

f̂ (t̂ , xw, ζ , Ê) = (1 − α)R̂f̂ (t̂ , xw, ζ , Ê) + α
ρ̂wÊδ/2−1

(πT̂w)3/2T̂
δ/2

w �(δ/2)
exp

(
−|ζ − v̂w|2

T̂w
− Ê

T̂w

)
,

for (ζ − v̂w) · n > 0, (28a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0
(ζ − v̂w) · nf̂ (t̂ , xw, ζ , Ê)dÊdζ , (28b)

where R̂ is the dimensionless reflection operator, corresponding to (12), acting on any function ĝ of
ζi , i.e.,

R̂ĝ(ζi) = ĝ(ζi − 2(ζj − v̂wj )njni). (29)

We note that v̂w = 0 and T̂w = 1 at t̂ = 0, and xw (thus v̂w), T̂w, and n are assumed to change
smoothly in t̂ . Corresponding to Eq. (13), the following condition holds on the boundary:∫∫ ∞

0
(ζ − v̂w) · nf̂ (t̂ , xw, ζ , Ê)dÊdζ = 0. (30)

We will analyze the initial- and boundary-value problem, Eqs. (18), (26), and (28), for small values
of the Knudsen number Kn, i.e., for ε � 1. Since the reference time is t0 = L/(2RT0)1/2 = 1/ενc,
where νc = ρ0Ac(T0) is the mean collision frequency at the reference equilibrium state, it is much
longer than the mean free time 1/νc.

IV. CHAPMAN-ENSKOG EXPANSION AND THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

As is well known, the compressible Navier-Stokes equations are formally obtained from the
Boltzmann equation by the Chapman-Enskog expansion [18,20,30,31]. For the present ES model for a
polyatomic gas, the compressible Navier-Stokes equations are derived in Ref. [22]. In this section, we
just summarize the first-order Chapman-Enskog solution and the resulting Navier-Stokes equations.
The Chapman-Enskog solution is based on the assumption that the length scale of variation is of
O(1) [or O(L) in the dimensional space] and the initial and boundary conditions are not considered.
Therefore, the solution has a specific property, so that it should be distinguished from the correct
solution f for the initial and boundary value problem of the ES model by an appropriate subscript,
such as fCE. However, in order to avoid cumbersome notation, we denote it just by f in this and
following sections except in some places that need clarification.

A. Linearized collision operator

In this subsection, we summarize the linearized collision operator of the ES model. Let us consider
the case where the deviation from the equilibrium state at rest with density ρ0 and temperature T0 is
small and put f̂ = f̂0(1 + φ) [cf. Eq. (27)], where |φ| � 1. If we insert this f̂ in Q̂(f̂ ) [cf. Eq. (19a)]
and neglect the terms of the order of φ2 and higher, then we obtain

Q̂(f̂ ) = f̂0L(φ) = [�(δ/2)]−1E(ζ )Êδ/2−1e−ÊL(φ), (31)

where

L[φ(t̂ , x, ζ , Ê)](t̂ , x, ζ , Ê) = ω + 2ζiui +
(
Ê − δ

2

)
τrel +

(
ζiζj − δij

2

)
dij − φ, (32a)

ω = 〈φ〉, ui = 〈ζiφ〉, (32b)
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τrel = θτ + (1 − θ )τint, τ = 3τtr + δτint

3 + δ
, (32c)

τtr = 2

3

〈(
ζ 2 − 3

2

)
φ

〉
, τint = 2

δ

〈(
Ê − δ

2

)
φ

〉
, (32d)

dij = [(1 − θ )τtr + θτ ]δij + (1 − θ )ν[Pij − (ω + τtr)δij ],

Pij = 2〈ζiζjφ〉, (32e)

and 〈 · 〉 is defined, with an arbitrary function ĝ(ζ , Ê) of ζ and Ê , as

〈ĝ(ζ , Ê)〉 =
∫∫ ∞

0
ĝ(ζ , Ê)f̂0(ζ, Ê)dÊdζ =

∫∫ ∞

0
ĝ(ζ , Ê)[�(δ/2)]−1E(ζ )Êδ/2−1e−ÊdÊdζ . (33)

In Eq. (32a), the argument of φ and that of L(φ) are shown explicitly on the left-hand side. The
operator L( · ) is the linearized collision operator of the ES collision operator Q( · ) in Eq. (3a) or
Q̂( · ) in Eq. (19a). It satisfies the relation

〈ϕ̂rL(ĝ)〉 = 0, (34)

where ϕ̂r (r = 0, . . . , 4) are given in Eq. (25). In addition, we introduce the following modified
operator La(φ):

La(φ) = Âc(a) a−1/2L(φ). (35)

B. Chapman-Enskog solution and Navier-Stokes equations

As is well known, the Navier-Stokes equations correspond to the first-order Chapman-Enskog
solution, which can be expressed as

f̂ = f̂ (0) + f̂ (1)ε + O(ε2). (36)

Here, the leading-order term f̂ (0) is a local equilibrium distribution

f̂ (0) = ρ̂Êδ/2−1

(πT̂ )3/2T̂ δ/2�(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
, (37)

and the first-order term f̂ (1) is given by the following form:

f̂ (1) = f̂ (0)�, (38a)

� = − 1

ρ̂T̂
CjA(C, Ē, T̂ )

∂T̂

∂xj

− 1

2ρ̂T̂ 1/2

(
CjCk − 1

3
C2δjk

)
B(T̂ )

(
∂v̂k

∂xj

+ ∂v̂j

∂xk

)
− 1

ρ̂T̂ 1/2
Bb(C, Ē, T̂ )

∂v̂j

∂xj

, (38b)

where

Ci = ζi − v̂i

T̂ 1/2
, C = |C| = (

C2
j

)1/2
, Ē = Ê

T̂
, (39)
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and A(C, Ē, T̂ ), B(T̂ ), and Bb(C, Ē, T̂ ) are the functions defined by

A(C, Ē, T̂ ) = T̂ 1/2

Âc(T̂ )

(
C2 − 5 + δ

2
+ Ē

)
, (40a)

B(T̂ ) = 2

1 − ν + θν

T̂ 1/2

Âc(T̂ )
, (40b)

Bb(C, Ē, T̂ ) = 1

θ

2

3 + δ

T̂ 1/2

Âc(T̂ )

(
1

3
δ C2 − Ē

)
. (40c)

More specifically, they are the solutions of the following integral equations:

LT̂ (CiA) = −Ci

(
C2 − 5 + δ

2
+ Ē

)
, with subsidiary condition 〈C2A〉 = 0, (41a)

LT̂

((
CjCk − 1

3
C2δjk

)
B
)

= −2

(
CjCk − 1

3
C2δjk

)
, (41b)

LT̂ (Bb) = − 2

3 + δ

(
1

3
δC2 − Ē

)
, with subsidiary condition 〈Bb〉 = 〈(C2 + Ē)Bb〉 = 0. (41c)

Note that the independent variables in LT̂ ( · ) are C and Ē , and the integration variables in 〈 · 〉 [thus
in LT̂ ( · )] are also C and Ē .

The macroscopic quantities associated with the Chapman-Enskog expansion are also given by
Eqs. (19d)–(19j), (21), and (22). However, the expansion (36) is designed in such a way that ρ̂, v̂,
and T̂ in Eq. (37) are, respectively, the density, flow velocity, and temperature associated with f̂ .
Therefore, the corresponding moments of the first- and higher-order terms should vanish. That is,
we construct these terms in such a way that∫∫ ∞

0
ϕ̂r f̂

(1)dÊdζ = 0 (42)

holds for f̂ (1) and the same is true for the O(ε2) terms in Eq. (36). Here, ϕ̂r (r = 0, . . . , 4) are the
dimensionless collision invariants given in Eq. (25). One can directly confirm that Eq. (38) fulfills
this requirement.

Inserting the expansion (36) with Eqs. (37) and (38) into Eqs. (19g) and (19h) leads to the following
dimensionless translational and internal temperatures T̂tr and T̂int:

T̂tr = T̂ − ε
2

3

δ

θ (3 + δ)

1

ρ̂

T̂

Âc(T̂ )

∂v̂j

∂xj

+ O(ε2), (43a)

T̂int = T̂ + ε
2

θ (3 + δ)

1

ρ̂

T̂

Âc(T̂ )

∂v̂j

∂xj

+ O(ε2). (43b)

It also gives, from Eqs. (19f) and (22), the following expressions of the dimensionless stress tensor
p̂ij and heat-flow vector q̂i :

p̂ij = p̂δij − ε �1(T̂ )

(
∂v̂i

∂xj

+ ∂v̂j

∂xi

− 2

3

∂v̂k

∂xk

δij

)
− ε�b(T̂ )

∂v̂k

∂xk

δij + O(ε2), (44a)

q̂i = −5

4
ε �2(T̂ )

∂T̂

∂xi

+ O(ε2), (44b)
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where

�1(T̂ ) = 8

15
√

π
T̂ 1/2

∫ ∞

0

∫ ∞

0
C6B(T̂ ) exp(−C2)

Ēδ/2−1

�(δ/2)
e−ĒdĒdC = 1

1 − ν + θν

T̂

Âc(T̂ )
, (45a)

�2(T̂ ) = 16

15
√

π
T̂ 1/2

∫ ∞

0

∫ ∞

0
C4(C2 + Ē)A(C, Ē, T̂ ) exp(−C2)

Ēδ/2−1

�(δ/2)
e−ĒdĒdC =

(
1 + δ

5

)
T̂

Âc(T̂ )
,

(45b)

�b(T̂ ) = 8

3
√

π
T̂ 1/2

∫ ∞

0

∫ ∞

0
C4Bb(C, Ē, T̂ ) exp(−C2)

Ēδ/2−1

�(δ/2)
e−ĒdĒdC = 1

θ

2δ

3(3 + δ)

T̂

Âc(T̂ )
. (45c)

As shown in Sec. VI, ε�1, ε�2, and ε�b are related to the viscosity, the thermal conductivity, and
the bulk viscosity, respectively [see Eq. (134)].

If we use Eq. (44) in the Maxwell transport equations, which are derived by integrating Eq. (18)
times ϕ̂r (r = 0, . . . , 4) [Eq. (25)] over the whole space of ζi and whole range of Ê , and neglect the
terms of O(ε2), we obtain the Navier-Stokes equations for compressible fluids, i.e.,

∂ρ̂

∂t̂
+ ∂ρ̂v̂j

∂xj

= 0, (46a)

∂ρ̂v̂i

∂ t̂
+ ∂ρ̂v̂i v̂j

∂xj

= −1

2

∂p̂

∂xi

+ ε

2

∂

∂xj

[
�1(T̂ )

(
∂v̂j

∂xi

+ ∂v̂i

∂xj

− 2

3

∂v̂k

∂xk

δij

)]
+ ε

2

∂

∂xi

[
�b(T̂ )

∂v̂j

∂xj

]
,

(46b)

∂

∂t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

k

)]
+ ∂

∂xj

[
ρ̂v̂j

(
5 + δ

2
T̂ + v̂2

k

)]
= 5

4
ε

∂

∂xj

[
�2(T̂ )

∂T̂

∂xj

]
+ ε

∂

∂xj

[
�1(T̂ )v̂i

(
∂v̂j

∂xi

+ ∂v̂i

∂xj

− 2

3

∂v̂k

∂xk

δij

)]
+ ε

∂

∂xj

[
�b(T̂ )v̂j

∂v̂k

∂xk

]
,

(46c)

where p̂ = ρ̂T̂ . If we set �b(T̂ ) = 0 and δ = 0 (since δ � 2, this setting is just formal), Eq. (46)
reduces to the (dimensionless) compressible Navier-Stokes equations for a monatomic gas [cf.
Eq. (50) in Ref. [1]]. The dimensional form of Eq. (46) will be given in Sec. VI.

V. DERIVATION OF THE SLIP BOUNDARY CONDITIONS

In this section, we derive the slip boundary conditions for the compressible Navier-Stokes
equations (46). The procedure, which is based on the analysis of the Knudsen layer established
by Sone in the framework of his generalized slip-flow theory [11–18], is basically the same as that in
the case of a monatomic gas [1] though the full Boltzmann equation is considered in this reference.
Therefore, we will make a concise description referring to this reference occasionally.

A. Knudsen layer

1. Introduction of Knudsen layer

In the first-order Chapman-Enskog solution, which corresponds to the Navier-Stokes equations
(46), the initial and boundary conditions (26) and (28) are not taken into account. To be consistent
with the fact that the term up to O(ε) is considered in Eq. (36), the initial and boundary conditions
should be satisfied up to the order of ε.
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If we assume

ρ̂ = 1, v̂ = 0, T̂ = 1, at t̂ = 0, (47)

then the Chapman-Enskog solution (36) satisfies Eq. (26) up to O(ε) because ∂v̂i/∂xj = 0 and
∂T̂ /∂xi = 0 hold. Therefore, under assumption (iv) in Sec. II, Eq. (47) is the correct initial condition
for Eq. (46).

Next, we consider the boundary condition (28). Since the leading-order term f̂ (0) of the Chapman-
Enskog solution is a local equilibrium distribution [Eq. (37)], it can be made to satisfy Eq. (28) by
assuming that

v̂ = v̂w, T̂ = T̂w, at x = xw. (48)

However, as discussed in Ref. [1], if we try to satisfy the boundary condition (28) up to O(ε) with
the first-order Chapman-Enskog solution f̂ (0) + f̂ (1)ε, we encounter a contradiction.

In order to obtain the solution satisfying the boundary condition, one has to introduce the kinetic
boundary layer, the so-called Knudsen layer, with thickness of the order of ε (with thickness of the
order of the mean free path in the dimensional physical space) adjacent to the boundary [17,18]. Let
us denote the Chapman-Enskog solution (36) by f̂CE, the correction term inside the Knudsen layer
by f̂K, and the total solution that satisfies the boundary condition by f̂tot. Then, we write

f̂tot = f̂CE + f̂K. (49)

Correspondingly, we denote the macroscopic quantities by

ĥtot = ĥCE + ĥK, (50)

where ĥ stands for any of the dimensionless macroscopic quantities, ρ̂, v̂i , p̂ij , T̂tr , etc., appeared in
Eqs. (19d)–(19j), (21), and (22), and ĥCE and ĥK indicate these macroscopic quantities associated
with the Chapman-Enskog solution and the Knudsen-layer correction, respectively. Note that the
macroscopic quantities appeared in Sec. IV belong to ĥCE although the subscript “CE” was not used
there.

We assume the following properties for the correction term f̂K:
(a) f̂K is appreciable only in the Knudsen layer and vanishes rapidly away from the boundary.
(b) f̂K has the length scale of variation of the order of ε (i.e., of the order of the mean free path

l0 in the dimensional physical space) in the direction normal to the boundary, that is, nj∂f̂K/∂xj =
O(f̂K/ε).

(c) f̂K has the length scale of variation of the order of 1 (i.e., of the order of the reference length
L in the dimensional physical space) in the direction along the boundary.

(d) f̂K has the timescale of variation of the order of 1 [i.e., of the order of t0 = L/(2RT0)1/2 in
the dimensional time], i.e., ∂f̂K/∂t̂ = O(f̂K).
These assumptions can be justified if such a solution is obtained actually.

If we substitute Eqs. (49) and (50) into the definitions of ĥ, i.e., Eqs. (19d)–(19j), (21), and
(22) (with f̂ = f̂tot and ĥ = ĥtot) and use the fact that f̂CE and ĥCE also satisfy the same relations
as Eqs. (19d)–(19j), (21), and (22) (with f̂ = f̂CE and ĥ = ĥCE) (cf. Sec. IV B), we obtain the
expressions of the corrections ĥK inside the Knudsen layer in terms of f̂K and ĥCE. Further, if we
substitute Eq. (49) into the ES model, Eq. (18), and take into account the fact that f̂CE is the solution
of the same equation, we obtain the equation for the Knudsen-layer correction f̂K. We also obtain the
initial and boundary conditions for f̂K by inserting Eq. (49) in Eqs. (26) and (28). These procedures
will be explained more specifically in the following subsections.

2. Preliminaries

The fact that the Chapman-Enskog solution (36) can be made to satisfy the boundary condition
(28) at the leading order in ε by the choice (48) indicates that the differences v̂ − v̂w and T̂ − T̂w are
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small and of the order of ε on the boundary. Therefore, we put

v̂ − v̂w = ¯̄vε, T̂ − T̂w = ¯̄T ε, at x = xw, (51)

where ¯̄v and ¯̄T are the quantities of O(1). The above fact also indicates that f̂K starts at the order of
ε, so that we let

f̂K = f̂
(1)
K ε + Rf ε2, (52)

where Rf ε2 is the remainder, and Rf is of O(1) and has the properties (a)–(d). Correspondingly, we
put

ĥK = ĥ
(1)
K ε + Rhε

2, (53)

where Rhε
2 is the remainder corresponding to Rf ε2.

We insert Eqs. (49) and (50) with Eqs. (52) and (53) into Eqs. (19d)–(19j), (21), and (22) (with
f̂ = f̂tot and ĥ = ĥtot) and note that f̂CE and ĥCE satisfy the same relations as Eqs. (19d)–(19j), (21),
and (22) (with f̂ = f̂CE and ĥ = ĥCE). Then, picking up the terms of O(ε) for ĥ

(1)
K and putting the

O(ε2) terms in Rhε
2, we obtain the following expressions of ĥ

(1)
K :

ρ̂
(1)
K =

∫∫ ∞

0
f̂

(1)
K dÊdζ , (54a)

v̂
(1)
Ki = 1

ρ̂

∫∫ ∞

0
(ζi − v̂i)f̂

(1)
K dÊdζ , (54b)

p̂
(1)
Kij = 2

∫∫ ∞

0
(ζi − v̂i)(ζj − v̂j )f̂ (1)

K dÊdζ , (54c)

T̂
(1)

trK = 2

3ρ̂

∫∫ ∞

0

[
(ζk − v̂k)2 − 3

2
T̂

]
f̂

(1)
K dÊdζ , (54d)

T̂
(1)

intK = 2

δρ̂

∫∫ ∞

0

(
Ê − δ

2
T̂

)
f̂

(1)
K dÊdζ , (54e)

T̂
(1)

K = 3T̂
(1)

trK + δT̂
(1)

intK

3 + δ
, (54f)

T̂
(1)

relK = θT̂
(1)

K + (1 − θ )T̂ (1)
intK, (54g)

p̂
(1)
K = ρ̂T̂

(1)
K + ρ̂

(1)
K T̂ , (54h)

q̂
(1)
Ki =

∫∫ ∞

0
(ζi − v̂i)

[
(ζk − v̂k)2 + Ê − 5 + δ

2
T̂

]
f̂

(1)
K dÊdζ . (54i)

Note again that ρ̂, v̂i , and T̂ here are the macroscopic quantities associated with the Chapman-Enskog
solution though the subscript CE is not attached. It should also be noted that use has been made
of the fact that T̂tr = T̂ + O(ε), T̂int = T̂ + O(ε), T̂rel = T̂ + O(ε), and p̂ij = p̂δij + O(ε) in the
derivation of Eq. (54).

Substituting Eq. (49) with Eq. (52) into Eq. (18) and noting that f̂CE is also the solution of Eq. (18),
we obtain the following equation for f̂

(1)
K (see Appendix A for the outline of the derivation):

ε
∂f̂

(1)
K

∂t̂
+ εζi

∂f̂
(1)
K

∂xi

= Âc(T̂ )ρ̂
(
Ĝ(1)

K − f̂
(1)
K

)+ O(εRf ), (55)
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(a () b)

FIG. 1. Coordinate systems. (a) Coordinate system on the boundary; (b) coordinate system for the Knudsen
layer.

where

Ĝ(1)
K = f̂ (0)

{
ρ̂

(1)
K

ρ̂
+ 2

v̂
(1)
Kk(ζk − v̂k)

T̂
+
[

(ζi − v̂i)(ζj − v̂j )

T̂
− δij

2

]
dKij +

( Ê
T̂

− δ

2

)
T̂

(1)
relK

T̂

}
,

(56a)

dKij =
[

(1 − θ )
T̂

(1)
trK

T̂
+ θ

T̂
(1)

K

T̂

]
δij + (1 − θ )ν

[
p̂

(1)
Kij

ρ̂T̂
−
(

ρ̂
(1)
K

ρ̂
+ T̂

(1)
trK

T̂

)
δij

]
. (56b)

This equation will be elaborated further below.

3. Knudsen-layer equation

We first express a point xw on the boundary as a function of coordinates χ1 and χ2 fixed on the
surface of the boundary and of time t̂ , i.e.,

xw = xw(t̂ , χ1, χ2). (57)

[See Fig. 1(a).] When χ1 and χ2 are fixed, the function xw(t̂ , χ1, χ2) of t̂ gives the trajectory of a
fixed point on the boundary, and when t̂ is fixed, the function xw(t̂ , χ1, χ2) of χ1 and χ2 gives the
parameter representation of the boundary surface at time t̂ . The velocity of the boundary v̂w and the
unit normal vector to the boundary n, which are also the functions of t̂ , χ1, and χ2, are expressed as

v̂w(t̂ , χ1, χ2) = ∂xw

∂t̂
, (58a)

n(t̂ , χ1, χ2) = ±
(

∂xw

∂χ1
× ∂xw

∂χ2

)∣∣∣∣∂xw

∂χ1
× ∂xw

∂χ2

∣∣∣∣−1

, (58b)

where × indicates the vector product, and + sign or − sign is chosen in such a way that n points
into the gas region.

In order to analyze the Knudsen layer, we introduce a new coordinate system that is local near
the boundary and appropriate to describe the rapid change of the physical quantities in the direction
normal to the boundary. We introduce the new variables t̃ , η, and ζ w by the following relations [see
Fig. 1(b)]:

t̂ = t̃ , (59a)

x = ε η n(t̃ , χ1, χ2) + xw(t̃ , χ1, χ2), (59b)

ζ = ζ w + v̂w(t̃ , χ1, χ2). (59c)
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Here, η is a stretched normal coordinate, and ζ w is the molecular velocity relative to the velocity of
the boundary. In accordance with the properties (a)–(d) in Sec. V A 1, we assume that f̂K is a function
of (t̃ , η, χ1, χ2, ζ w, Ê) and vanishes rapidly as η → ∞:

f̂K = f̂K(t̃ , η, χ1, χ2, ζ w, Ê), (60a)

f̂K → 0, as η → ∞. (60b)

Therefore, Eq. (60) also holds for f̂
(1)
K and Rf in Eq. (52).

We now consider Eq. (55) inside the Knudsen layer, i.e., η = O(1) or (x − xw) · n = O(ε). The
x dependence of f̂ (0) is through ρ̂, v̂, and T̂ , the length scale of which is O(1). Therefore, inside the
Knudsen layer, they can be Taylor expanded around x = xw, that is,

ρ̂ = ρ̂B + O(εη), v̂ = v̂B + O(εη), T̂ = T̂B + O(εη), (61)

where the subscript B indicates the value on the boundary x = xw or η = 0. Because v̂B = v̂w + O(ε)
and T̂B = T̂w + O(ε) [Eq. (51)], we can write

ρ̂ = ρ̂B + O(εη), v̂ = v̂w + O(ε(η + 1)), T̂ = T̂w + O(ε(η + 1)). (62)

If we substitute Eq. (62) into Eq. (54), the O(εη) and O(ε(η + 1)) terms in Eq. (62) produce the
terms of the order of ε(η + 1) times a moment of f̂

(1)
K , which vanish rapidly as η → ∞. Therefore,

if we put these terms (times ε) into Rhε
2 in Eq. (53), we can change the expressions of ĥ

(1)
K from

Eq. (54) to the following:

ρ̂
(1)
K =

∫∫ ∞

0
f̂

(1)
K dÊdζ , (63a)

v̂
(1)
Ki = 1

ρ̂B

∫∫ ∞

0
(ζi − v̂wi)f̂

(1)
K dÊdζ , (63b)

p̂
(1)
Kij = 2

∫∫ ∞

0
(ζi − v̂wi)(ζj − v̂wj )f̂ (1)

K dÊdζ , (63c)

T̂
(1)

trK = 2

3ρ̂B

∫∫ ∞

0

[
(ζk − v̂wk)2 − 3

2
T̂w

]
f̂

(1)
K dÊdζ , (63d)

T̂
(1)

intK = 2

δρ̂B

∫∫ ∞

0

(
Ê − δ

2
T̂w

)
f̂

(1)
K dÊdζ , (63e)

T̂
(1)

K = 3T̂
(1)

trK + δT̂
(1)

intK

3 + δ
, (63f)

T̂
(1)

relK = θT̂
(1)

K + (1 − θ )T̂ (1)
intK, (63g)

p̂
(1)
K = ρ̂BT̂

(1)
K + ρ̂

(1)
K T̂w, (63h)

q̂
(1)
Ki =

∫∫ ∞

0
(ζi − v̂wi)

[
(ζk − v̂wk)2 + Ê − 5 + δ

2
T̂w

]
f̂

(1)
K dÊdζ . (63i)

Incidentally, with Eq. (62), f̂ (0) in Eq. (37) inside the Knudsen layer is expanded as

f̂ (0) = f̂w[1 + O(ε(η + 1))], (64)

where

f̂w = ρ̂BÊδ/2−1

(πT̂w)3/2T̂
δ/2

w �(δ/2)
exp

(
− (ζj − v̂wj )2

T̂w
− Ê

T̂w

)
. (65)
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If we use Eqs. (62) and (64) in Eqs. (55) and (56), the O(εη) and O(ε(η + 1)) terms in Eqs. (62)
and (64) create the terms of the order of ε(η + 1) times f̂

(1)
K or its moment, which vanish rapidly

as η → ∞. Therefore, we can put these terms into the remainder εRf in Eq. (55). If we do so, the
right-hand side of Eq. (55), Ĝ(1)

K in Eq. (56a), and dKij in Eq. (56b) are, respectively, replaced by

Âc(T̂w)ρ̂B
(
Ĝ(1)

K − f̂
(1)
K

)+ O(εRf ), (66a)

Ĝ(1)
K = f̂w

{
ρ̂

(1)
K

ρ̂B
+ 2

v̂
(1)
Kk(ζk − v̂wk)

T̂w
+
[

(ζi − v̂wi)(ζj − v̂wj )

T̂w
− δij

2

]
dKij +

(
Ê
T̂w

− δ

2

)
T̂

(1)
relK

T̂w

}
,

(66b)

dKij =
[

(1 − θ )
T̂

(1)
trK

T̂w
+ θ

T̂
(1)

K

T̂w

]
δij + (1 − θ )ν

[
p̂

(1)
Kij

ρ̂BT̂w
−
(

ρ̂
(1)
K

ρ̂B
+ T̂

(1)
trK

T̂w

)
δij

]
. (66c)

On the other hand, if we express the left-hand side of Eq. (55) in terms of the new variables
(t̃ , η, χ1, χ2, ζ w), it reduces to

ζwini

∂f̂
(1)
K

∂η
+ O(εRf ), (67)

where O(εRf ) is the remainder. Since this remainder has the same properties as that on the right-hand
side, Eq. (66a), the same symbol is used. The process of the derivation of the form (67) is exactly
the same as in Ref. [1] (see Sec. 5.2.2 in Ref. [1]), so that it is omitted here. However, we note the
following. As mentioned in Ref. [1], we have assumed that the terms containing ∂f̂

(1)
K /∂ζwi are of

O(εRf ) in Eq. (67) in this process. However, f̂
(1)
K may have a singularity at ζwini = 0, so that the

derivatives may diverge there [32–34]. In the present analysis, we adhere to a formal analysis putting
aside the mathematical subtlety as in Ref. [1].

From Eqs. (66) and (67), we obtain the following equation for f̂
(1)
K :

ζwini

∂f̂
(1)
K

∂η
= Âc(T̂w)ρ̂B

(
Ĝ(1)

K − f̂
(1)
K

)+ O(εRf ), (68)

where Ĝ(1)
K is given by Eqs. (66b) and (66c). Recall that Rf is a quantity of O(1) that has the properties

(a)–(d) in Sec. V A 1. We note that Rf vanishes rapidly as η → ∞, |ζ w| → ∞, or Ê → ∞ in the
current notation.

Here, we introduce new variables Cw and Ēw by setting

Cw = ζ w

T̂
1/2

w

= ζ − v̂w

T̂
1/2

w

, Ēw = Ê
T̂w

, (69)

and denote the normal component and magnitude of Cw by Cwn and Cw, respectively, i.e.,

Cwn = Cwj nj = Cw · n, Cw = (
C2

wj

)1/2 = |Cw|. (70)

Then, f̂w can be expressed, by the use of the function E defined in Eq. (27), as

f̂w = ρ̂B

T̂
5/2

w �(δ/2)
E(Cw)Ēδ/2−1

w e−Ēw . (71)

It should be noted that ρ̂B and T̂w are functions of (t̃ , χ1, χ2).
Now we let

f̂
(1)
K

(
t̃ , η, χ1, χ2, T̂

1/2
w Cw, T̂wĒw

) = f̂w�(t̃ , η, χ1, χ2,Cw, Ēw), (72)
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and change the velocity and energy variables from (ζ w, Ê) to (Cw, Ēw). Then, by the use of the angle
brackets 〈·〉 defined by Eq. (33), the macroscopic quantities ρ̂

(1)
K , v̂

(1)
Ki , p̂

(1)
Kij , T̂

(1)
trK , T̂

(1)
intK, and q̂

(1)
Ki in

Eq. (63) are expressed as follows:

ρ̂
(1)
K

ρ̂B
= 〈�(t̃ , η, χ1, χ2,Cw, Ēw) 〉, (73a)

v̂
(1)
Ki

T̂
1/2

w

= 〈 Cwi�(t̃ , η, χ1, χ2,Cw, Ēw) 〉, (73b)

p̂
(1)
Kij

ρ̂BT̂w
= 2〈 CwiCwj�(t̃ , η, χ1, χ2,Cw, Ēw) 〉, (73c)

T̂
(1)

trK

T̂w
= 2

3

〈 (
C2

w − 3

2

)
�(t̃ , η, χ1, χ2,Cw, Ēw)

〉
, (73d)

T̂
(1)

intK

T̂w
= 2

δ

〈 (
Ēw − δ

2

)
�(t̃ , η, χ1, χ2,Cw, Ēw)

〉
, (73e)

q̂
(1)
Ki

ρBT̂
3/2

w

=
〈
Cwi

(
C2

w + Ēw − 5 + δ

2

)
�(t̃ , η, χ1, χ2,Cw, Ēw)

〉
. (73f)

Note that the integration variables (ζ , Ê) in the definition of 〈·〉 [Eq. (33)] should be replaced by
(Cw, Ēw) in the above equations, i.e.,

〈 ĝ(Cw, Ēw) 〉 =
∫∫ ∞

0
ĝ(Cw, Ēw)[�(δ/2)]−1E(Cw)Ēδ/2−1

w e−ĒwdĒwdCw. (74)

We use Eq. (73), the resulting expressions of T̂
(1)

K and T̂
(1)

relK, and the new variables Cw and Ēw

[Eq. (69)] in Eq. (66). Then, recalling the definition of the linearized collision operator, Eq. (32), we
have the following expression of the right-hand side of Eq. (68), i.e., Eq. (66):

Âc(T̂w)ρ̂B
(
Ĝ(1)

K − f̂
(1)
K

)+ O(εRf )

= Âc(T̂w)ρ̂Bf̂wL[�(t̃ , η, χ1, χ2,Cw, Ēw)](t̃ , η, χ1, χ2,Cw, Ēw) + O(εRf ). (75)

Here, the arguments of � and L(�) are shown explicitly. With Eq. (75), Eq. (68) is rewritten as

Cwn
∂�

∂η
= ρ̂B

Âc(T̂w)

T̂
1/2

w

L(�) + O(εRf /f̂w). (76)

In order to get rid of the coefficient ρ̂BÂc(T̂w)/T̂ 1/2
w in Eq. (76), we further introduce the new

normal coordinate y in place of η,

y = ρ̂B
Âc(T̂w)

T̂
1/2

w

η, (77)

and let

�(t̃ , [ρ̂BÂc(T̂w)]−1T̂ 1/2
w y, χ1, χ2,Cw, Ēw) = φ(t̃ , y, χ1, χ2,Cw, Ēw). (78)

Then, Eq. (76) reduces to

Cwn
∂φ

∂y
= L(φ) + O(εRf /f̂w). (79)

If we neglect the terms of O(εRf /f̂w), we obtain the equation for φ, i.e., that for f̂
(1)
K .
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4. Knudsen-layer boundary condition

Now we consider the boundary condition. We impose the boundary condition (28) to the total
solution f̂tot [Eq. (49)]. If we use Eq. (49) with f̂CE given by Eq. (36) and with f̂K given by Eq. (52)
in Eq. (28), we obtain the following relation at η = 0 (or x = xw):

εf̂
(1)
K = (1 − α)εR̂f̂

(1)
K − f̂ (0) − εf̂ (1) + (1 − α)R̂(f̂ (0) + εf̂ (1)) + α

ρ̂w

ρ̂B
f̂w + O(ε2Rw),

for (ζ − v̂w) · n > 0, (80a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0
(ζ − v̂w) · n

(
f̂ (0) + εf̂ (1) + εf̂

(1)
K

)
dÊdζ + O(ε2), (80b)

where Rw is a remainder of O(1) vanishing rapidly as |ζ | (or |Cw|) → ∞ or Ê (or Ēw) → ∞. For
instance, f̂w [Eq. (65)] belongs to the class of Rw.

A slight modification of the corresponding calculation in the case of a monatomic gas (see
Appendix B in Ref. [1]) shows that f̂ (0), f̂ (1), and ρ̂w contained in Eq. (80) can be expressed in
the following form:

f̂ (0) = f̂w

{
1 + ε

[
2Cwj

¯̄vj

T̂
1/2

w

+
(
C2

w − 3 + δ

2
+ Ēw

) ¯̄T

T̂w

]
+ O(ε2)

}
, (81a)

f̂ (1) = f̂w[�w + O(ε)], (81b)

ρ̂w

ρ̂B
= 1 + ε

{
− √

π
¯̄vi

T̂
1/2

w

ni + 1

2

¯̄T

T̂w
− 1

6
IB(T̂w)

1

ρ̂BT̂
1/2

w

×
[(

∂v̂j

∂xi

)
B

+
(

∂v̂i

∂xj

)
B

][
ninj − 1

2
(δij − ninj )

]
− 2IBb

(T̂w)
1

ρ̂BT̂
1/2

w

(
∂v̂j

∂xj

)
B

− 2

ρ̂B

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0
(ζ − v̂w) · nf̂

(1)
K dÊdζ

}
+ O(ε2), (81c)

where

�w = − 1

ρ̂BT̂w
CwiA(Cw, Ēw, T̂w)

(
∂T̂

∂xi

)
B

− 1

2ρ̂BT̂
1/2

w

(
CwiCwj − 1

3
C2

wδij

)
B(T̂w)

×
[(

∂v̂j

∂xi

)
B

+
(

∂v̂i

∂xj

)
B

]
− 1

ρ̂BT̂
1/2

w

Bb(Cw, Ēw, T̂w)

(
∂v̂j

∂xj

)
B

, (82)

IB(T̂w) = 1

�(δ/2)

∫ ∞

0

∫ ∞

0
C5

wB(T̂w)e−C2
w Ēδ/2−1

w e−ĒwdĒwdCw = B(T̂w) = 2

1 − ν + θν

T̂
1/2

w

Âc(T̂w)
,

(83a)

IBb
(T̂w) = 1

�(δ/2)

∫ ∞

0

∫ ∞

0
C3

wBb(Cw, Ēw, T̂w)e−C2
w Ēδ/2−1

w e−ĒwdĒwdCw = δ

6θ (3 + δ)

T̂
1/2

w

Âc(T̂w)
.

(83b)

In Eqs. (81a), (82), and (83), use has been made of the new variables Cw and Ēw and the notation
Cw introduced in Eqs. (69) and (70). For the new velocity variable Cw, the reflection operator (29) is
replaced by the following R̃:

R̃ĝ(Cwi) = ĝ(Cwi − 2Cwjnjni), (84)
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where ĝ(Cwi) is a function of Cwi . It should be noted that R̃f̂w = f̂w holds. Taking into account
Eqs. (81) and (84) in Eq. (80), we can transform Eq. (80) to the following form:

f̂
(1)
K = (1 − α)R̂f̂

(1)
K + f̂wF̂ + O(εRw), at η = 0, for (ζ − v̂w) · n > 0, (85)

where

F̂ = − 2[Cwj − (1 − α)R̃Cwj ]
¯̄vj

T̂
1/2

w

− α
√

π
¯̄vj

T̂
1/2

w

nj − α

(
C2

w − 4 + δ

2
+ Ēw

) ¯̄T

T̂w

− �w + (1 − α)R̃�w − α

{
1

6
IB(T̂w)

1

ρ̂BT̂
1/2

w

[(
∂v̂j

∂xi

)
B

+
(

∂v̂i

∂xj

)
B

][
ninj − 1

2
(δij − ninj )

]

+ 2IBb
(T̂w)

1

ρ̂BT̂
1/2

w

(
∂v̂j

∂xj

)
B

+ 2

ρ̂B

(
π

T̂w

)1/2 ∫
(ζ−v̂w)·n<0

∫ ∞

0
(ζ − v̂w) · nf̂

(1)
K dÊdζ

}
. (86)

This expression can be simplified slightly more, as shown below.
First, let us integrate Eq. (68) with respect to ζ w over its whole space and with respect to Ê from

0 to ∞. Then, the integral of Ĝ(1)
K − f̂

(1)
K vanishes, so that we have

∂

∂η

∫∫ ∞

0
ζwini f̂

(1)
K dÊdζ w = O

(
ε

∫∫ ∞

0
Rf dÊdζ w

)
. (87)

Since f̂
(1)
K and Rf vanish rapidly as η → ∞, the integration of the above equation with respect to η

from 0 to ∞ gives
∫∫∞

0 ζwini f̂
(1)
K dÊdζ w = O(ε) at η = 0. Therefore, it follows that∫∫ ∞

0
ζwini f̂

(1)
K dÊdζ w = O(ε), for any η. (88)

On the other hand, the total solution f̂tot of Eq. (49) has to satisfy the condition of no net mass flow
on the boundary, Eq. (30). If we insert Eq. (49) in Eq. (30) and consider the properties of f̂CE, we
obtain the relation ρ̂B(v̂B − v̂w) · n + ∫∫∞

0 (ζ − v̂w) · nf̂K(η = 0)dÊdζ = 0. Then, with the help of
Eqs. (51), (52), (59c), and (88), we can show that

ρ̂Bε ¯̄v · n = −
∫∫ ∞

0
ζ w · n

[
εf̂

(1)
K + O(ε2Rf )

]
(η = 0)dÊdζ w = O(ε2), (89)

that is,

¯̄v · n = O(ε). (90)

Next, we should mention that, as shown in Ref. [1], the following relations hold:[(
∂v̂i

∂xj

)
B

+
(

∂v̂j

∂xi

)
B

]
(δij − ninj ) = O(ε), (91a)[(

∂v̂i

∂xj

)
B

+
(

∂v̂j

∂xi

)
B

]
(δik − nink)(δjl − njnl)

= ε

(
∂ ¯̄vi

∂xj

+ ∂ ¯̄vj

∂xi

)
(δik − nink)(δjl − njnl) = O(ε), (91b)(

CwiCwj − 1

3
C2

wδij

)[(
∂v̂j

∂xi

)
B

+
(

∂v̂i

∂xj

)
B

]
= 2

(
C2

wn − 1

3
C2

w

)(
∂v̂i

∂xj

)
B

ninj + 2CwnCwinl(δij − ninj )

[(
∂v̂j

∂xl

)
B

+
(

∂v̂l

∂xj

)
B

]
+ O(ε).

(91c)
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The relations (91a) and (91b) are due to the rigid-body motion of the boundary, and Eq. (91c) is a
consequence of Eq. (91b). In addition, it follows from Eq. (91a) that(

∂v̂j

∂xj

)
B

=
(

∂v̂i

∂xj

)
B

δij =
(

∂v̂i

∂xj

)
B

ninj + 1

2

[(
∂v̂i

∂xj

)
B

+
(

∂v̂j

∂xi

)
B

]
(δij − ninj )

=
(

∂v̂i

∂xj

)
B

ninj + O(ε). (92)

Now we make use of Eqs. (72) and (78) in Eq. (85) to derive the boundary condition for φ.
To be more specific, we change the integration variables from (ζ , Ê) to (Cw, Ēw) in the integral
in Eq. (86) with the help of Eqs. (69) and (71). Then, we use Eqs. (90)–(92) and the relations
Cwi = Cwnni + Cwj (δij − ninj ) and R̃Cwi = −Cwnni + Cwj (δij − ninj ). As a consequence, Eq. (85)
reduces to the following form:

φ = (1 − α)R̃φ − α

(
C2

w − 4 + δ

2
+ Ēw

) ¯̄T

T̂w
− 2αCwi(δij − ninj )

¯̄vj

T̂
1/2

w

− 2α
√

π

×
∫
Cwn<0

∫ ∞

0
CwnφE(Cw)

Ēw
δ/2−1

�(δ/2)
e−ĒwdĒwdCw + (2 − α)

1

ρ̂BT̂w
CwnA(Cw, Ēw, T̂w)

(
∂T̂

∂xi

)
B

ni

+ α

[(
C2

wn − 1

3
C2

w

)
B(T̂w) + Bb(Cw, Ēw, T̂w) − 1

3
IB(T̂w) − 2IBb

(T̂w)

]
1

ρ̂BT̂
1/2

w

(
∂v̂i

∂xj

)
B

ninj

+ (2 − α)
1

ρ̂BT̂
1/2

w

CwnCwinl(δij − ninj )B(T̂w)

[(
∂v̂j

∂xl

)
B

+
(

∂v̂l

∂xj

)
B

]

+ α
1

ρ̂BT̂w
Cwi(δij − ninj )A(Cw, Ēw, T̂w)

(
∂T̂

∂xj

)
B

+ O(ε), (y = 0, Cwn > 0). (93)

5. Summary

If we omit the terms of O(ε) in Eqs. (79) and (93) and take into account Eq. (60b), then we obtain
the problem for φ. In order to avoid cumbersome notations and to match the variables with those in
the definition of the linearized collision operator in Eq. (32), we change the names of the variables
from (Cw, Ēw) to (ζ , Ê) and denote φ as a function of (t̃ , y, χ1, χ2, ζ , Ê), that is,

Cw → ζ , Ēw → Ê, φ(t̃ , y, χ1, χ2,Cw, Ēw) → φ(t̃ , y, χ1, χ2, ζ , Ê). (94)

Then, the equation and the boundary condition for φ become as follows:

ζn
∂φ

∂y
= L(φ), (y > 0), (95a)

φ = (1 − α)R̃φ − α

(
ζ 2 − 4 + δ

2
+ Ê

) ¯̄T

T̂w
− 2αζi(δij − ninj )

¯̄vj

T̂
1/2

w

− 2α
√

π

∫
ζn<0

∫ ∞

0
ζnφE(ζ )

Êδ/2−1

�(δ/2)
e−ÊdÊdζ + (2 − α)

1

ρ̂BT̂w
ζnA(ζ, Ê, T̂w)

(
∂T̂

∂xi

)
B

ni

+α

[(
ζ 2

n − 1

3
ζ 2

)
B(T̂w) + Bb(ζ, Ê, T̂w) − 1

3
IB(T̂w) − 2IBb

(T̂w)

]
1

ρ̂BT̂
1/2

w

(
∂v̂i

∂xj

)
B

ninj
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+ (2 − α)
1

ρ̂BT̂
1/2

w

ζnζinl(δij − ninj )B(T̂w)

[(
∂v̂j

∂xl

)
B

+
(

∂v̂l

∂xj

)
B

]

+α
1

ρ̂BT̂w
ζi(δij − ninj )A(ζ, Ê, T̂w)

(
∂T̂

∂xj

)
B

, (y = 0, ζn > 0), (95b)

φ → 0, (y → ∞), (95c)

where A, B, and Bb are given in Eq. (40), and IB and IBb
in Eq. (83). Here and in what follows, the

reflection operator R̃ indicates R̃ĝ(ζi) = ĝ(ζi − 2ζjnjni) because of Eqs. (84) and (94).
The problem (95) is a steady boundary-value problem of the linearized ES model for a polyatomic

gas in the half space y > 0. The corresponding problem of the linearized Boltzmann equation for
a monatomic gas has been studied mathematically [35–38], and its mathematical structure, such
as the existence and uniqueness of the solution, has been well understood. Numerical analysis of
some relevant problems can also be found in the literature (e.g., Refs. [39,40]). In accordance with
these results, we expect that the present problem (95) has the same structure. To be more specific,
the problem should have a unique solution only when ¯̄T and ¯̄v are related to ∂T̂ /∂xj and ∂v̂i/∂xj

appropriately. These relations provide the desired boundary conditions for the compressible Navier-
Stokes equations (46), as we will see in the following subsections.

The detailed difference between the problem (95) and the corresponding problem for a monatomic
gas (cf. Eq. (100) in Ref. [1]) lies in the following points. In the former, the solution depends on the
energy variable Ê associated with the internal modes, which does not appear in the latter problem
for a monatomic gas; Ê appears explicitly in the term containing ¯̄T/T̂w and in the functions A and
Bb, as well as in the integral term, in the boundary condition (95b). In addition, the quantities Bb

and IBb
, which are related to the bulk viscosity, and the parameter δ do not occur in the problem

for a monatomic gas. As we will see in Secs. V B 6 and VI, however, the slip boundary conditions
obtained from the problem (95) is basically of the same form as those for a monatomic gas, since
the manner of appearance of the boundary values ¯̄T , ¯̄v, (∂T̂ /∂xi)B, etc., in Eq. (95b) are essentially
the same as in the case of a monatomic gas.

We have not mentioned the initial condition for the Knudsen-layer equation so far. Since the
time-derivative term is not contained in Eq. (95a), we cannot impose the initial condition to this
equation. However, we can show that the problem (95) is consistent with the initial condition (47) for
the compressible Navier-Stokes equations and assumption (iv) in Sec. II. For the detailed discussion
on this point, the reader is referred to Sec. 5.2.4 in Ref. [1].

B. Slip boundary conditions

1. Decomposition of the Knudsen-layer problem

If the four terms containing the boundary values of the derivatives (∂T̂ /∂xi)B and (∂v̂i/∂xj )B in
Eq. (95b) are set to be zero, then the problem (95) has a trivial solution φ = 0, ¯̄T = 0, and ¯̄vi = 0,
which should be unique in analogy with the case of the linearized Boltzmann equation. Therefore,
these four terms are the inhomogeneous terms, and ¯̄T and ¯̄vi are a part of the solution. That is, φ as
well as ¯̄T and ¯̄vi is determined depending on the inhomogeneous terms. Because of the linearity of
the problem, the problem (95) can be decomposed in accordance with the form of the inhomogeneous
terms.

Here, we recall that, for an arbitrary vector a, aj (δij − ninj ) = ai − (ajnj )ni indicates the
tangential component of a, i.e., the projection of a onto the plane tangent to the boundary. Therefore,
ζi(δij − ninj ) in the last two lines of Eq. (95b) is the tangential component of ζ . From the form of
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the inhomogeneous terms in Eq. (95b), we assume the solution φ in the following form:

φ(t̃ , y, χ1, χ2, ζ , Ê) = 1

ρ̂BT̂
1/2

w

T̂
1/2

w

Âc(T̂w)

[(
∂v̂j

∂xl

)
B

+
(

∂v̂l

∂xj

)
B

]
ζinl(δij − ninj ) φI

v (y, ζn, ζ, Ê)

+ 1

ρ̂BT̂w

T̂
1/2

w

Âc(T̂w)

(
∂T̂

∂xj

)
B

ζi(δij − ninj ) φI
T (y, ζn, ζ, Ê)

+ 1

ρ̂BT̂
1/2

w

T̂
1/2

w

Âc(T̂w)

(
∂v̂i

∂xj

)
B

ninj φII
v (y, ζn, ζ, Ê)

+ 1

ρ̂BT̂w

T̂
1/2

w

Âc(T̂w)

(
∂T̂

∂xi

)
B

niφ
II
T (y, ζn, ζ, Ê). (96)

Then, we need to set the unknown parameters ¯̄vj and ¯̄T in accordance with the form of the
macroscopic quantities in the inhomogeneous terms. Since (δij − ninj ) ¯̄vj is a tangential vector,
it should be related to the (macroscopic) tangential vectors in the inhomogeneous terms, i.e.,
(δij − ninj )[(∂v̂j /∂xl)B + (∂v̂l/∂xj )B]nl and (δij − ninj )(∂T̂ /∂xj )B. On the other hand, because
¯̄T is a scalar, it should be related to the (macroscopic) scalars in the inhomogeneous terms, i.e.,
(∂T̂ /∂xi)Bni and (∂v̂i/∂xj )Bninj . In summary, we let

¯̄vj

T̂
1/2

w

(δij − ninj ) = cI
v

1

ρ̂BT̂
1/2

w

T̂
1/2

w

Âc(T̂w)

[(
∂v̂j

∂xl

)
B

+
(

∂v̂l

∂xj

)
B

]
nl(δij − ninj )

+ cI
T

1

ρ̂BT̂w

T̂
1/2

w

Âc(T̂w)

(
∂T̂

∂xj

)
B

(δij − ninj ), (97a)

¯̄T

T̂w
= cII

v

1

ρ̂BT̂
1/2

w

T̂
1/2

w

Âc(T̂w)

(
∂v̂i

∂xj

)
B

ninj + cII
T

1

ρ̂BT̂w

T̂
1/2

w

Âc(T̂w)

(
∂T̂

∂xi

)
B

ni, (97b)

where cI
v , cI

T , cII
v , and cII

T are undetermined constants depending on the properties of the gas and
the accommodation coefficient α and are determined together with the solutions φI

v , φI
T , φII

v , and
φII

T . Once they have been determined, Eq. (97) gives the desired slip boundary conditions for the
compressible Navier-Stokes equations, and the constants cI

v , cI
T , cII

v , and cII
T are called the slip

coefficients. If we denote by t an arbitrary unit vector on the plane tangent to the boundary and fixed
to the boundary (i.e., n · t = 0), Eq. (97a) is equivalent to the following form:

¯̄vi

T̂
1/2

w

ti = cI
v

1

ρ̂BT̂
1/2

w

T̂
1/2

w

Âc(T̂w)

[(
∂v̂i

∂xj

)
B

+
(

∂v̂j

∂xi

)
B

]
nitj + cI

T

1

ρ̂BT̂w

T̂
1/2

w

Âc(T̂w)

(
∂T̂

∂xi

)
B

ti . (98)

The assumption that φI
v , φI

T , φII
v , and φII

T are all functions of y, ζn, ζ , and Ê will turn out to be
consistent.

Substituting Eqs. (96) and (97) into Eq. (95), we obtain the following four decomposed problems
for φI

v , φI
T , φII

v , and φII
T :

(i) Problem for (φI
v ; cI

v ):

ζn
∂φI

v

∂y
= LS

(
φI

v

)
, (y > 0), (99a)

φI
v = (1 − α)R̃φI

v − 2αcI
v + (2 − α) ζn B, (y = 0, ζn > 0), (99b)

φI
v → 0, (y → ∞). (99c)
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(ii) Problem for (φI
T ; cI

T ):

ζn
∂φI

T

∂y
= LS

(
φI

T

)
, (y > 0), (100a)

φI
T = (1 − α)R̃φI

T − 2αcI
T + α A(ζ, Ê), (y = 0, ζn > 0), (100b)

φI
T → 0, (y → ∞). (100c)

(iii) Problem for (φII
v ; cII

v ):

ζn
∂φII

v

∂y
= L

(
φII

v

)
, (y > 0), (101a)

φII
v = (1 − α)R̃φII

v − 2α
√

π

∫
ζn<0

∫ ∞

0
ζnφ

II
v E(ζ )

Êδ/2−1

�(δ/2)
e−ÊdÊdζ− α

(
ζ 2− 4 + δ

2
+ Ê

)
cII
v

+α

[(
ζ 2

n − 1

3
ζ 2

)
B + Bb(ζ, Ê) − 1

3
IB − 2IBb

]
, (y = 0, ζn > 0), (101b)

φII
v → 0, (y → ∞). (101c)

(iv) Problem for (φII
T ; cII

T ):

ζn
∂φII

T

∂y
= L

(
φII

T

)
, (y > 0), (102a)

φII
T = (1 − α)R̃φII

T − 2α
√

π

∫
ζn<0

∫ ∞

0
ζnφ

II
T E(ζ )

Êδ/2−1

�(δ/2)
e−ÊdÊdζ

−α

(
ζ 2 − 4 + δ

2
+ Ê

)
cII
T + (2 − α)ζnA(ζ, Ê), (y = 0, ζn > 0), (102b)

φII
T → 0, (y → ∞). (102c)

In Eqs. (99a) and (100a), LS( · ) is the linear operator defined as follows: If L is operated on
any function of the form ζj tjϕ(ζn, ζ, Ê), it can be shown that the resulting function is of the form
ζj tj × (a function of ζn, ζ, and Ê); LS( · ) is defined by this resulting function of ζn, ζ , and Ê , that
is,

L[ζj tjϕ(ζn, ζ, Ê)] = ζj tjLS[ϕ(ζn, ζ, Ê)](ζn, ζ, Ê), (103)

where the last parentheses show the independent variables of LS(ϕ). In the present ES model, LS(ϕ)
takes the following form:

LS(ϕ) = 〈(
ζ 2 − ζ 2

n

)
ϕ
〉+ 2(1 − θ )νζn

〈
ζn
(
ζ 2 − ζ 2

n

)
ϕ
〉− ϕ, (104)

with 〈 · 〉 defined in Eq. (33). The functions A and Bb and the constants B, IB , and IBb
occurring in

Eqs. (99)–(102) are defined by

A(ζ, Ê) = A(ζ, Ê, T̂w)
Âc(T̂w)

T̂
1/2

w

= ζ 2 − 5 + δ

2
+ Ê, (105a)

Bb(ζ, Ê) = Bb(ζ, Ê, T̂w)
Âc(T̂w)

T̂
1/2

w

= 1

θ

2

3 + δ

(
1

3
δ ζ 2 − Ê

)
, (105b)

B = B(T̂w)
Âc(T̂w)

T̂
1/2

w

= 2

1 − ν + θν
, (105c)
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IB = IB(T̂w)
Âc(T̂w)

T̂
1/2

w

= 2

1 − ν + θν
, (105d)

IBb
= IBb

(T̂w)
Âc(T̂w)

T̂
1/2

w

= δ

6θ (3 + δ)
. (105e)

2. Further simplification of decomposed problems

Before discussing the solutions of the four problems obtained in the previous subsection, we
simplify these problems further. For this purpose, we introduce a unit vector s on the plane tangent
to the boundary and orthogonal to t (i.e., n · s = t · s = 0). Denoting the tangential components
of ζ by ζs = ζ · s and ζt = ζ · t , we introduce the reduced velocity distribution functions (ϕI

v , ϕI
T ,

ϕII
v , ϕII

T ), (ψI
v , ψI

T , ψII
v , ψII

T ), and (χI
v , χI

T , χII
v , χII

T ) corresponding to (φI
v , φI

T , φII
v , φII

T ), by the
following equations:

ϕN
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
φN

κ (y, ζn, ζ, Ê)e−ζ 2
s −ζ 2

t
Êδ/2−1

�(δ/2)
e−ÊdÊdζtdζs, (106a)

ψN
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

(
ζ 2

s + ζ 2
t

)
φN

κ (y, ζn, ζ, Ê)e−ζ 2
s −ζ 2

t
Êδ/2−1

�(δ/2)
e−ÊdÊdζtdζs, (106b)

χN
κ (y, ζn) = 1

π

2

δ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
ÊφN

κ (y, ζn, ζ, Ê)e−ζ 2
s −ζ 2

t
Êδ/2−1

�(δ/2)
e−ÊdÊdζtdζs,

(κ = v, T and N = I, II ). (106c)

Noting that ζ 2 − ζ 2
n = ζ 2

s + ζ 2
t , we can rewrite LS(φI

κ ) (κ = v, T ) [cf. Eq. (104)] using ψI
κ as

follows:

LS
(
φI

κ

) = 1√
π

∫ ∞

−∞
ψI

κ e−ζ 2
n dζn + 2(1 − θ )νζn

1√
π

∫ ∞

−∞
ζnψ

I
κ e−ζ 2

n dζn − φI
κ . (107)

We can also rewrite L(φII
κ ) (κ = v, T ) [cf. Eq. (32)] using ϕII

κ , ψII
κ , and χII

κ in the following form:

L
(
φII

κ

) = ω + 2ζnun +
(
Ê − δ

2

)
τrel +

(
ζiζj − δij

2

)
dij − φII

κ , (108a)

ω = 1√
π

∫ ∞

−∞
ϕII

κ e−ζ 2
n dζn, un = 1√

π

∫ ∞

−∞
ζnϕ

II
κ e−ζ 2

n dζn, (108b)

τrel = θτ + (1 − θ )τint, τ = 3τtr + δτint

3 + δ
, (108c)

τtr = 2

3

1√
π

∫ ∞

−∞

(
ζ 2

n − 3

2

)
ϕII

κ e−ζ 2
n dζn + 2

3

1√
π

∫ ∞

−∞
ψII

κ e−ζ 2
n dζn, (108d)

τint = 1√
π

∫ ∞

−∞
χII

κ e−ζ 2
n dζn − 1√

π

∫ ∞

−∞
ϕII

κ e−ζ 2
n dζn, (108e)

dij = [(1 − θ )τtr + θτ ]δij + (1 − θ )ν[Pij − (ω + τtr)δij ], (108f)

Pij = 2√
π

∫ ∞

−∞
ζ 2

n ϕII
κ e−ζ 2

n dζn ninj + 1√
π

∫ ∞

−∞
ψII

κ e−ζ 2
n dζn(δij − ninj ). (108g)

Here, we have omitted the subscript κ and superscript II for the macroscopic quantities ω, un, τrel,
etc., to avoid cumbersome notation. With these expressions, we consider the individual problems.

(i) Problem for (φI
v ; cI

v ):
If we multiply Eq. (99a) [with Eq. (107)] by (1/π )(ζ 2

s + ζ 2
t )[�(δ/2)]−1e−ζ 2

s −ζ 2
t Êδ/2−1e−Ê and

integrate the resulting equation with respect to Ê from 0 to ∞ and with respect to ζs and ζt from −∞
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to ∞ for both variables, then we have

ζn
∂ψI

v

∂y
= 1√

π

∫ ∞

−∞
ψI

v e−ζ 2
n dζn + 2(1 − θ )νζn

1√
π

∫ ∞

−∞
ζnψ

I
v e−ζ 2

n dζn − ψI
v . (109)

The integration of this equation times e−ζ 2
n with respect to ζn from −∞ to ∞ gives

d

dy

∫ ∞

−∞
ζnψ

I
v e−ζ 2

n dζn = 0. (110)

Since ψI
v → 0 as y → ∞, it follows that∫ ∞

−∞
ζnψ

I
v e−ζ 2

n dζn = 0. (111)

That is, the second integral on the right-hand side in Eq. (109) vanishes. If we carry out the same
operation as that led to Eq. (109) on the boundary conditions (99b) and (99c), we obtain the boundary
conditions for ψI

v . The condition at infinity is obvious, and that on the boundary becomes

ψI
v = (1 − α)R̃ψI

v − 2αcI
v + (2 − α)

2

1 − ν + θν
ζn, (y = 0, ζn > 0). (112)

Therefore, if we let

ψI
v = 1

1 − ν + θν
ψ̄I

v , cI
v = 1

1 − ν + θν
c̄I
v , (113)

the problem for φI
v reduces to the following problem for (ψ̄I

v ; c̄I
v ):

ζn
∂ψ̄I

v

∂y
= 1√

π

∫ ∞

−∞
ψ̄I

v e−ζ 2
n dζn − ψ̄I

v , (y > 0), (114a)

ψ̄I
v = (1 − α)R̃ψ̄I

v − 2αc̄I
v + 2(2 − α) ζn, (y = 0, ζn > 0), (114b)

ψ̄I
v → 0, (y → ∞). (114c)

(ii) Problem for (φI
T ; cI

T ):
With the procedure same as that was used to derive the problem for ψI

v , we can reduce the problem
for φI

T to the following problem for (ψI
T ; cI

T ):

ζn
∂ψI

T

∂y
= 1√

π

∫ ∞

−∞
ψI

T e−ζ 2
n dζn − ψI

T , (y > 0), (115a)

ψI
T = (1 − α)R̃ψI

T − 2αcI
T + α

(
ζ 2

n − 1

2

)
, (y = 0, ζn > 0), (115b)

ψI
T → 0, (y → ∞). (115c)

(iii) Problem for (φII
v ; cII

v ):
Since Eqs. (101a) and (102a) are of the same form, we consider these equations together. Because

of the property (34) and the fact that φII
κ → 0 as y → ∞, it follows from Eqs. (101a) and (102a)

that 〈
ζnφ

II
κ

〉 = 〈
ζ 2

n φII
κ

〉 = 〈
ζn(ζ 2 + Ê)φII

κ

〉 = 0, (κ = v, T ). (116)

063401-24



SLIP BOUNDARY CONDITIONS FOR THE COMPRESSIBLE …

These conservation relations are rewritten in terms of ϕII
κ , ψII

κ , and χII
κ as follows:

1√
π

∫ ∞

−∞
ζnϕ

II
κ e−ζ 2

n dζn = un = 0, (117a)

1√
π

∫ ∞

−∞
ζ 2

n ϕII
κ e−ζ 2

n dζn = 1

2
Pijninj = 0, (117b)

1√
π

∫ ∞

−∞
ζn

(
ζ 2

n ϕII
κ + ψII

κ + δ

2
χII

κ

)
e−ζ 2

n dζn = 0. (117c)

We multiply Eqs. (101a) and (102a) by [1, ζ 2
s + ζ 2

t , (2/δ)Ê](1/π )[�(δ/2)]−1e−ζ 2
s −ζ 2

t Êδ/2−1e−Ê and
integrate the resulting equations with respect to Ê from 0 to ∞ and with respect to ζs and ζt from
−∞ to ∞ for both variables. If we use the explicit expression of Pij , ω, and τtr [cf. Eq. (108)] in the
term Pij − (ω + τtr)δij and take account of Eqs. (117a) and (117b), we have the following system of
equations for ϕII

κ , ψII
κ , and χII

κ (κ = v, T ):

ζn
∂

∂y

⎡⎢⎣ϕII
κ

ψII
κ

χII
κ

⎤⎥⎦ = ω

⎡⎢⎣1

1

1

⎤⎥⎦+ τrel

⎡⎢⎣0

0

1

⎤⎥⎦+ [(1 − θ )τtr + θτ ]

⎡⎢⎣ζ 2
n − 1

2

ζ 2
n + 1

2

ζ 2
n − 1

2

⎤⎥⎦

− 2

3
(1 − θ )ν

1√
π

∫ ∞

−∞
ψII

k e−ζ 2
n dζn

⎡⎢⎣ζ 2
n − 1

2

ζ 2
n − 1

ζ 2
n − 1

2

⎤⎥⎦−

⎡⎢⎣ϕII
k

ψII
k

χII
k

⎤⎥⎦. (118)

The corresponding boundary conditions for (ϕII
v , ψII

v , χII
v ) are obtained by applying

the same procedure, i.e., the integration after multiplying by [1, ζ 2
s + ζ 2

t , (2/δ)Ê](1/π ) ×
[�(δ/2)]−1e−ζ 2

s −ζ 2
t Êδ/2−1e−Ê , to Eqs. (101b) and (101c). The results are as follows:

⎡⎢⎣ϕII
v

ψII
v

χII
v

⎤⎥⎦ = (1 − α)R̃

⎡⎢⎣ϕII
v

ψII
v

χII
v

⎤⎥⎦− 2α

∫ 0

−∞
ζnϕ

II
v e−ζ 2

n dζn

⎡⎢⎣1

1

1

⎤⎥⎦− αcII
v

⎡⎢⎣ζ 2
n − 1

ζ 2
n

ζ 2
n

⎤⎥⎦+ α
2

3
B

⎡⎢⎣ζ 2
n − 1

2

ζ 2
n − 1

ζ 2
n − 1

2

⎤⎥⎦

+α
1

θ

2

3 + δ

⎡⎢⎣
δ
3

(
ζ 2

n − 1
2

)
δ
3

(
ζ 2

n + 1
2

)
δ
3

(
ζ 2

n − 1
2

)− 1

⎤⎥⎦− α

(
1

3
IB + 2IBb

)⎡⎢⎣1

1

1

⎤⎥⎦, (y = 0, ζn > 0), (119a)

⎡⎢⎣ϕII
v

ψII
v

χII
v

⎤⎥⎦ → 0, (y → ∞). (119b)

In summary, Eqs. (118) (with κ = v) and (119) form the half-space problem for (ϕII
v , ψII

v , χII
v ; cII

v ).
(iv) Problem for (φII

T ; cII
T ):

063401-25



MASANARI HATTORI, SHINGO KOSUGE, AND KAZUO AOKI

The equation for φII
T is given by Eq. (118) with κ = T . The boundary conditions for

(ϕII
T , ψII

T , χII
T ) are obtained from Eqs. (102b) and (102c) in the same way as Eq. (119). That is,⎡⎢⎣ϕII

T

ψII
T

χII
T

⎤⎥⎦ = (1 − α)R̃

⎡⎢⎣ϕII
T

ψII
T

χII
T

⎤⎥⎦− 2α

∫ 0

−∞
ζnϕ

II
T e−ζ 2

n dζn

⎡⎢⎣1

1

1

⎤⎥⎦−αcII
T

⎡⎢⎣ζ 2
n − 1

ζ 2
n

ζ 2
n

⎤⎥⎦+(2 − α)ζn

⎡⎢⎣ζ 2
n − 3

2

ζ 2
n − 1

2

ζ 2
n − 1

2

⎤⎥⎦,

(y = 0, ζn > 0), (120a)⎡⎢⎣ϕII
T

ψII
T

χII
T

⎤⎥⎦ → 0, (y → ∞). (120b)

To summarize, the half-space problem for (ϕII
T , ψII

T , χII
T ; cII

T ) is given by Eqs. (118) (with κ = T )
and (120).

3. Some remarks on decomposed problems

The problems for (φI
v ; cI

v ), (φI
T ; cI

T ), and (φII
T ; cII

T ) in Sec. V B 1 are the classical half-space
problems in kinetic theory formulated by the use of the linearized ES model and the Maxwell-type
boundary condition for a polyatomic gas. To be more specific, the problem for (φI

v ; cI
v ) is the problem

of shear slip (the so-called Kramers problem), that for (φI
T ; cI

T ) is the problem of thermal creep, and
that for (φII

T ; cII
T ) is the problem of temperature jump.

As we have seen in Sec. V B 2, the problem for (φI
v ; cI

v ) is reduced to that for (ψ̄I
v ; c̄I

v ), Eq. (114).
We note here that Eq. (114) is exactly the same as the problem of the Knudsen layer for the shear
slip based on the linearized Bhatnagar-Gross-Krook (BGK) model for a monatomic gas [41,42] and
the Maxwell-type boundary condition. It is one of the classical problems in kinetic theory studied by
various authors [43–47] [there are some earlier results [48,49] for α = 1 (diffuse reflection)]. In fact,
c̄I
v is the slip coefficient of the problem, which is equal to κ in Ref. [44] and ζP in Ref. [47]. Therefore,

we can easily find the value of c̄I
v in the literature and can, in principle, recover the solution ψ̄I

v from
the data in the literature. Consequently, we can obtain the solution, i.e., the reduced distribution ψI

v

of φI
v and cI

v , of the original problem, Eq. (99), immediately from Eq. (113). If we rewrite (ψ̄I
v , c̄I

v )
as (ψI

vBGK, cI
vBGK), Eq. (113) reads

ψI
v = 1

1 − ν + θν
ψI

vBGK, cI
v = 1

1 − ν + θν
cI
vBGK. (121)

Here and in what follows the subscript BGK indicates the corresponding quantities for the BGK
model for a monatomic gas. Then, if necessary, φI

v can be reconstructed easily by the integration of
Eq. (99a) with Eqs. (99b) and (99c) because the first two terms in the right-hand side of Eq. (107) are
known from ψI

v . It should be noted that similar reductions from the ES model for a polyatomic gas to
the BGK model for a monatomic gas have been used for the Poiseuille flow and thermal transpiration
between two plates and through a circular pipe [28,29].

On the other hand, the problem for (φI
T ; cI

T ) is reduced to that for (ψI
T ; cI

T ), Eq. (115). We note
that Eq. (115) is exactly the same as the problem of the Knudsen layer for the thermal creep based
on the linearized BGK model and the Maxwell-type boundary condition. Therefore, the effect of
a polyatomic gas does not appear. This is also a classical problem that has been investigated in
several papers [45,47,50,51] (there is an earlier work [52] for α = 1), and cI

T corresponds to the
slip coefficient of the problem, which is equal to d/2 in Ref. [51] and ζT in Ref. [47]. Therefore,
the numerical value of cI

T is available, and the reduced distribution ψI
T of φI

T can, in principle, be
obtained from the literature. This fact is summarized by writing

ψI
T = ψI

T BGK, cI
T = cI

T BGK. (122)

The reconstruction of φI
T is also possible with the help of Eq. (100).
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In this way, the problem for (φI
v ; cI

v ) and that for (φI
T ; cI

T ) are reduced to the case of the BGK model
for a monatomic gas, so that we do not need new computations basically. On the contrary, the problem
for (ϕII

v , ψII
v , χII

v ; cII
v ), Eqs. (118) (κ = v) and (119), and that for (ϕII

T , ψII
T , χII

T ; cII
T ), Eqs. (118)

(κ = T ) and (120), are new in the sense that they cannot be reduced to any known problems and require
new computation. Although these problems, which are half-space boundary-value problems of three
simultaneous integrodifferential equations, appear to be more complicated, they are essentially of
the same structure as the problems for (φI

v ; cI
v ) and for (φI

T ; cI
T ). Therefore, the numerical solution

of these problems can be carried out without any difficulty. Some numerical results will be given in
Secs. V B 5 and V B 7.

4. Remarks on actual numerical computation

The decomposed Knudsen-layer problems have been reduced to their simplest forms in Sec. V B 2,
and some remarks on them have been made in Sec. V B 3 because they may facilitate other researchers’
computation of the solution of the Knudsen-layer problems, which lead to the slip boundary
conditions, for gases other than those considered in the present paper. However, in the present
study, we solve the problems in intermediate forms between Eqs. (99)–(102) and Eqs. (114), (115),
and (118)–(120) for the reason described below.

The intermediate forms are for the reduced distribution functions GN
κ and HN

κ defined by

GN
κ (y, ζn, ζ ) = E(ζ )

∫ ∞

0
φN

κ (y, ζn, ζ, Ê)
Êδ/2−1

�(δ/2)
e−ÊdÊ, (123a)

HN
κ (y, ζn, ζ ) = 2

δ
E(ζ )

∫ ∞

0
ÊφN

κ (y, ζn, ζ, Ê)
Êδ/2−1

�(δ/2)
e−ÊdÊ, (123b)

where κ = v, T and N = I, II . In a paper by Hattori (one of the present authors) and Takata [33],
the authors analyzed numerically some Knudsen-layer problems using the linearized Boltzmann
equation for a monatomic hard-sphere gas. Unlike the BGK and ES models, the problems can be
reduced only to the half-space boundary value problems for functions of (y, ζn, ζ ). In Ref. [33],
an accurate finite-difference scheme was devised on the basis of the integral form of the linearized
Boltzmann equation. This scheme has an advantage that it captures the singularities in macroscopic
quantities on the boundary (y = 0) precisely. The accuracy of the scheme has been checked carefully
in Ref. [33]. The coupled equations for GN

κ and HN
κ in the present problem have essentially the same

structure as the equations solved in Ref. [33]. In addition, the former equations, based on the ES
model, are much simpler than the latter equations based on the real Boltzmann equation. Therefore, it
is straightforward to modify and adapt the scheme in Ref. [33] to the equations for GN

κ and HN
κ . Since

the scheme in Ref. [33] is well established, we preferred to use this approach, rather than developing
a new scheme and code for Eq. (118) in spite of the fact that the independent variables of Eq. (118)
are only (y, ζn). The descriptions of the intermediate equations for GN

κ and HN
κ and the numerical

schemes for them are cumbersome, so that we omit them in the present paper. Leaving some remarks
on the accuracy of the computation in Appendix B, we will directly jump to the numerical results.

5. Results of numerical analysis
In the present paper, we give the numerical results of the slip coefficients and the profiles of the

macroscopic quantities inside the Knudsen layer and omit those of the velocity distribution function.
In particular, we concentrate on the slip coefficients in this Sec. V B 5, leaving the macroscopic
quantities in the Knudsen layer to Sec. V B 7.

We consider four kinds of gases: nitrogen (N2), methanol (CH3OH), water vapor (H2O), and
carbon dioxide (CO2). To carry out computation, we need an appropriate parameter setting for each
gas. The original ES model contains the three parameters δ, ν, and θ . As we will see in Sec.VI (see
also Ref. [22]), they are related to the ratio μb/μ, where μ is the viscosity and μb is the bulk viscosity,
and the Prandtl number Pr by Eqs. (136) and (137) appearing later. For each gas, we specify δ, μb/μ,
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TABLE I. The values of μb/μ, Pr, ν, θ , and δ for the gases.

μb/μ Pr ν θ δ

N2 0.736 0.787 −0.5 0.46 2
CH3OH 0.808 0.85 −0.49991668 0.647 6
H2O (290 K) 0.702 1.01 0.018681113 0.47 3
CO2(5) 5 0.767 −0.332698715 0.086918731 3
CO2(10) 10 0.767 −0.31758292 0.043459365 3
CO2(20) 20 0.767 −0.31052865 0.021729683 3
CO2(50) 50 0.767 −0.30644454 0.0086918731 3

and Pr according to the literature and then determine ν and θ . It is known that μb/μ is very large
and about 1000 for CO2 gas. However, for large values of μb/μ, the Knudsen layer in the problems
for φII

v and φII
T decays very slowly because of the slow relaxation of the internal modes, so that the

computation becomes increasingly difficult. This situation is similar to the increase of the thickness
of a shock wave for large μb/μ [53]. For this reason, we consider a fictitious gas, called pseudo-CO2

gas [53], that has the correct Prandtl number but smaller values of μb/μ (μb/μ = 5, 10, 20, and 50)
and denote it by CO2(μb/μ) [CO2(5), CO2(10), CO2(20), and CO2(50)]. For other parameters, we
set Pr = 0.767 (the value at 273K based on the data in Ref. [54]) and δ = 3 (Note that δ = 4 is used
in Ref. [53] because it is more appropriate for the high temperature in a strong shock wave). The
parameters for the four gases are summarized in Table I. The values for N2 are taken from Ref. [28]
(see Ref. [28] for the original references and the reason for these choices). The values for CH3OH
and H2O are based on Ref. [55].

As mentioned in Sec. V B 3, the coefficient cI
T is the same as in the case of the BGK model for

a monatomic gas [cf. Eq. (122)], and the coefficient cI
v is obtained immediately by Eq. (121) from

the value cI
vBGK for the BGK model. The numerical values of cI

v and cI
T are shown in Table II. Here,

the values for the BGK models are taken from Ref. [47], in which the results based on different
models of the Boltzmann equation, including the BGK model, are compared. For CO2(n), the value
of cI

v is independent of n because cI
v = Pr c̄I

v [Eqs. (113) and (137)] and Pr is fixed independent of n.
The values of the slip coefficients cII

v and cII
T , which were obtained by the present computation, are

shown in Tables III and IV, respectively. For CO2(n), accurate computation becomes increasingly
difficult as n becomes large. Therefore, we give only two digits for CO2(50) in Table III. According
to Table IV, cII

T depends weakly on the types of gases.

TABLE II. The values of cI
v and cI

T for different gases.

cI
v

α BGK [47] N2 CH3OH H2O CO2(n) cI
T [47]

0.1 17.10313 13.46703 14.53766 17.27416 13.11810 0.2641783
0.2 8.224902 6.476301 6.991167 8.307151 6.308500 0.2781510
0.3 5.255112 4.137883 4.466845 5.307663 4.030671 0.2919238
0.4 3.762619 2.962692 3.198226 3.800245 2.885929 0.3055019
0.5 2.861190 2.252906 2.432012 2.889802 2.194533 0.3188906
0.6 2.255410 1.775913 1.917099 2.277964 1.729899 0.3320949
0.7 1.818667 1.432021 1.545867 1.836854 1.394918 0.3451195
0.8 1.487654 1.171381 1.264506 1.502531 1.141031 0.3579692
0.9 1.227198 0.9662976 1.043118 1.239470 0.9412609 0.3706483
1.0 1.016191 0.8001504 0.8637624 1.026353 0.7794185 0.3831612
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TABLE III. The values of cII
v for different gases.

α N2 CH3OH H2O CO2(5) CO2(10) CO2(20) CO2(50)

0.1 0.28324 0.19074 0.30749 0.7527 1.3862 2.705 6.9
0.2 0.29461 0.19928 0.32089 0.8029 1.4981 2.958 7.6
0.3 0.30572 0.20767 0.33393 0.8464 1.5879 3.143 8.1
0.4 0.31658 0.21590 0.34662 0.8848 1.6621 3.286 8.4
0.5 0.32721 0.22399 0.35898 0.9190 1.7249 3.400 8.6
0.6 0.33762 0.23194 0.37103 0.9498 1.7789 3.494 8.8
0.7 0.34783 0.23975 0.38279 0.9779 1.8262 3.574 9.0
0.8 0.35783 0.24744 0.39426 1.0036 1.8681 3.642 9.1
0.9 0.36765 0.25499 0.40547 1.0274 1.9057 3.702 9.2
1.0 0.37730 0.26243 0.41641 1.0495 1.9398 3.755 9.3

6. Summary of the slip boundary conditions

With the numerical results in Sec. V B 5, the slip boundary conditions for the compressible Navier-
Stokes equations (46) follow immediately from Eqs. (51), (90), (97b), and (98). That is,

(v̂i − v̂wi)ni = 0, (124a)

(v̂i − v̂wi)ti = εcI
v

T̂
1/2

w

Âc(T̂w)

1

ρ̂

(
∂v̂i

∂xj

+ ∂v̂j

∂xi

)
nitj + εcI

T

1

Âc(T̂w)

1

ρ̂

∂T̂

∂xi

ti , (124b)

T̂ − T̂w = εcII
v

T̂w

Âc(T̂w)

1

ρ̂

∂v̂i

∂xj

ninj + εcII
T

T̂
1/2

w

Âc(T̂w)

1

ρ̂

∂T̂

∂xi

ni, (124c)

where the quantities ρ̂, v̂i , and T̂ , which belong to the Chapman-Enskog solution, as well as their
derivatives, are all evaluated on the boundary. The values of the slip coefficients cI

v , cI
T , cII

v , and cII
T

are summarized in Sec. V B 5. As noted in Ref. [1], Eq. (124) forms two-dimensional fields on the
boundary at each time and is independent of the trajectory of the points on the boundary. It should be
noted that Eq. (124) is of essentially the same form as the slip boundary conditions for a monatomic
gas (cf. Eq. (118) in Ref. [1]). The effect of polyatomic gases appears through the slip coefficients.

The initial condition for Eq. (46) is given by Eq. (47) under assumption (iv) in Sec. II. However,
if we are interested only in the behavior of the gas in the fluid-dynamic time scale that is much
longer than the mean free time in practical applications, we may ignore assumption (iv) in Sec. II
and assume the following more general initial condition:

ρ̂ = ρ̂ in(x), v̂ = v̂in(x), T̂ = T̂ in(x), at t̂ = 0, (125)

TABLE IV. The values of cII
T for different gases.

α N2 CH3OH H2O CO2(5) CO2(10) CO2(20) CO2(50)

0.1 20.0188 18.8622 19.6093 19.6187 19.6272 19.639 19.659
0.2 9.65649 9.09291 9.45850 9.46581 9.47206 9.4797 9.4919
0.3 6.18752 5.82305 6.06030 6.06604 6.07070 6.0761 6.0840
0.4 4.44218 4.17830 4.35058 4.35508 4.35858 4.3624 4.3678
0.5 3.38654 3.18379 3.31648 3.32000 3.32265 3.3255 3.3292
0.6 2.67594 2.51458 2.62039 2.62313 2.62514 2.6272 2.6299
0.7 2.16266 2.03137 2.11760 2.11972 2.12125 2.1228 2.1248
0.8 1.77283 1.66454 1.73576 1.73738 1.73854 1.7397 1.7411
0.9 1.46541 1.37539 1.43465 1.43588 1.43675 1.4376 1.4387
1.0 1.21578 1.14069 1.19016 1.19107 1.19172 1.1923 1.1931
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where ρ̂ in(x), v̂in(x), and T̂ in(x) are the density, flow velocity, and temperature generated from the
initial condition, which is more general than Eq. (26), for the ES model specified in the problem
under consideration:

f̂ (0, x, ζ , Ê) = f̂ in(x, ζ , Ê). (126)

The reader is referred to Sec. 5.2.4 in Ref. [1] for more detailed discussion about the initial condition.

7. Summary of macroscopic quantities inside the Knudsen layer

Equation (88) with Eqs. (71), (72), and (78) gives the relation

〈Cwnφ〉 = O(ε). (127)

Here and in Eq. (128) below, the integration variables (ζ , Ê) in the definition of 〈 · 〉 [Eq. (33)]
should be replaced by (Cw, Ēw), as in Eq. (74). Similarly, if we integrate Eq. (79) multiplied by
(Cwi , C2

w + Ēw)E(Cw)Ēδ/2−1
w exp(−Ēw) over the whole range of (Cw, Ēw) and take into account the

fact that φ → 0 as y → ∞, we obtain

〈CwiCwnφ〉 = O(ε),
〈(
C2

w + Ēw
)
Cwnφ

〉 = O(ε). (128)

Equations (127) and (128) mean, from Eqs. (73b), (73c), and (73f), that v̂
(1)
Ki ni , p̂

(1)
Kij nj , and q̂

(1)
Ki ni are

all of O(ε). Other components of the macroscopic quantities ĥ
(1)
K can be obtained by using Eqs. (78)

and (96) in Eq. (73) and by noting that the change of the names of the variables (94) has been made
in Eq. (96). We summarize the result of the Knudsen-layer correction of the macroscopic quantities
ĥK = ĥ

(1)
K ε + O(ε2) [Eq. (53)] neglecting the terms of O(ε2), that is,

v̂Kini = 0, (129a)

v̂Ki ti = εYv(y)
T̂

1/2
w

Âc(T̂w)

1

ρ̂

(
∂v̂i

∂xj

+ ∂v̂j

∂xi

)
nitj + εYT (y)

1

Âc(T̂w)

1

ρ̂

∂T̂

∂xi

ti , (129b)

ρ̂K = ε�v(y)
1

Âc(T̂w)

∂v̂i

∂xj

ninj + ε�T (y)
1

T̂
1/2

w

1

Âc(T̂w)

∂T̂

∂xi

ni, (129c)⎡⎢⎣T̂trK

T̂intK

T̂K

⎤⎥⎦ = ε

⎡⎢⎣�tr
v (y)

�int
v (y)

�v(y)

⎤⎥⎦ T̂w

Âc(T̂w)

1

ρ̂

∂v̂i

∂xj

ninj + ε

⎡⎢⎣�tr
T (y)

�int
T (y)

�T (y)

⎤⎥⎦ T̂
1/2

w

Âc(T̂w)

1

ρ̂

∂T̂

∂xi

ni, (129d)

p̂Kij nj = 0, (129e)

p̂Kij tj = ε�v(y)
T̂w

Âc(T̂w)

∂v̂j

∂xk

njnkti + ε�T (y)
T̂

1/2
w

Âc(T̂w)

∂T̂

∂xj

nj ti , (129f)

q̂Kini = 0, (129g)

q̂Ki ti = εHv(y)
T̂

3/2
w

Âc(T̂w)

(
∂v̂i

∂xj

+ ∂v̂j

∂xi

)
nitj + εHT (y)

T̂w

Âc(T̂w)

∂T̂

∂xi

ti , (129h)

where, with κ = v, T ,

Yκ (y) = 1

2

〈(
ζ 2 − ζ 2

n

)
φI

κ

〉
, (130a)

�κ (y) = 〈
φII

κ

〉
, (130b)

�tr
κ (y) = 2

3

〈(
ζ 2 − 3

2

)
φII

κ

〉
, (130c)
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(a) (b) (c)

FIG. 2. Knudsen-layer functions for the BGK model. (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. The solid line
indicates YvBGK(y), the dashed line HvBGK(y), the dot-dashed line YT BGK(y), and the dotted line HT BGK(y).

�int
κ (y) = 2

δ

〈(
Ê − δ

2

)
φII

κ

〉
, (130d)

�κ (y) = 3�tr
κ + δ�int

κ

3 + δ
, (130e)

�κ (y) = 3

2

[
�κ (y) + �tr

κ (y)
]
, (130f)

Hκ (y) = 1

2

〈(
ζ 2 − ζ 2

n

)(
ζ 2 + Ê − 5 + δ

2

)
φI

κ

〉
. (130g)

In Eq. (130), 〈 · 〉 is defined with the variables (ζ , Ê) by Eq. (33).
Now we give some numerical result for the Knudsen-layer functions Yκ (y), �κ (y),..., Hκ (y). In

Sec. V B 2, we mentioned that the problem for φI
v is reduced to the problem of ψI

v , which is then
reduced to the problem for ψ̄I

v for the BGK model for a monatomic gas by Eq. (113). Similarly, the
problem for φI

T is reduced to that for ψI
T , which is exactly the same as the corresponding problem for

the BGK model. Using this fact and making some considerations (see Appendix C), we can obtain
the following relations between the present ES model and the BGK model for the functions Yv(y),
Hv(y), YT (y), and HT (y):[

Yv(y)
Hv(y)

]
= 1

1 − ν + θν

[
YvBGK(y)
HvBGK(y)

]
, (131a)

YT (y) = YT BGK(y), HT (y) = HT BGK(y) + δα

4
√

π
J0(y), (131b)

where Jn(y) is the so-called Abramowitz function [56] defined by

Jn(y) =
∫ ∞

0
zne−z2− y

z dz, (y � 0). (132)
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TABLE V. Abramowitz function J0(y).

y J0(y) y J0(y) y J0(y)

0.0 0.886227 0.1 0.634322 1.2 0.117823
0.01 0.838746 0.2 0.506231 1.4 0.093710
0.02 0.804956 0.3 0.417408 1.6 0.075313
0.03 0.776230 0.4 0.350797 1.8 0.061060
0.04 0.750737 0.5 0.298717 2.0 0.049876
0.05 0.727609 0.6 0.256889 2.5 0.030899
0.06 0.706336 0.7 0.222647 3.0 0.019739
0.07 0.686581 0.8 0.194206 4.0 0.008619
0.08 0.668105 0.9 0.170310 5.0 0.004022
0.09 0.650731 1.0 0.150046 6.0 0.001972

We recall that we can, in principle, reconstruct the data of YvBGK(y), HvBGK(y), YT BGK(y), and
HT BGK(y) from the information in the literature, for instance, from Refs. [44,51]. In order to save
space, we only show the basic functions YvBGK(y), HvBGK(y), YT BGK(y), and HT BGK(y) for α = 1.0,
0.5, and 0.2 in Fig. 2 and the function J0(y) in Table V. We note that the results shown in Fig. 2 were
newly recomputed using the schemes for (GI

κ,H
I
κ ) (κ = v, T ), not reconstructed from the data in

the literature, and that the values in Table V were computed by the use of the FORTRAN subroutine
provided in Ref. [57].

In Figs. 3–8, we show the profiles of the functions �v(y), �T (y), �tr
v (y), �int

v (y), �tr
T (y),

and �int
T (y), respectively, in the case of α = 1.0, 0.5, and 0.2 for nitrogen, methanol, and water

vapor. In Figs. 3–5 and 7, the corresponding profiles for the BGK model for a monatomic
gas are also shown. Figures 9 and 10 show, respectively, the profiles of [�v(y),�tr

v (y),�int
v (y)]

and [�T (y),�tr
T (y),�int

T (y)] in the case of α = 1 (diffuse reflection) for CO2(n) gas (n =
5, 10, 20, 50).

(a) (b) (c)

FIG. 3. Knudsen-layer function �v(y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. The solid line indicates the
result for the BGK model for a monatomic gas, the dashed line for nitrogen, the dot-dashed line for methanol,
and the dotted line for water vapor.
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(a) (b) (c)

FIG. 4. Knudsen-layer function �T (y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. See the caption of Fig. 3.

Once the solution of the compressible Navier-Stokes equations (46) with the slip boundary
conditions (124) (and the initial conditions) is obtained, the profiles of corrections of the macroscopic
quantities inside the Knudsen layer, ĥK in Eq. (50), are obtained from Eq. (129), and thus the profiles
of the macroscopic quantities inside the Knudsen layer are given by Eq. (50).

(a) (b) (c)

FIG. 5. Knudsen-layer function �tr
v (y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. See the caption of Fig. 3.
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(a) (b) (c)

FIG. 6. Knudsen-layer function �int
v (y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. The solid line indicates the

result for nitrogen, the dashed line for methanol, and the dot-dashed line for water vapor.

VI. NAVIER-STOKES EQUATIONS AND SLIP BOUNDARY CONDITIONS
IN DIMENSIONAL FORM

In this section, we transform the compressible Navier-Stokes equations (46) and the slip boundary
conditions (124) to their original dimensional form.

(a) (b) (c)

FIG. 7. Knudsen-layer function �tr
T (y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. See the caption of Fig. 3.
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(a) (b) (c)

FIG. 8. Knudsen-layer function �int
T (y). (a) α = 1.0, (b) α = 0.5, (c) α = 0.2. See the caption of Fig. 6.

We start with the stress tensor and the heat-flow vector. Using Eq. (17) in Eq. (44) and neglecting
the terms of O(ε2), we obtain the dimensional stress tensor pij and heat-flow vector qi in the following

(a) (b) (c)

FIG. 9. Knudsen-layer functions �v(y), �tr
v (y), and �int

v (y) in the case of α = 1 for CO2(n). (a) �v(y),
(b) �tr

v (y), (c) �int
v (y). The solid line indicates the result for CO2(5), the dashed line for CO2(10), the dot-dashed

line for CO2(20), and the dotted line for CO2(50).
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(a) (b) (c)

FIG. 10. Knudsen-layer functions �T (y), �tr
T (y), and �int

T (y) in the case of α = 1 for CO2(n). (a) �T (y),
(b) �tr

T (y), (c) �int
T (y). See the caption of Fig. 9.

form:

pij = pδij − μ(T )

(
∂vi

∂Xj

+ ∂vj

∂Xi

− 2

3

∂vk

∂Xk

δij

)
− μb(T )

∂vk

∂Xk

δij , (133a)

qi = −λ(T )
∂T

∂Xi

, (133b)

where μ(T ), μb(T ), and λ(T ) are, respectively, the viscosity, the bulk viscosity, and the thermal
conductivity and are expressed as follows:

μ(T ) = p0L

(2RT0)1/2
ε�1(T̂ ) = 1

1 − ν + θν

RT

Ac(T )
, (134a)

μb(T ) = p0L

(2RT0)1/2
ε�b(T̂ ) = 2

3

δ

θ (3 + δ)

RT

Ac(T )
, (134b)

λ(T ) = 5

4

p0(2RT0)1/2L

T0
ε�2(T̂ ) = 5 + δ

2

R2T

Ac(T )
. (134c)

In deriving the respective rightmost sides, use has been made of Eqs. (8), (20), and (45) in addition
to Eq. (17).

Let us denote by γ the ratio of the specific heats, that is, γ = cp/cv , where cp and cv are the
specific heat at constant pressure and that at constant volume, respectively. In this paper, we assume
that cp, cv , and thus γ are constant (calorically perfect gas). Then, γ is expressed in terms of the
internal degrees of freedom δ of a molecule as

γ = (δ + 5)/(δ + 3). (135)

Therefore, μb and λ can also be written as

μb(T ) = 5 − 3γ

3θ

μ(T )

Pr
, λ(T ) = Rγ

γ − 1

RT

Ac(T )
, (136)
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where Pr = cpμ/λ is the Prandtl number and is expressed as

Pr = 1/(1 − ν + θν), (137)

because of the relation cp = Rγ/(γ − 1).
With the help of Eqs. (17) and (134), the compressible Navier-Stokes equations are transformed

from the dimensionless form, Eq. (46), to the following dimensional form:

∂ρ

∂t
+ ∂ρvj

∂Xj

= 0, (138a)

∂ρvi

∂t
+ ∂ρvivj

∂Xj

= − ∂p

∂Xi

+ ∂

∂Xj

[
μ(T )

(
∂vj

∂Xi

+ ∂vi

∂Xj

− 2

3

∂vk

∂Xk

δij

)]
+ ∂

∂Xi

[
μb(T )

∂vj

∂Xj

]
,

(138b)

∂

∂t

[
ρ

(
3 + δ

2
RT + 1

2
v2

k

)]
+ ∂

∂Xj

[
ρvj

(
5 + δ

2
RT + 1

2
v2

k

)]
= ∂

∂Xj

[
λ(T )

∂T

∂Xj

]
+ ∂

∂Xj

[
μ(T )vi

(
∂vj

∂Xi

+ ∂vi

∂Xj

− 2

3

∂vk

∂Xk

δij

)]
+ ∂

∂Xj

[
μb(T )vj

∂vk

∂Xk

]
.

(138c)

By letting both of the bulk viscosity μb(T ) and the degrees of freedom of the internal modes δ be zero,
Eq. (138) reduces to the same form as the compressible Navier-Stokes equations for a monatomic
gas (cf. Eq. (123) in Ref. [1]). Therefore, the terms containing these quantities express the effect of
polyatomic gases.

Next, we transform the slip boundary conditions (124) into their dimensional form. That is, if we
use Eq. (17) and eliminate ε with the help of Eqs. (134a) and (134c) at T = Tw in Eq. (124), we
obtain the following dimensional form of the slip boundary conditions:

(vi − vwi)ni = 0, (139a)

(vi − vwi)ti =
√

2

R1/2
aI

v

μ(Tw)

ρT
1/2

w

(
∂vi

∂Xj

+ ∂vj

∂Xi

)
nitj + 4

5R
aI

T

λ(Tw)

ρTw

∂T

∂Xi

ti, (139b)

T − Tw = 1

R
aII

v

μ(Tw)

ρ

∂vi

∂Xj

ninj + 2
√

2

5R3/2
aII

T

λ(Tw)

ρT
1/2

w

∂T

∂Xi

ni, (139c)

where

aI
v = (1 − ν + θν)cI

v = c̄I
v , aI

T = (1 + δ/5)−1cI
T , (140a)

aII
v = (1 − ν + θν)cII

v , aII
T = (1 + δ/5)−1cII

T . (140b)

In Eqs. (139b) and (139c), μ is used in the terms containing the derivative of the flow velocity,
and λ is used in those containing the derivative of the temperature. In contrast to the Navier-Stokes
equations (138), the slip boundary conditions (139) are of essentially the same form as those for a
monatomic gas [cf. Eq. (124) in Ref. [1]]. The effect of polyatomic gases appears indirectly via the
coefficients aI

v , aI
T , aII

v , and aII
T as well as μ(Tw) and λ(Tw).

The initial condition for Eq. (138) is given by

ρ = ρ0, v = 0, T = T0, at t = 0, (141)

corresponding to Eq. (47), under assumption (iv) in Sec. II, or

ρ = ρ in(X), v = vin(X), T = T in(X), at t = 0, (142)
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corresponding to Eq. (125) in more general case without assumption (iv) and in the case when we
ignore the accuracy for short time (within the scale of the mean free time). Here ρ in, vin, and T in are
the density, flow velocity, and temperature obtained from the initial distribution f in corresponding
to Eq. (126) (see Sec. 5.2.4 in Ref. [1]).

VII. CONCLUDING REMARKS

In the present paper, we have derived the slip boundary conditions for the compressible Navier-
Stokes equations for a polyatomic gas on the basis of the Chapman-Enskog solution and the Knudsen-
layer analysis. It is an extension of Ref. [1], where the corresponding slip boundary conditions were
derived for a monatomic gas. The full Boltzmann equation was used in Ref. [1], whereas the ES
model of the Boltzmann equation was adopted in the present study because of the complexity of the
Boltzmann collision integral for a polyatomic gas.

As in Ref. [1], the problem of determining the slip boundary conditions and the slip coefficients
included in the conditions is reduced to the four half-space boundary-value problems for the linearized
ES model, three of which are the classical problems of shear slip (the so-called Kramers problem),
thermal creep, and temperature jump. For the ES model, the problem of thermal creep is the same as
that for the BGK model for a monatomic gas, so that the polyatomic gas effect does not appear. The
problem of shear slip is also reduced to that for the BGK model. Therefore, the values of the slip
coefficients associated with these two problems for a polyatomic gas can be obtained from the data
in the literature without computation. On the other hand, the other two problems, which cannot be
reduced to the case of the BGK model, were solved numerically to determine the corresponding slip
coefficients. In this way, the slip boundary conditions for the compressible Navier-Stokes equations
for a polyatomic gas have been established. At the same time, the profiles of the macroscopic
quantities inside the Knudsen layer have been obtained.

In the present study, we adopted the ES model because the H theorem has been proved for this
model [22], and the Prandtl number is adjustable. In addition, it has the convenient property that
the shear slip and thermal creep problems are reduced to those for the BGK model for a monatomic
gas. Here, we should mention that many model Boltzmann equations have been proposed for a
polyatomic gas since the 1960s [27,58–65], and for some of them [27,64,65], the H theorem can be
proved and the Prandtl number is adjustable. We also note that the shear-slip problem [corresponding
to Eq. (99)] and the thermal-creep problem [corresponding to Eq. (100)] was investigated in Ref. [66]
using the linearized version of the model proposed in Ref. [61], and the temperature-jump problem
[corresponding to Eq. (102)] was investigated in Ref. [67] by the use of the linearized version of
the model proposed in Ref. [60] (see also Ref. [68]). For instance, referring to Refs. [66,68], we can
express the slip coefficient cI

T as cI
T = (3/10)ftr(1 + 0.5α)(Pr/2), where ftr is a parameter depending

on the types of gases and set to be ftr = 2.17 ∼ 2.31 for N2 and ftr = 2 for CO2 in Ref. [66]. This
means that in contrast to our result, the values of cI

T depends on the types of gases. However, the
dependence is not large, and for N2 with ftr = 2.17, the above formula gives cI

T = 0.281785 (α =
0.2), 0.307402 (α = 0.4), 0.333019 (α = 0.6), 0.358636 (α = 0.8), and 0.384253 (α = 1). These
values are close to our cI

T in Table II. According to Refs. [67,68], cII
T may be expressed as cII

T =
(
√

π/2)[(δ + 5)/(δ + 4)][(2 − α)/α + 0.17]. This formula gives, for instance, cII
T = 9.48115 (α =

0.2), 4.31149 (α = 0.4), 2.58827 (α = 0.6), 1.72667 (α = 0.8), and 1.20970 (α = 1) for N2, which
are close to our cII

T in Table IV.
Chapman-Enskog solution has been obtained for many model equations including the Boltzmann-

type model [69]. Therefore, by following the line of the present analysis, the slip boundary conditions
for the compressible Navier-Stokes equations can be established for different model equations. The
first-order Chapman-Enskog solutions of correct models should have essentially the same form,
since they should give the correct compressible Navier-Stokes equations. Therefore, the basic form
of the slip boundary conditions derived from different models should be the same as Eq. (124) or
(139). However, the Chapman-Enskog solutions of different models have different dependence on
the variables, which may be continuous or discrete, associated with the internal modes, so that the
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values of the slip coefficients naturally depend on the models. Although the numerical values shown
in the preceding paragraph show weak model dependence, these examples are too few to lead to a
conclusion. A comprehensive investigation of the dependence of the slip boundary conditions on
model equations would be an important and interesting problem.
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APPENDIX A: OUTLINE OF THE DERIVATION OF EQS. (55) AND (56)

If we substitute Eq. (49) into Eq. (18) and consider the fact that f̂CE satisfies the same Eq. (18),
we have

ε
∂f̂

(1)
K

∂t̂
+ εζi

∂f̂
(1)
K

∂xi

+ O(ε2Rf ) = 1

ε
[Q̂(f̂CE + f̂K) − Q̂(f̂CE)], (A1)

where Eq. (52) has been used on the left-hand side. To calculate the right-hand side, we need some
preparations.

If we use Eq. (50) with Eq. (53) in Eq. (19c) and recall that ĥCE are ĥ appeared in Sec. IV B
without the subscript CE, we obtain the following expansion of T̂ evaluated with ĥ = ĥtot, which is
denoted by T̂|ĥ=ĥtot

: (
T̂|ĥ=ĥtot

)
ij

= (A)ij + ε(B)ij + O(ε2Rh), (A2)

where

(A)ij = (1 − θ )

[
(1 − ν)T̂trδij + ν

p̂ij

ρ̂

]
+ θT̂ δij = (

T̂|ĥ=ĥCE

)
ij
, (A3a)

(B)ij = (1 − θ )

[
(1 − ν)T̂ (1)

trKδij + ν
1

ρ̂

(
p̂

(1)
Kij − p̂ij

ρ̂
(1)
K

ρ̂

)]
+ θT̂

(1)
K δij , (A3b)

and T̂|ĥ=ĥCE
indicates T̂ evaluated with ĥ = ĥCE. Note that ρ̂, p̂ij , T̂tr , and T̂ in Eq. (A3) are the

Chapman-Enskog macroscopic quantities. Then, the inverse and the determinant of T̂|ĥ=ĥtot
are

expressed as (
T̂|−1

ĥ=ĥtot

)
ij

= (A−1)ij − (A−1BA−1)ij ε + O(Rhε
2), (A4)

det T̂|ĥ=ĥtot
= D(0) + D(1)ε + O(Rhε

2), (A5)

where

D(0) = εijk(A)1i(A)2j (A)3k = det T̂|ĥ=ĥCE
, (A6a)

D(1) = εijk[(B)1i(A)2j (A)3k + (A)1i(B)2j (A)3k + (A)1i(A)2j (B)3k], (A6b)

and εijk is the Eddington epsilon. With these expressions, the argument of the exponential function
in Ĝ [Eq. (19b)], evaluated with ĥ = ĥtot, can be expressed as

−[ζi − (v̂tot)i]
(
T̂|−1

ĥ=ĥtot

)
ij

[ζj − (v̂tot)j ] − Ê
(T̂rel)tot

= P (0) + P (1)ε + O(RhSε2), (A7)
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where

P (0) = −(ζi − v̂i)(A−1)ij (ζj − v̂j ) − Ê
T̂rel

, (A8a)

P (1) = (ζi − v̂i)(A−1B A−1)ij (ζj − v̂j ) + [
(ζi − v̂i)v̂

(1)
Kj + v̂

(1)
Ki (ζj − v̂j )

]
(A−1)ij + T̂

(1)
relK

T̂ 2
rel

Ê, (A8b)

and v̂i and T̂rel are the Chapman-Enskog macroscopic quantities. In the remainder in Eq. (A7), S

indicates an appropriate function of ζ and Ê that decays fast enough when multiplied by a rapidly
decaying function of ζ and Ê . Therefore, the Gaussian Ĝ [Eq. (19b)] evaluated with ĥ = ĥtot =
ĥCE + ĥK can be expanded in the following form:

Ĝ|ĥ=ĥtot
= Ĝ(0) + Ĝ(1)ε + O(Rf ε2), (A9)

where

Ĝ(0) = ρ̂

π3/2
√

D(0)T̂
δ/2

rel �(δ/2)
Êδ/2−1 exp

(
−(ζi − v̂i)(A−1)ij (ζj − v̂j ) − Ê

T̂rel

)
, (A10a)

Ĝ(1) = Ĝ(0)

(
ρ̂

(1)
K

ρ̂
− 1

2

D(1)

D(0)
− δ

2

T̂
(1)

relK

T̂rel
+ P (1)

)
. (A10b)

Since T̂tot = T̂ + T̂
(1)

K ε + O(Rhε
2), we have Âc(T̂tot) = Âc(T̂ ) + Â′

c(T̂ )T̂ (1)
K ε + O(Rhε

2). Using
these expansions and ρ̂tot = ρ̂ + ρ̂

(1)
K ε + O(Rhε

2), in Q̂(f̂tot) = Q̂(f̂CE + f̂K) and taking account
of the fact that Q̂(f̂CE) = O(εf̂ (0)), we obtain the following expression of the term in the square
brackets in Eq. (A1):

Q̂(f̂CE + f̂K) − Q̂(f̂CE) = Âc(T̂ ) ρ̂ (Ĝ(1) − f̂
(1)
K )ε + O(Rf ε2). (A11)

Now we derive the expression of Ĝ(1) that is correct within the error of O(Rf ε2). Since f̂CE =
f̂ (0) + O(ε), we have the following:

(A)ij = T̂ δij + O(ε), (A12a)

(A−1)ij = T̂ −1δij + O(ε), (A12b)

(B)ij = T̂ dKij + O(Rhε), (A12c)

(A−1B A−1)ij = T̂ −2(B)ij + O(Rhε) = T̂ −1dKij + O(Rhε), (A12d)

where

dKij =
[

(1 − θ )
T̂

(1)
trK

T̂
+ θ

T̂
(1)

K

T̂

]
δij + (1 − θ )ν

[
p̂

(1)
Kij

ρ̂T̂
−
(

ρ̂
(1)
K

ρ̂
+ T̂

(1)
trK

T̂

)
δij

]
. (A13)

These relations give the following expressions of D(0), D(1), and P (1):

D(0) = T̂ 3 + O(ε), (A14a)

D(1) = T̂ 3dKii + O(Rhε), (A14b)

P (1) = (ζi − v̂i)(ζj − v̂j )

T̂
dKij + 2

v̂
(1)
Kk(ζk − v̂k)

T̂
+ T̂

(1)
relK

T̂ 2
Ê + O(RhSε). (A14c)
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Using these expressions in Eq. (A10b) and noting that Ĝ(0) = f̂ (0) + O(εf̂CE), we have the following
expression of Ĝ(1):

Ĝ(1) = f̂ (0)

[
ρ̂

(1)
K

ρ̂
− 1

2
dKii− δ

2

T̂
(1)

relK

T̂
+ (ζi − v̂i)(ζj − v̂j )

T̂
dKij + 2

v̂
(1)
Kk(ζk− v̂k)

T̂
+ T̂

(1)
relK

T̂ 2
Ê
]
+O(Rf ε)

= Ĝ(1)
K + O(Rf ε), (A15)

where Ĝ(1)
K is defined in Eq. (56a). Equations (A1), (A11), and (A15) lead to Eqs. (55) and (56).

APPENDIX B: DATA AND ACCURACY FOR NUMERICAL COMPUTATION

As mentioned in Sec. V B 4, the computation of the problems for (φII
v , cII

v ) and (φII
T , cII

T ) were
carried out on the basis of the coupled equations for reduced distribution functions (GII

v ,H II
v ) and

those for (GII
T ,H II

T ), respectively. The scheme, the method to determine the unknown constants
cII
v and cII

T , and the grid points used here are essentially the same as those in Ref. [33]. However,
since we do not need to compute the collision integral of the Boltzmann equation as Ref. [33], the
scheme is much simpler, and the primary grid system for the molecular velocity used for capturing
the collision integral in Ref. [33] is unnecessary here. To be more specific, the actual computation was
performed in the variables (y, σ, ζ ), where σ = ζn/ζ , instead of the original variables (y, ζn, ζ ). Note
that (y, σ, ζ ) in the present paper correspond to (η,μ, ζ ) in Ref. [33], so that when the reader refers
to Ref. [33], the symbols y and σ should be changed to η and μ, respectively. In the computation,
the range of y and ζ were, respectively, restricted to 0 � y � d and 0 � ζ � Z with suitably large
constants d and Z, and these ranges, as well as the range of σ (−1 � σ � 1), were divided into
small intervals by the grid points distributed nonuniformly. The distributions of the grid points and
the values of d and Z are given in Appendix B in Ref. [33] [see Eqs. (B.1), (B.2), and (B.3) and
Table B.3 there]. For nitrogen (N2), methanol (CH3OH), and water vapor (H2O), we used the grid
systems S1, S2, and S3 defined in Appendix B in Ref. [33] and S4, whose grid points are double of
those of S1, for the space variable y. As for (σ, ζ ), we used M1, M2,..., and M7 in Ref. [33] for the
same gases [note that we used the secondary grid system for the molecular velocity, i.e., grid points
M (j ) (j = −2NM, . . . ,2NM ) and ξ (k) (k = 0, . . . ,2Nξ ) in Ref. [33] for σ and ζ , respectively]. For
pseudo-CO2 gases CO2(n) (n = 5, 10, 20, and 50), we used the systems with wider range (i.e., larger
d) and more grid points for y to handle the thicker Knudsen layer for these gases, especially for
CO2(20) and CO2(50).

Our standard grid system is (S1, M1) for the gases except CO2(n) and (S5, M1) for these gases,
where S5 is a system for y with the same grid intervals as S1 and a larger d. The numerical results
shown in Tables III and IV and in Figs. 3–10 are based on these standard grid systems. The system S1
has d = 44.46 and 251 grid points with the minimum and maximum grid intervals being 7.3 × 10−7

(at y = 0) and 0.69 (at y = d), and the system S5 has d = 64.16 and 269 grid points with the
minimum and maximum grid intervals being 7.3 × 10−7 (at y = 0) and 1.78 (at y = d). The system
M1 has a complex structure for the purpose of an easy control of the distribution of the grid points
near σ = 0 and ζ = 0 (see Eqs. (B.2) and (B.3) in Ref. [33]). It has Z = 5 and 449 grid points for
σ and 161 grid points for ζ . The minimum and maximum grid intervals are 2.4 × 10−10 (at σ = 0)
and 0.025 (at σ = ±1) for σ and 5.1 × 10−10 (at ζ = 0) and 0.12 (at ζ = Z) for ζ .

Our accuracy check consists of the following:
(i) We have checked the accuracy of the results using different combinations of the grid systems

for the accommodation coefficient α = 0.2, 0.5, and 1 in the case of N2, CH3OH, and H2O and for
α = 1 in the case of CO2(n). For instance, we have confirmed that the numerical values shown for
these values of α in Tables III and IV are accurate up to the last digit.

(ii) We have checked if the values of |GII
v |, |HII

v |, |GII
T |, and |HII

T | are small enough at the
outer edges of the computational domain, i.e., y = d and ζ = Z for α = 0.2, 0.5, and 1. We
have confirmed that maxy=d |GII

κ |/max|GII
κ |, maxζ=Z|GII

κ |/max|GII
κ |, maxy=d |HII

κ |/max|HII
κ |,
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and maxζ=Z|HII
κ |/max|HII

κ | (κ = v, T ) are less than 1.6 × 10−9 for N2, CH3OH, and H2O, where
max without a subscript means the maximum in the computational domain. We have also confirmed
that maxζ=Z|GII

κ |/max|GII
κ | and maxζ=Z|HII

κ |/max|HII
κ | (κ = v, T ) are less than 1.5 × 10−9 for

CO2(n) (n = 5, 10, 20, and 50). However, maxy=d |GII
κ |/max|GII

κ | and maxy=d |HII
κ |/max|HII

κ |
(κ = v, T ) become worse for CO2(n) as n increases. To be more precise, maxy=d |GII

κ |/max|GII
κ |

and maxy=d |HII
κ |/max|HII

κ | are less than 3.8 × 10−10 for CO2(5), less than 8.8 × 10−8 for CO2(10),
less than 8.4 × 10−6 for CO2(20), and less than 7.0 × 10−4 for CO2(50). That is, the decay of |GII

κ |
and |HII

κ | for large y becomes slow for CO2(n) as n increases. This is the reason why we were not
able to solve the problem for (φII

κ , cII
κ ) for CO2(n) with n greater than 50.

(iii) The scheme used in the present computation is not conservative in the sense that the
conservation of mass, momentum, and energy is not imposed artificially on the scheme. Therefore,
whether the conservation laws are satisfied accurately or not provides a good measure of accuracy.
The conservation of mass, momentum, and energy in the following form holds:

I [F ] = I−[F ] + I+[F ] = 0, (B1)

where

I [F ] =
∫

ζnFdζ , I−[F ] =
∫

ζn<0
ζnFdζ , I+[F ] =

∫
ζn>0

ζnFdζ , (B2)

and F = GII
κ for the mass conservation, F = ζnG

II
κ for the momentum conservation, and F =

ζ 2GII
κ + (δ/2)HII

k for the energy conservation (κ = v, T ). We have checked how accurately
the conservation laws are fulfilled for α = 0.2, 0.5, and 1. The numerical solutions show that
maxy |I [F ]|/ maxy |I−[F ]| with the three F s listed above is less than 2.7 × 10−5 for N2, CH3OH, and
H2O; maxy |I [F ]|/ maxy |I−[F ]| with the same F s is less than 3.4 × 10−5 for CO2(5) and CO2(10);
maxy |I [F ]|/ maxy |I−[F ]| with F = GII

κ and F = ζ 2GII
κ + (δ/2)HII

k is less than 2.6 × 10−5, but
maxy |I [F ]|/ maxy |I−[F ]| with F = ζnG

II
κ is only less than 2.5 × 10−4 for CO2(20) and CO2(50).

APPENDIX C: OUTLINE OF THE DERIVATION OF EQ. (131)

Equation (130a) can be written in terms of ψI
κ [Eq. (106b)] as

Yκ (y) = 1

2
√

π

∫ ∞

−∞
ψI

κ e−ζ 2
n dζn, (C1)

with κ = v, T . Therefore, the first equations of Eqs. (131a) and (131b) follow immediately from
Eqs. (121) and (122).

In order to derive the second equations of Eqs. (131a) and (131b), we introduce the additional
reduced velocity distribution functions σ I

κ and λI
κ :

σ I
κ (y,ζn) = 1

π

2

δ

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0
Ê
(
ζ 2

s + ζ 2
t

)
φI

κ (y,ζn,ζ,Ê)e−ζ 2
s −ζ 2

t
Êδ/2−1

�(δ/2)
e−ÊdÊdζtdζs, (C2)

λI
κ (y,ζn) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

(
ζ 2

s + ζ 2
t

)2
φI

κ (y,ζn,ζ,Ê)e−ζ 2
s −ζ 2

t
Êδ/2−1

�(δ/2)
e−ÊdÊdζtdζs. (C3)

If we derive the equations and boundary conditions for σ I
κ and λI

κ by taking the appropriate moments
of Eqs. (99) and (100) and compare the results with the problems for ψI

v [Eq. (109) with Eqs. (111)
and (112)] and for ψI

T [Eq. (115)], we find the following relations:

σ I
v = λI

v = ψI
v , (C4a)

σ I
T = λI

T = ψI
T + rT , (C4b)
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where

rT =
{
αe−y/ζn (ζn > 0),
0 (ζn < 0).

(C5)

The function Hκ (y) defined by Eq. (130g) can be written in terms of ψI
κ , σ I

κ , and λI
κ in the following

form:

Hκ (y) = 1

2

〈(
ζ 2

s + ζ 2
t

)[
ζ 2

n + (
ζ 2

s + ζ 2
t

)+ Ê − 5 + δ

2

]
φI

κ

〉
= 1

2
√

π

∫ ∞

−∞

[(
ζ 2

n − 5 + δ

2

)
ψI

κ + δ

2
σ I

κ + 2λI
κ

]
e−ζ 2

n dζn. (C6)

On the other hand, we can derive the following relation for the BGK model,

HκBGK(y) = 1

2
√

π

∫ ∞

−∞

[(
ζ 2

n − 5

2

)
ψI

κBGK + 2λI
κBGK

]
e−ζ 2

n dζn, (C7)

and can find that

λI
vBGK = ψI

vBGK, (C8a)

λI
T BGK = ψI

T BGK + rT . (C8b)

By comparing Eq. (C6) [with Eq. (C4)] and Eq. (C7) [with Eq. (C8)] and by making use of Eqs. (121)
and (122), we obtain the second equations of Eqs. (131a) and (131b).
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