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From hindered to promoted settling in dispersions of attractive colloids:
Simulation, modeling, and application to macromolecular characterization
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The settling of colloidal particles with short-ranged attractions is investigated via highly
resolved immersed boundary simulations. At modest volume fractions, we show that
intercolloid attractions lead to clustering that reduces the hinderance to settling imposed
by fluid back flow. For sufficient attraction strength, increasing the particle concentration
grows the particle clusters, which further increases the mean settling rate in a physical
mode termed promoted settling. The immersed boundary simulations are compared to
recent experimental measurements of the settling rate in nanoparticle dispersions for which
particles are driven to aggregate by short-ranged depletion attractions. The simulations
are able to quantitatively reproduce the experimental results. We show that a simple,
empirical model for the settling rate of adhesive hard-sphere dispersions can be derived
from a combination of the experimental and computational data as well as analytical results
valid in certain asymptotic limits of the concentration and attraction strength. This model
naturally extends the Richardson-Zaki formalism used to describe hindered settling of hard,
repulsive spheres. Experimental measurements of the collective diffusion coefficient in
concentrated solutions of globular proteins are used to illustrate inference of effective
interaction parameters for sticky, globular macromolecules using this empirical model.
Finally, application of the simulation methods and empirical model to other colloidal
systems are discussed.
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I. INTRODUCTION

Settling of dispersed colloidal particles is central to the processing and analysis of a wide range
of industrial and scientific materials. Centrifugation is used as both a processing and analytical tool
in laboratory and commercial settings [1], and gravity-driven particle motion controls the shelf life
of many consumer and food products [2]. In the context of environmental science, sedimentation of
suspended particles plays a crucial role in the engineering of pollution remediation strategies [3] as
well as natural processes of erosion and deposition [4]. Additionally, there is a linear relationship
between the sedimentation coefficient and the collective diffusivity in colloidal dispersions. Thus,
important industrial separation processes such as ultrafiltration applied to purification of biologically
derived macromolecules, whose design requires accurate models of the collective diffusivity, depend
on knowledge of the sedimentation coefficient in concentrated dispersions [5]. In a vast majority of
these materials and systems, the colloidal particles are attractive. However, most fundamental studies
of settling in colloidal dispersions concern hard or repulsive particles. In the present work, we apply
the immersed boundary method to study the settling rate in concentrated dispersions of spherical
colloids with short-ranged attractions.
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The settling dynamics of concentrated colloidal dispersions are controlled by the hydrodynamic
interactions induced as moving particles displace the surrounding fluid. The flows generated by
settling particles decay to leading order as the inverse of the distance from the particle. The
entrainment of other particles by these disturbance flows is a critical factor in settling dispersions.
The combined flow produced by all the settling particles appears to diverge with the physical size
(extent) of the dispersion because of the long-ranged nature of these hydrodynamic interactions [6].
However, mass conservation at the system boundaries produces a backflow driven by a pressure
gradient balancing the buoyant weight of the particles. When the backflow is combined with the
induced flows, an intensive sedimentation rate, one that is independent of the system size, results. The
interplay of entrainment and backflow is a subtle one that makes the sedimentation a sensitive function
of the microstructure of the colloidal dispersion. In dispersions of attractive colloids, which tend to
form clusters, entrainment and backflow act synergistically so that attractions always accelerate the
settling process. The reasons for this are straightforward: Clusters in isolation naturally sediment
more quickly than individual particles, and the widened spaces between clustering particles lead to
a weaker resistance due to the backflow. Quantifying these effects represents a major challenge in
quantitative colloid science. In the present work, we consider a limit in which the Péclet number for
the settling particles is vanishingly small. In this limit, the rate of particle diffusion far exceeds the
rate of sedimentation and the microstructure of the colloidal dispersion is dictated by thermodynamic
equilibrium.

Of the limited studies on the sedimentation of attractive suspensions, the most important result, a
dilute-limit approximation for the mean settling rate U of a suspension of spherical particles, accurate
to first order in the particle volume fraction φ, was derived by Batchelor more than 50 years ago
[7,8]:

U

U0
= 1 − 6.55 φ + 3.52 (1 − B∗

2 ) φ + O(φ2), (1)

where U0 is the settling speed of a single isolated particle and B∗
2 = B2/B

HS
2 , where B2 is the second

virial coefficient of the particles and BHS
2 is the second virial coefficient of a reference hard-sphere

dispersion. For dilute hard spheres, entrainment and backflow combine to reduce the relative settling
rate of particles by an amount of 6.55 φ. Attractive interactions cause B∗

2 to drop from unity (hard
spheres) to negative values. This has the effect of increasing the settling speed relative to hard spheres.
For sufficiently strong attractions (B∗

2 � −0.861), Batchelor’s theory predicts that a dispersion can
settle faster than an isolated particle. Moncho-Jordá et al. used a series of stochastic rotation dynamics
(SRD) simulations to test Batchelor’s dilute limit prediction as well as to study sedimentation in
concentrated attractive dispersions. They observed that particles with attractive interactions sediment
more quickly than hard spheres at all volume fractions and that, within a specific range of volume
fractions, sufficiently strong attractions produce a settling rate that is larger than even the isolated
particle value. For dispersions that exhibited such promoted settling, the sedimentation rate exhibited
a nonmonotonic dependence on particle volume fraction. At low volume fractions, the rate increases
above the single-particle value. Beyond a critical volume fraction, the settling rate decreased as
expected of conventional hindered settling. These simulations and the resulting data possess a
number of physical and quantitative issues, including being performed at finite but small Péclet and
Reynolds numbers, being limited in the number of particles represented in the periodic simulation
box, and having made no systematic finite-system-size corrections to the measured sedimentation
rates. Inspired by these simulations, Lattuada et al. conducted an experimental study designed to
corroborate the simulation results [9]. They found a qualitative agreement between the experiments
and simulations. However, they observed that the SRD simulations systematically underpredict the
settling rate of attractive suspensions measured experimentally and also underpredict the range
of volume fractions over which promoted settling is observed. These studies are the first steps
toward understanding the settling of concentrated solutions of attractive particles, but much remains
unexplored. For example, a predictive microstructural model for the settling rate would be very useful
in applications involving attractive colloidal dispersions.
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In the present work, we use immersed boundary simulations in the limits of zero Péclet and
Reynolds numbers to systematically investigate the effect of attraction strength and particle volume
fraction on the mean settling rate. We show that these simulations, which account properly for
finite-system-size effects, reproduce experimental measurements quantitatively. Furthermore, we
develop an empirical model for the settling rate based on a measure of microstructure in attractive
dispersions that quantitatively matches experimental data and our own simulation data at all the
volume fractions studied.

II. SIMULATION METHODOLOGIES

We compute the settling rate of attractive colloidal dispersions using an immersed boundary
method referred to colloquially as the composite bead [10] or rigid multiblob [11] approach. The
details of the computational method are described elsewhere [10]. Here we give a brief review.
In this approach, the surface of each colloidal particle is approximated by a collection of beads
that interact hydrodynamically. Each bead generates a regularized Stokeslet flow and is entrained
by flows induced by other particles in a reciprocal fashion [12,13]. In our formulation, the Rotne-
Prager-Yamakawa tensor [14] that linearly relates the force exerted on one bead to the entrained
velocity of another bead is used to represent these flows. Additionally, the beads tessellating the
surface of each particle are constrained to move as a rigid body. A set of Lagrange multipliers, forces
that ensure the constraints are satisfied, are introduced and a system of linear equations is solved to
determine the rigid-body motions of the colloidal particles and the Lagrange multipliers in response
to any set of imposed external forces. In the present work, the spectral Ewald method [15] is used to
evaluate the product of the Rotne-Prager-Yamakawa (RPY) tensor for all the beads with an arbitrary
set of forces acting on the beads. The linear equations governing the rigid-body motions and the
Lagrange multipliers are solved using the generalized minimum residuals (GMRES) methodology
with constraint preconditioning [16]. In summary, this approach can be used to evaluate the transport
properties of macromolecular and colloidal solutions of arbitrarily shaped particles in O(N ) time,
where N is the total number of beads used to discretize the surface of all the colloids. Importantly,
this model correctly captures the effect of fluid backflow on the sedimentation velocity. Because
of fluid incompressibility, the downward volume flux of sedimenting particles is exactly balanced
by an upward volume flux of fluid, termed backflow. In the RPY model, the fluid incompressibility
is exactly enforced by setting the zero-wave-vector component of the fluid velocity to be zero.
Mathematically, the fluid backflow originates from the particle quadrupole, which is implicit in our
model through the rigid-body constraint, which forces the fluid contained within a composite bead
particle to move as a rigid body and therefore displace an equal volume of fluid as it sediments.

For the spherical colloids studied here, the beads are made to sit on the vertices of an icosphere
formed by subdividing the faces of a Goldberg polyhedron (see Fig. 1). We have shown how such
a discretization can be used to replicate the hydrodynamic interactions among a pair of spherical
particles in a previous publication [10]. Convergence of the calculation with respect to the number of
beads is slow for relative motion between particles because of the effects of hydrodynamic lubrication.
However, convergence is fast for collective modes of motion. Figure 1 also depicts the convergence
of the sedimentation rate of a cubic array of spherical colloids as a function of the number of
beads tessellating the surface. Zick and Homsy performed high-accuracy calculations of lattice
sedimentation and published their results with three digits of accuracy [17]. We find that 2562 beads
per colloid is sufficient to exactly reproduce the published results, and therefore use the solution with
2562 as the reference state for the convergence study. With just 162 beads per colloid, the classic
results of Zick and Homsy are recovered to within 5% for the full range of volume fractions studied.
Therefore, in the present calculations we use 162 beads per colloid. This level of discretization is
chosen to accommodate a balance between the number of colloids required to accurately model the
microstructure of an attractive dispersion, the number of realizations of that microstructure needed
to compute statistically meaningful averages, and the total computation time of the simulation. It is
known that number density fluctuations are large in attractive colloidal dispersions. Additionally, the
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FIG. 1. Relative error in the mean sedimentation rate of a periodic simple cubic lattice of spherical
particles computed using the icosphere approximation of the spherical surface compared to a high-resolution
approximation (Nbead = 2562) as a function of the number of vertices of the polyhedron, Nbead, at different
volume fractions, φ. We find that Nbead = 2562 is sufficient to exactly reproduce the published data of Zick and
Homsy [17]. The polyhedra used in the calculations are shown above the associated points. The black dashed
line denotes 5% relative error.

magnitude of velocity fluctuations among sedimenting colloids can be of the same order of magnitude
as the mean sedimentation velocity [18]. Thus, 1000 colloids are modeled and averages of the
settling velocity are constructed from 1000 independent snapshots of the dispersion microstructure.
Throughout this work, fluctuations in the settling rate among different configurations are used to
quantify a standard error at the 95% confidence level.

The experiments of Lattuada et al. control interparticle attraction by adding surfactant micelles to
solution in order to induce depletion [9]. Therefore, we model the interaction potential, V (r), with a
short-ranged attraction described by the Asakura-Oosawa depletion potential [19] plus a hard-core
repulsion at interparticle contact, r = 2a:

V (r) =
{∞ r < 2a

−ε (a+δ)3

δ2 (1.5a+δ)

[
1 − 3

4
r

a+δ
+ 1

16

(
r

a+δ

)3]
r � 2a

, (2)

where ε is the strength of the attraction at contact and δ is the range of the attraction. The
Asakura-Oosawa potential was validated in these experiments through measurements of the osmotic
compressibility in the colloidal dispersion. The range of the depletion potential is chosen to match the
experiments: δ/a = 0.028. The depletion potential at contact, ε, is varied and can be chosen so that
simulated dispersions match the experimentally measured second virial coefficient, B∗

2 . Consistent
with experiments, 5% dispersity in particle size is introduced to suppress crystallization in the
simulations.

The experimental value of the Péclet number is small, Pe = 4π�ρga4/3kBT ≈ 10−3, where
�ρ is the density difference between the immersed colloids and the fluid, g is the gravitational
constant, and kB is Boltzmann’s constant, so the distribution of particle positions during settling is
very close to the equilibrium distribution. Therefore, simple, freely draining Brownian dynamics
simulations of single beads are used to generate representative configurations of the particles from
which the mean settling rate can be computed. For each combination of φ and ε (or B∗

2 ), an initial
hard-sphere configuration of spherical colloids is allowed to relax for 1000 bare diffusion times
(6πηa3/kBT ). Then, snapshots of the particle configuration are taken every 10 bare diffusion times
until 1000 snapshots have been accumulated. For each snapshot, a composite-bead representation
of all the particles is constructed from 162 bead icospheres having randomly assigned orientations.
The mean settling rate for each configuration is determined by applying a uniform force to each
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bead and computing the mean of the resulting rigid-body translational velocities of the colloids. The
computed mean velocity is sensitive to the periodic boundary conditions in the simulations, and the
infinite system size limit U∞ is found by

U∞ = U + 1.7601 S(0)

(
ηs

η(φ)

) (
φ

N

)1/3

, (3)

which is the finite-size correction given by Ladd et al. [20], where S(0) is the value of the static
structure factor at zero wave number, ηs is the solvent viscosity, and η(φ) is the high-frequency
viscosity, which we compute for each configuration. It should be noted that although we use the
depletion potential to model the particle attractions, with this procedure any sufficiently short-ranged
potential will produce equivalent equilibrium structures [21]. The Noro-Frenkel rule of corresponding
states suggests that samples of these equilibrium structures can be drawn from a mapping onto
the Baxter adhesive hard-sphere interaction potential. In Sec. III B, we discuss this mapping
explicitly. Therefore, the results presented in this paper should be generic for any colloidal dispersion
aggregating due to short-ranged attractions.

III. RESULTS AND DISCUSSION

A. Comparison of simulations and experiments

There is limited experimental data available for the mean settling rate of colloids as a function
of concentration for different well-characterized attraction strengths. Lattuada et al. provide data
at three different attraction strengths, characterized by the reduced second virial coefficients: B∗

2 =
1.0,−0.27,−1.08 [9]. These values correspond to hard-sphere interactions (no attraction), a modest
attraction (ε = 4.84 kBT ), and a strong attraction (ε = 5.18 kBT ) that is near the boundary for liquid-
liquid phase separation, respectively. The experiments were performed with particle volume fractions,
φ, as large as φ = 0.20. We compute the mean settling rate for each of the experimental values of
B∗

2 for 0.01 � φ � 0.40. Figure 2 shows our simulation results, the experimental data of Lattuada
et al., and the simulation data of Moncho-Jordá et al. Our results are in quantitative agreement
with the experimental data for all values of B∗

2 and φ for which a comparison is available. The SRD
simulation results of Moncho-Jordá et al. display only qualitative agreement with our simulations and
the experimental data, and predict a much sharper decay of U with φ than is observed experimentally
for the two attractive dispersions studied. The agreement between experiments and our simulations
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FIG. 2. Normalized settling velocity as a function of particle volume fraction for B∗
2 = −1.08 (red), B∗

2 =
−0.27 (blue), and B∗

2 = 1 (black) from the experimental data of Ref. [9] (stars with lines, denoted LBP2016
in the legend) and computed in the present work (filled circles) and the SRD simulations of Ref. [22] as
interpolated in Ref. [9] (open squares, denoted MLP2010 in the legend). Error bars represent the standard error
of the observed measurements.
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affirms our claim that the proposed simulation methodology is appropriate to perform a systematic
study the sedimentation rate as a function of particle volume fraction and attraction strength.

It is a challenge to assess the discrepancy between the SRD simulations and our own. A number
of factors may be at play. One central problem is a failure of Moncho-Jordá et al. to account for
finite-system-size effects in the calculation of the settling rate. As in Eq. (3), in periodic geometries
transport properties like settling rate and diffusivity are depressed by an amount proportional to
aV −1/3, where V is the volume of the simulation cell. For simulations with a fixed number of particles,
increasing the volume fraction acts to decrease V , which further depresses the computed values of
transport properties. However, to change volume fraction, Moncho-Jordá et al. fix the simulation
volume and increase N . So a systematic depression of the settling rate due to finite-system-size
effects alone is not enough to explain their data. A further issue that may explain the discrepancy
with their simulations is the finite Péclet number used in that study. The authors estimate that
Pe ≈ 2.5 in their dynamic simulations, which means that deviations from equilibrium distribution
for the particle configuration are inevitable. The effect of Pe on the mean settling rate of dispersions
is also not well studied. However, for hard spheres in the dilute limit and at large Peclet numbers,
Cichocki and Sadlej [23] have shown that a different expression for the sedimentation rate is expected:
U/U0 = 1 − 3.87φ. The settling rate is a sensitive function of the structure, and the settling process
modeled dynamically by the SRD simulations may have exhibited changes from the equilibrium
structure and even structural anisotropy promoted by the hydrodynamic interactions among the
particles. In the present study, the Peclet number is set asymptotically to zero and only the equilibrium
structure is used for the calculation of the transport properties.

B. Microstructural characterization and corresponding states

As is common for colloids with short-ranged attractions, Lattuada et al. characterized the
attraction strength in their dispersion using the Baxter temperature, τ . The Baxter temperature is
a parameter that arises in the adhesive hard-sphere (AHS) model of attractive particles, in which
the interparticle potential has vanishing width and infinite depth, but is characterized by a single
parameter, τ , reflecting the propensity of particles to adhere to one another [24]. This parameter is a
measure of the effective strength of attraction in the suspension, with smaller values corresponding
to stronger attractions. B∗

2 for the AHS model can be related to the Baxtern temperature, τ , as
B∗

2,AHS = 1 − 1/(4τ ). In the approach taken by Lattuada et al., τ is computed by matching the
measured B∗

2 to the analytical expression for B∗
2 of AHS model, so that

τ = 1
4 (1 − B∗

2 )−1. (4)

Assigning a value to τ in this fashion provides a way of determining the dilute limit thermodynamic
and transport properties of dispersions with short-ranged attractions in a fashion that is agnostic to
the details of the interaction potential. However, values of τ computed by (4) are valid only in the
dilute limit. As the dispersion concentration increases, τ changes even for fixed B∗

2 , and as a result
more detailed models are required to infer τ for dispersions of arbitrary concentration.

In the original development of the AHS model, Baxter produced an analytical expression for
the Percus-Yevick (PY) approximation to the pair distribution function g(r) of sticky particles
[24,25]. The AHS model results in an expression for g(r) that is completely parameterized by the
particle size a, φ, and the effective “stickiness” parameter—the Baxter temperature—τ . An analytical
expression for the static structure factor, S(q), of an AHS suspension can be directly computed
from Baxter’s result [26]. Applying the Noro-Frenkel rule of corresponding states, which states that
the thermodynamic properties, including dispersion microstructure, of colloids with short-ranged
attractions can all be mapped back onto the adhesive hard-sphere model, the stickiness parameter, τ ,
for a concentrated dispersion of colloids with short-range attractions can be inferred from calculations
of either g(r) or S(q) (or any other state function) for that dispersion. For any of these functions,
the calculated values can be fit by analytical expressions from the adhesive hard-sphere model at the
same particle concentration to determine a corresponding value for τ . In the dilute limit, using the
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FIG. 3. (a) Static structure factor computed for the three attraction strengths reported in Fig. 2, B∗
2 = −1.08

(red), B∗
2 = −0.27 (blue), and B∗

2 = 1 (black), at φ = 0.08 (open circles) and φ = 0.40 (dots). The lines are
fits by the AHS solution to the Percus-Yevick approximation for S(q). The τ values computed for the fit are
10.53, 0.16, and 0.11 for the black, blue, and red data sets, respectively at φ = 0.08 and 6.53, 0.21, 0.12 for
the respective data sets at φ = 0.40. (b) Root-mean-squared error of the AHS Percus-Yevick solution to the
simulation data colored by the inferred τ value, with black corresponding to hard spheres.

osmotic pressure as the state function will recover (4). For more concentrated dispersions, S(q) [or
g(r)] is required to determine the particular value of τ that characterizes the thermodynamic state
of the dispersion in the corresponding adhesive hard-sphere model. For this reason, throughout this
paper τ is an a priori unspecified parameter which is inferred from simulation data.

Figure 3 shows the values of S(q) computed at the three attraction strengths from Fig. 3 at
φ = 0.08 and φ = 0.40, compared to the PY approximation for adhesive hard spheres using a value
of τ inferred by minimizing the root-mean-squared error (RMSE) of the PY model with respect
to the computed data. Excellent agreement is observed between the model and the data for the six
examples shown. Similar agreement of the PY model with the fit structure factor is associated with
other particle concentrations and attraction strengths. Figure 3(b) shows the relative error in the
computed static structure factor with respect to the Percus-Yevick approximation at the best-fit value
of τ as a function of the colloid volume fraction and the second virial coefficient for all the simulated
dispersions. Errors smaller than 1% are typical, indicating that the fitting procedure is adequate for
characterizing the suspension microstructure in terms of the generalized stickiness parameter. This
fitting procedure can be generalized to experimental data with sticky macromolecules of known
number density, n, as discussed in Sec. III D. In this way, measurements of S(q), allows mapping
onto the AHS model without a priori knowledge of either B∗

2 . The pair τ and the volume fraction
serve as unique descriptors of the attractive suspension microstructure and as we will show the value
of this pair also fixes the mean settling rate.

C. Settling rate as a function of φ and τ

We performed simulations systematically varying B∗
2 between −1.48 and 1.00 and φ from 0.01

to 0.50 for a dispersion of spherical colloids interacting via a depletion potential with δ/a = 0.028.
Each set of parameters is characterized by the τ value inferred from S(q). Shown in Fig. 4(a) is the
mean settling rate as a function of volume fraction and inferred Baxter temperature normalized by
the single particle value, U/U0, where the color of the symbols corresponds to the inferred value of
τ , with the results for hard spheres are depicted in black.

At a fixed concentration, as τ increases, the settling velocity decreases and approaches the hard-
sphere limit, τ → ∞. Furthermore, although the shape of U/U0 is strongly dependent on τ at low φ,
at sufficiently large φ, the settling velocity exhibits a qualitative similarity for all τ . With increasing
concentration, the influence of the stickiness parameter on the settling rate is diminished. In this
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FIG. 4. (a) Normalized settling velocity as a function of particle volume fraction for −1.48 � B∗
2 � 1.00

colored by the value of the stickiness parameter τ inferred from the static structure factor (black is hard-sphere
data). (b) Relative difference between the settling rate of attractive and hard-sphere dispersions for each condition
presented in panel (a). The dashed black line denotes the Batchelor result in the limit φ → 0: 0.89φ/τ .

regime, particles fill space rather homogeneously, regardless of τ , and the sedimentation rate decays
to zero much as with hard spheres. Attractions between particles still increase the sedimentation rate
slightly by introducing small heterogeneities in the microstructure that are indicated by an increase
in the value of S(q) as q → 0. These void spaces allow backflow to occur with less resistance, thus
slightly increasing the settling rate.

The simulation data show a transition in the shape of the settling curves as both τ and φ are
increased. For hard spheres, U/U0 is monotonically decreasing and concave up for all φ. At modest
attractions, U/U0 is still monotonically decreasing but is initially concave down until an inflection
point around φ = 0.2. An inflection point is also observed for strong attractions, τ � 0.2, but U/U0

is no longer monotonic. The settling rate increases until φ ≈ 0.10, where it exhibits a maximum rate
of promoted settling. Then, the settling rate decays much as for hard spheres.

The ratio of the sedimentation rate of attractive particle dispersions to a hard-sphere dispersion at
the same concentration is shown in Fig. 4(b) as a function of φ/τ . φ/τ is the natural parameter that
appearing in Batchelor’s dilute-limit result, when substituting the second virial coefficient with the
AHS model [8]. Batchelor’s model describes the ratio well for for φ/τ � 0.5. For φ/τ � 0.5, the
data are no longer a function of φ/τ alone and exhibit a sharp downturn with increasing φ/τ .

To develop an empirical model for sedimentation in attractive dispersions at arbitrary volume
fractions, we start with the Richardson-Zaki correlation [27], which is a common model for settling
in suspensions,

U

U0
= (1 − φ)4.65. (5)

This expression is widely used in engineering applications even though it is known to deviate from
Batchelor’s prediction in the limit of small φ. The value of the exponent in the RZ expression varies
depending on the source, due to variation in the Reynolds and Péclet numbers in different applications,
but the form (1 − φ)m is widely used, where m is typically O(4-6). For Brownian hard-spheres, a
value of m = 5.40 is often used. The correct low-φ behavior can be obtained without losing accuracy
at large φ by modifying the Richardson-Zaki expression to force agreement with Batchelor in the
dilute limit [7],

U

U0
= (1 − φ)m

1 + (6.55 − m)φ
. (6)
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FIG. 5. Settling rates for colloidal hard spheres. The lines represent different expressions of a Richardson-
Zaki-like form including (6) with m = 4.27. This particular expression fits the settling rates at high
concentrations at least as well as the other expressions, but does a better job accounting for variations in
the settling rate at low concentrations. The data points are drawn from the literature: squares [29], triangles [30],
upside-down triangles [31], diamonds [32], solid circles [33], and open circles [34].

The value of m could be determined by fitting Eq. (6) to the hard-sphere data from our simulations.
With this procedure, the value is found to be 3.77. Cichocki et al. computed the φ2 contribution to
U/U0 from the three-particle contribution, determining that U/U0 = 1 − 6.55 φ + 21.92 φ2 [28].
Using this result, m can be determined by matching the φ2 term in Eq. (6) to the result of Cichocki et al.
to get m = 4.27. In this way, the model parameters are fully specified by known analytical results and
no data fitting is required. Equation (6) with the m = 4.27 is plotted as the solid black line in Fig. 6(d),
and the relative error with respect to the simulated data is smaller than 0.1% for all the volume fractions
studied. The inferred and best-fit power-law exponents are less than the values commonly used in the
Richardson-Zaki correlation, but Fig. 5 shows that our model quantitatively describes hard-sphere
colloidal sedimentation data at least as well as the two other Richardson-Zaki-like correlations used
in the literature: U/U0 = (1 − φ)4.65 and U/U0 = (1 − φ)5.40. However, (6) has the added bonus of
recovering the dilute-limit predictions of Batchelor precisely.

Inspired by this approach, we notice that further modifying (5) with a denominator 1 +
(6.55 − m)φ − 0.89φ/τ would also recover Batchelor’s predictions in the dilute limit for attractive
dispersions. Because the settling rate bears such qualitative similarity with hard spheres at high
concentrations, we proceed with the ansatz that the net effect of interparticle attractions can then be
accounted for by simply replacing Batchelor’s −0.89φ/τ with a more general term −0.89f (φ,τ ).
This function, f (φ,τ ), must be bounded from above to avoid singularities. It also must scale as φ/τ

in the dilute limit and must approach zero in the hard-sphere limit. In principle, this function serves
to interpolate between hard-sphere settling rate and the settling rate of aggregated dispersions. The
empirical expression we propose for the settling rate is

U

U0
= (1 − φ)4.27

1 + 2.28 φ − 0.89 f (φ,τ )
, (7)

where a form for f (φ,τ ) remains to be specified.
This hypothesized model can be tested by solving (7) for f (φ,τ ), and computing this quantity

from known settling rates. Figure 6 shows the values of f (φ,τ ), as a function of φ/τ with the settling
rates given by our simulation data and the experimental data of Lattuada et al. All the data in Fig. 6
falls along a single master curve. For small values of φ/τ , f (φ,τ ) is linear in φ/τ with a slope
of 1. This is required in order to recover Batchelor’s predictions in the dilute limit. At large φ/τ ,
the f (φ,τ ) saturates. Note the maximal value of φ/τ explored in this work is about 4 (φ = 0.4,
τ ≈ 0.1). For τ < 0.1, adhesive hard spheres phase separate, and we have sought to stay within
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FIG. 6. (a) Interparticle interaction contribution to the hindered and promoted settling functions given
in Eq. (7) with m = 4.27 as a function of the normalized volume fraction for a range of τ computed from
sedimentation data in the present work (circles) and the experimental data of Ref. [9] (open squares, denoted
LBP2016 in the legend). Hard-sphere data, for which f = 0, has been omitted. The red line is given by
Eq. (8). The color of each data point corresponds to the τ value determined by fitting S(q) to the AHS model.
(b) Relative error in the computed model velocity Umodel given by Eq. (7) compared to the observed velocity U as
a function of volume fraction. (c) Observed probability distribution for the relative error in the model prediction.
(d) Settling rates predicted by the model (7) for τ = [0.106,0.125,0.136,0.165,0.219,0.322,0.484,∞] (lines)
compared to the simulation results (Fig. 4), with the same coloring as in panel (a). Hard-sphere data, for which
τ = ∞, is shown in black.

the single-phase region for all the present calculations. The function f (φ,τ ) can be described by a
sigmoidal function of φ/τ . There are many possible choices for this function, but a compact and
convenient one is

f (φ,τ ) = φ/τ

[1 + n (φ/τ )p]1/p
, (8)

where p is a fitting parameter that is varied along with n to minimize the sum of squared errors
between the model prediction for U and the data. The optimal values computed by a nonlinear least
squares fit to the entire data set are n = 0.43 and p = 1.85.

The model accurately describes the settling rate across the wide range of φ and τ studied.
The relative error of the model with respect to the data is plotted in Fig. 6(b). The relative error
is smaller than 20% for all the cases studied. The model does tend to slightly overpredict the
settling rate at modest τ and is the least accurate for the stronger attractions studied. This can be
understood by recognizing that for the strongly attractive particles, τ ≈ 0.1, which is very close
to the theoretical critical Baxter temperature, τ = 0.098. For modest τ , the physical picture is
that particles aggregate into transient clusters, which distribute homogeneously in the dispersion.
However, in the neighborhood of the boundary for liquid-liquid phase separation, the system exhibits
large particle number density fluctuations. This produces large fluctuations in the mean settling rate
that are quantified by the standard error in Fig. 4. In spite of this physical limitation, the results of the
empirical model appear to provide good predictions of the settling rate even in this region of phase
space.
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D. Inferring macromolecular interactions through application of the settling model

One potential application of the proposed model is for inference of the interactions between
suspended colloids through mapping onto the AHS model. An important use case is the character-
ization of attractive interactions between macromolecular species such as proteins in concentrated
solutions and under varying solution conditions. Such characterization is needed for the purification,
dewatering, and storage of biologics in pharmaceutical applications. Utilizing a hydrodynamic and
thermodynamic model for rigid spherical colloids to describe macromolecules which are neither
spherical nor rigid has a long tradition in macromolecular sciences stemming primarily from
application of the Stokes-Einstein relation to estimate the hydrodynamic radius. In the context of
proteins, transport properties in these solutions are commonly investigated using dynamic light
scattering. In light scattering experiments, the correlation of the scattering intensity with time, t , is
used to compute the so-called intermediate scattering function, F (q,t), which depends on a scattering
wave vector q. For short correlation times, the value of this function is a direct measurement
of the static structure factor, S(q) = F (q,0), and its rate of change can be used to compute a
wave-vector-dependent diffusivity, D(q) = −q−2(d/dt) log[F (q,t)/F (q,0)] as t → 0. As q → 0,
D(q) is just the collective diffusivity DC and is related to the sedimentation coefficient, U/U0, of
the macromolecule by the simple relation

DC = D0

S(0)

U

U0
. (9)

Here, D0 is the diffusion coefficient of the macromolecule at infinite dilution. Therefore, dynamic
light scattering measurements for small scattering wave vectors can be used to simultaneously
measure the collective diffusivity and S(0), which is linearly proportional to the isothermal
compressibility of the macromolecular component of the solution.

For dilute solutions of macromolecules, measurements of these two quantities is part of the
standard suite of macromolecular characterizations. In the dilute limit, S(0) = 1 + kSvc and DC =
D0(1 + (kS − kH )vc). Here, c is the molar concentration of macromolecules in solution and v is the
molar volume of the macromolecule. The dimensionless coefficient kS is purely thermodynamic in
origin and linearly proportional to the second virial coefficient. The dimensionless coefficient kH

describes the linear variations in the sedimentation coefficient of the macromolecular solution. For
the sticky sphere dispersions described in the previous sections, v = 4πa3NA/3, with NA Avogadro’s
number, kS = −8 + 2/τ , kH = 6.55 − 0.89/τ . From the slope of DC and S(0), the quantities vkS

and vkH can be computed. If the sticky sphere model is deemed applicable, then the molar volume
and the stickiness parameter are computed instead. The advantage of this latter approach is that v

and τ can be used to locate the macromolecular solution on the AHS phase diagram.
Beyond the dilute limit, more sophisticated models are needed. The AHS model for S(0) is known

analytically from the Percus-Yevick closure approximation applied to the Ornstein-Zernicke equation
for the direct correlation function:

S(0) =
[

(1 − φ)2

1 + 2φ − λ(φ,τ ) φ (1 − φ)

]2

, (10)

where

λ(φ,τ ) = 6

(
τ

φ
+ 1

1 − φ

)
−

[
36

(
τ

φ
+ 1

1 − φ

)2

− 12
1 + 0.5φ

φ (1 − φ)2

]1/2

. (11)

From the present work, Eq. (7) models the sedimentation coefficient, U/U0 = DCS(0)/D0. To
relate experimental data to the two models, the colloidal volume fraction must be defined in terms
of the molar concentration c as φ = vc. Then, the experimental system has the properties of the
sticky sphere solution at concentration c and parameterized by a molar volume v and stickiness
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parameter τ , just as in the dilute limit. We envision three different modes of inference with these
models:

(1) Repeated measurements of S(0) and DC at a particular concentration, c, and in a particular
solution condition (temperature, ionic strength, pH), denoted p, are used to determine the values of
τ (c,p) and v(c,p) for a corresponding AHS dispersion.

(2) Measurements of S(0) and DC are made at different macromolecular concentrations and a
particular solution condition, and a nonlinear least squares fit assuming a constant molar volume but
concentration-dependent stickiness parameter is used to find the set of parameters: v(p), τ (c,p).

(3) S(0) and DC are measured as function of the solution conditions at a particular macromolecule
concentrations, and a nonlinear least squares fit of the data to the model is used to determine the
parameters, v(p) and τ (p), descriptive of the data across the entire range of concentrations.

Choice of inference scheme depends on the particular macromolecule under study; one could
proceed from one scheme to the next should the assumptions of concentration-independent molar
volume and stickiness prove sound.

Muschol and Rosenberger used light scattering experiments to measure S(0) and DC of
concentrated lysozyme solutions at high ionic strengths for which long-range electrostatic repulsions
are screened and the macromolecules behave much like sticky spheres [36]. Because we neither
designed nor performed the experiments, we choose the third inference problem which determines
the molar volume and stickiness parameter as a function of the solution conditions alone. Lysozyme
is a globular protein with an ellipsoidal shape having major and minor semiaxes of a = 2.75 nm
and b = c = 1.65 nm, and typical molecular weight of 14 kDa [37]. Based on the dimensions of
the effective ellipsoid, a molar volume associated with the molecule v = 4πabcNA/3 = 18.9 M−1

is anticipated. The lysozyme is suspended in a sodium acetate buffer whose concentration is varied
between 50 and 1470 mM. Additionally, for a 50-mM NaAc buffer, NaCl is added to the solution
at concentrations up to 472 mM. For each solution condition, S(0)−1 and U/U0 were reported for
lysozyme concentrations up to 70 mg/mL. On the basis of the estimated molar volume, the maximum
concentration is equivalent to a volume fraction of approximately 10%.

Figure 7 depicts these measurements as well as fits of the AHS model under each solution
condition. The models do a remarkable job of capturing the experimental data across a range of
volume fractions. In particular, Eq. (7) appears to describe the settling behavior of the proteins very
well in conditions for which the dilute limit expressions of Batchelor would fail. Table I reports the
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FIG. 7. Sedimentation coefficient (a) and static structure factor (b) measured in Ref. [35] for concentrated
solutions of lysozyme. Circles correspond to fixed buffer strength and varying added salt. Add concentrations
are reported in units of mM. Squares correspond to no added salt but varying buffer strength. The solid and
dashed lines are the best fits of the AHS models to the data for circles and squares, respectively. The experimental
data is presented as in Ref. [35], but with the concentration, c, recast as the volume fraction on multiplication
by the inferred molar volume.
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TABLE I. Stickiness parameter and molar volume inferred from nonlinear least squares fit of AHS model
to experimental measurements of S(0) and U/U0 in lysozyme solutions [35].

τ v

[NaCl] [NaAc] = 50 mM
92 mM 0.59 19.8 M−1

171 mM 0.22 23.6 M−1

472 mM 0.16 21.3 M−1

[NaAc] [NaCl] = 0 mM
250 mM 2.7 22.3 M−1

375 mM 1.8 20.1 M−1

920 mM 0.29 23.7 M−1

1470 mM 0.24 24.4 M−1

molar volume and the stickiness parameters inferred from fits to the experimental data. For 50-mM
buffer, the molar volume averages 21.6 M−1, while the stickiness parameter decreases with added
salt. Increasing the ionic strength of the solution decreases the Debye layer thickness associated with
electrostatic repulsions that stabilize the proteins against aggregation. On decreasing the Debye layer
thickness, the macromolecular solutions appear more sticky. With no added salt, but higher buffer
concentration, the molar volume of the lysozyme is larger and averages 22.6 M−1. With increasing
added buffer, the proteins also appear to grow stickier.

The two lysozyme solutions with [NaCl] = 92 mM and [NaAc] = 250 mM have ionic strengths
that differ by less that 5%. The same is true of the ([NaCl], [NaAc]) pairs (171, 375) mM and (472,
920) mM. Consequently, the electrostatic interactions between the proteins are similar screened in
each of these cases. However, the stickiness parameters and molar volumes inferred from the AHS
hard-sphere models show no correspondence. This same lack of correspondence is evident in the S(0)
and U/U0 data itself. It is known that there are specific ion effects in concentrated electrolyte solutions
that sensitively affect the interactions between charged colloids such as proteins [38]. These specific
effects alter the structure factor and transport properties of the lysozyme solutions in ways that are
difficult to predict with classical Dejaguin-Landau-Verwey-Overbeek (DLVO) theory [39]. However,
inference of the molar volume and stickiness parameter from fitting the AHS model to DLS data
is sufficient to characterize solution in a way that yields an accurate description of thermodynamic
properties (isothermal compressibility) and transport properties (sedimentation coefficient).

IV. CONCLUSION

We present coarse-grained simulations of the sedimentation of sticky particle suspensions that are
shown to be in quantitative agreement with published experimental data. We systematically studied
the effect of interparticle attraction strength and volume fraction on the mean sedimentation rate
of the suspensions, observing a smooth transition with increasing attraction strength from hard-
sphere sedimentation to nonmonotonic promoted settling due to particle aggregation. We developed
a simple model for the sedimentation rate by modifying a Richardson-Zaki-like expression to match
Batchelor’s dilute limit prediction and including a function that extrapolates between hard-sphere-like
and aggregated states. The model quantitatively describes the simulation data up to the percolation
phase boundary, and an example application of this model to the study of collective protein diffusion
is illustrated. The mapping of sticky particle suspensions onto an effective AHS model is generic and
can be used to infer sedimentation and diffusion behavior across a range concentrations from light
scattering measurements made at only a few concentrations, even in suspensions where the particles
are not uniform or spherical, provided the attractions are sufficiently short-ranged and the particle
aspect ratio is not too large.
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