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Wall slip of complex fluids: Interfacial friction versus slip length
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Using a dynamic surface force apparatus (SFA), we demonstrate that the notion of
slip length used to describe the boundary flow of simple liquids is not appropriate for
viscoelastic liquids. Rather, the appropriate description lies in the original Navier’s partial
slip boundary condition, formulated in terms of an interfacial friction coefficient. We
establish an exact analytical expression to extract the interfacial friction coefficient from
oscillatory drainage forces between a sphere and a plane, suitable for dynamic SFA or
atomic force microscopy noncontact measurements. We use this model to investigate the
boundary friction of viscoelastic polymer solutions over 5 decades of film thicknesses
and 1 decade in frequency. The proper use of the original Navier’s condition describes
accurately the complex hydrodynamic force up to scales of tens of micrometers, with a
simple Newtonian-like friction coefficient that is not frequency dependent and does reflect
closely the dynamics of an interfacial depletion layer at the solution-solid interface.

DOI: 10.1103/PhysRevFluids.3.062001

Flows of complex liquids are familiar and useful. Unlike Newtonian fluids, they display complex
bulk rheological behavior, nonlinear and frequency dependent, but the way they flow also involves
their boundary conditions on solid surfaces. The boundary condition (b.c.) is relevant not only for
small-scale flows, occurring, for instance, in biomedical applications, microfluidic devices, food and
oil engineering, but also for the faithful characterization of the bulk rheology [1–5].

As in the case of simple liquids, the slippage of complex fluids at walls is commonly characterized
by a slip length b, defined by the ratio of the fluid velocity at the solid surface to the shear rate at the
wall: vslip = b∂v(z)/∂z, with z the direction normal to the boundary. But the notion of slip length,
now well established and understood in the case of simple fluid flowing on various types of solid
surfaces [6–12] or Newtonian polymer melts [4,13], is far from obvious in the case of more complex
fluids. We show here experimentally that the appropriate quantity to describe the boundary slippage
of complex fluids without ambiguity is not a slip length but rather a liquid-wall friction coefficient,
as originally stated by Navier [14].

We demonstrate this on the particular example of semidilute, viscoelastic polyelectrolyte solutions.
Water-soluble polyelectrolytes of high molecular weight are commonly used to thicken water
solutions at an affordable price, as small concentrations are sufficient to increase significantly the
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FIG. 1. The dynamic surface force apparatus. Left: Large view of the sphere-plane contact. Center: Detailed
view of the contact. Right: Schematic of the flow.

viscosity of the solution [15]. Water-soluble polyelectrolytes of high molecular weight have been
reported to display large slip on various types of solid surfaces [16–19]. This large slip has been
attributed to the presence of a depletion layer at the solution-solid interface; i.e., a layer with a lower
concentration of polymer or even with pure solvent, whose viscosity is significantly lower than that
of the solution and induces an apparent slip boundary condition [1,20–23].

Here we use partially hydrolyzed polyacrylamide (HPAM) semidilute solutions, in conditions
which were otherwise well characterized by other groups and are industrially used for enhanced oil
recovery or water purification [19] (SNF Flopaam 3630S, molecular weight 20.106 g/mol solved
in deionized water at concentration from 0.8 to 1.6 g/L). The boundary flow of these solutions is
studied with a dynamic surface force apparatus (dSFA [24,25]) by confining them between a Pyrex
sphere (radius R = 3.3 mm) and a Pyrex plane of very low roughness (2 Å rms as measured by
AFM). The setup covers sphere-plane distances D ranging over 5 orders of magnitudes from 0.1
nm to 15 μm, allowing one to bridge the macroscopic flow behavior of the liquid to its interfacial
hydrodynamics.

The sphere is driven normally to the plane at a low drift velocity Ḋ/D < 10−2 s−1 (see Fig. 1).
An oscillatory motion of small amplitude (h0/D < 10−2) at angular frequency ω is added to the
slow drift motion. The relative sphere-plane displacement as well as the force acting on the plane are
measured by two independent external interferometric sensors. From these measurements, we get
the steady-state sphere-plane distance D and interaction force Fstat, the dynamic amplitude h0 of the
sphere-plane oscillatory displacement which is chosen as the phase origin, the dynamic amplitude
Fdyn and phase shift ϕ of the oscillatory interaction force at the frequency ω, and finally the linear
force response or mechanical impedance, defined as

Z̃(D,ω) = Fdyne
iϕ

h0
= ZR + iZI . (1)

For a viscoelastic liquid of complex shear modulus G̃ = GR + iGI = iω(ηR − iηI ), the hydro-
dynamic force response in this oscillatory drainage flow, in the case of a no-slip boundary conditions
at walls, is [26]

Z̃(D,ω) = 6πR2G̃

D
= 6πR2iωη̃

D
. (2)

Therefore, it is convenient to characterize the bulk viscoelasticity of the solutions by plotting 1/ZR

and 1/ZI as a function of the sphere-plane distance, looking at large values of D (Fig. 2). At large
distance, a well-defined linear behavior is observed, demonstrating the bulk viscoelastic character of
the solutions. From the slope of 1/ZR and 1/ZI , we extract the complex shear modulus components
GR and GI .

However, contrary to the prediction of Eq. (2), the extrapolated far-field linear dependency of Z−1
R

and Z−1
I does not point toward the distance origin but toward some negative values of D. This is

usually the signature of a slippage effect at the solid-liquid interface. More specifically, it is known
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FIG. 2. Left: inverse of the components of the dynamic force response Z̃ measured in an HPAM solution
at a frequency of 220 Hz, as a function of the sphere-plane nominal distance D. Blue, 1/ZR; red, 1/ZI . The
top left inset shows the quasistatic interaction force Fstat , whose jump-to-contact defines the origin of distances.
The bottom right inset is an enlargement at the submicrometric scale. Right: Slip length defined from the
extrapolation length of 1/ZI (intercept with the x axis of the black dashed line of the left plot), as a function of
the concentration of the solution, for various frequencies.

in simple fluids that if a slip length b defines the slip boundary condition on each surface, then the
hydrodynamic force at large distance D � b involves the “hydrodynamic thickness” D + 2b instead
of the actual distance D. It is thus tempting to describe the measurements by deriving a slip length
from the extrapolation lengths of 1/ZR and 1/ZI . However, when doing so, two difficulties appear.
First, the two linear extrapolations actually point toward two different origins, which is not consistent
with a single, well-defined slip length. Instead, the extrapolations tend to show that the slip length is
complex, possessing a real and an imaginary components. Second, if one determines the slip length
as in simple liquids from the extrapolation length of the damping 1/ZI , one finds that it depends
significantly on the frequency of the oscillatory flow (see Fig. 2 ). At a concentration of ∼1 g/L, for
instance, the slip length decreases by a factor larger than 3 when the frequency increases from 30
to 220 Hz. This complex and frequency-dependant behavior of the slip length does not reflect the
mechanism usually producing large slip of polymer solutions on solid surfaces, which involves the
presence of an interfacial depletion layer made of pure solvent [21,22]: In the presence of a purely
Newtonian lubricating layer, one should expect a purely dissipative and fully Newtonian friction
mechanism of the polymer solution onto the solid surface.

These two difficulties arise because the slip length b is actually defined as the ratio η/λ of the liquid
viscosity to the interfacial friction coefficient first introduced by Navier in his original statement of
the boundary condition [14]:

λvslip = η
∂v(z)

∂z
. (3)

For Newtonian fluids, the viscosity is a constant quantity, not dependant on the frequency or shear
rate, and the slip length thus provides a convenient image of the interfacial friction. However, the
mixture of bulk and interfacial properties entering in the slip length definition raises ambiguities
when the fluid is non-Newtonian.

Keeping this in mind, we proceed to extract directly the interfacial friction coefficient from
the force measurements in oscillatory drainage flow experiments. For this purpose, we calculate
the hydrodynamic force exerted by the fluid drainage between the sphere and the plane, when the
viscoelastic fluid undergoes the Navier’s partial slip boundary condition, Eq. (3), on both surfaces.
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We restrict to the linear response limit h0 � D, in which all time variations are harmonic at the
forcing frequency ω, and all time-varying quantities are characterized by their complex amplitude.

In these conditions, the (amplitude of the) stress tensor in the liquid is σ = η̃(∇�̃v +T ∇�̃v) − δP̃ I ,
where δP̃ is the amplitude of the dynamic pressure inducing the hydrodynamic force

F̃dyn =
∫ ∞

0
2πrδP̃ (r)dr. (4)

Navier’s boundary condition (3) is used with a complex friction coefficient λ̃. In a Maxwell model of
the interface, 1/λ̃ = 1/λR + i/ωk, where k is the interface stiffness and λR is the dissipative friction
coefficient.

At small distance D � R, most of the hydrodynamic force originates from regions where the
two solid surfaces are almost parallel. In these conditions, for angular frequencies such that T =
2π/ω � |η̃|/ρRD inertia is negligible, and the average flow velocity is given by the lubrication
approximation [27]:

ũ(r) = 1

z

∫ z

0
ṽr (r,y)dy = − 1

12η̃

dδP̃

dr

(
z2 + 6z

η̃

λ̃

)
, (5)

where z(r) is the nominal gap between the surfaces at distance r from the axis. Note that the fluid
velocity and the dynamic pressure δP̃ are of first order in h0, so that only the nominal gap z(r), equal
to z = D + r2/2R in the parabolic approximation, enters in (5). For rigid solid surfaces, the average
velocity ũ(r) obeys the conservation relation:

d[2πrz(r)ũ(r)]

dr
= −2πr

∂z(r)

∂t
= −2πriωh0. (6)

Equations (5) and (6) give the following equation for the pressure:

d

dr

[
rz2

(
z + 6η̃

λ̃

)
dδP̃

dr

]
= 12iωrη̃h0, (7)

which is integrated twice with rdr = Rdz to obtain the hydrodynamic force:

Z̃ = F̃dyn

h0
= 6πR2iωη̃

D
f ∗

(
η̃

λ̃D

)
, (8)

f ∗(ỹ) = 1

3ỹ

[(
1 + 1

6ỹ

)
ln(1 + 6ỹ) − 1

]
. (9)

Note that the logarithm entering Eq. (9) should be calculated taking into account the complex
character of its argument, by ln(reiθ ) = lnr + iθ .

Equations (8) and (9) generalize the Hocking expression [27] derived for a Newtonian liquid
slipping on the solid surfaces with a slip length b. In the Hocking expression, the factor f ∗ has
the same mathematical expression as in Eq. (9), but it depends only on the simple ratio D/b. In the
present non-Newtonian case, we see that a “complex slip length” b̃ = η̃/λ̃ governs the hydrodynamic
force, which explains the two extrapolation lengths observed in Fig. 2. The complex character of the
slip length reflects the phase difference between the boundary slip velocity and the bulk velocity,
and the ratio b̃/D reflects the impact in amplitude and phase of the wall slippage in the bulk flow.
We can see that for a viscoelastic liquid the slip length b̃ is complex even if the interfacial friction is
purely dissipative, which suggests that the complex frequency-dependant slip length observed above
might be only an artifact due to the bulk behavior of the solutions.

In order to disentangle experimentally the interfacial boundary condition from the bulk properties
of the solutions, we notice that at large distance D � |η̃/λ̃|, the above expression (8) expands as

1

Z̃
= D

6πR2iωη̃
+ 1

3πiωR2λ̃
. (10)
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FIG. 3. Left: schematic of the sphere-plane geometry and of the flow profile. Right: elastic component
(1/Z̃)R (blue dots) and dissipative component (1/Z̃)I (red dots) of the inverse of the force response measured in
an HPAM solution at a frequency of 220 Hz. The black continuous lines are the components of the theoretical
expression (8) fitted with a real-valued boundary friction coefficient λ̃ = λR . Inset: enlargement below the
micrometric scale. The red dashed line is the extrapolation of the far-field behavior of (1/Z̃)I .

Thus, rather than Z−1
R and Z−1

I , the dynamic quantity providing an independent access to the
interfacial rheology is 1/Z̃. More specifically, the boundary friction and stiffness are obtained from
the value at origin (intercept on the y axis) of the linear extrapolation of the far-field components
(1/Z̃)R and (1/Z̃)I . Accordingly, the components of 1/Z̃ in our HPAM solutions are plotted in
Fig. 3. The linear extrapolation of (1/Z̃)R points toward the origin within the experimental resolution.
This shows that elastic effects in the interface response are negligible: k 	 0 and λ̃ reduces to λR .
The purely dissipative nature of the interfacial friction coefficient reflects the physical mechanism
inducing the apparent slip, i.e., the lubrication effect of a Newtonian liquid layer at the boundary.

The linear extrapolation of (1/Z̃)I (dashed red line in Fig. 3) does not extrapolate to zero and gives
a first estimation of the liquid-solid friction coefficient λR , in the range of 30 μPa s/nm. For a precise
determination of λR , it is, however, important to compare the whole data to the theoretical expression
(8) and (9), because the asymptotic linear dependency of 1/Z̃ with D is reached only at very large
distances D � |η̃|/|λ|. At smaller distances, (1/Z̃)I curves down continuously, converging finally
toward the physical origin. This tendency is in excellent agreement with our theory which provides
a very accurate prediction of both components of the measured dynamic force (see Fig. 3).

Precise estimations of the boundary friction coefficient λR are obtained for various concentrations
and frequencies by fitting the data to Eqs. (8) and (9) and are plotted in Fig. 4. Unlike the slip length
(Fig. 2), the friction coefficient is essentially insensitive to the frequency over the range studied, which
extends over 1 decade. The absence of frequency evolution is the signature of a fully Newtonian
interfacial friction, as expected for a slippage mechanism involving a fully depleted, pure water layer
at the solution-solid interface. In contrast, the viscoelastic modulii of the solutions vary significantly
in the range of frequencies studied (see Fig. 4 left). This variation accounts fully for the frequency
dependance of the slip length measured in Fig. 2, which is thus due to the bulk rheology of the
solutions and not to the boundary hydrodynamics. Assuming that the viscosity of the depletion layer
is that of pure water, its estimated thickness es 	 ηwater/λ [28,29] varies between 40 and 26 nm for
a bulk concentration of polymer between 0.8 and 1.6 g/L. Furthermore, we should emphasize that
in dynamic SFA experiments, the wall shear rate is not spatially uniform, and its range of values
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FIG. 4. Left: components ηR (�) and ηI (�) of the viscoelastic modulus η̃ of the solutions as a function of
polymer concentration, at 30 Hz (black), 220 Hz (red), and 248 Hz (blue). Right: interfacial friction coefficient
λ̃ = λR at the solution-solid boundary as a function of the HPAM concentration, at 30 Hz (black), 220 Hz (red),
and 248 Hz (blue). The dashed lines are a guide for the eye.

changes when the nominal distance D is varied. Considering the excellent agreement of our analytical
expression with the data, we can state that the boundary friction coefficient is insensitive to the flow
geometry, frequency, and shear rate at wall in the range of 10−5 to 10−2 s−1 probed in the experiment.
This shows that the boundary layer inducing the apparent slip is a purely equilibrium layer, whose
properties are independent of the applied flow in the range of the above frequencies and shear rates.
Such a conclusion cannot be obtained from the properties of the slip length alone, which provides
a further proof that the liquid-solid friction coefficient is more appropriate than the slip length to
characterize the boundary slip of a complex fluid.

Finally, we discuss the limitations at the microscopic scale of the model of apparent slip boundary
condition. The connection of the macroscopic scale to the microscopic scale is shown in Fig. 5.
Three areas appear on this figure. Below 20 nm, the depletion layer at the solution-solid interfaces
is evidenced by the behavior of the damping (1/Z̃)I : The latter cannot be distinguished from a
Newtonian liquid of viscosity 0.85 mPa s, essentially equal to that of water at the experiment
temperature (28 ◦C), flowing with a no-slip boundary condition on the solid surfaces (green dashed
line in Fig. 5). The microscopic scale of 20 nm is indeed in good agreement with the estimated
thickness es 	28 nm of the depletion layer at this polymer concentration of 1.4 g/L. Thus, at distances
D smaller than es , the sphere-plane gap is largely filled with pure water and the hydrodynamic force
resumes to the Reynolds force with a no-slip boundary condition located onto the solid surfaces.
Second, at intermediate distances es < D < 10 es , the polymer solution flows on a lubricating layer
whose thickness cannot be neglected. Accordingly, as shown theoretically [7], the apparent b.c. has
to be properly described by two independent parameters: the location of the b.c. and the interfacial
friction coefficient. For a sharp and large-viscosity gradient, the appropriate apparent b.c. location
lies close to the middle of the depletion layer es as sketched in Fig. 5. Taking this location for
the b.c. instead of the actual position of the solid surfaces amounts to replacing D by D + es in
Eqs. (8) and (9). We find that it provides a significantly better agreement with the data (dashed
black lines in Fig. 5). Third, at large distances D > 10 es , the finite thickness of the depletion layer
can be neglected and one retrieves the apparent slip boundary condition characterized by a friction
coefficient λ̃ ≈ λR = ηwater/es .

In conclusion, we have shown that the slip behavior of a complex fluid at a solid boundary should
be consistently analyzed using a boundary friction coefficient rather than a slip length, in order
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FIG. 5. Log-log plot of the components of 1/Z̃ (blue dots, real; red dots, imaginary) in a solution of 1.4 g/L
at 220 Hz, showing the macro-micro transition. The dashed red (resp. green) line corresponds to a Newtonian
fluid (resp. water) with a no-slip b.c. at the solid wall. The black continuous lines are the components of the
theoretical expression (8) taking into account the bulk viscoelasticity and a Navier’s b.c. with a real-valued
friction coefficient λR . The dashed continuous lines are Eq. (8) with the boundary condition applied inside the
liquid, at a distance es/2 = ηwater/2λR = 14 nm of each solid surface.

to account faithfully for interfacial rheology effects. In the studied case, the friction coefficient is
real-valued and fully Newtonian while the slip length η̃/λ is complex and frequency dependent,
due to the complex bulk rheology of the solutions. This fully Newtonian friction reflects a slip
mechanism due to a depletion layer made of pure solvent at the solid-polymer solution interface.
Our experiments and analysis show that, beyond a proper description of the boundary condition,
the friction coefficient is the relevant quantity for understanding the physical mechanisms governing
the interfacial dynamics. From a fundamental point of view, the coupling between the generalized
lubrication theory developed here and the unique capabilities of the SFA opens the route to develop
a complete surface rheology for the solid-liquid interface that could be equivalent to what has been
recently developed for the fluid-fluid interface [30]. In particular, it would be interesting to perform
experiments on interfaces specifically tailored at the molecular level to provide a non-Newtonian
surface friction. Polymer systems are choice candidates to do so.

This research was supported by the Agence Nationale pour la Recherche program ANR-15-CE06-
0005.
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