
PHYSICAL REVIEW FLUIDS 3, 061101(R) (2018)
Rapid Communications

Turbulence and turbulent pattern formation in a minimal model
for active fluids

Martin James,1 Wouter J. T. Bos,2 and Michael Wilczek1,*

1Max Planck Institute for Dynamics and Self-Organization (MPI DS),
Am Faßberg 17, 37077 Göttingen, Germany

2LMFA, CNRS, École Centrale de Lyon, Université de Lyon, 69134 Ecully, France

(Received 29 November 2017; published 25 June 2018)

Active matter systems display a fascinating range of dynamical states, including
stationary patterns and turbulent phases. While the former can be tackled with methods
from the field of pattern formation, the spatiotemporal disorder of the active turbulence
phase calls for a statistical description. Borrowing techniques from turbulence theory, we
here establish a quantitative description of correlation functions and spectra of a minimal
continuum model for active turbulence. Further exploring the parameter space, we also
report on a surprising type of turbulence-driven pattern formation far beyond linear onset: the
emergence of a dynamic hexagonal vortex lattice state after an extended turbulent transient,
which can only be explained taking into account turbulent energy transfer across scales.
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I. INTRODUCTION

Flows driven by active agents display a rich variety of dynamical states [1–3]. Active stresses
and hydrodynamics collude to create collective motion, both regular and chaotic, in systems of
motile microorganisms [4–6] or artificial self-propelled agents [7,8] on scales much larger than the
individual. For example, sufficiently dense suspensions of motile microorganisms, such as Bacillus
subtilis, exhibit a spatiotemporally disordered phase. Owing to its reminiscence of hydrodynamic
turbulence, this phenomenon has been termed active turbulence [9–14]. Similar observations were
also reported in systems dominated by nematic interactions such as ATP-driven microtubule networks
[15]. Besides active turbulence, remarkably ordered phases were found in a number of systems. Self-
organized vortex lattices, for example, have been discovered both in hydrodynamically interacting
systems, such as spermatozoa [16], as well as in dry microtubule systems [17]. Confinement offers
yet another possibility of organizing flows into regular large-scale flow [18] and vortex patterns [19].

The occurrence of these phenomena in vastly different systems has motivated the development and
exploration of a range of minimal mathematical models. They can be broadly categorized into agent-
based models of self-propelled particles with nematic or polar interactions [2,20–23] and continuum
theories for a small number of order parameters [9,10,24–26]. These models have been shown to
capture a variety of dynamical phases of active fluids, including active turbulence and vortex lattice
states. For example, in [10] the active turbulence phase was modeled and compared with experiments.
Regarding ordered phases, vortex lattices have been observed and investigated at the crossover from
the hydrodynamic to the friction-dominated regimes of models for confined active fluids [27]. These
systems display phases of two-signed vortices with length scales defined by the dimensions of the
system. In a class of particle-based models for active matter, the emergence of vortex lattices has
been related to a classical pattern formation mechanism as a result of a Turing instability [21,22].
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While many such models have been shown to capture the dynamics of active systems qualitatively
and quantitatively, the complexity of disordered states like active turbulence eventually calls for a
statistical description. The goal of such a nonequilibrium statistical mechanics of active matter is the
computation of fundamental statistical quantities such as correlation functions without resorting to
expensive numerical integration of systems with thousands or even millions of degrees of freedom.

Recent developments of statistical theories on top of minimal continuum theories for active matter
have provided insights into the small-scale correlation structure of an active nematic fluid based on a
mean-field approach for the vorticity field [25], as well as a theory capturing large-scale features of
polar bacterial flows based on analytical closure techniques [12]. A theoretical framework capturing
the correlation function or equivalently the spectral properties for the full range of scales of such
prototypical active systems, however, is currently lacking.

In this Rapid Communication, we set out to close this gap. Borrowing techniques from turbulence
theory, we derive correlation functions and spectra of the turbulent phase of the minimal continuum
theory recently established in [10] to capture the dynamics of dense bacterial suspensions. Further
exploring the parameter space, we also discover a novel phase of turbulent pattern formation, i.e.,
an extensive turbulent transient governed by strong advection which eventually results in a highly
ordered vortex lattice state. We demonstrate that turbulence characteristics crucially contribute to
the emergence of this novel pattern through nonlinear advective energy transfer. This mechanism
differs profoundly from the classical route to pattern formation. To make this transparent, we first
briefly recapitulate classical pattern formation in this minimal model for active fluids in absence of
nonlinear advection.

A. Minimal model for active fluids

The starting point is the equation for active turbulence as proposed in [10,24] for a two-dimensional
incompressible velocity field u(x,t) describing the coarse-grained dynamics of a dense bacterial
suspension. It takes the nondimensionalized form [28]

∂t u + λu · ∇u = −∇p − (1 + �)2u − αu − βu2 u (1)

and represents a minimal field theory for a polar order parameter field, combining Navier-Stokes
dynamics (advective nonlinearity and nonlocal pressure gradient) with elements of pattern forming
systems (linear wave-number selection and a saturating higher-order nonlinearity). Owing to its
similarity to the Navier-Stokes equation, this minimal model is particularly suited to develop a
statistical theory with methods from turbulence theory.

The dynamical phases of this continuum theory are explored in Fig. 1. Unless otherwise noted,
we fix α = −0.8 and β = 0.01 to focus on the role of nonlinear advection. The results are
obtained numerically with a pseudospectral code using a second-order Runge-Kutta scheme, and an
integrating factor is used for treating the linear terms. More details on the simulations are provided
in the Supplemental Material [29]. Table I lists the range of parameters explored in this Rapid
Communication.

B. Classical pattern formation

For λ = 0 the equation reduces to a vectorial Swift-Hohenberg–type system which follows a
gradient dynamics as discussed in the Supplemental Material [29]. In this parameter regime, we
observe the emergence of stationary square lattices consistent with previous literature [24,30].
Figure 1(a) shows a nonideal square lattice with defects such as grain boundaries from our numerical
simulations. As expected, the emergence of this state can be explained with tools from classical pattern
formation theory in terms of amplitude equations. We analyze the corresponding amplitude equations
[31] of the vorticity formulation of Eq. (1). The analysis detailed in the Supplemental Material [29]
reveals the stability of the square lattice state with amplitude A = √−αk2

c /(5β), which corresponds
to a maximum value of the field of 4A. In comparison, single-stripe patterns are linearly unstable.
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FIG. 1. The continuum model, Eq. (1), displays a range of dynamical phases of the vorticity field depending
on the nonlinear advection: (a) classical pattern formation (λ = 0, simulation 1 in Table I), (b) active turbulence
(λ = 3.5, simulation 2 in Table I), and (c) turbulent pattern formation (λ = 7, simulation 3 in Table I). Notably,
the dispersion relation shown in (d) along with the nonlinear damping is kept fixed for all examples. The dashed
green line corresponds to the most unstable wave number, given by k = kc, which sets the wave number of the
pattern in (a). The horizontal orange lines in (a) and (c) correspond to five times the length scale of the patterns,
i.e., 10π/kc and 10π/k0, respectively, exemplifying that the wave-number selection in the turbulent pattern
forming phase (c) differs from the classical pattern forming phase (a).

For the investigated parameters given in Table I the value of the theoretically predicted amplitude is
4.00, which is confirmed by our simulations to within 5%. This brief exposition serves to show that
the classical pattern formation in absence of nonlinear advection leads to a stationary square lattice
state with wave number kc = 1.

II. ACTIVE TURBULENCE

As the advective term is switched on by setting λ = 3.5, the nonlinear energy transfer sets in, which
by generating vortices of larger size renders the stationary square lattice pattern unstable. As a result,
a self-sustained turbulencelike phase emerges [see Fig. 1(b)], which has been characterized, e.g.,
in [10,12,32]. Borrowing techniques from classical turbulence theory, we here establish a statistical
description for the two-point correlation function and energy spectra for the full range of dynamically
active scales.

To this end, we consider the velocity covariance tensor Rij (r) = 〈ui(x,t)uj (x + r,t)〉 ≡ 〈uiu
′
j 〉

which is among the most fundamental statistical objects of interest; by virtue of kinematic relations, it
contains the correlation structure of the velocity field as well as of the vorticity and velocity gradient
tensor fields [33]. Its evolution equation for the statistically homogeneous and isotropic turbulent
phase is readily obtained as

∂tRij + λ∂k〈u′
kuiu

′
j − ukuiu

′
j 〉 = −2[(1 + �)2 + α]Rij − β〈ukukuiu

′
j + u′

ku
′
kuiu

′
j 〉. (2)

TABLE I. Simulation parameters. The active fluid is characterized through the parameters λ, α, and β. The
simulations are run on grids with 20482 grid points, discretizing a domain of lateral extent D; �t denotes the
time step.

No. Dynamical state λ α β D �t

1 Square lattice 0 −0.8 0.01 250 10−2

2 Active turbulence 3.5 −0.8 0.01 250 10−3

3 Hexagonal lattice 7.0 −0.8 0.01 250 10−3

4 Hexagonal lattice 7.0 −0.8 0.01 125 10−3

5 Active turbulence 3.5 −0.3 0.01 250 10−3

6 Benchmark case [10,12] 3.5 −1.178 0.01125 250 10−3
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As a result of statistical isotropy, the pressure contribution vanishes. The quadratic and cubic
nonlinearities result in unclosed terms which obstruct a direct computation of the covariance
without making further assumptions. The main effect of the β term is to saturate the velocity
growth. Owing to the approximate Gaussianity of the velocity field [10–12,32], the correlator
in this term can be factorized using Wick’s theorem, which yields 〈ukukuiu

′
j + u′

ku
′
kuiu

′
j 〉 =

2Rkk(0)Rij (r) + 2Rik(0)Rkj (r) + 2Rik(r)Rkj (0).
An analogous attempt to factorize the triple correlators fails as this amounts to neglecting the

energy transfer across scales, a hallmark feature of turbulence [34]. A more sophisticated closure
needs to be established. For the subsequent treatment we choose a Fourier representation of the
covariance tensor Rij (r) in terms of the spectral energy tensor �ij (k). For a statistically isotropic two-
dimensional flow, it takes the form �ij (k,t) = E(k,t)/(πk)[δij − kikj /k2], where E(k,t) denotes
the energy spectrum function. Starting from Eq. (2), an evolution equation for the energy spectrum
function can be derived which takes the form [33–35]

∂tE(k,t) + T (k,t) = 2L(k,t)E(k,t). (3)

Here, T (k,t) is the energy transfer term between different scales which results from the triple
correlators in Eq. (2); L(k,t) = −(1 − k2)2 − α − 4βE0(t) is the effective linear term, which
represents all linear terms as well as the Gaussian factorization of the cubic nonlinearity with
E0(t) = ∫

E(k,t)dk. The effective linear term is responsible for the energy injection around kc = 1 as
well as for the damping at small and large scales. For the energy transfer term, we adopt the so-called
eddy-damped quasi-normal Markovian (EDQNM) approximation and present here the main steps
of the derivation for active fluids. More details are given in the Supplemental Material [29]. For a
more comprehensive account of this model, which has been successfully applied to hydrodynamic
turbulence, we refer the reader to [36–38]. The core idea of this closure scheme is to consider the
evolution equation for the triple correlators in addition to Eq. (3), from which T (k,t) can be obtained
straightforwardly. The occurring fourth-order moments are then factorized assuming Gaussianity,
similar to the treatment of the nonlinear damping term in Eq. (2), i.e., 〈ûûûû〉 = 
〈ûû〉〈ûû〉 (written
in a symbolic fashion). The influence of the neglected cumulants is modeled by an additional damping,
which leads to an effective damping ηkpq (see Supplemental Material [29] for more information). As
a result we obtain an evolution equation for the triple correlators of the velocity modes k, p, and q:

[∂t + ηkpq]〈û(k)û( p)û(q)〉 = λ
〈ûû〉〈ûû〉. (4)

As a next step, we apply the so-called Markovianization by assuming that the right-hand side evolves
slowly, such that this equation can be integrated analytically and the steady-state solution can be
obtained by taking t → ∞. The energy transfer function, which is a contraction of the triple velocity
tensor, can then be written as

T (k,t) =
∫∫

�

λ2

ηkpq

[a(k,p,q)E(p,t)E(q,t) + b(k,p,q)E(q,t)E(k,t)]dpdq. (5)

Here 1/ηkpq acts as a characteristic time scale which results from the turbulent damping. The
geometric factors a(k,p,q) and b(k,p,q) are associated to contractions of the isotropic tensor
〈û(k)û( p)û(q)〉; the exact expressions of the terms are given in the Supplemental Material [29]. �

restricts the integration domain in p,q space so that the three wave numbers k,p,q form the sides of
a triangle. These triadic interactions are a direct consequence of the quadratic advective nonlinearity.
While technically quite involved, the key feature is that the energy transfer term is expressed in terms
of the energy spectrum only, i.e., we have obtained a closure. To illustrate the results, the left panel
of Fig. 2 shows a comparison of the terms of Eq. (3) obtained from the EDQNM closure with a
direct estimation from simulation data for active turbulence. Very good agreement is found for all
wave numbers. Consistent with the observations in [12], the energy transfer term takes energy from
the linear injection scale and transports it upscale. This inverse energy transfer is typical for two-
dimensional flows [39]. Interpreting these results in the context of bacterial turbulence, the dominant
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FIG. 2. (a) Energy budget of active turbulence: direct numerical simulation (DNS) results (dashed lines,
simulation 2 in Table I) vs EDQNM closure theory. The black, green, and blue curves correspond to the energy
spectrum, the transfer term, and the effective linear term, respectively. (b) Spectra from DNS of active turbulence
compared to EDQNM closure theory. (c) Longitudinal velocity autocorrelation of active turbulence: DNS vs
EDQNM closure theory. The blue, black, and green curves in (b) and (c) correspond to the simulations 2, 5,
and 6, respectively, as listed in Table I.

energy injection occurs on a length scale comparable to the individual bacteria [10], yet their collective
motion displays much larger scales. In the framework of the continuum model, Eq. (1), this collective
behavior is the result of an energy transfer to larger scales induced by nonlinear advection. The
EDQNM theory captures this effect accurately. Also the effective linear term, which injects energy in a
wave-number band around kc = 1, but extracts energy at large and small scales, is captured accurately,
demonstrating the fidelity of the Gaussian factorization of nonlinear damping. The spectra resulting
from the EDQNM closure are shown in the middle panel of Fig. 2. To demonstrate the validity of the
closure theory for a broader parameter range, we additionally varied the α parameter (see Table I).
Furthermore, we also compare with the reference case reported in [10,12], which in our normalized
set of parameters corresponds to α = −1.178, β = 0.01125. In previous literature, this reference
case has been shown to capture experimental results [10]. As the value of α is decreased, the energy
injection into the system becomes more intense and acts on a wider range of scales. As a result the
energy spectra show an increased broadband excitation. Due to the inverse energy transfer the spectral
peak gradually shifts from the most unstable wave number to smaller wave numbers, indicating the
emergence of larger-scale flow structures. All of these trends are captured accurately by EDQNM
without further adjustments. The EDQNM theory therefore extends the low-wave-number theory
developed in [12] to the full range of scales. With the full energy spectra at hand, correlation functions
can be computed in a straightforward manner. The results are shown in the right panel of Fig. 2. As the
flow becomes increasingly turbulent, the correlation length increases. This can be understood from the
previous observations in spectral space. Through the inverse energy transfer, larger-scale structures
are excited leading to longer-range correlations. Again, EDQNM captures these observations
accurately. These findings highlight the crucial impact of the nonlinear advection on the system
and motivate the exploration of the dynamics in the parameter range of strong nonlinear advection.

III. TURBULENT PATTERN FORMATION

Further increasing the strength of the nonlinear advection to λ = 7 leads to a surprising new
dynamical state emerging from a turbulent transient as visualized in Fig. 3. From random initial
conditions vortices arise, triggered by small-scale instabilities. Many vortices are screened by
surrounding vorticity of opposite sign, reducing their Biot-Savart interaction. Some of them, however,
form dipoles, which propagate rapidly through the flow. These dipoles contribute significantly to
the turbulent dynamics. In the course of time, a spontaneous symmetry breaking occurs, such that
one sign of vorticity prevails. As a result, less dipoles form and the dynamics stabilizes. Repeating the
numerical experiment with different random initial conditions confirms that both vorticity signs are
equally probable in this spontaneous symmetry breaking. By the continued emergence of vortices
the system eventually crystallizes into a quasistationary hexagonal vortex lattice state. The wave
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FIG. 3. Emergence of hexagonal vortex lattice after a turbulent transient (simulation 4 in Table I). (a)–(c)
Vorticity field after t = 20,150,850. The insets show the two-dimensional vorticity spectra with the wave vectors
corresponding to the most unstable wave number indicated by an orange circle. The inset (c) clearly shows six
isolated peaks at k0 ≈ 0.57 which characterize the vortex lattice. For visualization purposes, these figures were
obtained through a simulation on a smaller domain with half the domain length compared to Fig. 1. Note that
the final vortex crystal state selects a sign of vorticity different from that of Fig. 1, exemplifying spontaneous
symmetry breaking in this system. Panel (d) shows the evolution of the enstrophy, as well as the maximum and
the minimum vorticity through the transient to the final quasistationary state.

number characterizing this turbulent pattern is significantly smaller than naively expected based on
the linear critical wave number kc = 1 in the classical pattern formation case. This can be explained
as follows: as the turbulent pattern emerges out of a turbulent transient, there is an inverse transfer
of energy feeding larger scales. As a result, the peak energy injection scale in Eq. (3) [i.e., the
maximum of 2L(k,t)E(k,t) − T (k,t)] shifts to smaller wave numbers during the transient, giving
rise to larger-scale flow structures. Because

∫
T (k,t)dk = 0 by virtue of T (k,t) being an energy

transfer term, Eq. (3) implies the constraint
∫

L(k,t)E(k,t)dk = 0 once the statistically stationary
state with the vortex lattice is reached. Given the fact that the system forms a regular vortex pattern
with a sharply localized spectrum around the lattice wave number, this constraint can only be satisfied
if the lattice wave number k0 is close to the zero crossing of the effective linear term, i.e., close to the
wave number corresponding to the smallest neutral mode. For the current choice of parameters, this
prediction yields k0 ≈ 0.58 in very good agreement with the numerical observation (k0 ≈ 0.57). To
further confirm this prediction, we scanned the entire α-range [−0.95,−0.75] leading to stable vortex
lattices, keeping all other parameters fixed. We observed a trend of the lattice wave number slowly
increasing with α, which is captured by the prediction to within 10% (not shown). We conclude that
this turbulent pattern formation selects the neutral mode rather than the fastest growing linear mode.
We stress that this mechanism profoundly differs from the Turing mechanism reported in [21,22]
due to the extended turbulent transient leading to the selection of the neutral mode.

It remains to explain the type of lattice. Nonlinear advection favors axisymmetric vortices. As these
structures populate the domain over time, they form the densest possible packing consistent with this
geometry, resulting in the hexagonal pattern. Unlike the case of classical pattern formation (λ = 0),
this vortex lattice is quasistationary with perturbations from weaker background turbulence. The most
striking feature of this phenomenon is the long turbulent transient phase preceding the formation of
the pattern, which lasts much longer than the typical lifetimes of the vortices in the turbulent phase.
Furthermore, unlike classical pattern formation, the dominant length scale in the system is given by
the neutral mode in the effective dispersion relation.

IV. CONCLUSIONS

The correlation functions and spectra of a minimal model for active turbulence developed in this
Rapid Communication establish a quantitative statistical theory of active turbulence. We adapted the
EDQNM closure scheme for classical hydrodynamic turbulence to capture the linear driving and
damping as well as the nonlinear energy transfer across scales along with nonlinear damping. For
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the range of investigated parameters, the theory has been found to accurately capture simulation
results. It revealed that the spectral peak, associated with the typical size of turbulent flow structures,
originates from the interplay of linear and nonlinear physics: energy is injected in a band of unstable
modes which then cascades uphill before dissipated by linear and nonlinear damping terms. EDQNM
therefore quantitatively captures the statistics of the collective behavior emerging in the continuum
model, Eq. (1). Having demonstrated the potential of methods from turbulence theory to capture
disordered active matter states, we hope that our findings may spur further research. For instance, a
generalization to active nematics might be an interesting direction for future research.

Further exploring the parameter space toward strong nonlinear advection, we find a highly ordered
lattice state of dynamically self-organized vortices which emerges from an extensive turbulent
transient. The inverse energy transfer of two-dimensional turbulence turns out to be a crucial
ingredient in this turbulent pattern formation: the same mechanism leading to the spectral peak
in the turbulent phase selects the neutral wave number in this turbulent pattern formation. While the
potential importance of neutral modes has been pointed out in [40] based on kinematic considerations,
our findings show that they are indeed dynamically relevant.

Regarding possible experimental realizations of the vortex lattice state reported here, we note that
we observe it in a regime of strong nonlinear advection due to active stresses. Recent research has
indicated that such a regime, in which the value of λ is large, can be achieved by a microstate with
strong polar interaction among the active particles [41]. Furthermore, we observe the vortex lattice
in a parameter range (controlled by α) of both large- and small-scale damping. Thus experiments
involving active fluids with strong polar interactions and with substrate-mediated friction could
potentially realize this novel “turbulent pattern formation” phenomenon.

Interestingly, the mechanism reported here shares a similarity with quasicrystalline vortex lattices
in drift-wave turbulence [42], although their vortex patterns appear less stable than the ones reported
here. Vortex crystals have also been observed in two-dimensional Navier-Stokes turbulence driven by
a combination of deterministic and stochastic forcings [43], in truncated two-dimensional turbulence
[44], in simulations of quasigeostrophic turbulence [45] as well as in two-dimensional fluid films with
polymer additives [46]. Furthermore, vortex lattices have been predicted [47] and observed [48] in
superconductors. These observations in profoundly different physical systems point at the ostensibly
universal occurrence of highly ordered states in strongly nonlinear regimes. The investigation of this
phenomenon in generic systems which combine features of pattern formation with non-Lyapunov
dynamics such as nonlinear advection appears as one exciting direction for future research.
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