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Secondary flow in turbulent ducts with increasing aspect ratio
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Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and
14.4 at a center-plane friction Reynolds number Reτ,c � 180, and aspect ratios 1 and 3 at
Reτ,c � 360, were carried out with the spectral-element code NEK5000. The aim of these
simulations is to gain insight into the kinematics and dynamics of Prandtl’s secondary flow
of the second kind and its impact on the flow physics of wall-bounded turbulence. The
secondary flow is characterized in terms of the cross-plane component of the mean kinetic
energy, and its variation in the spanwise direction of the flow. Our results show that averaging
times of around 3000 convective time units (based on duct half-height h) are required to
reach a converged state of the secondary flow, which extends up to a spanwise distance of
around �5h measured from the side walls. We also show that if the duct is not wide enough
to accommodate the whole extent of the secondary flow, then its structure is modified as
reflected through a different spanwise distribution of energy. Another confirmation of the
extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary
motions for zc/h > 5 (where zc is the spanwise distance from the corner) in aspect ratios
7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time
ta , and in its rapid rate of decay given by ∼t−1

a . This is the same rate of decay observed
in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic
energy of the secondary flow integrated over the cross-sectional area, 〈K〉yz, behaves as a
random variable with zero mean, with rate of decay consistent with central limit theorem.
Long-time averages of statistics in a region of rectangular ducts extending about the width
of a well-designed channel simulation (i.e., extending about �3h on each side of the center
plane) indicate that ducts or experimental facilities with aspect ratios larger than 10 may,
if properly designed, exhibit good agreement with results obtained from spanwise-periodic
channel computations.

DOI: 10.1103/PhysRevFluids.3.054606

I. INTRODUCTION

Turbulent duct flows of different aspect ratios AR (defined as the duct width Wd divided by
its total height H ) are of great importance for a number of technological applications due to the
complicated interactions of wall-bounded turbulence with the corner. Such applications include
complex flow in turbomachinery, heat exchangers, diffusers, ducts used in refrigeration, etc., and the
development of the secondary flow at the corner is a fundamental mechanism present in several other
applications such as in the junction between an airplane wing and the fuselage or in open channels
and rivers. Moreover, the flow through a fully developed turbulent duct is an interesting case from a
scientific point of view, since it allows us to study the features of wall-bounded turbulence with mean
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FIG. 1. Schematic view of the three-dimensional effects present in fully developed turbulent duct flows.
The blue regions represent the side-wall boundary layers and the dashed blue arrows show that they accelerate
the flow in the duct center plane. Red and green arrows indicate the flow direction in the secondary vortices on
the horizontal and vertical walls, respectively.

three-dimensional effects. Such effects include, on the one hand, the growth of boundary layers on
the side walls, which—as shown schematically in Fig. 1—reach a certain thickness in the spanwise
direction depending on the duct aspect ratio and Reynolds number. The side-wall boundary layers
produce an acceleration of the flow core at the duct center plane, thus increasing the local skin friction.
Another three-dimensional effect is the presence of four secondary vortices located on the horizontal
walls, and four more on the vertical ones. The vortices on the horizontal walls convect near-wall
fluid at the duct center plane toward the outer region, and then recirculate the flow towards the side
wall, as illustrated in Fig. 1. This results in a local decrease of the center plane wall-shear stress, the
value of which depends on the respective contributions of side-wall boundary layers and secondary
flow in terms of AR and Re, as discussed by Vinuesa et al. [1]. Finally, the secondary vortices on
the vertical walls convect fluid toward the corners through the line tangent to the vortices on the
horizontal walls. The secondary flow present in straight, fully developed turbulent ducts was denoted
by Prandtl [2] as “secondary flow of second kind.” This type of secondary flow, which lies in the y-z
plane (where y and z are the vertical and spanwise directions respectively), normal to the streamwise
direction x, arises from the Reynolds-stress difference v2 − w2 and the Reynolds-stress component
vw. Because of the Reynolds-stress-induced nature of this kind of secondary flow, currently available
Reynolds-averaged Navier-Stokes (RANS) models widely used in industry in general fail to predict
its effect on the flow. As pointed out by Spalart [3], only RANS models with constitutive relations
between the Reynolds stresses and the mean flow which do not assume that both tensors are aligned
(as in the traditional Boussinesq approximation) can predict the presence of this kind of secondary
flow. It is important to note that the secondary flow of second kind is a mean flow feature, and
even though it only amounts to around 2–3% of the bulk velocity Ub [4] and, as already observed
experimentally in the 1960s and 1970s by Hoagland [5], Gessner and Jones [6], and Gessner [7], its
impact on the flow may be very relevant.

A flow case that has received some attention from the computational point of view is the turbulent
flow through a square duct, with the first direct numerical simulations (DNSs) carried out in the early
1990s by Gavrilakis [8] and Huser and Biringen [4]. The DNS by Gavrilakis [8] was carried out at a
friction Reynolds number Reτ = 150 (where Reτ is defined in terms of the duct half-height h and the
average friction velocity uτ = √

τw/ρ, where τw is the mean wall-shear stress averaged over the four
walls, which is related to the streamwise pressure drop, and ρ is the fluid density). One of the most
interesting outcomes of the work by Gavrilakis [8] is the observation that, although the streamlines
obtained from the mean stream function � in the y-z plane show the two counter-rotating vortices at
the corner, the mean streamwise vorticity field �x exhibits two vorticity cells of opposite signs within
each of those vortices. The study by Huser and Biringen [4], at a higher Reτ = 300, shed some light
on the mechanisms responsible for the formation of the secondary flow: By analyzing the spanwise
evolution of the Reynolds-stress tensor shear components, they found that the secondary flow is
produced by the interactions of bursting events from the horizontal and vertical walls close to the
corner, which basically lead to a redistribution of v2 fluctuations to the w2 component, responsible for
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the creation of the secondary vortices. The more recent DNS by Pinelli et al. [9] at Reτ values up to
300 showed that, as opposed to spanwise-periodic channels, the corner determines the location of the
first near-wall streak and its type: A high-speed streak is found at an inner-scaled spanwise distance
z+
c � 50 (where we define the variable zc with its origin at the corner), followed by a low-speed

streak, separated a spanwise length of approximately λ+
z /2 � 50 (note that the spanwise distance

between two streaks of the same type is λ+
z � 100 [10,11]). In the present study, the superscript “+”

denotes inner scaling based on the friction velocity uτ (it will be specified whether it is evaluated
at the center plane or averaged over the four walls) and the viscous length �∗ = ν/uτ (where ν is
the fluid kinematic viscosity). Note that the value of z+

c depends on the corner geometry, as recently
shown by Marin et al. [12], who reported z+

c � 38 in hexagonal ducts. The inner-scaled total width
of the duct W+

d determines the number of streaks that can be sustained. The DNS work by Uhlmann
et al. [13] at low Re with Reτ up to around 175 was focused on the limiting state where the W+

d

does not support the number of streaks required by the near-wall turbulence cycle, i.e., what they
called the “marginally turbulent state.” They observed this state at Reτ � 77, which has W+

d � 154,
a condition which can just sustain two high-speed streaks on the corners and a low-speed one at
the center plane. This leads to a flow configuration in which short-term averages lead to a particular
distribution of the secondary flow, with a total of four counter-rotating vortices located, alternatively,
on the horizontal or vertical walls. Moreover, long-term averages reveal, also in the marginally
turbulent state, the expected pattern with eight vortices. These numerical findings were supported by
the experimental study carried out by Owolabi et al. [14], who also analyzed marginally turbulent
flow effects. Another interesting DNS of the flow through a square duct was performed by Samanta
et al. [15], who considered a configuration with three solid walls and a fourth wall composed of
a porous bed. Their simulation was at Rep

τ � 314 (based on the average friction velocity over the
porous bed up

τ ), and their most interesting finding was the increase of secondary flow magnitude
by a factor of four compared with a regular square duct with four solid walls, a consequence of the
increased wall-normal transport across the porous bed.

Available numerical simulations of turbulent flow through square ducts in the literature include
the DNS by Zhu et al. [16] at Reτ = 300, the simulations by Raisei et al. [17] at Reτ values up to
600, the work by Zhang et al. [18] also at Reτ up to 600, and the recent DNS by Pirozzoli et al.
[19] up to Reτ = 1000. The simulation by Krasnov et al. [20] at a very high Reτ,c = 4253 (where
Reτ,c is defined in terms of the center-plane friction velocity uτ,c) was averaged for a very short
averaging period, which might have lead to inaccurate results as mentioned in their own paper and
also analyzed in terms of convergence by Vinuesa et al. [21]. Some other numerical studies of square
ducts have used large-eddy simulation (LES), such as the work by Madabhushi and Vanka [22] at
Reτ = 180 and the study by Breuer and Rodi [23] at Reτ = 150. Note that Breuer and Rodi [23] also
performed an LES at a higher Reynolds number of 56 690 (based on hydraulic diameter and bulk
velocity), more than 10 times higher than their low-Re case, but they found significant disagreement
with experimental data. Another very high Reynolds number LES was performed by Yao et al. [24],
up to an Reτ value of 10 550, although their coarse mesh resolution (the number of grid points
they used for their Reτ = 10 550 case is less than 1% of the total of grid points we consider in this
study for a DNS at Reτ = 360) suggests that there could be some inaccuracies in their results. The
asymptotic conditions in turbulent duct flows were recently discussed by Spalart et al. [25]. Also
note that in most cases these simulations were performed in short computational boxes, on the order
of one fourth the length considered in the present work.

Despite the relative wealth of data of turbulent flow through square ducts, the flow through a
rectangular duct has not received so much attention from a numerical point of view. This is in part
due to the difficulties of using classic spectral methods (based on Fourier-Chebyshev discretizations)
to simulate the flow through four walls, especially with a particular aspect ratio. The introduction
of one additional parameter, AR, significantly increases the complexity of the problem due to the
changes in secondary flow with the flow geometry. Some numerical studies of the flow through
rectangular ducts include the AR = 3.33 duct flow at Reτ � 300 simulated by Ohlsson et al. [26]
as part of their DNS of a three-dimensional diffuser and the LESs by Choi and Park [27] with
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aspect ratios from 1 to 4 at Reτ = 150. Recent DNSs of rectangular ducts at Reτ,c � 180 and 330,
with AR values from 1 to 10, have been reported by Vinuesa et al. [1,28] with emphasis on the
characterization of the wall-shear stress dependence with aspect ratio. The focus of the present study
is the characterization of the secondary flow with increasing aspect ratio and Reynolds number,
including its magnitude, convergence, and its impact on the statistics of the flow through the duct.

The present article is organized as follows: The numerical setup of the simulations is described in
Sec. II; the topology of the secondary flow and its magnitude are described, for the various cases under
consideration, in Secs. III and IV, respectively; turbulence statistics and wall-shear stress distributions
are reported in Sec. V; and the main conclusions of this work are summarized in Sec. VI.

II. NUMERICAL SIMULATIONS

Turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at Reτ,c � 180, and with AR = 1
and 3 at Reτ,c � 360, were simulated by means of DNS. Note that part of this database has been
previously reported [1,28], and that the AR = 14.4 case was designed to match the aspect ratio
of one of the experiments in Ref. [29]. The simulations were performed with the code NEK5000,
developed by Fischer et al. [30] and based on the spectral-element method (SEM) originally proposed
by Patera [31]. In the SEM, the computational domain is decomposed into elements, and the solution
is expressed in terms of Lagrange interpolants of order N within those elements. The location of the
nodes inside the elements follows the Guass-Lobatto-Legendre (GLL) distribution, whereas there is
an isoparametric mapping for the shape of the elements and there are no restrictions regarding the
position of the elements in the domain. This means that this method allows the flexibility to compute
complex geometries, while still preserving the characteristics of a high-order spectral method. In
the present study, we considered the PN − PN−2 formulation with N = 11. Therefore, the velocity
field was expressed in terms of Lagrange interpolants of order 11, and order 9 was considered for the
pressure field. The nonlinear terms are treated explicitly by third-order extrapolation (EXT3), whereas
the viscous terms are treated implicitly by a third-order backward differentiation scheme (BDF3).
NEK5000 is written in FORTRAN 77 and C, and parallelized using a message-passing interface (MPI).
Besides the already mentioned duct cases [1,15,28], we have used NEK5000 to simulate the turbulent
flow through a straight pipe up to a moderately high friction Reynolds number of Reτ = 1,000 [32].
During the runs, we computed a total of 71 statistical fields (where streamwise homogeneity was
exploited), which were then used to calculate complete turbulence budgets. A complete description
of the toolbox used to compute the turbulence statistics is given in Ref. [33].

With respect to the flow setup, periodicity is imposed in the streamwise direction x in all the
cases, and no-slip conditions are imposed at the walls along the vertical and spanwise directions.
All the ducts have a streamwise length of Lx = 25h, which is sufficiently long to simulate the
most relevant turbulent structures in the flow [34,35], and the center-plane (at the plane z/h = 0)
bulk Reynolds number Reb,c (formed in terms of the center-plane bulk velocity Ub,c and the duct
half-height h) was kept approximately constant with AR by adjusting Reb, as described by Vinuesa
et al. [1]. The simulation parameters from all the cases are summarized in Table I, including mesh
resolution details based on uτ,c, which fulfill all the standard requirements for a fully resolved DNS.
The spectral elements are uniformly distributed in the homogeneous streamwise direction, and the
range of 	x+ values reported in Table I is due to the GLL point distribution within elements. The
averaging periods ta considered to obtain turbulence statistics (after the initial transients) are also
reported in convective time units h/Ub and in eddy-turnover times h/uτ,c. All the simulations were
initiated from a laminar solution [36], and transition to turbulence was triggered by means of a
localized volume force acting in y. Its parameters were designed to create strong, unsteady streaks
that lead to rapid turbulent breakdown [37]. Figure 2 shows an instantaneous streamwise velocity
field obtained from the duct with AR = 10 at Reτ,c � 180. Near-wall streaks can be easily identified
in this figure, with the well-documented spacing in the spanwise direction between two streaks of
the same type (high- or low-speed) of λ+

z � 100 [10,11]. The resolution is therefore appropriate to
capture near-wall dynamics in the flow, and the use of a high-order method allows an appropriate
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TABLE I. Summary of simulation parameters from the various cases, corresponding to Reτ,c � 180 (above)
and Reτ,c � 360 (below) the horizontal line. The terms in brackets are the minimum and maximum grid spacing
in that direction, respectively.

AR Reb Reb,c Reτ Reτ,c No. grid points 	x+ 	y+ 	z+ taUb/h tauτ,c/h

1 2500 2796 165 178 27.4×106 (1.98, 9.80) (0.09, 4.74) (0.09, 4.74) 7158 510
3 2581 2786 164 179 61.7×106 (1.99, 9.86) (0.09, 4.77) (0.09, 4.89) 5664 393
5 2592 2781 164 177 95.9×106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 6455 441
7 2605 2772 164 177 130.3×106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 9308 632
10 2580 2700 162 174 185.1×106 (1.93, 9.58) (0.09, 4.64) (0.09, 4.65) 5795 391
14.4 2665 2761 166 177 257.1×106 (1.97, 9.75) (0.09, 4.72) (0.09, 4.83) 3062 203
1 5693 6258 342 356 122.4×106 (1.99, 9.88) (0.15, 4.65) (0.15, 4.65) 3616 226
3 5817 6274 338 363 326.5×106 (2.03, 10.07) (0.15, 4.75) (0.15, 4.96) 3232 202

simulation of the turbulent velocity field. It is interesting to observe how near-wall streaks are also
formed on the side walls, with an approximate spacing of λ+

y � 100, and how at the corner the effect
of the two walls inhibits the formation of such structures. Instead, the flow field in Fig. 2 shows how
the bursting events from horizontal and vertical walls interact at the corner. As mentioned in Sec. I,
these interactions were reported by Huser and Biringen [4] to result in a redistribution of energy
from v2 to w2 in square ducts, which eventually leads to the formation of the mean secondary flow.

III. TOPOLOGY OF THE SECONDARY FLOW

The evolution of the secondary flow topology with Reynolds number and aspect ratio is presented
in Fig. 3, where the streamlines of the secondary mean flow � are evaluated from the two-dimensional
fields obtained after averaging in the streamwise direction and in time, as well as over the four
quadrants in the duct. Figure 3 (top) shows the streamlines from square ducts at Reτ,c � 180
and Reτ,c � 360, with the characteristic two-vortex pattern on each corner and the tangent line
between the vortices along the corner bisector. It can be observed that the secondary vortices convect
momentum from the duct center plane toward the bisector and that the two vortices are symmetric
with respect to their tangent line at a particular Reynolds number. This figure illustrates the findings

FIG. 2. Instantaneous streamwise velocity field in the AR = 10, Reτ,c � 180 case at 2000 convective time
units (normalized with Ub and h) from the beginning of the simulation. Green and orange represent minimum
and maximum velocities in the field, respectively. Flow is from lower left to upper right, and walls have been
made transparent for clarity.
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FIG. 3. Streamlines of secondary mean flow �, where the coordinate zc is defined with its origin at the
duct corner. (a) Square ducts at Reτ,c � 180 and Reτ,c � 360; (b) AR = 3 ducts at
Reτ,c � 180, Reτ,c � 360 and shows the first contour (with value 3.9×10−4) from the square
duct at Reτ,c � 360 for comparison; (c) Reτ,c � 180 ducts with AR = 1, AR = 3, AR = 5,
and AR = 10. A total of 10 contours are shown in the square duct cases, whereas 15 are shown in the
wider ducts, all of them with increments of 3.9×10−4. The velocity and length scales are, respectively, Ub

and h.

by Pinelli et al. [9] in their numerical work on square ducts up to Reτ = 225: As Re increases,
the secondary vortices become more elongated and their centers move away from the wall. An
extension of this analysis to rectangular ducts is presented in Fig. 3 (middle), where the secondary
flow streamlines from the AR = 3 cases at Reτ,c � 180 and 360 are compared. In this figure, we
show a total of 15 contours, with the same increments as in the square-duct cases (3.9×10−4), in order
to allow better comparison among the various ducts. Also in these wider ducts two counter-rotating
vortices are observed close to the corner, although the symmetry they exhibited in the square duct
is lost: The vortex located on the horizontal wall significantly expands in the spanwise direction,
which leads to the fact that the tangent line between the two vortices is not straight anymore and
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does not follow the corner bisector. The spanwise development of the vortex on the horizontal wall
leads to an increase in its vertical size, with the consequent shrinking of the vortex on the vertical
wall; therefore the tangent line is a concave curve connecting the lower-left corner and the point
(zc/h � 0.5,y/h � 0). Regarding the vortex on the horizontal wall, the first contour extends to the
corner up to the same zc/h values as the square duct (0.18 and 0.1 for low and high Re, respectively),
which indicates that the corner has an important influence in the formation of the secondary vortex.
The development of this vortex in the spanwise direction is similar for the two Reynolds numbers,
and in both cases the last contour (with a value of 3.9×10−3) extends up to zc/h values slightly
above 2.5; i.e., the secondary flow is observed up to spanwise locations close to the center plane.
The center of this vortex also moves farther from the wall with Re: In the low-Re case it is located
at (zc/h � 0.80, yc/h � 0.35), and in the higher Re this center is at (zc/h � 1, yc/h � 0.4), which
supports the notion of large-scale motions influencing the development of the secondary vortices.
With respect to the vortex on the vertical wall, vertical stretching is also observed with increasing
Re, and in both cases the vortex becomes compressed horizontally due to the discussed growth of
the vortex on the horizontal wall. The first contour from the square duct at Reτ,c � 360 is shown for
comparison, where the shrinking of this vortex is noticeable, although interestingly this first contour
is similarly close to the corner, reinforcing its high influence in the secondary flow. Despite the fact
that the higher Re vortex is more elongated, its center is approximately at the same location as that
of the low-Re case.

An assessment of the influence of the aspect ratio on the topology of the secondary vortices is
presented in Fig. 3 (bottom). Analysis of aspect ratios of 1, 3, 5, and 10, at Reτ,c � 180, leads to
some similar observations compared with Fig. 3 (middle), in particular the fact that the vortex on the
vertical wall shrinks horizontally and the tangent line, also defined by a concave curve connecting
the lower left corner and the point (zc/h � 0.5,y/h � 0), is very similar in all the aspect ratios.
Regarding the horizontal wall, the first contour level is in good agreement close to the corner in all
the aspect ratios, and interestingly is almost identical in aspect ratios 3, 5, and 10 up to zc/h � 1.75.
The similarities in this first contour persist for the AR = 5 and 10 cases up to zc/h � 2.5, point after
which the vortex extends up to zc/h � 3.7 in the aspect ratio 5 case, and up to zc/h � 4.3 in the
wider duct. This indicates that the secondary flow develops a characteristic pattern in rectangular
ducts, and although the features change close to the center plane as the aspect ratio becomes higher,
the vortices exhibit similar features close to the corner. This claim is further supported by the fact
that the center of the secondary vortex on the horizontal wall is approximately at the same location
in all the aspect ratios larger than 1, i.e., at (zc/h � 0.80, yc/h � 0.35). The horizontal shrinking
of the vortex on the vertical wall can be observed in comparison with the square duct, although as
already discussed in Fig. 3 (middle), the first contour level is similar in all the cases, even in the
square duct, close to the corner. With respect to the vertical extent, the vortex in the AR = 3 duct
is slightly shorter, which could be associated with some intermediate state of development of the
secondary flow as AR increases, since the vortices from the wider ducts are almost identical. It is
also interesting to note that the center of this vortex is approximately at the same location in all the
cases: (zc/h � 0.2, yc/h � 0.5).

The evolution of the secondary flow with increasing Reynolds number, as well as with increasing
aspect ratio, indicates that the large-scale motions in the flow are strongly related to its origin and
development, as observed by Pinelli et al. [9] in square ducts. The novelty of these results lies in the
fact that larger scales arising from the wider spanwise extent also affect significantly the shape of
the secondary vortices, as well as their intensity.

IV. MAGNITUDE OF THE SECONDARY FLOW

After discussing the topology of the secondary flow in the various duct cases, in this section
we quantify its magnitude in terms of the cross-flow kinetic energy K = 1/2(V 2 + W 2) at various
locations in the spanwise direction z. The mean wall-normal and spanwise velocity components V

and W are normalized with the bulk velocity Ub, and therefore K is normalized with U 2
b throughout

the article. Figure 4 (top) shows the K distribution of the AR = 3 case at Reτ,c � 180, which exhibits
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FIG. 4. Kinetic energy of the secondary flow K for the (top) AR = 3 and (bottom) AR = 10 cases at
Reτ,c � 180, together with the windows used to calculate 〈K〉yz. Fields obtained after averaging in the streamwise
direction, time, and over the four duct quadrants.
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high energy close to the corner on the horizontal wall, associated with the strength of the secondary
vortex in that region. Note that in this figure we exploited the flow symmetries to improve the statistics.
Although in Fig. 3 it could be observed that the streamlines of the secondary flow extend beyond
zc/h � 2.5, Fig. 4 (top) shows that the energy level of the secondary flow is low for zc/h > 1.5
approximately. Another region of high K corresponds to the vertical motion parallel to the vertical
wall, and the third region with high kinetic energy is precisely the tangent line between the two
corner vortices, directed toward the corner. Regarding the AR = 10 case at Reτ,c � 180 shown in
Fig. 4 (bottom), similar regions of high K can be identified, i.e., parallel to the horizontal and vertical
walls, and along the tangent lines between the two corner vortices. Although Fig. 3 shows that the
streamlines extend up to zc/h � 4.3, according to the energy distribution from Fig. 4 the magnitude
of the secondary flow decays significantly beyond zc/h � 3. A difference in energy distribution
between the AR = 3 and 10 cases can be observed close to the corner, at y/h � 0: Whereas in the
narrower duct a region of intermediate energy can be observed up to zc/h � 1.5, this area extends
up to zc/h � 2.5 in the wider case. This is related to the discrepancy in streamlines from Fig. 3
(bottom) beyond zc/h � 1.75, and it can be explained by the fact that the larger width allows further
development of the secondary flow in the AR = 10 case, thus modifying its energy distribution.

Because of the spanwise inhomogeneity of the duct, it is not possible to average the flow in the
spanwise direction when computing turbulence statistics, as it is done in spanwise-periodic channels
[38–40]. As a result, longer averaging times are in principle required to obtain converged statistics
in turbulent ducts than in turbulent channels. In the present study, we divide the rectangular ducts
into smaller areas of width h and height 2h, which we denote by “windows.” Consequently, the
square duct would be divided into two windows, and the AR = 10 case into 20. The symmetry of the
flow with respect to the z/h = 0 plane is used to improve the statistics, which leads to a total of 10
windows in the AR = 10 case. The division into windows is illustrated for the AR = 3 and 10 cases
at Reτ,c � 180 in Fig. 4. As a convention, we will denote the window closest to the corner as no. 1,
and increase the number up to the value of the one closer to the core of the duct. For instance, in the
aspect ratio 10 case the window from z/h = −10 to −9 would be no. 1, and the one from z/h = −1
to 0 would be no. 10. In order to determine the required averaging periods to obtain converged
secondary flow statistics, the evolution of K with ta is characterized for each of the windows. Doing
so, it will be possible to determine their respective rates of convergence and converged values. We
will use the symbol 〈·〉 to denote the spatial average of a certain quantity, whereas capital letters
denote the mean in time.

The convergence of the secondary flow is evaluated, for the first window (as described in Fig. 4),
in Fig. 5 for all the aspect ratios at Reτ,c � 180. In this figure, we show the value of K averaged over
the first window, i.e., 〈K〉yz1, as a function of the averaging time taUb/h (expressed in convective
time units), where also streamwise averaging, as well as averaging over the two symmetric windows,
were considered. All the aspect-ratio cases reach a fully converged state after approximately 3000
convective time units, a fact that highlights the long averaging periods required for the secondary flow
to converge. The square duct shows the lowest level of energy once the converged state is reached:
〈K〉yz1 � 3×10−5, whereas aspect ratios 3 and 5 exhibit values of around 4.5×10−5. The higher
aspect ratios 7, 10, and 14.4 have a slightly lower 〈K〉yz1 value of 4×10−5. These differences are
explained by the spanwise development of the secondary flow: The square duct does not allow the
cross flow to evolve and reach the form it would exhibit in a sufficiently wider duct. With respect
to aspect ratios 3 and 5, they show a pattern closer to the wider 7 and 10 cases, but constrained to a
narrower space, which leads to higher concentration of energy close to the corner. Analysis of 〈K〉yz1

in the two cases at Reτ,c � 360 (not shown) reveals that around 3000 convective time units are also
required for the secondary flow to converge. Moreover, the 〈K〉yz1 values are almost identical when
compared with those at Reτ,c � 180 for the two aspect ratios, as shown in Table II. Despite the
topological differences observed in the secondary flow with increasing Reynolds number, already
discussed in Fig. 3, it appears that the integrated value of K is not significantly affected by Re, at
least close to the corner. This observation, limited to a narrow Reynolds-number range, also indicates
that the secondary flow scales in outer units, i.e., with the bulk velocity Ub. This conclusion is in
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FIG. 5. Kinetic energy of the secondary flow averaged over the first window 〈K〉yz1 as a function of averaging
time, for all the aspect ratios at Reτ,c � 180.

agreement with the recent work by Pirozzoli et al. [19], who performed DNS of turbulent square
duct flow up to Reτ � 1000. In this study, it is also shown that the secondary flow scales with Ub

over their Re range.
The previous analysis of the first window is extended in Fig. 6 to windows 2 and 3, which excludes

the square ducts. The Reτ,c � 180 cases presented in Fig. 6 show that the second window exhibits
in all the ducts a very similar converged level of energy (after averaging for at least 3000 time units)
of 〈K〉yz2 � 2×10−5, which suggests that beyond a certain width the secondary flow, initiated at
the corner, shares common features in all the ducts. Interestingly, the third window from aspect
ratios 5, 7, 10, and 14.4 show a very similar level of energy 〈K〉yz3 � 5×10−6, whereas the energy
corresponding to the AR = 3 case is lower: 2.5×10−6. This can be justified by the fact that in the
AR = 3 case the third window corresponds to the one at the center plane, and as observed in the
topology of the secondary flow from Fig. 3, and the distribution of K from Fig. 4, the secondary flow is
already almost absent in the third window. Nevertheless, the wider ducts allow further penetration of
the secondary flow into their respective cores, exhibiting again similar features in this development,
illustrated in the levels of 〈K〉yz3. Regarding windows 2 and 3 at Reτ,c � 360, they also exhibit
converged secondary flow after averaging for around 3000 convective time units (not shown). As

TABLE II. Converged values of 〈K〉yz in windows 1, 2, and 3 for the various cases under consideration.

AR Reτ,c 〈K〉yz1 〈K〉yz2 〈K〉yz3

1 178 3.0×10−5

3 179 4.5×10−5 2.0×10−5 2.5×10−6

5 177 4.5×10−5 2.0×10−5 5.0×10−6

7 177 4.0×10−5 2.0×10−5 5.0×10−6

10 174 4.0×10−5 2.0×10−5 5.0×10−6

14.4 177 4.0×10−5 2.0×10−5 5.0×10−6

1 356 3.1×10−5

3 363 4.7×10−5 2.5×10−5 2.0×10−6
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FIG. 6. Kinetic energy of the secondary flow averaged over the second and third windows as a function of
averaging time. Cases as in Fig. 5, excluding the square duct.

expected, the third window exhibits values much lower than the second one in the two cases, slightly
lower in the higher Re case: 2×10−6. On the other hand, although the second window exhibits
similar levels of energy with Re, a slight increment from 〈K〉yz2 � 2×10−5 to 〈K〉yz2 � 2.5×10−5

is found when Reτ,c increases. This is interesting, since the AR = 3 duct did not exhibit significantly
larger energy in the first window (only an increase of around 4.4%), whereas in the second one the
integrated K is around 25% higher. The stream function from both cases, shown in Fig. 3 (middle),
shows how in the higher Re duct the streamlines appear to be slightly more concentrated in the second
window, which would explain the higher value of 〈K〉yz2 and the lower one of 〈K〉yz3. Moreover,
the center of the vortex on the horizontal wall is displaced toward zc/h � 1 at Reτ,c � 360, which
is a consequence of the larger contributions from the large-scale motions of the flow, and could also
be related to the higher level of energy in the second window. Nevertheless, we do not observe a
significantly different mechanism in the spanwise development of the secondary flow at this higher
Re. The converged values of 〈K〉yz in windows 1, 2, and 3 for the various cases are summarized in
Table II.

The energy level of the secondary flow at the core of the duct is characterized for the aspect ratios
AR = 7, 10, and 14.4, all of them at Reτ,c � 180, in Fig. 7. For this analysis, we consider windows
larger than or equal to window 6, which implies that we consider two windows in the aspect ratio
7 case, and a total of nine windows in AR = 14.4 (since in this case the 15th window would have
a width of only 0.4h, we decided to exclude it from this figure). In addition to these, we also show
the results of a channel flow simulation (where spanwise periodicity was imposed), performed with
the Fourier-Chebyshev spectral code SIMSON [41], in a computational domain with same streamwise
length as the duct cases (Lx = 25h) and with a ratio between spanwise and wall-normal lengths
Lz/Ly = 5. For the channel results, we considered a single window spanning the whole width of
the periodic domain, although the same trend is obtained by assuming windows of different sizes.
This particular choice of windows to define the core of the duct was motivated by Figs. 3 (bottom)
and 4 (bottom), which show that the secondary flow is significantly attenuated beyond window 5.
The value of 〈K〉yz decays as the averaging time increases in all the windows and in the channel,
and both flows exhibit the same rate of decay 〈K〉yz ∼ t−1

a ; note that this rate of decay has already
been observed in the literature [28]. This suggests that, at the core, K is in fact a random variable
with zero mean. Thus, increasing the averaging time (or the number of statistical samples) produces
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FIG. 7. Kinetic energy of the secondary flow averaged over windows larger than or equal wo window 6, as a
function of averaging time, for AR = 7, 10, and 14.4 at Reτ,c � 180. The same quantity is shown averaged over
the cross-sectional area in a spanwise-periodic channel, together with the observed rate of decay 〈K〉yz ∼ t−1

a .

a decreasing trend. Also note that the rate of convergence of V and W is ∼t
−1/2
a , which is consistent

with the central limit theorem and is a result independent of the aspect ratio. It is also interesting
to observe that all the windows from the various aspect-ratio cases exhibit similar K values after
averaging for comparable time intervals. Figure 7 shows that the long-time average of the cross flow
in a spanwise-periodic channel and in the core of a sufficiently wide duct are similar.

The fourth and fifth windows are analyzed for aspect ratios 5, 7, 10, and 14.4, all of them at
Reτ,c � 180, in Fig. 8. It is interesting to note that although the levels of energy from the various
cases do not decay at the rate 〈K〉yz ∼ t−1

a , it is not clear whether the data would converge to a
nonzero value or not. In any case, the behavior in this region is different from the one observed at the
core, where the rate of decay is consistent with the one exhibited by a spanwise-periodic channel,
and therefore it can be stated that in windows 4 and 5 the flow does not behave as it does in the
channel. The fourth window exhibits the same trend in AR = 7, 10, and 14.4, with higher energy
level than the corresponding window in the AR = 5 duct. Although in general the rate of decay from
the fifth window is steeper in all the cases than that of the fourth one, also in this case AR = 5 is the
one below all the other ducts. This is in agreement with the discussion from Fig. 6, where the third
window in the AR = 3 duct exhibited significantly lower levels of energy, due to the fact that the
secondary flow was not allowed to further expand in the spanwise direction due to the limited width.
These results suggest that although the magnitude of the secondary flow in the region 4 < z/h < 5
is smaller than the one observed closer to the corner, the behavior in this section of the duct is not
the same as the one observed in spanwise-periodic channels.

After assessing the levels of energy associated with the secondary flow at localized regions in the
duct, we evaluate the spanwise variation of the kinetic energy averaged over the wall-normal direction
〈K〉y . Figure 9 shows this quantity for all the ducts at Reτ,c � 180, and here we also consider the
variable zc with its origin at the corner. In Fig. 9 (left), we focus on the region close to the corner,
which as highlighted above shows a stronger secondary flow that becomes gradually attenuated as
the core of the duct is approached. The two local maxima and the minimum identified in the region
close to the corner can be connected with the topology of the secondary flow shown in Fig. 3, and the
K distribution from Fig. 4: The first maximum in 〈K〉y , located at zc/h � 0.06, is associated with
the region of high energy due to the vertical motion, parallel to the side wall, from the first secondary
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FIG. 8. Kinetic energy of the secondary flow averaged over the fourth and fifth windows as a function of
averaging time. Cases as in Fig. 5, excluding the AR = 1 and 3 ducts, and rate of decay 〈K〉yz ∼ t−1
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comparison purposes.

vortex. Note that the location of this peak is invariant with aspect ratio, and its magnitude depends on
the constraining effect of the aspect ratio, as will be discussed below. The second maximum, which is
located at zc/h � 0.4 in all the cases except the square duct (where it is slightly closer to the corner,
at zc/h � 0.3), is associated with the region of high K arising from the horizontal motion, parallel
to the wall, of the second vortex. The local minimum, which again exhibits an invariant position with
AR equal to zc/h � 0.18, approximately corresponds to the center of the vortex on the vertical wall,
where the energy level is lower. This is also noticeable in the K distributions from Fig. 4, where it is
evident that this local minimum is located between the region of high K associated with the vertical
and the horizontal motions. Note that although all the aspect ratios show a similar structure, with
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FIG. 9. Spanwise variation of the kinetic energy of the secondary flow averaged over the wall-normal
direction 〈K〉y , for all the duct cases at Reτ,c � 180. The left panel shows the region close to the corner, whereas
in the right panel we focus on the aspect ratios larger or equal than 7 and show a wider spanwise extent.
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TABLE III. Total kinetic energy of the secondary flow for the various cases under consideration.

AR Reτ,c Ktotal

1 178 6.0×10−5

3 179 13.1×10−5

5 177 13.8×10−5

7 177 13.3×10−5

10 174 13.4×10−5

14.4 177 13.4×10−5

1 356 6.2×10−5

3 363 15.1×10−5

two local maxima and one local minimum in between, their actual values are strongly influenced by
the constraining effect of the aspect ratio. Thus, AR determines the structure of the secondary flow,
where, for instance, it is clear that the square duct exhibits a higher concentration of energy close
to the corner and has a steeper decay of kinetic energy as the center plane is approached. This is
also consistent with Fig. 5, where we show that the integrated value of K over that first window is
lower in the square duct and provides additional support to the claim that the duct develops similar
features in all the aspect ratios if the width is large enough. The significantly larger maximum of
〈K〉y close to the corner in the square duct (between 30% and 44% larger than the other cases) is also
remarkable. It is also interesting to observe that the aspect ratio 7 and 10 cases exhibit a similar peak
value of 〈K〉y close to the corner, whereas AR = 3 and 5 show intermediate values, highlighting the
developing nature of the secondary flow with AR. The widest duct exhibits slightly lower values in
the first maximum, and also in the minimum, than the other cases. The ducts with aspect ratios 3 and
5 also show larger values in the second maximum than the cases with AR = 7, 10, and 14.4. This
can be explained by the fact that the secondary flow extends up to zc/h � 5, and if the duct is not
wide enough to accommodate the whole extent of the secondary flow, then its structure is modified
by means of a different spanwise distribution of energy. Further insight on these distributions can be
gained by analyzing the values reported in Table III, where the total kinetic energy of the secondary
flow Ktotal, defined as

Ktotal =
∫ y/h=1

y/h=−1

∫ z/h=AR

z/h=−AR
K d(y/h)d(z/h), (1)

is reported for all the duct cases. Focusing now on Reτ,c � 180, the square duct shows the lowest
total energy level, more than a factor of 2 below the AR = 3 case. This is not surprising, since the
already mentioned constraining effect of the duct width does not allow the spanwise development
of the secondary flow. Moreover, there are small differences among the cases with AR � 3, where
the AR = 3 duct is slightly below the others (manifested in the 〈K〉y curve, which is slightly below
the other cases for zc/h > 1.5) and the AR = 5 slightly above (mostly noticeable in the larger
peak of 〈K〉y at zc/h � 0.4). Beyond this aspect ratio, all the cases exhibit a very similar total
energy of Ktotal � 13.4×10−5, which again supports the statement that for sufficiently wide ducts
the secondary flow reaches a limited and defined spanwise development. The fact that the total energy
of the secondary flow appears to be constant beyond a certain aspect ratio could explain the small
decay observed in the three relative extrema of 〈K〉y with increasing aspect ratio. Moreover, the notion
that the secondary flow is stronger close to the corner and becomes gradually attenuated as the core
of the duct is approached is also observed in Fig. 9 (right), where 〈K〉y is shown as a function of zc

for the aspect ratio 7, 10, and 14.4 cases, in the region 0 � zc/h � 10. Here it also becomes clear that
the corner effects are relevant up to the fifth window, and beyond this point they basically become
zero when long averaging times are considered.
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FIG. 10. Spanwise variation of the kinetic energy of the secondary flow averaged over the wall-normal
direction 〈K〉y , for the AR = 1 and 3 cases at Reτ,c � 180 and 360. In the left panel, the zc coordinate is scaled
in outer units, whereas in the right one inner scaling is considered.

The effect of Reynolds number on the 〈K〉y distributions is assessed in Fig. 10, where the AR = 1
and 3 cases are compared at Reτ,c � 180 and 360. We first consider the spanwise coordinate zc in
outer scaling [Fig. 10 (left)], which shows that at Reτ,c � 360 the first maximum in 〈K〉y , associated
with the energetic vertical motion along the vertical wall, is located closer to the side wall than at
Reτ,c � 180, i.e., at zc/h � 0.04 instead of 0.06. This is explained by the fact that as shown in Fig. 3,
the secondary vortices on the vertical wall become more elongated vertically and are slightly more
constrained in the region close to the side wall. Moreover, the value of the peak increases with Re,
which is connected with larger vertical velocities, a consequence of the compression of the vortex
toward the side wall. Regarding the local minimum, it is interesting to observe that at Reτ,c � 360 the
square duct exhibits a plateau at around zc/h � 0.22, whereas the AR = 3 duct shows a minimum at
zc/h � 0.13; let us recall that in the lower Re case the minimum lies in between, at zc/h � 0.18. This
minimum is connected with the center of the vortex located at the vertical wall, combined with the
fact that at Reτ,c � 180 the two aspect ratios show a similar 〈K〉y around it, whereas at Reτ,c � 360
not only the minima are located in different places but also the slopes of 〈K〉y are different before and
after the mentioned minimum, suggests that different mechanisms associated with the larger scales
produce a different secondary flow development. Regarding the second maximum, its location in the
square duct at Reτ,c � 360 is approximately the same as in the two lower Re cases, i.e., zc/h � 0.4.
The value of this peak is 25% lower than that of the square duct at Reτ,c � 180. This can be explained
by the fact that, as shown in Table III, the total energy of the secondary flow is approximately the
same in the two square ducts, and since the first peak is significantly larger at Reτ,c � 360, the second
one must necessarily diminish. From a topological point of view, the fact that the secondary vortex on
the horizontal wall is significantly more elongated at higher Re (as observed in Fig. 3), indicates that
the high-speed region on the wall is spread over a wider distance in z, therefore leading to the plateau
observed in 〈K〉y for this case. With respect to AR = 3, the second maximum is significantly farther
from the corner, at zc/h � 0.8, and although the peak value is slightly below that of the AR = 3 case
at Reτ,c � 180, the higher Re case exhibits larger values of 〈K〉y over a wider spanwise distance.
This is connected to the larger Ktotal value reported in Table III and justified by the topology of the
horizontal secondary vortex, as observed in Figure 3: The development of this vortex compared with
the lower Reynolds number shows that the streamlines are closer together toward the horizontal wall,
which leads to higher acceleration of the flow in the zc direction, and consequently to higher K over a
longer spanwise distance. Further insight on the Reynolds-number effects can be gained by analyzing
the 〈K〉y curves with the zc coordinate scaled in wall units, as shown in Fig. 10 (right): Interestingly,
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TABLE IV. Summary of 99% side-wall boundary-layer thicknesses δ99,z for the various cases under
consideration.

AR Reτ,c δ99,z/(Wd/2) δ99,z/h

1 178 0.84 0.84
3 179 0.70 2.11
5 177 0.70 3.48
7 177 0.67 4.71
10 174 0.50 4.99
14.4 177 0.38 5.48
1 356 0.85 0.85
3 363 0.78 2.34

the first maxima are now at a very similar distance to the corner in inner units, i.e., at z+
c � 12 and

15 for the low- and high-Re cases, respectively. This highlights the strong connections of the vertical
secondary motion with near-wall turbulent events. The local minimum (connected with the center of
the vortex on the vertical wall) from the low-Re cases appeared to be located at a distance from the
corner right between the one from the AR = 3 and AR = 1 cases at high Re, when scaled in outer
units. Nevertheless, inner scaling reveals that the two low-Re cases show this minimum at z+

c � 30,
the square duct at high Re at z+

c � 80, and the AR = 3 case at z+
c � 46. This behavior suggests that

the contributions from both small- and large-scale motions are extremely relevant in the development
of the secondary vortices (both with Re and AR), as also observed by Pinelli et al. [9]. Finally, inner
scaling also reveals an interesting trend of the second maximum: The two Reτ,c � 180 cases show
it at z+

c � 70, and whereas the square duct at higher Re showed it at the same outer-scaled location,
in inner scaling this maximum is observed at z+

c � 130; the wider ducts show this peak at an even
larger distance from the corner of z+

c � 280. To conclude, despite the similarities in the development
of the secondary flow as the ducts become wider and Reynolds number is increased, the complex
multiscale nature of these vortices leads to interesting differences observed in the particular cases,
especially as both the Reynolds number and the aspect ratio are increased.

Besides the secondary flow, another interesting three-dimensional effect present in rectangular
ducts is the growth and development of side-wall boundary layers. In the present work, we evaluated
the side-wall boundary-layer thickness at the y = 0 plane, and in order to avoid ambiguous definitions
of δ, we considered the 99% boundary-layer thickness δ99,z, defined as the z position where U =
0.99Uc [where Uc is the centerline velocity, i.e., Uc = U (y/h = z/h = 0)]. The values of δ99,z are
summarized for the various cases in Table IV, where scalings with the duct half-width Wd/2 and
half-height h are considered. The first interesting conclusion is the fact that, in the two square ducts,
the side-wall boundary layers extend up to almost the core of the duct, with a value of δ99,z � 0.84h.
If the aspect ratio is increased to 3 or 5, the side-wall boundary layer spans approximately the
same percentage of the spanwise extent, around 70%, and the respective thicknesses increase from
around 2.11h to 3.48h in these two cases. Moreover, for wider ducts the ratio between the side-wall
boundary-layer thickness and the duct width progressively reduces from around 67% in AR = 7 to
38% in AR = 14.4, whereas the thickness remains approximately constant and equal to δ99,z � 5h

in the three cases. It is interesting to note that this evolution shares several common features with
the 〈K〉y distributions presented in Fig. 9, such as the different behavior of the square duct, where
the insufficient width does not allow a complete development of the side-wall boundary layer. The
AR = 3 and 5 cases, which showed an intermediate distribution in Fig. 9 with a developing but
slightly constrained secondary flow, also exhibit an intermediate behavior here. Thus, these cases
show developing boundary layers spanning a significant portion of the duct width. Moreover, higher
aspect ratios lead to a maximum side-wall boundary-layer thickness of around 5h, which is precisely
the spanwise distance from the corner up to which the secondary flow exhibited noticeable energy
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as shown in Fig. 9 (right). This is a remarkable conclusion, which indicates that there may be
connections between the two three-dimensional effects present in turbulent rectangular ducts. With
respect to Reynolds-number effects, they are only noticeable, although still low, in the AR = 3 at
Reτ,c � 360 case which exhibits 8% increase in δ99,z with respect to the Reτ,c � 180 one. This is
probably connected with the higher Ktotal value reported in Table III for the AR = 3 case, whereas
in the square duct the total energy of the secondary flow remained approximately invariant with
Reynolds number.

V. TURBULENCE STATISTICS AND WALL-SHEAR STRESS DISTRIBUTIONS

In this section, we analyze turbulence statistics from the various duct cases and compare them
with those exhibited by spanwise-periodic channel flows. Note that the results from Sec. IV show that
the kinetic energy of the secondary flow K is very small for zc > 5h, and therefore it is interesting
to compare the center-plane statistics of the widest ducts, i.e., those with AR = 7, 10, and 14.4,
with the ones of the periodic channels, where no secondary flow is present. In Fig. 11 (top), we
show the inner-scaled mean flow and the Reynolds-stress tensor components from the three duct
cases mentioned above and compare these profiles with the channel flow data reported in Ref. [42] at
Reτ = 180. The agreement of mean flow, fluctuations, and Reynolds-shear stress is excellent among
ducts and also with the channel, and the maximum deviations, observed in the inner peak of the
streamwise velocity fluctuations, are around 1%, which is the order of statistical accuracy of the data
presented in this study. Moreover, in Fig. 11 (bottom) the turbulent kinetic energy (TKE) budgets from
AR = 10 and 14.4 at z/h � 0 are compared with the ones from the channel [42]. These profiles also
reveal an excellent agreement between the two ducts and the channel (note that the AR = 7 case, not
shown, is also in very good agreement with the channel). The time- and streamwise-averaged statistics
at the core of duct with AR > 7 are essentially the same as those obtained from a spanwise-periodic
channel. Nevertheless, since the core region, unaffected by secondary-flow effects, would be quite
narrow in an AR = 7 configuration, an aspect ratio of at least 10 would be recommended in an
experiment aiming at reproducing spanwise-periodic channels conditions at the center plane. The
effect of side walls on the wall-shear stress in rectangular ducts up to aspect ratios of 10 and 50
was studied experimentally by Knight and Patel [43] and by Rhodes and Knight [44], respectively.
In these studies, the ratio of τw (wall-shear stress averaged over the perimeter) and the wall-shear
stress obtained from the streamwise pressure gradient was determined. As discussed by Monty [45],
this ratio would be one in the idealized case of infinite aspect ratio. After analyzing both sets of
experiments, Rhodes and Knight [44] concluded that a minimum aspect ratio of 10 is required to
minimize the impact of the side walls on the skin friction, a conclusion which is in good agreement
with the results presented here.

In Fig. 12, we show wall-shear stress distributions from the various duct cases, including mean
wall-shear stress, as well as streamwise and spanwsie root-mean-square (rms) profiles, as functions
of the inner-scaled spanwise coordinate z+

c (where uτ,c was used for the scaling). We will first
focus on the aspect-ratio effects studied in Fig. 12 at Reτ,c � 180, and in particular on the mean
wall-shear stress distributions. The square-duct case exhibits a maximum at z+

c � 50, followed by
a local minimum separated a spanwise distance of λ+

z /2 � 50, which forms a high- and low-speed
streak pair [10,11]. Beyond this point, and approximately at z+

c � 180, another local maximum is
observed, which is located at the duct center plane. In the square-duct case, the inner-scaled half-width
is W+

d /2 � 180, which means that one half of the inner-scaled spanwise extent of the duct allows us
to allocate just three streaks (keeping in mind the distance of �50+ between the corner and the first
one). At higher aspect ratios, the location of the first maximum is approximately constant and equal
to z+

c � 50, which implies that the geometry (in this case the corner) determines the location of the
first streak and that it is a high-speed streak. Moreover, the value of this first maximum decreases
with AR, from around τw/τw,c � 1 in the first duct to around 0.8 in aspect ratios beyond 7. All the
aspect-ratio cases exhibit a local minimum at a distance of around λ+

z /2 � 50 from the maximum,
forming the high- and low-speed streak pair, but beyond this point there is not a defined third streak in
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FIG. 11. (a) Inner-scaled mean flow and (b) Reynolds-stress tensor components at the center plane of
various ducts with Reτ,c � 180, compared with DNS of channel flow at Reτ = 180 [42]. TKE budget of ducts
at Reτ,c � 180 with (c) AR = 10 and (d) AR = 14.4, compared with same reference channel flow data [42].
TKE budget terms: production, dissipation, turbulent transport, viscous diffusion,
and velocity-pressure-gradient correlation.

the cases with AR � 3. Pinelli et al. [9] observed a similar behavior at progressively higher Re, which
also leads to larger inner-scaled duct widths, and the idea is that larger values of W+

d allow allocation
of higher numbers of streaks. This produces a behavior closer to that exhibited by spanwise-periodic
channels at the core of the duct. This is also consistent with the recent work by Spalart et al. [25], who
showed that for asymptotic Re the wall-shear stress distribution in turbulent ducts would tend toward
a uniform value (except close to the corners). In their study, they used matching arguments of the
inner and outer regions, leading to a logarithmic overlap layer in the mean velocity profile. Whereas
the higher maximum observed in the square case is explained by the constraining effect of the width,
for AR � 7 the behavior close to the corner remains unchanged. Beyond the high- and low-speed
streak pair, the wall-shear stress curves rise toward the center-plane value, and interestingly the cases
with AR � 7 exhibit a region of approximately constant τw/τw,c � 1 beyond zc/h � 5, which as
discussed in Sec. IV is the region where the secondary flow becomes significantly attenuated.

Another interesting quantity analyzed in Fig. 12 for all the cases at Reτ,c � 180 is the rms of the
wall-shear stress, both in the streamwise and the spanwise directions, which shows the influence of
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FIG. 12. Spanwise distributions of [(a), (b)] wall-shear stress normalized with center-plane value and
[(c), (d)] streamwise and [(e), (f)] spanwise fluctuating wall-shear stress. The variable z+

c is defined with its
origin at the corner and is formed with uτ,c. The cases shown in the left panels correspond to AR = 1,

AR = 3, AR = 5, AR = 7, AR = 10, and AR = 14.4, all of them at
Reτ,c � 180, and the vertical indicates the position where zc = 5h. The cases shown in the right panels
are AR = 1 and AR = 3 at Reτ,c � 180 and AR = 1 and AR = 3 at Reτ,c � 360.
In all the panels, the horizontal represents corresponding channel flow values at the same Reτ [42,47].

the large-scale motions on the outer region with the the structures near the wall [46]. As in the mean
wall-shear stress, the behavior observed in the square duct differs slightly from that of the wider ones,
also due to the limited spanwise width. All the cases show an inflection in τw,x,rms and τw,z,rms, at the
same location where the the mean wall shear has the first maximum, i.e., z+

c � 50. This is connected
with the interactions between the outer-layer structures and the near wall, and it is also important
to note that a second (more subtle, especially in the case of the spanwise-fluctuating shear stress)
inflection point is observed at z+

c � 100. This is the spanwise position where the low-speed streak
is located. Toward the center plane, the square duct reaches values slightly different from those
of the spanwise-periodic channel [42] at Reτ = 180, although the cases with AR � 3 essentially
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converge toward the channel flow values at z/h � 0. Thus, and as it is the case in channel flows,
the streamwise-fluctuating wall-shear stress is higher than the spanwise component because of the
elongated nature of the large-scale motions in the outer flow, which essentially modulate the near-wall
fluctuations. As in the case of the mean wall-shear stress, the widest ducts with AR � 7 exhibit a
plateau in the two fluctuating components beyond zc/h � 5, reaching the same values as those in
the spanwise-periodic channel.

Reynolds-number effects on the wall-shear stress distributions are also assessed in Fig. 12, where
the spanwise evolutions of the mean and fluctuating stresses are shown for the AR = 1 and 3 cases
at Reτ,c � 180 and 360. The latter are compared with the values from the spanwise-periodic channel
by Lenaers et al. [47]. The higher Re cases also exhibit a maximum at z+

c � 50 and a local minimum
at z+

c � 100, which as discussed above constitutes a high- and low-speed streak pair, and the position
of the high-speed streak is determined by the corner. The square duct at Reτ,c � 360 shows another
relative maximum at z+

c � 180, similar to the lower Re case, and beyond this point it smoothly
converges toward the center-plane value. Note that in this case the inner-scaled half-width is W+

d /2 �
360, which in principle would allow us to allocate around seven streaks. Although the positions
of the three first ones are essentially determined by the geometry, the remaining four toward the
core of the duct start to exhibit features characteristic of the channel flow, in the sense that there
is not a preferential location for the streaks, and as also pointed out in Ref. [9] this leads to the
progressively more uniform wall-shear stress trend. In the case of the AR = 3 duct at Reτ,c � 180,
the wider W+

d /2 � 540 leads to at least 10 streaks, and only the first high- and low-speed streak
pair is determined by the corner. Beyond this point, the curve evolves toward the center-plane value,
without clearly exhibiting the second maximum at z+

c � 180. Similarly, the higher Re case with
aspect ratio of 3 also shows the first streak pair, but beyond this point there is not a clear signature
of the geometry on this curve. Regarding the fluctuating components, the higher Reynolds number
cases also show inflection points at z+

c � 50 and 100, locations at which the high- and low-speed
streaks are located, and interestingly at Reτ,c � 360 the two ducts converge toward the fluctuating
wall-shear stress values reported by Lenaers et al. [47] for spanwise-periodic channel flows. It is
interesting to note that in the streamwise-fluctuating wall-shear stress the effect of Reynolds number
is moderate in the square duct and subtle in the AR = 3 case. In fact, in the aspect ratio 3 duct the
τw,x,rms curve at Reτ,c � 360 is only above the one at 180 when zc exhibits the inner-scaled half-width
of the lower Reynolds number duct W+

d /2 � 540. Below this point, the two curves are very similar.
On the other hand, the τw,z,rms curves from the two Reτ,c � 360 cases are above the ones of the 180
ducts throughout the whole spanwise direction. This is consistent with the fact that the increase of
τw,x,rms in channel flows is significantly below the increase in τw,z,rms when increasing Reτ from 180
to 360 (8.33% compared with 20%). A trend similar to the one from channel flows was reported in
Ref. [32] for pipe flows and in Ref. [48] for zero-pressure-gradient turbulent boundary layers in this
Reynolds-number range, although in those cases the trends of τw,x,rms and τw,z,rms started to level off
beyond Reτ � 1,000, a Reynolds number at which the streamwise component is around 40% higher
than the spanwise one.

VI. SUMMARY AND CONCLUSIONS

Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at
a friction Reynolds number Reτ,c � 180, and aspect ratios 1 and 3 at Reτ,c � 360, were carried out
with the spectral-element code NEK5000. The aim of these simulations was to gain insight into the
characteristics of Prandtl’s secondary flow of second kind, its evolution with aspect ratio and Reynolds
number, and its impact on the flow physics of wall-bounded turbulence. The computational setup was
adequate to capture the smallest turbulent structures, as well as the complicated phenomena arising
at the duct corners. Although the corners inhibit the formation of typical wall-turbulence streaks, the
interaction of bursting mechanisms from horizontal and vertical walls lead to the formation of the
secondary flow through redistribution of turbulent kinetic energy from the v2 component to the w2.
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The secondary flow in the various ducts is first characterized from a topological point of view by
means of the stream function of the mean cross flow. We find that, for the square duct, increasing
Reynolds number leads to a secondary flow pattern stretched toward the duct core, with the vortex
centers moving away from the walls. This, as was also observed by Pinelli et al. [9], highlights the
multiscale character of the secondary flow of Prandtl’s second kind. For Reτ,c � 180, increasing
the aspect ratio leads to the progressively spanwise development of the vortex on the horizontal
wall, which extends up to zc/h � 4 in the widest ducts with aspect ratios larger or equal to 7. For
these wider ducts, the position of the center of this secondary vortex remains approximately constant
with aspect ratio. Concurrently, the vortex on the vertical wall becomes significantly compressed
horizontally due to the substantial development of the vortex along the horizontal wall, and its center
also remains approximately at the same position with increasing AR. Regarding Re effects in the
AR = 3 case, although the vortex on the vertical wall becomes more elongated at higher Re, its center
does not significantly change location. The vortex along the horizontal wall becomes more stretched
toward the corner, its center moves farther away from the wall, and it produces more acceleration of
the flow moving parallel to the horizontal wall.

The magnitude of the secondary flow is quantified in terms of the cross-plane mean kinetic energy
K = 1/2(V 2 + W 2), and its variation in the spanwise direction is assessed in the various cases. Our
results show that averaging times of at least 3000 convective time units are required to reach a
converged state of the secondary flow, which extends up to zc/h � 5 in sufficiently wide ducts, i.e.,
AR > 5. We also show that if the duct is not wide enough to accommodate the whole extent of
the secondary flow, then its structure is modified, resulting in a different spanwise distribution of
energy. Our results also indicate that long-time averages of statistics in a region of sufficient width
around the vertical center plane of rectangular ducts with aspect ratios larger than 10 are in close
agreement with the ones obtained in spanwise-periodic channels. Thus, aspect ratios of at least 10 are
required in experimental facilities to obtain such conditions in the core of the duct. The facility used
by Zanoun et al. [49] benefited in its design from the many earlier studies concluding that an aspect
ratio of 12 was sufficient to emulate a canonical channel flow. Larger values have been suggested
by some more recent experimental studies, such as those by Vinuesa et al. [29], and in much earlier
references not generally cited in recent literature but discussed in Ref. [28]. In the study of Vinuesa
et al. [29], certain aspects such as the tripping, uncertainties in the position of the Pitot tube, and the
Reynolds-number range, may have contributed to the larger aspect ratios recommended to ensure
two-dimensionality of the core flow. Furthermore, from the current results, with the approach of
dividing the flow into windows of width h, we reach a number of interesting conclusions: First,
all the rectangular ducts exhibit similar levels of averaged energy close to the corner (window 1),
〈K〉yz1 � 4.5×10−5 and 4×10−5 for aspect ratios 3 and 5, and 7, 10, and 14.4, respectively; the
square duct shows a lower level �3×10−5; and its secondary flow differs from the one observed
in the wider ducts. In addition, the second window shows the same level of energy in all aspect
ratios from 3 to 14.4, 〈K〉yz2 � 2×10−5, which is roughly four times larger than the energy found
in the third window for the widest cases (7, 10, and 14.4). Interestingly, all the windows beyond
no. 5 exhibit a decaying level of energy, and the rate of decay is approximately 〈K〉yz ∼ t−1

a . This
is the same rate of decay observed in a spanwise-periodic simulation, which suggests that beyond
zc/h � 5, 〈K〉yz behaves as a random variable with zero mean, with rate of decay consistent with
central limit theorem. With respect to windows 4 and 5, the levels of energy from the various cases
do not decay at the rate 〈K〉yz ∼ t−1

a . It can be stated that the flow in this region does not behave as
it does in spanwise-periodic channels.

In closing, based on all the above results, we conclude that since long-time averages of statistics in
the core region of rectangular ducts, spanning about the width of a well-designed channel simulation
(i.e., extending about �3h on each side of the center plane), are similar to results from computations
of the canonical channel flow, one may utilize ducts or experimental facilities with aspect ratios larger
than 10 to compare their time-averaged information with results obtained from spanwise-periodic
channel simulations.
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