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Miscible displacement of fluids in porous media is often characterized by the scaling of the
mixing zone length with displacement time. Depending on the viscosity contrast of fluids,
the scaling law varies between the square root relationship, a sign for dispersive transport
regime during stable displacement, and the linear relationship, which represents the viscous
fingering regime during an unstable displacement. The presence of heterogeneities in a
porous medium significantly affects the scaling behavior of the mixing length as it interacts
with the viscosity contrast to control the mixing of fluids in the pore space. In this study,
the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible
displacements are investigated in heterogeneous packings of circular grains using pore-scale
numerical simulations. The pore-scale heterogeneity level is characterized by the variations
of the grain diameter and velocity field. The growth of mixing length is employed to identify
the nature of the miscible transport regime at different viscosity ratios and heterogeneity
levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling
law of mixing length gradually shifts from dispersive to fingering nature up to a certain
viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing
length scaling law is observed to be generally governed by the variations of the velocity
field rather than the grain size. Furthermore, the normalization of mixing length temporal
plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium
length, and medium aspect ratio is performed. The results indicate that mixing length scales
exponentially with log-viscosity ratio and grain size standard deviation while the impact of
aspect ratio is insignificant. For stable flows, mixing length scales with the square root of
medium length, whereas it changes linearly with length during unstable flows. This scaling
procedure allows us to describe the temporal variation of mixing length using a generalized
curve for various combinations of the flow conditions and porous medium properties.
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I. INTRODUCTION

Miscible displacement and mixing of fluids in heterogeneous porous media are of practical
importance in many scientific and engineering applications including groundwater remediation [1–5],
carbon dioxide sequestration [6], and enhanced oil recovery [7–9]. In a miscible displacement, fluid
mixing results from molecular diffusion and mechanical dispersion in the microscopic scale and
occurs over a transition zone called the mixing zone. Molecular diffusion occurs due to the existence
of a concentration gradient, while mechanical dispersion arises from the variations in magnitude
and direction of the local velocity. Any other mechanism that increases the fluids contact area also
improves mixing. The size of the mixing zone measured along the general direction of displacement
is usually characterized by a mixing length (denoted as LM hereafter) which has been traditionally
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utilized to describe the level of fluid mixing [10–20]. The concept of mixing length first theoretically
developed for flow in capillary tubes [21,22] and later extended to porous media [10,20]. The rate
of mixing and consequently the magnitude of LM strongly depends on the viscosity contrast of
fluids and the heterogeneity of pore space [2]. When there is an unfavorable viscosity ratio, i.e.,
displacing fluid is less viscous than the displaced fluid, hydrodynamic instabilities develop at the
leading edge of concentration front. These instabilities result in fingering of the displacing fluid
through the porous medium. The nonuniform distribution of shape and size of the pores and throats
in a porous medium also results in some preferred paths for flow and gives rise to the channeling
of the flow. Viscous-driven fingering and heterogeneity-induced channeling are the two significant
sources of bypassing and uneven concentration fronts in miscible displacements [23]. Their relative
effects on mixing dictates the transport regime at different flow velocities. The scaling of LM with
displacement time is an indicator of this transport regime [12,24]. If LM grows with the square root
of time (LM ∼ t0.5), the mixing and transport is dominated by dispersion and the displacement is
called dispersive. On the other hand, a linear growth of LM with time (LM ∼ t) is an indicator of
fingering-dominated flow [12].

Experimental [10,11,13,25–28] and numerical [19,28–30] studies of miscible displacement in
macroscale homogeneous porous media have shown that the transport regime is dispersive and LM

scales with t0.5 during stable (unit viscosity/mobility ratio) displacements. During unstable (adverse
viscosity/mobility ratio) displacements, however, the nonlinear behavior of viscous fingering, which
is controlled by the mechanisms of tip splitting, spreading, shielding, and merging of fingers [19],
affects the growth of mixing length. Both laboratory experiments [13,25,26,28] and numerical
simulations [12,29,30] of unstable displacement in homogeneous media have revealed a crossover
from an initial dispersive growth of mixing length to the linear mixing zone growth at low viscosity
ratios, while only linear growth has been observed for large viscosity ratios.

The presence of heterogeneities in a nonhomogeneous porous medium adds to the complexity
of mixing length growth behavior. In macroscale, the heterogeneity of porous media is usually
characterized by the variance and correlation length of the permeability field which describe the
degree of variation and spatial correlation, respectively. Some of the previous numerical studies of
miscible displacement in heterogeneous permeability fields [12,19,31,32] have concluded that the
transport regime at the unit viscosity ratio is dispersive and LM grows with t0.5. However, other
studies [23,33] suggested that this behavior is relevant as long as the permeability is uncorrelated
or the variance of permeability is small. If both variance and correlating length are sufficiently
large, a channeling regime is encountered and LM growth is linear, although there is no viscous
fingering [23,33]. In adverse viscosity ratio displacements, the interaction of viscous fingering and
heterogeneity governs the flow behavior and transport regime. Simulations of unstable displacement
in correlated heterogeneous permeability fields [18,34] have indicated that LM grows linearly with
time and an increase in the variance of permeability results in higher growth rate. For uncorrelated
media, however, when permeability variance is large, dispersive damping is significant and mixing
length grows with the square root of time [23]. In periodically heterogeneous permeability fields
(i.e., layered media), the scaling of mixing length was observed to be dependent on the magnitude of
the Péclet number [12,35]. If the Péclet number is less than a critical value, the combined effects of
axial dispersion and transverse homogenization of the concentration result in a layering-dominated
flow where no tip splitting of the fingers occurs and the LM grows dispersively (LM ∼ t0.5). At
higher Péclet numbers, if the permeability variation is small LM grows linearly with time (LM ∼ t).
However, layering-induced channeling can overcome the tip-splitting mechanism when permeability
variation is sufficiently large and therefore leads to the dispersive growth regime [12,35]. Later [17],
a generalized curve for mixing length growth in layered permeability fields was proposed which
identified four different transport regimes: an initial diffusive regime (LM ∼ t0.5) followed by a
channeling regime (LM ∼ t) and then the lateral dispersion and finally viscous fingering.

Despite the extensive research on miscible displacement in porous media at macroscale, there
are still inconsistent interpretations about the transport regime and scaling of mixing length with
time, especially in heterogeneous media. It is fairly understood that both heterogeneity-induced
channeling and viscous-driven instability determine the growth behavior of mixing length. However,
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it remains unclear how their interactions change the transport regime between the two extremes
of dispersive (LM ∼ t0.5) and fingering (LM ∼ t) behavior. Most previous studies focus on the
continuum modeling of each mechanism, while much less work has been done on their combined
effect on fluid mixing. Also, these studies usually were conducted in macroscale permeability fields
with the assumption of validity of the continuum Darcy level description of the flow, which neglects
the variability of heterogeneity in scales smaller than the size of the continuum gridblocks. In Darcy
flow, subgridblock local velocity variations are represented by the dispersion coefficient, which is
usually anisotropic and velocity dependent and needs to be characterized accurately or otherwise
leads to inaccurate results.

In this study, we model the pore-level miscible displacement in heterogeneous media by solving the
point equations of flow and mass transport on pore-scale models with different levels of heterogeneity.
In order to investigate the effect of viscous fingering and medium heterogeneity on mixing length
growth, numerical simulations of miscible displacement are performed at different viscosity ratios
and flow velocities. This approach enables us to accurately account for the various mechanisms
contributing to the growth of mixing length and eliminate the prerequisite description of dispersion
coefficient and the validity assessment of Darcy flow. In what follows, we first present the governing
equations, the porous media model, and the numerical approaches in Sec. II. Results on the dynamics
of the mixing length growth and its scaling are presented in Secs. III and IV, respectively. Finally,
Sec. V summarizes the main conclusions from the present study.

II. PROBLEM SETUP AND MATHEMATICAL MODEL

A. Governing equations

Continuity, Navier-Stokes, and convection-diffusion equations are simultaneously solved to model
miscible displacement in pore scale using digital images of porous media. It is assumed that the
displacements are horizontal and the solution mixing is ideal, so there is no volume change upon
solution mixing. The conservation of mass can be described by the continuity equation as

∇ · (u) = 0. (1)

Velocity and pressure profiles in the pore space are evaluated by combining the continuity equation
[Eq. (1)] and the incompressible Navier-Stokes equation in the absence of gravity:

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + ∇ · {μ[∇u + (∇u)T]}. (2)

In the above equations, u is the pore velocity vector, p is the pressure, and ρ and μ are mixture
density and viscosity, respectively. To find the spatiotemporal solute concentrations, we solve the
convection-diffusion equation as

∂c

∂t
+ u · ∇c = ∇ · (D∇c). (3)

In this equation, c denotes the concentration of solute and D is the mutual diffusion coefficient
of the miscible solutions which is assumed to be constant in this study. Viscosity variation with
concentration can be characterized by either an exponential [36] or a quarter-law mixing rule [37].
Here a quarter-law power mixing rule for viscosity is adopted in the simulations to estimate the
mixture viscosity:

μ =
[
μ−0.25

1 + c − c0

cinj − c0

(
μ−0.25

2 − μ−0.25
1

)]−4

, (4)

where μ1 and μ2 are the viscosities of displaced and displacing solutions, respectively, and cinj

denotes the solute concentration in the injected solution while c0 is the initial concentration in the
media, which is zero in our simulations. We use d̄ , v, d̄/v, μ2 and vμ2/d̄ as the characteristic
parameters of length, velocity, time, viscosity, and pressure, respectively, to make the governing

054501-3



AFSHARI, HEJAZI, AND KANTZAS

FIG. 1. Pore-scale representation of unconsolidated porous media.

equations dimensionless. Here d̄ is the average grain diameter of the granular porous media (see
Fig. 1) and v is the intrinsic velocity in the medium. The intrinsic velocity v is defined as vinj/φ

where vinj is the injection velocity and φ is the porosity of medium. Using these characteristic
parameters, the dimensionless governing equations are

∇ · (uD) = 0, (5)

∂uD

∂tD
+ (uD · ∇)uD = 1

Re
(−∇pD + ∇ · {μD[∇uD + (∇uD)T]}), (6)

∂cD

∂tD
+ uD · ∇cD = 1

Pe
∇2cD, (7)

μD = [
μ−0.25

1,D + cD
(
1 − μ−0.25

1,D

)]−4
. (8)

Here cD is defined as (c − c0)/(cinj − c0), and Re and Pe are local (pore) Reynolds and Péclet
numbers:

Re = ρvd̄

μ2
, (9)

Pe = vd̄

D
. (10)

In subsurface flows, Reynolds number is low and the flow regime generally can be assumed
to be laminar. The largest Reynolds number encountered in the simulations of this paper is about
0.2 (laminar flow condition). The pore-Péclet number is basically the ratio of the time it takes for
diffusion to transport fluid particles over one grain diameter along the global flow direction to the
time it takes for convection to do the same. In this work, Pe varies in the range 0.2–2000, which
for the typical values of 10−10 m2/s and 0.3 mm for D and d̄ , respectively, results in the intrinsic
velocity to be in the range of 6.7 × 10−8 to 6.7 × 10−4 m/s. The value of 10−10 m2/s for diffusion
coefficient is a typical value for a hydrocarbon system [38], while an average grain size of 0.3 mm is
a reasonable value for an unconsolidated granular medium [39,40]. We further define log-viscosity
ratio (R) as the natural logarithm of the ratio of the in-place fluid viscosity (μ1) to the injected fluid
viscosity (μ2):

R = ln

(
μ1

μ2

)
. (11)
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TABLE I. Patterns used in the simulations of this study and their properties.

Pattern name d̄ [mm] CV Length (LD) Aspect ratio (A = LD/WD) Porosity

PM1 0.3 0 50 2 0.23
PM2 0.3 0.125 50 2 0.24
PM3 0.3 0.25 50 2 0.23
PM4 0.3 0.50 50 2 0.24
PM5 0.3 0.25 25 2 0.24
PM6 0.3 0.25 33.3 2 0.24
PM7 0.3 0.25 75 2 0.24
PM8 0.2 0.25 75 2 0.24
PM9 0.4 0.25 37.5 2 0.24
PM10 0.3 0.25 50 4 0.24
PM11 0.3 0.25 50 8 0.24

When R is greater than zero, the system is at adverse or unfavorable viscosity ratio, which usually
ends in unstable flow and viscous fingering. A negative value of R indicates a favorable viscosity
ratio, while a unit viscosity ratio is described by R equal to zero.

B. Porous media model

The pore-scale representation of heterogeneous porous media is achieved by constructing two-
dimensional packings of circular disks. These circular disks in a packing can be considered as
two-dimensional representation of sand grains in an unconsolidated sandpack with the dimensions of
LD and WD ([LD,WD] = [L,W ]/d̄), and the aspect ratio of A = LD/WD (Fig. 1). An in-house pattern
generator is used to construct these packings based on the swelling grain reconstruction algorithm
with variable grain diameters taken from a particle size distribution (PSD). The PSD defines the
relative number of particles (grains) with a specific diameter in the packing [see Fig. 2(e)]. In this
algorithm, a predefined number of points (representing the number of grains) are randomly distributed
in the bulk medium with the coordinates of each point being the center of the final grain. Then, a
radius is picked from the PSD and assigned to each point. Based on these radii, the points swell
from zero radius to their assigned radius with a growth rate proportional to their assigned radius. At
each swelling step, it is examined if the grains are overlapping, and this overlapping is eliminated
by slightly shifting the center of the overlapped grains. This procedure is repeated until there is no
overlapping, and then the next swelling step commences. At the final step, the radius of all grains
is reduced by 2% in order the remove any contact between grains and provide the connectivity of
the media. Using this method, several porous media with different levels of microscale (pore-scale)
heterogeneity can be generated based on the PSD’s standard deviation. The heterogeneity of these
media is characterized by a coefficient of variation (CV) defined as

CV = SdD , (12)

where dD is the dimensionless particle (grain) diameter (dD = d/d̄) and SdD describes the standard
deviation of dD [standard deviation of PSD, Fig. 2(e)]. This parameter is analogous to the standard
deviation of permeability which is usually used to describe the heterogeneity in permeability fields
[18,34].

Several pore-scale patterns are generated and used in the simulations. Table I summarizes the
allocated names and geometrical properties of them. Figure 2 shows four of these patterns (PM1
to PM4) that have the same d̄ , A, and LD, but different values of CV corresponding to the PSDs
depicted in Fig. 2(e). Later they will be used to demonstrate how pore-scale heterogeneity affects
the mixing length growth. In order to investigate the impact of medium length (LD) on the growth of
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FIG. 2. Four patterns with d̄ = 0.3 mm, LD = 50, A = 2, and different CV along with their corresponding
PSDs. (a) PM1 with CV = 0, (b) PM2 with CV = 0.125, (c) PM3 with CV = 0.25, (d) PM4 with CV = 0.5,
and (e) PSDs corresponding to different CV.

mixing zone, several patterns with different values of LD are generated and used in the simulations
(Fig. 3). The patterns PM3, PM5, PM6, and PM7 have the same d̄, CV, and A, but different LD,
whereas PM8 and PM9 have different d̄ compared to the others. Furthermore, to explore if the aspect
ratio has any effect on the growth of mixing length, two other media, PM10 and PM11, with aspect
ratios of 4 and 8, respectively, are constructed and compared to PM3, which has an aspect ratio of 2
(Fig. 4).
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FIG. 3. Patterns with CV = 0.25, A = 2, and different LD and/or d̄ . (a) PM3 with LD = 50 and d̄ = 0.3 mm,
(b) PM5 with LD = 25 and d̄ = 0.3 mm, (c) PM6 with LD = 33.3 and d̄ = 0.3 mm, (d) PM7 with LD = 75
and d̄ = 0.3 mm, (e) PM8 with LD = 75 and d̄ = 0.2 mm, and (f) PM9 with LD = 37.5 and d̄ = 0.4 mm. Note
that the patterns are depicted in the correct scales.

C. Numerical approach

Commercial code COMSOL [41] is used to solve Eqs. (5)–(8) using a full implicit finite-element
scheme. To achieve this, the reconstructed images of porous media are discretized such that each
pore is covered with several grid elements that are significantly smaller in size in comparison with
the pore size. The initial and boundary conditions are set as illustrated in Fig. 5. The inlet condition
for flow is constant injection velocity, while the outlet is constant atmospheric pressure (p0,D),
which, in combination with incompressible flow assumption, guarantees the continuity of inlet
and outlet fluxes. For mass transfer, constant concentration inflow and zero concentration gradient
(Danckwerts boundary conditions) are imposed on the inlet and outlet boundaries, respectively. It
is assumed that there are no fluid-solid interactions. So the surface (perimeter in two dimensions)
of each grain is covered with the edges of the adjacent triangular mesh elements where no-slip and
no-flux boundary conditions at these edges are considered for flow and mass transport equations,
respectively. The boundary conditions in the y direction, normal to the flow, are no flux for the mass
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FIG. 4. Patterns with d̄ = 0.3 mm, CV = 0.25, LD = 50, and different A. (a) PM3 with A = 2, (b) PM10
with A = 4, and (c) PM11 with A = 8. Note that the patterns are depicted in the correct scales.

transfer and no-penetration/slip for fluid flow equation. The no-penetration/slip boundary condition
is employed here to make sure there is no influence of boundaries on mixing. To test the convergence
of numerical results regarding the spatial resolution, five different spatial resolutions of extracoarse,
coarse, normal, fine, and extrafine meshes with 117 330, 260 638, 325 070, 491 340, and 1 331 485
elements, respectively, are used in a mesh-resolution sensitivity analysis in the simulation of miscible
displacement in PM3 at R = 2 and Pe = 400. The results of this test show that the mesh must consist
of at least 300 000 elements for the solutions to converge to the solution of the finest grid. Therefore,
in all the numerical simulations of this work, we generate mesh grids with at least 450 000 elements
in order to achieve both convergency and speed in the simulation runs.

III. DYNAMICS OF MIXING LENGTH GROWTH

In the dimensionless form, mixing zone length (LM,D) along the general direction of flow (here
the x direction) is defined as the distance between two transversely averaged concentration values
of c̄D = α and c̄D = 1 − α as

LM,D = |xD|at c̄D=α − xD|at c̄D=1−α |, 0 < α < 1. (13)

The transversely averaged concentration at each xD can be calculated as

c̄D(xD,tD) = ∫ cD(xD,yD,tD)dyD

∫ dyD
. (14)

Taylor [22] and Aris [21] have shown that for dispersion-dominated miscible flow in capillary
tubes, mixing length can be related to dispersion coefficient (K) along the direction of flow

FIG. 5. Initial and boundary conditions for flow and mass transport.
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(longitudinal dispersion coefficient) as

LM = β(Kt)0.5, (15)

where β is a constant that can be obtained from any standard table of error integral for each value
of α [11]. Since dispersion is the combined effect of molecular diffusion and convective spreading,
the longitudinal dispersion coefficient can be described as the sum of these two mechanisms as
demonstrated by Brigham et al. [11] and Perkins and Johnston [42] for unconsolidated sandpacks:

K

D
= 1

Fφ
+ a

(
vd̄

D

)b

. (16)

In this equation, a is the mixing coefficient which describes the inhomogeneity of the medium at
dynamic conditions, b is an exponent between 1 and 2 that depends on the type of porous medium,
and F is the formation factor [11]. Substituting K from Eq. (16), Eq. (15) can be rewritten in the
dimensionless form as

LM,D = β

(
1

Fφ
Pe−1 + aPeb−1

)0.5

tD
0.5. (17)

If t ′D is defined as t ′D = tD/LD, which represents the value of pore volume injected (PVI) into
porous media, Eq. (17) can be rewritten as

LM,D = βLD
0.5

(
1

Fφ
Pe−1 + aPeb−1

)0.5

t ′ 0.5
D . (18)

Equation (18) suggests that mixing length will grow proportional to square root of time (LM,D ∼
t ′ 0.5

D ). This is Fickian dispersion, and its associated flow is called dispersive flow, which occurs when
mixing is complete in the transverse direction. However, as soon as viscous fingering arises, mixing
is not Fickian anymore and mixing length scales with time as

LM,D ∼ t ′σD . (19)

In Eq. (19), σ is the growth exponent of mixing length, which depends on the transport mechanism,
flow instabilities, and medium heterogeneity. We employ Eq. (19) to extract the values of the growth
exponent (σ ) as the main indicator of the flow and transport behavior during miscible displacements.
First, we obtain the concentration maps at different times by solving the flow and mass transport
equations on the images of the constructed porous media. Then the values of mixing length are
calculated as Eq. (13) (with α = 0.05) and plotted against time. Finally, σ is obtained by fitting a
power-law trend line on the LM,D versus t ′D plots.

A. Validation of the numerical approach

To validate the presented pore-scale numerical approach, we simulate the stable (R = 0) miscible
displacement in a capillary tube and between two parallel plates. From the analytical solutions of
the one-dimensional convection-dispersion equation during flow in a capillary tube [21,22] and flow
between two parallel plates [43], one can easily show that mixing length scales with the square root of
time during stable miscible displacements. Figure 6 shows how the growth of mixing length, obtained
by our numerical simulations, compares to the analytical solutions (with α = 0.05) at two different
values of the Péclet number. In the analytical solutions shown in Fig. 6, Pe∗ is the macroscale Péclet
number defined as Pe∗ = umlc/KL, Pe is the pore-Péclet number defined as Pe = umlc/D, um is
the mean velocity, lc is the characteristic length (half-aperture for the parallel plates geometry and
radius for the capillary tube), and KL is the longitudinal dispersion coefficient. As the comparison
demonstrates, the numerically obtained mixing length (LM,D) and its growth exponent (σ ) are in a
very close agreement with the analytical solutions in both geometries.

054501-9



AFSHARI, HEJAZI, AND KANTZAS

FIG. 6. Temporal variation of mixing length during miscible displacement (a) between two parallel plates
and (b) in a capillary tube with LD = 5000. The growth exponent (σ ) compares perfectly with the expected
value of 0.5 [10,11,21,22].

B. Effect of viscosity ratio on mixing length growth

A series of simulations are run in medium PM3 at different R and Pe values to investigate the
effect of viscosity ratio on the growth of mixing length. We identify the intensity of fingering through
tracking of concentration iso-surfaces, herein referred to as concentration front or solution interface.
Then the temporal variation of mixing length is used to characterize the type of transport regime.

Figures 7 to 9 illustrate the spatiotemporal profiles of concentration during unstable displacements
at R values of 0 to 4 and three different Péclet numbers equal to 0.2, 20, and 2000. Each figure
consists of displacement results for t ′D values of 0.1, 0.3, and 0.5. At very low Pe (Fig. 7), the solution
interface remains close to diffusive as small disturbances induced by viscosity contrast do not turn into
advancing fingers within the domain even at high values of R. Thus, a slightly distorted interface is
observed in the case of Pe = 0.2. As Pe increases (Figs. 8 and 9), the effects of adverse viscosity ratio
and medium heterogeneity come into play, and both heterogeneity-induced channeling and viscous
fingering occur and give rise to the non-Fickian transport regime. When the viscosity ratio is unity
[Figs. 8(a) and 9(a)], small-scale channelings due to the microscale heterogeneity of medium occur
and result in preferred paths for solute transport at the leading edge of the concentration front. These
preferred paths are the ones with the least resistance to flow and transport inside the porous medium.
At adverse viscosity ratios [Figs. 8(b)–8(e) and Figs. 9(b)–9(e)], viscous fingering is the dominant
transport regime and the development of the fingers results in larger mixing zones. As R increases,
the longitudinal extent of the fingers also increases, thus higher values for LM,D are expected.

Next, we use the transversely averaged concentration profiles, evaluated per Eq. (14), to calculate
LM,D. Figure 10 shows the LM,D values plotted against time on a logarithmic scale for Pe values
of 0.2, 2, 200, 400, 1350, and 2000. The plots indicate that for all cases, LM,D linearly increases
with t ′D in a log-log plot, hence Eq. (19) represents the scaling of mixing length with time. To
better visualize the magnitude of σ , two guide lines representing the slopes of 0.5 and 1.0 are also
embedded on each plot (as dash and solid lines, respectively). Figures 10(a)–10(f) disclose that the
slope of mixing length plots, i.e., σ , is always between the two extremes of 0.5 (corresponding to
dispersive flow) and 1.0 (representing the fingering regime). A power-law trend line is fitted on each
plot, and the numerical values of the growth exponent (σ ) are reported in Fig. 11. For the case of
Pe = 0.2 [Fig. 10(a)], LM,D values for all mobility ratios collapse to a single plot with σ in the
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FIG. 7. Spatiotemporal profiles of cD at Pe = 0.2 for medium PM3. (a) R = 0, (b) R = 1, (c) R = 2,
(d) R = 3, and (e) R = 4.

range of 0.55–0.6 (Fig. 11) confirming the observed close to dispersive transport regime in Fig. 7.
The magnitude of Péclet number is so low that there is enough time for dispersion to homogenize
the concentration profile in the transverse direction and attenuate the viscous instabilities. This is
consistent with the previous linear stability analysis [35,36] and numerical simulations [12], which
show that for each R, there is a critical Péclet number below which displacement is dispersive despite
the adverse viscosity ratio. As Pe increases to values larger than 2, the effect of viscosity ratio becomes
significant and LM,D increases with R [Figs. 10(b)–10(f)]. This is also followed by larger values for
σ , which increases with R with a steep slope (almost linear) until R = 3 and with a less steep slope
for R > 3 as shown in Fig. 11. One may conclude that the values of critical Péclet numbers for the
simulations of this study are between 0.2 and 2. Another observation is that for sufficiently large
Péclet numbers (Pe � 400), mixing length and its growth exponent are independent of Pe. This
behavior is also confirmed by previous studies in Darcy scale [18,19] and indicates that the nonlinear
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FIG. 8. Spatiotemporal profiles of cD at Pe = 20 for medium PM3. (a) R = 0, (b) R = 1, (c) R = 2,
(d) R = 3, and (e) R = 4.

dynamics of viscous fingering are governed by pressure field resulting from the viscosity contrast
and is independent of the dispersion magnitude.

As reported in the literature [12,13,19,25,28–30], mixing length varies linearly in time and the
growth exponent is 1.0 for the unstable displacement in a homogeneous medium. In the presence
of heterogeneity, the growth exponent is reported to be either 0.5 or 1.0 depending on the variance
and correlation length of the permeability field [12,18,23,34]. The results of our simulations at pore
scale, however, indicates that σ has a value between 0.5 and 1.0 for an inherently heterogeneous
medium depending on the magnitudes of R and Pe (Fig. 11). The difference between the results
of macroscale and pore-scale simulations may originate from the fact that in macroscale (i.e.,
Darcy-scale) simulations, Eq. (3) was used with a dispersion coefficient rather than molecular
diffusion coefficient. This dispersion coefficient usually has been considered to be either a constant
or dependent on the velocity with a linear [28,44] or quadratic [29,44] relationships. However,
the experiments of Brigham et al. [11] show that the dispersion coefficient depends on velocity
as K ∼ vb, where 1 < b < 2. In our pore-scale simulations, we use point equations (Navier-Stokes
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FIG. 9. Spatiotemporal profiles of cD at Pe = 2000 for medium PM3. (a) R = 0, (b) R = 1, (c) R = 2,
(d) R = 3, and (e) R = 4.

and convection-diffusion) rather than Darcy-scale equations (Darcy flow and convection-dispersion).
Thus, the level of dispersion considered in pore-scale simulations is closer to reality compared to
that of macroscale simulations.

C. Effect of heterogeneity on mixing length growth

We next examine the effect of medium heterogeneity on σ for both stable and unstable
displacements with the primary emphasis on the heterogeneity of grain size distribution represented
by CV. Miscible displacement simulations are performed on the media PM1 to PM4, with a CV of
0, 0.125, 0.25, and 0.5, respectively, at different Pe and two values of R = 0 and R = 3. For the
sake of brevity, we skip the qualitative presentation of concentration iso-surfaces and report only
the quantitative results. In the case of stable displacement (R = 0), the objective is to study the sole
effect of medium heterogeneity on mixing length growth in the absence of any fingering, while the
interaction of heterogeneity and fingering is explored during the unstable displacements at R = 3.
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FIG. 10. Log-log plots of the mixing length temporal variations during miscible displacement in medium
PM3 at different viscosity ratios and (a) Pe = 0.2, (b) Pe = 2, (c) Pe = 20, (d) Pe = 400, (e) Pe = 1350, and (f)
Pe = 2000. The guide lines with slopes 0.5 and 1.0 are also plotted as straight dash and solid lines, respectively.
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FIG. 11. Mixing length growth exponent versus log-viscosity ratio for medium PM3 (CV = 0.25) at
different Péclet numbers.

Figures 12 and 13, respectively, depict the temporal variations of mixing length at R = 0 and 3 on
a log-log scale for Pe values of 0.2, 2, 20, 400, and 2000. For different values of Pe and R, the mixing
length generally increases with CV demonstrating the fact that a higher level of heterogeneity results
in a larger mixing zone. The values of the growth exponent corresponding to the plots of Figs. 12
and 13 are also reported in Figs. 14 and 15, respectively. For the case of unit viscosity ratio (Fig. 14),
the growth exponent varies nonmonotonically with both Pe and the level of heterogeneity as σ is
the largest at CV values of 0 and 0.25 while for all CV, σ is minimum at Pe = 2. For the unstable
displacement case (Fig. 15), σ − CV variation is also nonmonotonic, with the higher values for
CV = 0 and 0.25. Unlike R = 0, the growth exponent monotonically increases with the Péclet
number, and the minimum in σ − Pe plot vanishes in the unstable displacement cases at R = 3.

The nonmonotonic behavior of σ − CV is counterintuitive and raises the point that whether CV
is sufficient for representing the medium heterogeneity. In macroscale permeability distributions, it
is a common practice to characterize the permeability heterogeneity with a variance representing
the degree of variations and a correlation length describing the spatial correlation. In our pore-scale
media, CV as defined in Eq. (12) can be the measure of heterogeneity, but it is difficult to describe
the correlation of heterogeneity based on the grain size distribution. Therefore, we employed another
approach to characterize the heterogeneity of our models based on the distribution of velocity. The
heterogeneity of a porous medium results in a nonuniform velocity distribution, and consequently
the variation of this velocity distribution can be an approximate measure of the heterogeneity.
Accordingly, we extract the velocity distribution for each medium and describe its heterogeneity
by the standard deviation (S|ux,D|) of the distribution and the correlation length (λD) of the velocity
variogram. The calculated S|ux,D| and λD for each medium are reported in Table II along with their

TABLE II. The parameters describing the heterogeneity of patterns.

Pattern name CV S|ux,D| λD

PM1 0 1.27 ∼3.4
PM2 0.125 1.32 ∼2.7
PM3 0.25 1.38 ∼2.6
PM4 0.5 1.32 ∼2.1
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FIG. 12. Log-log plots of the mixing length temporal variations during miscible displacement in media
PM1 to PM4 at R = 0 and (a) Pe = 0.2, (b) Pe = 2, (c) Pe = 20, (d) Pe = 400, and (e) Pe = 2000. The guide
lines with slopes 0.5 and 1.0 are also plotted as straight dash and solid lines, respectively.
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FIG. 13. Log-log plots of the mixing length temporal variations during miscible displacement in media
PM1 to PM4 at R = 3 and (a) Pe = 0.2, (b) Pe = 2, (c) Pe = 20, (d) Pe = 400, and (e) Pe = 2000. The guide
lines with slopes 0.5 and 1.0 are also plotted as straight dash and solid lines, respectively.
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FIG. 14. Mixing length growth exponent versus Péclet number for media PM1 to PM4 at R = 0.

CV. Details of the calculation of these parameters can be found in the Appendix. The analysis of
the correlation structure of velocity and porosity reveals that the correlation length is much smaller
than the medium length, hence suggesting that our patterns are large enough to be representative
of real sandpacks. Moreover, λD decreases with CV, and its value is the highest for medium PM1.
This is because for a smaller CV, the distribution of grain size is narrower, and when the pattern is
being generated, there are fewer options for grain sizes. This makes it difficult to place the grains
at completely random locations within a pattern and may introduce some preferred channels for the
flow. As an illustration, Fig. 16 shows the spatial concentration profiles for the media PM1 to PM4
during miscible displacement at R = 3. At smaller CV [Figs. 16(a) and 16(b)], viscous fingers are
following some prominent paths that are the result of higher correlation lengths, while for higher
CV [Figs. 16(c) and 16(d)], there are no clear paths for viscous fingers as they are developed across

FIG. 15. Mixing length growth exponent versus Péclet number for media PM1 to PM4 at R = 3.
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FIG. 16. Spatial profiles of cD at t ′
D = 0.4 during miscible displacement at R = 3 and Pe = 400 in (a) PM1,

(b) PM2, (c) PM3, and (d) PM4.

the entire width of the patterns. Based on these new measures of heterogeneity, PM1 and PM3 have
the highest heterogeneity in terms of correlation length and velocity distribution, respectively.

Table II shows that PM1 has a considerably larger λD compared to the other patterns, while PM3
has a higher S|ux,D| with a λD approximately similar to that of PM2 and larger than that of PM4.
According to Figs. 14 and 15, the growth exponent is generally higher for media PM1 and PM3
even though their CV are smaller than the CV of PM4. Such an observation is consistent with the
S|ux,D| and λD trends in these media. Thus, we conclude that although the size of the mixing zone
generally increases with CV, its growth is primarily governed by velocity variation and correlation
length rather than CV.

IV. SCALING AND GENERALIZATION OF MIXING LENGTH PLOTS

The similarities between LM,D temporal variations for different values of R and CV in Figs. 10,
12, and 13 give the idea that it is possible to obtain a general curve describing the variation of mixing
length with time for any arbitrary values of R and CV. To accomplish this, we try to scale the mixing
length plots with R and CV as well as the geometrical parameters of medium length (LD) and medium
aspect ratio (A). The compact form, when achieved, is useful in engineering calculations; however,
we should note that the scaling may not necessarily work for all regions of parameter space.

A. Scaling of viscosity ratio (R)

As presented in Fig. 10, LM,D increases with log-viscosity ratio when Pe � 2. For layered
permeability fields, Sajjadi and Azaiez [17] proposed that mixing length can be scaled by eR/3.1

to account for different values of R. Using a similar functionality, we found that LM,D scales with
eR/3.5 for the case of random packing of grains considered in this study. Figure 17 shows the linear
plots of LM,D growth in time, unscaled on the left and scaled on the right, for the simulations
of miscible displacement in PM3 at three Péclet numbers of 2, 400, and 2000. According to the
results, this scaling enables us to approximately superimpose the plots of mixing length on each
other, especially at early times of displacement at high Péclet numbers [Figs. 17(b2) and 17(c2)
compared to Fig. 17(a2)]. At high values of Pe, the growth of mixing length is primarily governed
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FIG. 17. Scaling of R for the mixing length plots of miscible displacements in PM3 at (a) Pe = 2, (b)
Pe = 400, and (c) Pe = 2000. The left-side plots show the variations of mixing length before scaling while the
right-side plots correspond to variations after scaling.
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by viscous fingering and the effect of other parameters like local variations of heterogeneity, and the
level of dispersion on mixing length is minimal compared to their impact at lower Péclet numbers.
Therefore, the scaling of viscosity ratio alone is sufficient for high Pe while it may be suboptimal
for low Pe values. Also, as illustrated in Figs. 17(b2) and 17(c2), at later times of displacement, the
values of mixing length for R = 0 and 1 slightly deviate from the general trend of other plots. We
propose the same rationale that at these low adverse viscosity ratios, the effect of other parameters
like heterogeneity and dispersion is comparable to viscous fingering, thus making the sole scaling
of R to be suboptimal.

B. Scaling of heterogeneity (CV)

Figures 12 and 13 showed that LM,D generally increases with CV at different values of Pe during
both stable and unstable displacements, respectively. These plots of mixing length for different values
of CV can be collapsed on each other by scaling the values of LM,D to eCV. In Fig. 18 the results
of this scaling are presented by comparing the mixing length plots before and after the scaling (left
and right plots, respectively) for both stable [Figs. 18(a) and 18(b)] and unstable [Figs. 18(c) and
18(d)] flows at Pe = 0.2 and Pe = 2000. It can be concluded that the scaling to eCV results in an
approximately unified mixing length curve, especially when the effect of dispersion on mixing length
is minimal at a high Péclet number or an adverse viscosity ratio.

C. Scaling of medium length (LD) and aspect ratio (A)

For a dispersive transport regime (i.e., σ = 0.5), Eq. (18) implies that the plots of LM,D versus t ′D
should scale with the square root of medium length (LD). For a fingering transport regime, however,
there is no theory that describes the variation of mixing length with the porous medium length. In
order to explore how mixing length plots vary with LD, several patterns with different values of LD

are generated and used in the simulations (Fig. 3). The patterns PM3, PM5, PM6, and PM7 have the
same d̄ , CV, and A, but different LD, while PM8 and PM9 have different d̄ compared to the others
(see Table I). The left-hand side plots of Fig. 19 show the results of simulations in terms of mixing
length plots for both stable and unstable displacement. For the stable flow (R = 0), simulations are
performed at Pe = 0.2 [Fig. 19(a)] and Pe = 2000 [Fig. 19(b)], while unstable displacements are
simulated at R = 4 and Pe = 2000 [Fig. 19(c)]. Figures 19(a) and 19(b) demonstrate that the plots of
mixing length approximately scale with LD

0.5 for the stable displacements as predicted by Eq. (18).
For miscible displacements at adverse viscosity ratio, however, mixing length scales almost linearly
with medium length [Fig. 19(c)], and dividing LM,D by LD results in an approximate unified curve
that can be employed to predict the mixing length value for any arbitrary LD.

To examine the effect of aspect ratio (A) on mixing length, both unit and adverse viscosity ratio
displacements are simulated in media PM3, PM10, and PM11 which have aspect ratios of 2, 4, and 8,
respectively (Fig. 4). The other properties of these media are similar to each other as summarized in
Table I. The results of simulations (Fig. 20) reveal that the aspect ratio has an insignificant impact on
mixing length in both stable and unstable displacements, and therefore it is not necessary to consider
the aspect ratio in our scaling and unification of the mixing length plots.

V. SUMMARY AND CONCLUSION

Direct pore-scale simulations of miscible displacement in two-dimensional heterogeneous
unconsolidated porous media are conducted to investigate the effect of flow velocity, viscosity
ratio, and pore-scale heterogeneity of media on the growth of the mixing zone. The microscale
heterogeneity is characterized by three parameters: a coefficient of variation defined as the standard
deviation of the grain size (CV), standard deviation of the velocity field (S|ux,D|), and its correlation
length (λD). The effect of flow velocity is incorporated in a pore-Péclet number (Pe) while viscosity
contrast is described by the log-viscosity ratio (R). Several pore-scale patterns are generated and
used in the numerical simulations to obtain the temporal variation of the mixing length (LM,D). Then
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FIG. 18. Scaling of CV for the mixing length plots of miscible displacements in PM1 to PM4 at (a) R = 0
and Pe = 2, (b) R = 0 and Pe = 2000, (c) R = 3 and Pe = 2, and
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FIG. 18. (Continued.) (d) R = 3 and Pe = 2000. The left-side plots show the variations of mixing length
before scaling while the right-side plots correspond to variations after scaling.

a power-law trend line is fitted on the mixing length plots and the values of mixing length growth
exponent (σ ) are extracted and plotted against the governing parameters.

Through this study, it is concluded that viscosity ratio and heterogeneity have different effects
on the growth of mixing length at different Péclet numbers. Their interactions dictate whether the
flow and transport mechanism is dispersive or fingering. The results indicate that for each value of
R, there is a critical Péclet number below which there is no effect of viscosity contrast on mixing
length growth and the transport regime remains dispersive. As Pe exceeds this critical value, the
mixing length gets larger as R increases and its growth exponent linearly increases with viscosity
ratio up to R = 3. At sufficiently large Pe, both LM,D and σ are independent of Pe because dispersion
becomes irrelevant at these large Péclet numbers and fingering is mainly governed by pressure field.
Contrary to the linear growth of LM,D in a fingering flow at macroscale permeability maps, the
results of pore-scale displacements indicate that σ has always a value between 0.5 and 1.0 even
for high adverse viscosity ratios. Numerical simulations in media with different levels of microscale
heterogeneity demonstrate that LM,D increases with CV at all values of Pe while the growth exponent
is generally higher for the media with larger λD and S|ux,D|.

To construct a generalized curve that describes the temporal variation of mixing length for all
combinations of governing parameters, we attempt to scale the values of LM,D with R, CV, medium
length (LD), and aspect ratio (A). The results of the scaling procedure imply that LM,D scales
approximately with eR and eCV for both stable (R = 0) and unstable (R > 0) displacements. In the
unit viscosity ratio flow, mixing length approximately scale with LD

0.5 while at adverse viscosity
ratio it scales with LD. Finally, it is shown that mixing length is not dependent on the aspect ratio
and it can be ignored in the process of scaling.
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FIG. 19. Scaling of medium length (LD) for the mixing length plots of miscible displacements at (a) R = 0
and Pe = 0.2, (b) R = 0 and Pe = 2000, and (c) R = 4 and Pe = 2000. The left-side plots show the variations
of mixing length before scaling while the right-side plots correspond to variations after scaling.
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FIG. 20. The effect of aspect ratio (A) on mixing length plots of miscible displacements at (a) R = 0 and
Pe = 0.2, (b) R = 0 and Pe = 2000, and (c) R = 4 and Pe = 2000.

APPENDIX

To obtain the distribution of velocity and describe its heterogeneity by the standard deviation of
the distribution and the correlation length of velocity variogram, single phase flow simulations are
performed on the media PM1 to PM4. Afterwards, the distribution of the magnitude of velocity in the
flow direction (|ux,D|) is obtained by evaluating the velocity at a set of points covering the whole area
of the pattern. Then the standard deviation of these distributions (S|ux,D|) are calculated and tabulated
in Table II along with CV for each pattern. To define the correlation of velocity fields, the variogram
of velocity in the direction of flow are calculated as [45]

γux,D (hD) = 1

2

[∑n
i=1 [ux,D(xi,D) − ux,D(xi,D + hD)]2

n

]
, (A1)

where γ is the variogram, hD is the lag distance in the x direction, and n is the number of data points
in the patterns at which the values of ux,D are evaluated. We also compute the variogram for porosity
as [45]

γφ(hD) = 1

2

[∑m
i=1 [I (xi,D) − I (xi,D + hD)]2

m

]
, (A2)
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FIG. 21. Normalized variograms of porosity and velocity in the x direction for (a) PM1, (b) PM2, (c) PM3,
and (d) PM4. The vertical lines indicate the correlation lengths while the horizontal dash lines represent the
range within which the variations of γ /γ (∞) assumed to be insignificant.

where I is the indicator function, which equals 1 for the data points on the pore space and 0 for
the data points on the grains, and m is the number of data points at which the values of I are
obtained. The calculated γφ and γux,D are then normalized by their infinite-range theoretical values
of γφ(∞) = φ(1 − φ) and γux,D (∞) = 〈ux,D

2〉 − 〈ux,D〉2, respectively, and plotted in Fig. 21. The
correlation lengths (λD) of velocity variograms are determined as the values of hD at which γ /γ (∞)
approaches 1.0 and remains in the range 1.0 ± 0.1 beyond that. The correlation lengths are indicated
by vertical lines in Fig. 21 and presented in Table II.
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