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Over the past decade, the edge of chaos has proven to be a fruitful starting point for
investigations of shear flows when the laminar base flow is linearly stable. Numerous
computational studies of shear flows demonstrated the existence of states that separate
laminar and turbulent regions of the state space. In addition, some studies determined
invariant solutions that reside on this edge. In this paper, we study the unstable manifold of
one such solution with the aid of continuous symmetry reduction, which we formulate
here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our
investigation of the unstable manifold, we discover a previously unknown traveling-wave
solution on the laminar-turbulent boundary with a relatively complex structure. By means
of low-dimensional projections, we visualize different dynamical paths that connect these
solutions to the turbulence. Our numerical experiments demonstrate that the laminar-
turbulent boundary exhibits qualitatively different regions whose properties are influenced
by the nearby invariant solutions.
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I. INTRODUCTION

Pipe flow is the most prominent member of a class of canonical shear flows where a transition
to turbulence occurs despite the linear stability of the laminar state [1]. In the past two decades
this problem has enjoyed several major developments. The discovery of nonlinear traveling-wave
solutions [2–4] and studies [5–7] of the laminar-turbulent boundary began to elucidate the state space
of the system using insights from dynamical systems theory.

In the dynamical system approach to turbulence, fluid motion is envisioned as a trajectory in an
infinite-dimensional state space [8]. For the case of shear flows with linearly stable laminar solutions,
this state space accommodates a stable equilibrium point corresponding to the laminar solution and
a chaotic set (an attractor or repeller) that is turbulent. Once this viewpoint is established, a natural
question to ask is what separates these two distinct regions in the state space. In a small computational
cell of channel flow, Itano and Toh [9] studied solutions that neither laminarize nor become turbulent
using a shooting method and they discovered that such trajectories tend towards a traveling-wave
solution. Following studies of shear flows in similar computational domains found periodiclike [10],
equilibrium [11], and seemingly chaotic [5] solutions using similar shooting methods. These findings
suggested the following picture of the state space of shear flows: The basin boundary between laminar
and turbulent solutions is the stable manifold of an invariant set, whose unstable manifold connects
on one side to the laminar solution and on the other side to the turbulent part of the state space.
Schneider et al. [5] named this invariant set the edge state.

Schneider et al. [5] found in a short axially periodic computational domain of pipe flow that the
edge state exhibits chaotic motion, with flow structures much simpler than those of turbulence: a slow
streak in the center surrounded by two fast streaks with chaotically moving streamwise vortices in
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FIG. 1. Two traveling-wave solutions of pipe flow (S1 and S1N, to be described later in the article) and their
continuum of symmetry copies obtained from the axial translations and the azimuthal rotations, visualized as red
and blue wire frames projected from the state space. Projection bases are the same as in Figs. 4 and 5. Apparent
intersections of the curves are the artifacts of finite-dimensional projection from the infinite-dimensional state
space. In the symmetry-reduced state space, each torus will be represented by a single point.

between. A similar investigation in a long computational domain of pipe flow [7] yielded streamwise
localized edge states with chaotic dynamics, whose flow fields at the core of the localized structure
resembled those computed in the short computational domain.

Typically when flows are not simplified by additional symmetries the edge state tends to be
chaotic, as is the case for plane Couette [12], channel [13], and asymptotic suction boundary-layer
[14] flows. In this seemingly generic case, the definition of the edge state is less clear than when it
is formed by an exact invariant solution such as a (relative) equilibrium or a (relative) periodic orbit.
In contrast to the invariant solutions, it is not straightforward to define and compute the stable and
unstable manifolds of chaotic solutions, hence their theoretical study is much more challenging.

One way of systematically investigating chaotic edge states is by studying the unstable invariant
solutions that are contained within, since the geometry of chaotic sets are influenced by the invariant
solutions that are embedded in them [15]. This strategy was adopted by Duguet et al. [6], who found
for the case of pipe flow in an approximately five-diameter-long axially periodic computational
domain at Re = 2875 (Re based on bulk velocity and pipe diameter) that the chaotic edge state evolves
around the asymmetric traveling-wave solution found by Pringle and Kerswell [3]. In addition, they
found a rotating traveling wave that had flow structures very similar to those of the asymmetric wave,
but differently it rotated in the azimuthal direction in addition to drifting downstream.

Canonical shear flows (pipe, plane Couette, and plane Poiseuille) are symmetric under continuous
translations in streamwise and spanwise (or azimuthal, in the case of pipe flow) directions. This
implies that every generic (nonsymmetric) solution of these systems has infinitely many copies that
can be generated by symmetry transformations. We visualized this degeneracy in Fig. 1 for two
traveling-wave solutions we study in this article. Due to this multiplicity, something as simple as
measuring the distance between two solutions becomes a daunting task. As a result, a common
practice in the dynamical system approach to turbulence literature is to use quantities averaged
over computational domains, such as energy input, dissipation, or pressure gradient, as indicators of
closeness in the state space [14,16–18]. While observing such quantities can be used for deciding
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if two solutions are far from each other, they cannot be used to conclusively decide if two solutions
are close in the state space: Two solutions that have similar rates of energy input, dissipation, and
pressure drop might have completely different flow structures. In this paper, this problem is addressed
by symmetry reduction in both axial and azimuthal directions of pipe flow. In the symmetry-reduced
state space, the tori, such as those visualized in Fig. 1, are represented by single points, which
simplifies the analysis substantially. As we will explain later in the article, our approach to this
problem is generic and adaptable to other canonical shear flow geometries in a straightforward
fashion.

For the application of our methods, we chose to revisit the laminar-turbulent boundary in a
short (approximately five diameters) pipe flow at Re = 3000. To this end, we visualize numerical
approximations to the unstable manifold of the asymmetric traveling wave that reside in the laminar-
turbulent boundary on local projections akin to those pioneered by Gibson et al. [19]. We demonstrate
that some parts of this unstable manifold that belong to the laminar-turbulent boundary exhibit
dynamics qualitatively different from those previously attributed to the edge state in this setting.
Upon further investigation, we discover that this region is in the vicinity of a traveling-wave solution
with four high-speed streamwise streaks. This traveling wave appears to belong to a higher-energy
region in the edge state, closer to the turbulent part of the state space. We study the unstable manifold
of this traveling wave and demonstrate its different connections to the turbulence. Finally, we present
the results of numerical experiments, which demonstrate that the trajectories on the laminar-turbulent
boundary of pipe flow transiently approach the traveling waves that reside in the edge.

The rest of the paper is organized as follows. In the next section, we overview our methods;
particularly in Sec. II D, we present the generalization of the first Fourier mode slice [20] for
simultaneous reduction of continuous symmetries in the axial and azimuthal directions. We present
our results in Sec. III, followed by a summary and discussion in Sec. IV.

II. METHODS

A. Numerical setup

Numerical integration of the Navier-Stokes equations

uτ + uHP · ∇u + u · ∇uHP + u · ∇u = − ∇p + 32
β

Re
ẑ + 1

Re
∇2u (1)

are performed using Openpipeflow [21]. The velocity field u(z,r,θ ; τ ) denotes the deviations
from the base (Hagen-Poiseuille) solution uHP(z,r,θ ) = 2[1 − (2r)2]ẑ. Lengths and velocities are
nondimensionalized by the pipe diameter D and the mean axial speed U . Boundary conditions are
no slip and impermeable on pipe walls u(r = 1/2) = 0 and periodic in the axial and azimuthal direc-
tions u(z,r,θ ) = u(z + kL,r,θ + m2π ), k,m ∈ Z. The velocity field satisfies the incompressibility
condition ∇ · u = 0 and β = β[u(τ )] is a feedback term, adjusted in order to ensure a constant flux
equal to that of the laminar solution at a given Re. For all results of this paper, Re = UD/ν = 3000;
the pipe length is set to L = π/0.625 ≈ 5; flow fields are discretized using N = 128 finite-difference
points in the radial direction and a Fourier series truncated at K = M = 64 in the axial and azimuthal
directions, respectively. Nonlinear terms are evaluated in the physical space on N × 3K × 3M grid
points following the 3/2 rule for dealiasing in Fourier-expanded directions. This truncation yields
more than 6 × 106 numerical degrees of freedom, which is significantly higher than the typical
resolutions used in similar computational studies [5,22]. Our choice yields an at least five orders
of magnitude drop in the spectral coefficients of the turbulent solutions at Re = 3000. While the
solutions in the edge state generally require much fewer degrees of freedom to be resolved, we made
this “conservative” choice since we investigate different regions of the edge state and we did not
know a priori the maximum resolution requirement.
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B. Symmetries

In this section, we review the symmetries of pipe flow and their representations in terms of their
actions on the velocity field. For more detailed discussions of the symmetries and the invariant
subspaces of pipe flow, we refer the reader to Refs. [23,24]. Pipe flow is equivariant under the axial
translations gz(l), l ∈ [0,L), the azimuthal rotations gθ (φ) φ ∈ [0,2π ), and the reflection σ , whose
actions on the axial u, radial v, and azimuthal w components of the velocity field are given by

gz(l)[u,v,w](z,r,θ ) = [u,v,w](z − l,r,θ ), (2)

gθ (φ)[u,v,w](z,r,θ ) = [u,v,w](z,r,θ − φ), (3)

σ [u,v,w](z,r,θ ) = [u,v, − w](z,r, − θ ). (4)

Therefore, the symmetry group of pipe flow is the direct product of SO(2)z and O(2)θ , i.e.,

G = SO(2)z × O(2)θ = {gz(l),gθ (φ),σ }. (5)

Lie group actions (2) and (3) can be written as operator exponentials of their respective infinitesimal
generators Tz and Tθ as

gz(l) = eTzl, gθ (φ) = eTθ φ, (6)

where the actions of Tz and Tθ on the velocity field u = u(z,r,θ ) are

Tzu = − ∂

∂z
u, Tθu = − ∂

∂θ
u. (7)

C. State-space notation

Since we are going to use dynamical systems tools, it is handy to introduce state-space notation
for use in the rest of the paper. Let a(0) be a vector that contains all numerical degrees of freedom
of a three-dimensional velocity field u(z,r,θ ; 0) at an initial time τ = 0. Then the Navier-Stokes
equations (1) along with the incompressibility and the boundary conditions imply a finite-time flow

a(τ ) = f τ (a(0)), (8)

where a(τ ) corresponds to the velocity field u(z,r,θ ; τ ) at time τ . Assuming that the flow (8) is
smooth, we can also represent the system as a high-dimensional ordinary differential equation

ȧ = v(a) = lim
δτ→0

[f δτ (a) − a]/δτ. (9)

Actions of group elements g ∈ G on a state space vector a should be thought of as actions on the
corresponding velocity fields as in (2)–(4). In other words, if a corresponds to the velocity field u
then ga corresponds to the transformed velocity field gu. Similarly, group tangents tz,θ (a) = Tz,θa

correspond to velocity fields Tz,θ u, where Tz,θ acts as in (7). In the state space, equivariance under
g implies that the state-space velocity and finite-time flow commute with g, i.e.,

v(ga) = gv(a), f τ (ga) = gf τ (a). (10)

Letting a and a′ correspond to velocity fields u and u′, respectively, we define the inner product

〈a,a′〉 = 1

2

∫
u · u′dV, (11)

where the integral is carried over the pipe volume. Thus, ‖a‖2 = 〈a,a〉 gives the kinetic energy of
the velocity fluctuations; hence this choice of norm is usually referred to as the energy norm.
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D. Continuous-symmetry reduction

We define the group orbit Ma of a state-space point a as all points reachable from a by symmetry
transformations, i.e.,

Ma = {ga | g ∈ G}. (12)

If a is not invariant under any symmetries of the system, its group orbit (12) defines two distinct 2-tori
that are related to each other by the reflection σ since we have two compact continuous-symmetry
directions (5). All state-space points on a group orbit have the same physical properties, such as kinetic
energy, dissipation, or wall friction, since these quantities are invariants of symmetry transformations.
In addition, the dynamics of each point on a group orbit can be obtained from the dynamics of a
single point following the definition (10) of equivariance. In other words, the state space of pipe flow
exhibits much redundancy since a generic point has infinitely many symmetry copies. Moreover, the
presence of continuous symmetries renders the study of state space extremely hard: In the presence of
the pipe flow’s symmetries, measuring the distance between two generic state-space points becomes
a question of the minimum distance between tori, whose computational cost can easily become
prohibitive if it is to be carried out repeatedly. Continuous-symmetry reduction, which we introduce
next, is a coordinate transformation such that state-space points that are related by a continuous
symmetry are represented by a single point in the reduced state space.

We begin by reducing the streamwise translation symmetry following [20] exactly: We define a
slice template â′ with a corresponding three-dimensional velocity field, whose each component û′

k

is defined as

û′
k(z,θ,r) = J0(αr) cos(2πz/L), k = 1,2,3, (13)

where J0 is the Bessel function of the first kind, which vanishes at the pipe wall, i.e., J0(α/2) = 0.
Then the translation symmetry-reduced coordinates are given by

â(τ ) = gz(Lφz/2π )a(τ ), (14)

where

φz(τ ) = arg[〈a(τ ),â′〉 + i〈a(τ ),gz(−L/4)â′〉]. (15)

The transformation (14) exists as long as the phase (15) does. Note that φz is the polar angle when
the state a(τ ) is projected onto the plane spanned by (â′,gz(−L/4)â′).

Extension of (14) for the azimuthal symmetry reduction is straightforward with a second slice
template ã′ corresponding to the velocity field with components

ũ′
k(z,θ,r) = J0(αr) cos(θ ), k = 1,2,3. (16)

Then the symmetry-reducing coordinate transformation becomes

ã(τ ) = gθ (φθ )a(τ ), (17)

where

φθ (τ ) = arg[〈â(τ ),ã′〉 + i〈â(τ ),gθ (−π/2)ã′〉]. (18)

Similar to (14) and (15), the transformation (17) exists as long as the phase (18) does. Our choice
of the order at which the continuous symmetries are reduced is merely a convention since the inner
products in (15) and (18) remain unchanged under transformations (17) and (14), respectively. This
is a result of our particular choice of the slice templates (13) and (16), which do not depend on θ and
z, respectively, and the fact that the axial translation and the azimuthal rotation symmetries commute.
For a general symmetry group with noncommuting elements, a more careful treatment would have
been required.

The slice templates (13) and (16) need not be valid (smooth, divergence-free) pipe flow velocity
fields. The only requirement on the slice templates â′ and ã′ is that the projections of the 2-torus
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{gθ (φ)gz(l)a | l ∈ [0,L) ,φ ∈ [0,2π )} onto the (â′,gz(−L/4)â′) and (ã′,gθ (−π/2)ã′) planes must be
circles for a generic state a. The cosine dependence of (13) and (16) on the respective symmetry
directions provides this as long as the projection is nonzero. We determine the rest of the slice
templates by experimentation in order to reduce the probability of having a vanishing projection: We
decided to use all three velocity components for the template fields in order to receive contributions
from all directions. The radial dependence on J0(αr), on the other hand, is arbitrary and it is
conceivable that there could be other equally valid choices. As we will further argue after introducing
the slice phase velocities (25), our experience with the slice templates (13) and (16) has been that
the symmetry-reduction procedure that we described yields no discontinuities when applied to the
generic turbulent trajectories.

Budanur et al. [25] showed for a one-dimensional partial differential equation with SO(2)
symmetry that polar coordinate transformations similar to (14) and (17) can be reformulated as a slice
hyperplane. A slice hyperplane is a set of points perpendicular to the group orbit of a slice template
and is transversally intersected by the group orbits of the state-space points in a closed neighborhood
of the template. While a general slice has a finite region of applicability, if the template is chosen
such that its dependence on the symmetry coordinate depends only on the first Fourier mode, then
the slice works for a semi-infinite domain (half hyperplane) that covers all state space of interest,
with a regularizable singularity in time. This method is named the first Fourier mode slicein [25] and
we refer the reader to [26] for a pedagogical introduction to it.

Reduced coordinates (14) satisfy the half-hyperplane equation

〈â − â′,t ′z〉, 〈tz(â),t ′z〉 > 0, (19)

where tz(a) = Tza is the group tangent of a state-space point a and t ′z = tz(â′). Similarly, we can
express the consequent transformation (17) as another half hyperplane in the streamwise symmetry-
reduced state space as

〈ã − ã′,t ′θ 〉, 〈tθ (ã),t ′θ 〉 > 0, (20)

where similarly tθ (â) = Tθ (â) and t ′θ = tθ (ã′).
The main advantage of the reformulations (19) and (20) is that from this perspective one is able

to derive projection operators for transforming the tangent space of a to the slice. Letting δa be a
small perturbation to a in the full state spaceand φz be the slice phase that transforms a to the slice
as â = gz(φzL/2π )a, then the small perturbation can be transformed to the slice by the projection

δâ =
(

1 − tz(â) ⊗ t ′z
〈tz(â),t ′z〉

)
gz(φzL/2π )δa. (21)

Similarly, δâ is transformed to the second slice (20) as

δã =
(

1 − tθ (ã) ⊗ t ′θ
〈tθ (ã),t ′θ 〉

)
gθ (φθ )δâ, (22)

where φθ is the slice-fixing phase (18), i.e., ã = gθ (φθ )â. For the derivation of these projection
operators, we refer the reader to the Appendix of [20].

We finish this section by explaining possible shortcomings of the presented symmetry-reduction
scheme: With the aid of the projections (21) and (22), it is straightforward to express the state-space
velocity in the reduced state space. Replacing δa with v(a) in (21), we obtain

v̂(â) =
(

1 − tz(â) ⊗ t ′z
〈tz(â),t ′z〉

)
gz(φzL/2π )v(a),

(23)

v̂(â) = v(â) − 〈t ′z,v(â)〉
〈tz(â),t ′z〉

tz(â),

where we used the first equivariance property in (10) and defined the streamwise symmetry-reduced
state-space velocity as v̂(â) = ˙̂a. The fully symmetry-reduced state-space velocity ṽ(ã) = ˙̃a can be
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FIG. 2. Phase velocities (25) φ̇z (blue) and φ̇θ (green) measured in a typical turbulence simulation. The inset
shows a zoom into the time interval τ ∈ [103.3,103.5], where a sharp increase in φ̇z is apparent. Dots in the
inset correspond to adjacent time steps of the simulation, showing that this episode is in fact time resolved.

similarly written as

ṽ(ã) = v̂(ã) − 〈t ′θ ,v̂(ã)〉
〈tθ (ã),t ′θ 〉

tθ (ã). (24)

It is instructive to have a close look at (23): The reduced state-space velocity v̂ is generated from
the full state-space velocity v by subtracting the component in the direction of the group tangent
with a prefactor proportional to v’s projection onto the slice tangent. The second thing to recognize
in (23) is the fact that 〈tz(â),t ′z〉 appears in the denominator; hence, if this inner product vanishes,
the reduced state-space velocity field diverges. For a general slice, this condition sets the border in
which the slice may apply [27,28]; in our particular case of the first Fourier mode slice, this condition
is equivalent to the existence of the phase (15). It can be shown [29] that the multipliers of group
tangents in (23) and (24) correspond to the time derivatives of the parameters of group actions that
transform trajectories to the slice, i.e.,

φ̇z =
(

2π

L

) 〈t ′z,v(â)〉
〈tz(â),t ′z〉

, φ̇θ = 〈t ′θ ,v̂(ã)〉
〈tθ (ã),t ′θ 〉

. (25)

Hence, these are appropriate quantities for checking whether or not the sliced dynamics is within
its borders. Our experience with the first Fourier mode slices has been such that these quantities do
not diverge for generic trajectories, although they may have “fast” episodes. We illustrate this for a
typical turbulent trajectory in Fig. 2. Fast fluctuations that are caused by such episodes can be handled
by rescaling the time step of the numerical simulation or the problem can be explicitly reformulated
using a slice time [25]. In this study, we found a fixed time step �τ = 0.0025 to be sufficient to
resolve the changes in slice phases, without resorting to an adaptive time-stepping scheme.

III. TRAVELING WAVES ON THE LAMINAR-TURBULENT BOUNDARY

Other than the laminar equilibrium, all invariant solutions such as traveling waves, rotating waves,
relative periodic orbits, and possibly higher-dimensional invariant tori of pipe flow drift downstream.
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A traveling wave aTW is the simplest among those, which satisfies

aTW(τ ) = gz(cτ )aTW(0), (26)

namely, its sole dynamics is a drift in the axial direction with constant phase speed c. Linear stability
of this solution is described by the eigenvalue problem [15,30](

dv(a)

da

∣∣∣∣
a=aTW

− cTz

)
V TW

i = λTW
i V TW

i , (27)

where λTW
i and V TW

i are the linear stability eigenvalues and eigenvectors, respectively. Since
the state space is formally infinite dimensional, each traveling wave has infinitely many stability
eigenvalues and eigenvectors. In practice, we solve (27) by Arnoldi iteration and approximate the
finite-dimensional leading (most unstable) part of the tangent space.

Traveling waves become equilibria when the axial translation symmetry is reduced, say, by the first
Fourier mode slice method of (14). The translation symmetry-reduced state space still exhibits the
O(2)θ symmetry and it follows from the normal form analysis that all equilibria of an O(2)-equivariant
system belong to invariant subspaces of reflection symmetry or its conjugates [31]. Returning to full
state space, this implies that all traveling waves of the pipe flow must be invariant under the reflection
σ or a related symmetry. In particular, the solutions we investigate in what follows are invariant under
so-called shift-and-reflect symmetry

S = σgz(L/2) ∈ G. (28)

In the shift-and-reflect subspace, continuous-rotation symmetry (3) of the pipe flow is broken and
only the discrete rotation by π is allowed [23]. Thus, the symmetry group of shift-and-reflect
subspace is

GS = {gz(l),gθ (π )}. (29)

Note that, by definition, reflection symmetry is equivalent to an axial translation by L/2.

A. Unstable manifold of S1

Numerical [6] and experimental [32] (combined with numerical work) evidence strongly suggests
that the edge state of axially periodic pipe flow that is not long enough to exhibit streamwise
localization is organized around the asymmetric traveling-wave solution found in [3]. Following [4],
we refer to this solution as S1. This naming refers to the solution’s symmetries: S stands for
shift-and-reflect (28) invariance and 1 is the fundamental azimuthal wave number. S1 appears at
a low Re through a symmetry-breaking bifurcation of a gθ (π )gz(L/2)-symmetric solution, which
itself is borne out of a saddle-node bifurcation at even lower Re [3]. For the parameters studied
here (Re = 3000 and L = π/0.625 ≈ 5) S1 and its two purely real unstable eigenvectors with
corresponding eigenvalues λS1

1 = 0.0793 and λS1
2 = 0.0223 are visualized in Fig. 3. In Fig. 3(a)

and throughout the three-dimensional visualizations of this paper, streamwise velocity isosurfaces
are chosen as 75% of their maximum and minimum values for velocity fluctuations. Similarly,
vorticity isosurface levels are chosen at 60% of their respective maxima and minima. Numerical
values of velocity and vorticity isosurfaces are given in the figure caption. For the two-dimensional
cross-sectional visualizations of shift-and-reflect-symmetric states, we chose to average quantities
over the first half pipe length since the second half is simply the reflection of the first.

In Fig. 3, besides the eigenvectors V S1
1,2 [Figs. 3(c) and 3(e)], which are computed in the full state

space, we also show V̂ S1
1,2 [Figs. 3(d) and 3(f)], which are obtained by the projection (21). With these

visualizations, we would like to emphasize that the symmetry-reduced eigenvector might be quite
different from the one that is computed in the full state space, as it is the case for V S1

2 [Fig. 3(e)] and
V̂ S1

2 [Fig. 3(f)]. Moreover, it should be understood that the unstable manifold of S1 in the full state
space is three dimensional and its linear part is contained within the tangent space spanned by V S1

1 ,
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FIG. 3. (a) Isosurfaces of streamwise velocity at u = 0.26 (red) and u = −0.33 (blue) and streamwise
vorticity at ωz = ±0.40 (green and purple, respectively) for the traveling wave S1 in three dimensions. Also
shown are the color-coded streamwise velocity and cross-stream velocity (arrows) averaged over (b) the half
pipe length z ∈ (0,L/2] for S1 and the unstable eigenvectors (c) V S1

1 , (d) V̂ S1
1 , (e) V S1

2 , and (f) V̂ S1
2 . The flow

direction is into the page.

V S1
2 , and the marginal direction V S1

3 = tz(aS1) = TzaS1 with the eigenvalue λS1
3 = 0. Note that the

projection (21) subtracts components in this direction and its action on tz(aS1) yields a zero vector. In
other words, the marginal stability direction, which corresponds to axial drift of the traveling wave,
is eliminated by slicing. Thus, within the slice, S1 has a two-dimensional unstable manifold, whose
linear part is contained in the (V̂ S1

1 ,V̂ S1
2 ) plane.

Duguet et al. [6] studied the evolution of perturbations along the unstable directions of S1.
After confirming that the perturbations in the ±V S1

1 direction either laminarizes or develops into
turbulence, they focused on the perturbations on the (V S1

1 ,V S1
2 ) plane that neither laminarize nor

become turbulent. Running Newton searches near recurrences of these trajectories, they found a
rotated version of S1 and conjectured that S1’s unstable manifold contains a “relative” heteroclinic
connection to its rotation by approximately 52◦. This cannot be true since the unstable eigenvectors
V S1

1 and V S1
2 are also shift-and-reflect symmetric, hence the associated unstable manifold lies in

the shift-and-reflect invariant subspace, which only allows for azimuthal rotations by π . We are
guessing that the Duguet et al. conjecture was a result of a numerical error buildup due to not
restricting dynamics in the shift-and-reflect invariant subspace. Our first calculation in this paper
will be very similar to theirs, with the symmetry-restriction requirement taken into account. In
addition, we carry out our computation in the translation symmetry-reduced state space (14), which
allows us to visualize the unstable manifold.

As a first approximation to S1’s unstable manifold, we start trajectories with the initial conditions

âφ(τ = 0) = âS1 + ε

(
V̂ S1

1

λS1
1

cos φ + V̂ S1
2

λS1
2

sin φ

)
, (30)

where âS1 is the symmetry-reduced state-space point corresponding to S1, V̂ S1
1 and V̂ S1

2 are S1’s
leading linear stability eigenvectors projected onto the slice as described in (21), and ε = 10−4 is a

054401-9



NAZMI BURAK BUDANUR AND BJÖRN HOF

FIG. 4. (a) First approximation to the unstable manifold of S1, as forward-integrated trajectories with initial
conditions (30) visualized as projections onto the local coordinate frame (31). Here L denotes the laminar
solution. The inset shows the same 12 trajectories on the unstable manifold for the time interval τ ∈ [0,2.5],
illustrating the initial almost uniform expansion. Isosurfaces of streamwise velocity and vorticity at (b) u = 0.36
(red), u = −0.50 (blue), and ωz = ±0.99 (green and purple, respectively); (c) u = 0.50 (red), u = −0.62 (blue),
and ωz = ±1.5 (green and purple, respectively); and (d) u = 0.66 (red), u = −0.71 (blue), and ωz = ±9.0
(green and purple, respectively). The flow direction is into the page.

small constant. Equation (30) defines an ellipse on the (V̂ S1
1 ,V̂ S1

2 ) hyperplane, parametrized by φ,
and the scaling of perturbations by corresponding eigenvalues λS1

1,2 lets trajectories expand initially
at similar rates [33]. This is illustrated in the inset of Fig. 4(a), where âφ(τ ) for τ ∈ [0,2.5] is
shown for 12 equally spaced trajectories in φ ∈ [0,2π ) as projections onto the local bases formed
by orthogonalizing V̂ S1

1 and V̂ S1
2 , i.e.,

e1 = 〈
âφ(τ ) − âS1,V̂

S1
1,⊥

〉
, e2 = 〈

âφ(τ ) − âS1,V̂
S1

2,⊥
〉
. (31)

In (31), the subscript ⊥ indicates that V̂ S1
1 and V̂ S1

2 are orthonormalized via the Gram-Schmidt
procedure, i.e., V̂ S1

2,⊥ is formed by subtracting V̂ S1
2 ’s projection onto the V̂ S1

1 direction and
normalization. The inset of Fig. 4(a) illustrates that these bases capture local dynamics very well.
In particular, note that the trajectories starting from the initial conditions (30) with φ = kπ/2,
k = 0,1,2,3, are initially straight as they correspond to the perturbations in the symmetry-reduced
eigenvector directions, whereas the rest appear bent since the two unstable directions expand at
different rates. Figure 4(a) shows these trajectories for longer times, until they either become turbulent
or laminarize. The trajectories that become turbulent or relaminarize are respectively colored pink
and gray. While the projections are locally reliable, they fail to fully capture the dynamics away
from S1 since the trajectories seem to fold onto themselves. In order to illustrate the qualitative
features of the transition, we marked three instances on âπ (τ ) at τ ∈ [40,60,90] and visualized
the corresponding three-dimensional flow structures [Figs. 4(b)–4(d)]. Note that the structures in
Fig. 4(b) are quite similar to those of S1, while the isosurface levels are set to higher values.
This illustrates the first part of the transition: As the trajectory moves from S1 towards turbulence,
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FIG. 5. (a) Unstable manifold of S1 approximated by bisecting between trajectories that relaminarize and
those that develop into turbulence. (b) Time series of kinetic energy for trajectories that stay on the edge for the
longest times.

streaks and vortices are amplified while their overall shape is more or less unchanged. As can be
seen in Fig. 4(c), this initial amplification is followed by the breakdown of streaks, and eventual
turbulence [Fig. 4(d)] no longer exhibits structures that are coherent throughout the computational
domain.

The 12-trajectory approximation to the two-dimensional unstable manifold is initially successful
and illustrates the general features of the unstable manifold such as relaminarization and transition
to turbulence. It is clear from Fig. 4(a) that this approximation very quickly fails to cover the extent
of the manifold that stays in the laminar-turbulent boundary. In order to uncover details of this part,
we bisected between trajectories that transition to turbulence or relaminarize by changing φ in (30)
until reaching the limit of numerical precision, as done in [6]. Differently, however, we enforced
shift-and-reflect invariance in the time stepping, in order to avoid numerical errors that could take
trajectories outside the invariant subspace. In order to improve visibility, we visualized the unstable
manifold approximated this way in three dimensions, using the least contracting stability eigenvector
V̂ S1

4,⊥ (symmetry reduced and orthonormalized) in addition to the leading two (31) as the third basis.
The unstable manifold visualized this way is shown in Fig. 5(a), where we colored trajectories that
eventually laminarize gray and those that transition to turbulence pink. Additionally, we plotted
the last four trajectories in the bisection procedure thicker than the rest, using colors red, blue,
green, and black. For comparison, the time series of the kinetic energy for these four trajectories
is shown in Fig. 5(b), where we see that the trajectories stay on the edge longer than 300 time
units.

Upon our investigation of the trajectories that stay on the edge for the longest times, we observed
episodes where state-space trajectories slow down, which might indicate visits to the neighborhoods
of other traveling waves. In order to quantify this, we measured the self-recurrence, which we defined
as the norm of the difference between the symmetry-reduced states at times τ and τ − 5 on the same
trajectory. Note that in the symmetry-reduced state space, the traveling waves are equilibria, thus no
extra care for the translation symmetry is necessary. Figure 6 shows the self-recurrence [Fig. 6(a)]
over the trajectory which is shown in blue in Fig. 5 and flow structures at different times on this
trajectory [Figs. 6(b)–6(e)].

As the trajectory evolves on the edge, it visits states with qualitatively different features: At the first
minimum [Fig. 6(c)] of the self-recurrence function, new fast streaks begin to form on the downside
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FIG. 6. (a) Self-recurrence measured over an edge trajectory (drawn in blue in Fig. 5) on the unstable
manifold of S1. Also shown are the color-coded (fast and slow in red and blue, respectively) streamwise
velocity and cross-sectional velocity (arrows) averaged over the half pipe length (z ∈ [0,L/2]) at (b) initial time
τ = 0, (c) local minimum τ = 245, (d) local minimum τ = 320, and (e) final time τ = 345. The flow direction
is into the page.

of the pipe cross section and at the second minimum [Fig. 6(d)] initial fast streaks begin to disappear.
The eventual transition to turbulence [Fig. 5(e)] has quantitative features similar to those illustrated
in Fig. 4: Streaks amplify, spread, and break into smaller-scale structures on the opposite side of
the pipe. Newton-Krylov-hookstep searches starting from initial conditions visualized in Figs. 6(c)
and 6(d) converged to traveling-wave solutions: Starting from the latter, we find S1, rotated by π

about the pipe axis. In contrast, the Newton search starting from Fig. 6(c) leads us to a different
traveling wave, which we study in the next section.

FIG. 7. (a) Isosurfaces of streamwise velocity at u = 0.27 and −0.38 (red and blue, respectively) and
streamwise vorticity at ωz = ±0.96 (green and purple, respectively) of S1N. (b) Color-coded (fast and slow
in red and blue, respectively) streamwise velocity and cross-sectional velocity (arrows) averaged over the half
pipe length (z ∈ [0,L/2]) visualization of S1N. (c) Leading linear stability eigenvalues of S1N on the complex
plane computed in shift-and-reflect invariant subspace (black circles) and full state space (red crosses).
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(a) (b) (c)

FIG. 8. Two-dimensional surfaces associated with the three leading unstable eigenvectors of S1N approxi-
mated as a set of trajectories with initial conditions given by (32) for (a) k = 1, (b) k = 3, and (c) k = 5.

B. Unstable manifold of S1N

Figures 7(a) and 7(b) show three- and two-dimensional visualizations of our solution, which we
hereafter refer to as S1N. While being on the laminar-turbulent boundary, S1N has a much more
complicated structure than S1; its kinetic energy is roughly twice that of S1 and it has many more
unstable directions. Solutions with similar properties were known [2,4,6,22], mostly with higher
azimuthal symmetries. However, the relevance of the previously know solutions to the full problem
(without imposed symmetries) was not established. Similarities between the initial condition’s
[Fig. 6(c)] and the converged state’s flow structures [Fig. 7(b)] are apparent. Note particularly the
locations of the vortical structures, which align very well. Since these structures do not extend along
the pipe axis like streaks do, their one-to-one comparison is made possible by reduction to the
translation-reduced state space (14).

As shown in Fig. 7(c), S1N’s unstable manifold is 11 dimensional in the shift-and-reflect subspace
and more unstable eigenvalues were found when the symmetry restriction was lifted. This renders a
complete computational study of its unstable manifold impractical. Therefore, in Fig. 8, we visualize
two-dimensional surfaces associated with each of the leading three complex unstable eigenvalues in
the full state space as the application of symmetry reduction in both z and θ .

Let λS1N
k = μS1N

k + iωS1N
k and V S1N

k = US1N
k + iW S1N

k be complex eigenvalues and eigenvectors
of S1N, respectively. The set of trajectories that approximately covers the linearized dynamics in the
local two-dimensional plane spanned by (US1N

k ,W S1N
k ) is given by

ãδ(τ = 0) = ãS1N + ε exp
(
2πμS1N

k δ/ωS1N
k

)
ŨS1N

k , (32)

where δ ∈ [0,1). In (32), ε is a small number and a tilde implies that state-space points and
eigenvectors are transformed into the first Fourier mode slice via (17) and (22), respectively. Under the
linearized dynamics, a small perturbation to ãS1N in the Ũk direction expands by exp(2πμS1N

k /ωS1N
k )

at one return of the spiral. Thus, the trajectories starting from the initial conditions (32) approximately
satisfy ãδ=0(2π/ωS1N

k ) = ãδ=1(0), covering the associated two-dimensional (2D) surface. Using this
approximation, we visualized the time-forward dynamics of 2D surfaces associated with V S1N

1,2 , V S1N
3,4 ,

and V S1N
5,6 in Figs. 8(a)–8(c), respectively. We assume that the eigenvalues are ordered from most

unstable to the least, i.e., Re λS1N
1 � Re λS1N

2 � Re λS1N
3 � · · · . Note that complex eigenvalues and

eigenvectors satisfy λS1N
1 = λS1N∗

2 , λS1N
3 = λS1N∗

4 , λS1N
5 = λS1N∗

6 , V S1N
1 = V S1N∗

2 , V S1N
3 = V S1N∗

4 , and
V S1N

5 = V S1N∗
6 , where the asterisk stands for complex conjugation. Projection bases e1,2, e3,4, and e5,6

are generated from Ṽ S1N
1 , Ṽ S1N

3 , and Ṽ S1N
5 as follows. By definition, Ṽ

′S1N
k = eiφṼ S1N

k is a stability
eigenvector with eigenvalue λS1N

k . If we choose

φ = 1

2
arctan

2
〈
ŨS1N

k ,W̃ S1N
k

〉
∥∥W̃ S1N

k

∥∥2 − ∥∥ŨS1N
k

∥∥2 , (33)
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(a)

(b)

(d)

(c)

(e)

FIG. 9. (a) Time evolution of kinetic energy for trajectories starting from aS1N ± 10−4V S1N
11 (green and

purple, respectively). Also shown are the color-coded streamwise velocity and cross-sectional velocity (arrows)
averaged over the half pipe length (z ∈ [0,L/2]) at times (b) and (d) τ = 100 and (c) and (e) τ = 200 for (b)
and (c) the transition to turbulence [purple in (a)] and (d) and (e) laminarization [green in (a)].

Ũ
′S1N
k = Re Ṽ

′S1N
k and W̃

′S1N
k = Im Ṽ

′S1N
k become orthogonal, i.e., 〈Ũ ′S1N

k ,W̃
′S1N
k 〉 = 0. Projection

bases are formed from these vectors as (ek,ek+1) = (Ũ
′S1N
k /‖Ũ ′S1N

k ‖,W̃ ′S1N
k /‖W̃ ′S1N

k ‖) for k = 1,3,5.
These bases fully capture local two-dimensional dynamics. We chose the third projection direction
by trial and error to capture as much as possible as the trajectories develop into turbulence: e7 =
Ṽ S1N

11 /‖Ṽ S1N
11 ‖ and e8 = Ṽ S1

1 /‖Ṽ S1
1 ‖. Here Ṽ S1N

11 is the real unstable eigenvector of S1N with largest
real eigenvalue λS1N

11 and Ṽ S1
1 is the leading eigenvector of S1. We have already illustrated in Sec. III B

that the V S1
1 direction corresponds to the trajectories in the vicinity of S1, which either laminarize

or become turbulent, and we are going to demonstrate that V S1N
11 takes the same role for S1N.

Openpipeflow normalizes stability eigenvectors such that their norms are equal to that of the
associated solution, i.e., ‖V TW

k ‖ = ‖aTW‖. For computations of Fig. 8, we set ε = 10−4 [Figs. 8(a)
and 8(b)] and ε = 10−8 [Fig. 8(c)] and picked eight equidistant point in [0,1) for δ. While the
spiral-out dynamics is clearly visible in Figs. 8(a) and 8(b), trajectories look less organized in
Fig. 8(c). This is because the imaginary part of the fifth eigenvalue λS1N

5 = 0.106 + i0.0383 is
rather small, rendering the time for the trajectories to complete a full spiral long. This is not the
case for λS1N

1 = 0.131 + i0.178 and λS1N
3 = 0.130 + i0.176. While we might have obtained a better

representation of the 2D manifold in Fig. 8(c) if we had used more trajectories to represent it, we
chose to leave it as it is in order to illustrate the possible shortcomings of the method. All trajectories in
Fig. 8 eventually become turbulent, illustrating the rich dynamics that the laminar-turbulent boundary
can exhibit.

In the full state space, the leading ten stability eigenvalues of S1N are complex conjugate [Fig. 7(c)]
and λS1N

11 = 0.0727 is purely real. In Fig. 9(a), we show the time evolution of the kinetic energy
when S1N is perturbed in the ±V S1N

11 direction. As one would expect from a solution on the
laminar-turbulent boundary, the flow relaminarizes in one direction while becoming turbulent in
the opposite. While this observation clearly shows that S1N also belongs to the laminar-turbulent
boundary, whether or not its presence influences generic edge trajectories is not known. In the next
section, we investigate this through a numerical experiment.

C. Approaches to the traveling waves

In order to illustrate how a generic trajectory on the laminar-turbulent boundary is influenced by the
traveling-wave solutions present in the edge state, we carried out an edge tracking [9,34] experiment

054401-14



COMPLEXITY OF THE LAMINAR-TURBULENT BOUNDARY …

(a) (b)

FIG. 10. (a) Time evolution of turbulent kinetic energy for edge tracking trajectories obtained through
bisection. (b) Distance of bisection trajectories from S1 (blue) and S1N (orange). Minima of distances at
τ = 110 [min ‖ãS1N − ã(τ )‖] and at τ = 165 [min ‖ãS1 − ã(τ )‖] are marked black.

where we bisected between initial conditions that become turbulent and those that laminarize. For
this purpose, we randomly took a typical turbulent state at Re = 10 000, scaled this field down
by constants c = 0.5 and c = 0.75, and used these states as initial conditions at Re = 3000. After
observing that the former uneventfully proceeds towards the laminar solution while the latter triggers
turbulence, we began generating new initial conditions by bisecting in c until we reached the limit
of our numerical precision such that the resulting trajectories stay in the laminar-turbulent boundary
for longer and longer times. Kinetic energy time series of these trajectories are shown in Fig. 10(a).
Such initial conditions are expected to approach the invariant edge state [5] irrespective of how the
very first state is generated. Therefore, our choice of initial state from Re = 10 000 is arbitrary and
many other initial states would approach the edge state following the same algorithm.

For every trajectory we generated through edge tracking we sampled flow states at intervals
of �τ = 5 and transformed these states to the first Fourier mode slice through (17). We then
measured the distances of these states from S1 and S1N within the first Fourier mode slice. The L2

distances of edge tracking trajectories from S1 and S1N are shown in blue and orange, respectively,
in Fig. 10(b), where each set of curves has a clear minimum marked with a black dot. We visualized
these closest approaches next to the traveling waves they approach in Fig. 11. Similarities between
the flow structures of the traveling waves and the edge trajectories near them are clear, although the
correspondence is not one to one.

FIG. 11. Color-coded streamwise velocity and cross-sectional velocity (arrows) averaged over the half pipe
length (z ∈ [0,L/2]) of (a) S1N, (b) closest approach of the trajectory on the edge to S1N at τ = 110, (c) S1,
and (d) closest approach of the trajectory on the edge to S1 at τ = 165. Each figure uses a fixed color scale
(min , max) = (−0.35,0.35).
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Notice that without the symmetry reduction, such an analysis would have required an optimization
over axial translations and azimuthal rotations for each step in order to minimize the distance between
two states. Symmetry reduction eliminates this step, decreasing the computational cost of the analysis
tremendously.

IV. CONCLUSION AND OUTLOOK

In this paper, we introduced a representation of the pipe flow where the continuous symmetries
in the axial and azimuthal directions are simultaneously reduced. This technical step was a
straightforward extension of the first Fourier mode slice implementation of Ref. [20]. Nevertheless, it
was not implemented therein and it successfully closes the continuous-symmetry reduction problem
for pipe flow. Adapting this method to other canonical shear flows is straightforward. For instance,
in a channel geometry, the role of axial and azimuthal coordinates is taken over by streamwise and
spanwise coordinates and one should only make a choice for the wall-normal dependence of the
template functions. Since this choice is somewhat arbitrary, a convenient option could be the first
Chebyshev polynomial that is often used for numerical discretization in this direction.

For the application, we decided to revisit the laminar-turbulent boundary in a short (L ≈ 5)
periodic computational cell of the pipe flow. Our first calculation that approximated the unstable
manifold of S1 was very similar to that of Duguet et al. [6], who conjectured that the unstable
manifold of S1 reached the neighborhoods of its own azimuthally rotated copies when it is followed
along the laminar-turbulent boundary. Differently from Ref. [6], we restricted our computation of
the unstable manifold into the shift-and-reflect invariant subspace, to which the unstable manifold
belongs. In addition, we visualized the unstable manifold as low-dimensional projections from the
first Fourier mode slice (14). We found numerical evidence that the portion of this unstable manifold
that is confined in the laminar-turbulent boundary visits the neighborhood of a different traveling
wave, which we named S1N. The linear stability spectrum in Fig. 7(c) showed that S1N has a
very-high-dimensional unstable manifold, albeit on the laminar-turbulent boundary. By visualizing
two-dimensional surfaces associated with leading three complex conjugate unstable eigenvectors
in Fig. 7, we illustrated a variety of paths from the edge state leading to the turbulence. Besides
demonstrating the utility of the symmetry reduction in both z and θ , this computation also shows
how rich the dynamics on the laminar-turbulent boundary can be. One main message we would like
to deliver with the aid of these illustrations is that the asymptotic dynamics on the laminar-turbulent
boundary in pipe flow should not be treated as a single state; instead, the edge state contains different
regions with qualitatively different dynamics dictated by the nearby invariant solutions.

Both traveling waves we studied in this paper belonged to the shift-and-reflect invariant subspace
of the pipe flow. One might argue against their relevance for the dynamics in the laminar-turbulent
boundary since generic trajectories exist in the full state space. Cvitanović et al. [35] nicely illustrated
for the one-dimensional Kuramoto-Sivashinsky system that the unstable manifolds of equilibrium
solutions, all of which belong to the reflection invariant subspace, successfully capture the qualitative
dynamics in the full state space of the O(2)-equivariant system. Our case here is similar to theirs since
the symmetry in the azimuthal direction is also O(2). Therefore, it is quite reasonable to expect for
S1’s unstable manifold to form the backbone of the asymptotic dynamics on the laminar-turbulent
boundary, given all the evidence that the edge state is located in its vicinity. Indeed, visualizations of
Fig. 11 clearly show the similarities between the full state-space trajectories and the traveling waves
nearby.

Recently, Suri et al. [36] studied the weakly turbulent quasi-two-dimensional flow experimentally
and numerically. They demonstrated that when a turbulent trajectory comes close to an equilibrium, it
leaves this neighborhood by following the unstable manifold of the solution. The tools we presented
here, in particular, the methods for approximating and visualizing the unstable manifolds after
symmetry reduction, pave the way for a similar analysis in three-dimensional pressure-driven flows,
which have traveling-wave solutions rather than equilibria.
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As we have shown in Sec. III C, symmetry reduction frees us from reduced metrics, such as energy
input or dissipation, that do not carry all information of the state spaceand allows for measuring
distances in the full state space. However, one should always keep in mind that two points that
are at a short distance in the state space of a nonlinear system might evolve towards completely
different regions. In order to conclusively answer whether or not a state-space trajectory is “guided”
by a particular unstable manifold, we should measure distances between curves in the state space,
rather than points. While the finite-dimensional projections such as Figs. 4, 5, and 8 serve this
purpose, they do not provide a complete picture of the infinite-dimensional state space. We believe
developing computationally feasible methods for comparing shapes in high-dimensional state spaces
is an important future problem for turbulence studies.
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