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Physics of singularities in pressure-impulse theory
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The classical solution in the pressure-impulse theory for the inviscid, incompressible,
and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both
singular-in-time initial fluid acceleration, ∂v/∂t |t=0 ∼ δ(t), and a near-plate-edge spatial
singularity in the velocity distribution, v ∼ r−1/2, where r is the distance from the plate
edge. The latter velocity divergence also leads to the interface being stretched infinitely
right after the impact, which is another nonphysical artifact. From the point of view of
matched asymptotic analysis, this classical solution is a singular limit when three physical
quantities achieve limiting values: sound speed c0 → ∞, fluid kinematic viscosity ν → 0,
and surface tension σ → 0. This leaves open a question on how to resolve these singularities
mathematically by including the neglected physical effects—compressibility, viscosity, and
surface tension—first one by one and then culminating in the local compressible viscous
solution valid for t → 0 and r → 0, demonstrating a nontrivial flow structure that changes
with the degree of the bulk compressibility. In the course of this study, by starting with
the general physically relevant formulation of compressible viscous flow, we clarify the
parameter range(s) of validity of the key analytical solutions including classical ones
(inviscid incompressible and compressible, etc.) and understand the solution structure, its
intermediate asymptotics nature, characteristics influencing physical processes, and the role
of potential and rotational flow components. In particular, it is pointed out that sufficiently
close to the plate edge surface tension must be taken into account. Overall, the idea is to
highlight the interesting physics behind the singularities in the pressure-impulse theory.
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I. INTRODUCTION

While research on water-impact phenomena was originally motivated by landing on sea almost a
century ago [1], key aspects of the fundamental classical solutions have not yet been fully resolved.
In the present work, we will focus on singularities in the classical incompressible inviscid solution
corresponding to the potential flow, cf. Fig. 1, right after the impact of a plate of half-width l on
a semi-infinite body of liquid of density ρ with velocity V0, which does not change in the course
of impact if the plate mass is assumed infinite. As formally argued in the classical texts [2–5], if
the question is to predict the fluid velocity distribution right after the impact (t = +0) on the fluid
initially at rest, then neither nonlinear advection nor viscous terms can balance the dominant time
derivative, ∂v/∂t ; rather only the sharp pressure gradients can maintain this sudden change in fluid
motion,

∂v
∂t

= − 1

ρ
∇p, (1)

where the contributions due to viscosity ν are neglected because any boundary layer formed by a
diffusion of viscous effects would grow as

√
ν t and thus at t = +0 would be infinitely thin. Then

the fluid incompressibility, ∇ · v = 0, implies that the pressure p is a harmonic function, �p = 0,
and thus the fluid motion is potential right after the impact with v = ∇φ, where φ is the velocity
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FIG. 1. Plate impact problem: (a) setting, and (b) flow field.

potential, also a harmonic function, �φ = 0. The impulsive nature of the problem is reflected in the
fact that the solution of (1) for t → 0 behaves as v(x,t) ∼ H (t) and therefore p(x,t) ∼ δ(t), where
H (t) is the Heaviside step function and δ(t) the Dirac delta function. This is the basis of the classical
pressure-impulse theory.

Thus, for t → +0, one can consider water impact as the boundary value problem in the inviscid
potential flow approximation with the boundary conditions at y = 0, cf. Fig. 1(a):

solid plate, x ∈ [−l,l] :
∂φ

∂y
= −V0, (2a)

free interface, x /∈ [−l,l] : φ = 0, (2b)

where the latter condition follows from the fact that the free interface outside the plate footprint is
not subject to the pressure impulse and hence the Cauchy-Lagrange integral ∂φ/∂t = −p/ρ of (1)
after integration from t = −0 to +0 yields φ = 0 (see also the discussion in Sec. II D). The solution
to the above problem was constructed by Lavrentiev and Keldysh [4,6], who recognized that due
to the boundary condition for the velocity potential at the free surface, φ = 0, one can extend the
flow in a mirror fashion to the upper half-plane so that φ(t,x,y) = −φ(t,x, − y) and thus reduce
the problem to the motion of a plate in the entire plane using methods of complex analysis. With
conformal mapping techniques, the complex potential f = φ + i ψ relating the velocity potential φ

and the streamfunction ψ is found to be

f (z) = i V0
(
z −

√
z2 − l2

)
, (3)

where z = x + i y and the value of
√

z2 − l2 is made unique by specifying a branch cut in the z plane
along the interval x ∈ [−l,l]; the corresponding streamlines are shown in the laboratory frame of
reference in Fig. 1(b). This solution exhibits a singularity at the plate edges in both x and y velocity
components u − i v = f ′(z) diverging as

v ∼ r−1/2, r → 0, (4)

with r being the radius coordinate positioned at the plate edge. The intuition behind this singular
solution is naturally related to the origin of ejecta—in the incompressible case, strictly speaking, the
entire fluid body is affected due to the infinite speed of sound propagation, but the volume effectively
brought into motion is actually finite, which can be seen from the decay rate of the velocity field:
u − i v ∼ (l/z)2 for |z| → ∞. This is, in fact, the explanation as to why the added mass is effectively
finite [4] and equal to the half-cylinder of the radius l, cf. Appendix A. Hence, since the mass brought
into motion is finite (a half-cylinder under the plate) and the velocity field decays as r−2 far from the
plate edges, the displaced mass is ejected near the plate edges, where the velocity field is the most
singular (4).
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If we are interested in the flow near the plate edges, by shifting the coordinate system to, say, the
right edge, z → z′ + l, and expanding in z′ from (3) we find that

(u − iv)e−iθ = df

dz′ = − i a√
2 z′ l

+ i V0 − 3 i a

4
√

2 l3/2

√
z′ + O(|z′|3/2), (5)

where a = V0 l. Thus, the asymptotics (4) is valid for distances close to the edge, r � l, which is
equivalent to the condition that this leading-order term in the velocity components (5) is dominant,
i.e., a/

√
2 r l 	 V0. The implication of this observation is that one can justifiably neglect the vertical

velocity component of the plate, −V0, i.e., the second term in (5), when analyzing the flow structure
near the plate edge, as the key goal is to resolve the singularity in the leading-order pressure-
impulse theory. In this (inviscid) approximation, the boundary conditions for the velocity field become
homogeneous both at the plate surface (no penetration in the direction n normal to the plate) and
interface:

no penetration, θ = −π :
∂φ

∂n
(≡ vθ ) = 0, (6a)

free surface, θ = 0 : φ = 0. (6b)

In view of the homogeneity of the boundary conditions (6), one may consider the leading-order term
in the solution (5) as an eigensolution [7] of the Laplace equation with the boundary conditions (6),
which gives the leading-order velocity potential [8]:

φ �
√

2 l V0r
1/2 sin

θ

2
. (7)

In addition to the singularities at t → 0 and r → 0, a singular velocity distribution (4) is
nonphysical, as it would lead to an instant infinite stretching of the fluid interface. Since in reality
the latter has surface tension, it would mean that after the finite-energy impact the interface attains
infinite surface energy, which is impossible since the energy gained by fluid during impact is always
finite even if the plate mass is infinite (cf. Appendix A). Thus, surface tension should be present in
the leading-order solution [9].

In the present paper, we will elucidate the fundamental aspects of the above singular behaviors.
The appropriate problem formulation in the framework of compressible Navier-Stokes equations
(NSEs) is given in Sec. II, which is then properly nondimensionalized and scaled. The latter, in
particular, allows us to identify the limits of validity of the classical pressure-impulse solution (3),
cf. Sec. II D. Next, in the subsequent sections we systematically resolve the spatial and temporal
singularities by taking into account viscosity r → 0 (Sec. III), compressibility t → 0 (Sec. IV),
and finally both viscosity and compressibility t,r → 0 (Sec. V). In all these sections, we construct
solutions analytically, identify their key properties (self-similarity, etc.), the regions of validity in the
time-space domain in terms of the key nondimensional parameters (Mach, Reynolds, Weber, etc.,
numbers), and, where possible, establish the relation between these key solutions, e.g., relaxation of
the post shock wave solution to the incompressible one (Sec. IV C). Finally, in the discussion of the
early-time viscous compressible solution, we highlight the processes responsible for the resolution
of singularities: this is done with the help of mathematical tools—vector field decomposition into
irrotational and potential parts (Sec. V A) as well as characteristic analysis (Sec. V B)—and physical
insights into the mechanisms responsible for signal propagation, i.e., diffusion and compressible
effects. The solution in the viscous compressible region near the plate edge and at early times exhibits
a rich structure defined by the dependence on the ratio of the first and second viscosities (Sec. V C).
The discussion is concluded in Sec. VI with a summary and some open questions requiring further
study.
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FIG. 2. Near the plate edge region: θ = −π is the plate and θ = h(t,r) is the liquid interface.

II. PROBLEM FORMULATION AND SCALING

A. Governing equations and boundary conditions

In vector form, the dimensional NSEs governing the plane motion of a compressible fluid of
density ρ with velocity v and pressure p in the gravity field g are

∂ρ

∂t
+ ∇ · (ρ v) = 0, (8a)

ρ

[
∂v
∂t

+ (v · ∇) v
]

= −∇p + ∇ · τ + ρ g, (8b)

where, according to Newton’s law of viscosity, the viscous stress tensor τ reads

τ = μ[∇v + (∇v)†] + (
λ − 2

3μ
)
(∇ · v)I, (9)

with I being the unit (dyadic) tensor (Kroneker delta function), μ and λ the first and second (bulk)
coefficients of viscosity, respectively, both positive [10] for media in thermodynamic equilibrium
[11].

The above formulation requires two boundary conditions for each of the velocity components vr

and vθ , naturally at the plate surface θ = −π and free surface θ = h(t,r), cf. Fig. 2. At the free surface
boundary, one has the dynamic condition—zero net force acting on the interface at a particular point,
i.e., the dot product of the vector n normal to the interface with the total stress tensor −p I + τ

balanced by the capillary pressure:

θ = h(t,r) : −(−p I + τ ) · n = σ (∇ · n)n. (10)

The interface is also subject to the kinematic condition, which can be written using an implicit
representation of the interface, H = θ − h(t,r):

∂H

∂t
+ v · ∇H = 0, so that

∂h

∂t
+ vr

∂h

∂r
= vθ

r
at θ = h(t,r), (11)

i.e., the vanishing total (material) derivative—in physical terms, this implies that velocity of the liquid
normal to the interface, n · v with n = ∇H/|∇H |, should be equal to that of the interface, Ht/|∇H |,
for the sake of the fluid continuity. If the normal and tangential vectors in polar coordinates (er ,eθ )
are defined by

n = ∇H

|∇H | = −r hrer + eθ√
1 + r2h2

r

, t = er + r hreθ√
1 + r2h2

r

, (12)

then both pairs (er ,eθ ) and (t,n) are right-handed coordinate systems. The curvature is

∇ · n|θ=h(t,r) = −1

r

1(
1 + r2h2

r

)3/2

[
2 r hr + r2hrr + r3h3

r

]
, (13)
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and, in the limit r → 0, ∇ · n � −2 hr − rhrr under the appropriate assumptions on the smallness
of r hr , which is consistent with the physical requirement [12] that the interface departs from the
plate edge h → 0 as r → 0.

Finally, we are not going to take into account thermodynamic effects, i.e., we will close the above
system with a barotropic fluid equation of state p = p(ρ), which is known to be valid for fluids
such as water even at very high pressures [13]. In terms of the deviation p1 of the pressure from its
equilibrium value p0, i.e., p − p0 = p1, the equation of state is given by

p1 = B

[(
ρ

ρ0

)n

− 1

]
, (14)

where B = ρ0c
2
0/n with the following values (for water): ρ0 = 1000 kg/m3, c0 = 1500 m/s, and

n = 7.15. Then the speed of sound for barotropic undisturbed media, i.e., at the density value ρ0, is
simply

c0 =
√

dp/dρ|ρ0 ; (15)

in particular, the equation of state (14) is consistent with this formula. Also, in the present analysis
we are going to assume both viscosities, μ and λ, to be constant.

B. Nondimensionalization

Since we are interested in resolving the physics on the acoustic and longer time scales, the proper
time scale is defined by the plate size l and sound speed c0. The flow velocity scale is set by the impact
velocity V0. The pressure scale is estimated based on the loads during the flat-bottomed impact on a
compressible liquid surface: as first arrived at by von Karman [1] using Newton’s second law [14],
the result is on the order of ρ0 c0 V0, where c0 is the sound speed, ρ0 the density of the liquid, and
V0 the impact velocity. Therefore, using thus motivated nondimensionalization

r → l r, v → V0 v, t → l

c0
t, ρ → ρ0 ρ, p → ρ0c0V0 p, (16)

the system (8) reads

∂ρ

∂t
+ Ma ∇ · (ρ v) = 0, (17a)

ρ

[
∂v
∂t

+ Ma (v · ∇) v
]

= −∇p + Ma

Re
∇ · τ + Ma

Fr2
ρ eg, (17b)

with eg being the unit vector in the direction of the gravity g = g eg and the nondimensional viscous
tensor τ (9) now given by

τ = [∇v + (∇v)†] +
(

λ

μ
− 2

3

)
(∇ · v)I = [∇v + (∇v)†] + (χ − 1)(∇ · v)I, (18)

where χ = λ
μ

+ 1
3 ; the dynamic boundary condition (10) becomes

θ = h(t,r) : −
(

−p I + Ma

Re
τ

)
· n = Ma

We
(∇ · n)n, (19)

and the kinematic (11) furnishes

θ = h(t,r) :
1

Ma

∂h

∂t
+ vr

∂h

∂r
= vθ

r
, (20)

where the nondimensional complexes

Re = ρ0V0l

μ
, Ma = V0

c0
, We = ρ0V

2
0 l

σ
, Fr = V0√

g l
, (21)

are Reynolds, Mach, Weber, and Froude numbers, respectively.
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C. Scalings

Next, since we are interested in the early times after the impact event and because of the continuity
of the solutions of the fluid dynamics equations, we can consider the regime when density variation
can be treated as a perturbation of the initial state ρ0,

ρ → ρ0 + ρ, |ρ| � ρ0, (22)

i.e., a weakly compressible impact [15]. As a result, propagation of only a weak discontinuity [10]—a
compression wave—will be considered here [16]. Hence, if (in dimensional form) the equation of
state is p(ρ), then its Taylor series near ρ0 is

p(ρ) = p(ρ0) + dp

dρ
(ρ0) (ρ − ρ0) + d2p

dρ2
(ρ0)

(ρ − ρ0)2

2
+ · · · , (23)

so that in the nondimensional form we get

p(ρ) − p(ρ0)

ρ0c0V0
= c2

0

c0V0

ρ − ρ0

ρ0
+ · · · ⇒ δp = 1

Ma
δρ. (24)

From the system (17) it is clear that simply putting Ma = 0 or, as motivated by (24), expanding density
(and velocity) in a Taylor series ρ = 1 + Maρ1 + Ma2ρ2 + · · · , does not lead to the incompressible
NSEs. Hence, as the flow develops in the near-plate-edge region incompressibility can appear (and
can be justified) only at certain time and length scales, which are to be determined in Sec. II D.

Let us introduce the following scalings of the already nondimensionalized variables (16):

t → κ−1 t, r → ε r, v → δ v, ρ → 1 + �ρ, p → �p, (25)

where δ need not be small, � � 1 corresponds to a weakly compressible case, κ = O(1) to the
compressible flow time scale, and κ � 1 to long-time asymptotics (which is why we use κ−1). Here
δ, �, and � in general depend on ε, κ , Ma, Re, Fr, and We and are determined as part of the solution.
As a result, we get the following scaled continuity equation

�
ε

δ Ma
κ

∂ρ

∂t
+ �[(v · ∇)ρ + ρ ∇ · v] + ∇ · v = 0, (26)

the momentum equation

(1 + �ρ)

[
∂v
∂t

+ 1

κ

δ Ma

ε
(v · ∇) v

]
= − �

ε δ κ
∇p + 1

κ ε2

Ma

Re
∇ · τ + 1

δ κ

Ma

Fr2 (1 + �ρ) eg, (27)

and the dynamic boundary condition

θ = h(t,r) : −
(

−p I + 1

κ ε2

Ma

Re
τ

)
· n = σ̃ (∇ · n)n, with σ̃ = 1

δ κ ε2

Ma

We
, (28)

which in the normal n and tangential t components can be written as

θ = h(t,r) : n : p − 1

κ ε2

Ma

Re
n · τ · n = σ̃ (∇ · n), (29a)

t :
1

κ ε2

Ma

Re
t · τ · n = 0. (29b)

Finally, the kinematic boundary condition becomes

θ = h(t,r) :
∂h

∂t
= δ Ma

ε κ

(
−vr

∂h

∂r
+ vθ

r

)
. (30)

In summary, the a priori asymptotic assumptions are dictated by the physics

� � 1, ε � 1, Ma � 1, Re−1 � 1, (31)
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which accounts for the small density variation, close distance to the plate edge (compared to the
plate size), low Mach number, and low viscosity flow, respectively. Here, strictly speaking, � is
determined as part of the solution; from the equation of state (24), after application of the scalings (25),
we find

� = Ma �. (32)

Also, we assume no significant effect of gravity (since the involved initial acceleration due to impact
dominates that of gravity):

1

δ κ

Ma

Fr2 � 1, (33)

which is a valid assumption for sufficiently short (physical) times, and take

� = ε δ κ (34)

as it is the pressure (gradient) which balances the sudden acceleration ∂v/∂t as per the discussion
in Sec. I. Given the general asymptotic scalings (31)–(34) we may proceed with different limiting
situations: it is only δ, which is found as part of the solution as a function of ε, κ , Ma, Re, Fr, and
We. Finally, we need [

δ Ma

ε

]
1

κ
� 1, (35)

so that the nonlinear terms in (27) can be neglected, thus justifying the formal (physical) argument
of classical texts [2–5] mentioned in the introduction.

D. Inviscid incompressible sublimit

With the above general setting, nondimensionalization, and scalings, we are now in a position
to clarify the conditions under which the classical solution (3) is valid. From the scaled continuity
equation (26), it follows that in order to get an incompressible limit

∇ · v = 0, (36)

the conditions � � 1 [which is given a priori (31) due to weakly compressible impact] and
[ε/(δ Ma)] κ � � 1 must be satisfied, which, taking into account (32) and (34), lead to

Ma � � 1, ε κ � 1 or � � Ma−1, ε � κ−1, (37)

where the latter condition means that we are far behind the shock wave corresponding to ε ∼ κ−1.
From the momentum equation (27), we need

1

κ ε2

Ma

Re
� 1, (38)

in order to discard the viscous contribution, thus producing the momentum equation, with nonlinearity
neglected provided (35) is satisfied:

∂v
∂t

= −∇p. (39)

Under the condition (38), the dynamic boundary condition (29) reduces to the normal component
only:

θ = h(t,r) : p = σ̃ ∇ · n with σ̃ = 1

δ κ ε2

Ma

We
. (40)

Note that the inviscid momentum equation (39), i.e., when viscous effects are negligible, stays
exactly the same in both compressible and incompressible cases, but the continuity equation naturally
changes, as we will see in Sec. IV A.
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In summary, the inviscid incompressible sublimit corresponds to the system of bulk motion
equations (36) and (39), which, as argued in the introduction, can be reduced to the following
problem for the velocity potential φ:

�φ = 0, (41a)

∂φ

∂t
= −p, (41b)

where the latter equation (Cauchy-Lagrange integral [4]) follows from integration of (39). The
(asymptotic) solution of (41) with the boundary conditions (6) near the plate edge is, in dimensional
variables, Eq. (7). Applying the scalings (16) and (25) to (7) consecutively, we arrive at the scaling
for velocity

δ ∼ ε−1/2, (42)

i.e., the closer to the plate edge (smaller ε), the more singular the velocity; physically, the singularity
is due to the fluid particles being squished once they approach the near-plate-edge region [8]. The
scaling (42) can be predicted a priori by observing that the flow near the plate edge corresponds to
the flow around the infinitely thin plate [10], i.e. in the sector of angle 2π , as is also obvious from
the derivation of (3). With (42) the condition (35) necessary for neglecting the nonlinearity in (27)
becomes

ε3/2κ 	 Ma or ε 	 (Ma/κ)2/3, (43)

which means that one also requires κ 	 Ma, i.e., to be early enough in time (in particular, compared
to the flow time scale l/V0) and to be far enough from the edge. In addition, to be able to neglect the
viscous effects, the distance from the edge must obey ε 	 εvis =√

Ma /(Re κ) (viscous length scale)
as follows from (38). Based on (43), nonlinearity becomes important at the distance ε ∼ (Ma/κ)2/3

from the plate edge. In the ideal incompressible limit Ma → 0, nonlinearity is not important at any
distance from the plate edge. Of course, in reality, Ma is finite and set by the physics, while time scale
κ on which we consider the problem can be chosen arbitrarily. Also, as follows from the inequality
� � Ma−1 derived in (37) and scalings (34) and (42),

ε � Ma−2κ−2, (44)

which is always satisfied as long as κ � Ma−2; the latter condition is not restrictive for our purposes
as we consider the low Mach number Ma � 1 and long-time κ � 1 (as per Sec. II C) limits.

Altogether, we get the following inequality conditions for the validity of the inviscid incompress-
ible case with negligible nonlinearity:

(Ma/κ)2/3 � ε � κ−1 � Ma−1, (45)

illustrated in Fig. 3 in the (ε,κ) plane. Clearly, the curves κ−1 and (Ma/κ)2/3 may intersect at
κ ∼ Ma−2, which makes ε = Ma2 and corresponds to a very short time and distance from the edge
when nonlinearity is important on the shock wave despite the fact that it was assumed to be weak.

Finally, σ̃ in (40) can be put in the form

σ̃ = Ma/κ

ε3/2

1

We
, where

Ma/κ

ε3/2
� 1 due to (43), (46)

so that if We is finite from (29a) and (30) in the inviscid case, i.e., when (38) is satisfied, we get the
following system of dynamic and kinematic conditions at the interface:

θ = h(t,r) :
∂φ

∂t
= −σ̃ ∇ · n, (47a)

∂h

∂t
= δ̃

(
−vr

∂h

∂r
+ vθ

r

)
; vr = ∂φ

∂r
and vθ = 1

r

∂φ

∂θ
, (47b)
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FIG. 3. Regions of validity of the inviscid incompressible (45) (dark shaded) vs the compressible (92) (light
shaded) approximations for Ma � 1. The time and distance arrows crossing the region indicate the growth of
the corresponding variable (time or distance), cf. discussion in Sec. VI.

where δ̃ = δ Ma/(ε κ) = (Ma/κ)/ε3/2 � 1 due to (43) and the term −vr ∂h/∂r in the kinematic
condition is negligible compared to vθ/r for small interfacial deflections h.

If 0 < δ̃ � 1 and We = ∞, the first of equations (47) produces the dynamic condition

θ = h(t,r) :
∂φ

∂t
= 0, (48)

from where it also follows that φ = 0 after integration along the interface [17] in the context of the
linear problem (1)—this is consistent with p = 0 at the free surface based on the Cauchy-Lagrange
integral (41b). This condition on the velocity potential in the form (6b) is needed for the classical
solution (3) to be valid and entails the orthogonality of the free surface to the velocity vectors at the
instant of impact (given here in dimensional form):

θ = 0 : vr = 0, vθ ∼ r−1/2; (49)

i.e., the velocity is directed normal to the interface, cf. Fig. 1(b), which should lead to singular h(t,r)
near the edge—the intrinsic deficiency of the classical solution (3). Due to (49), from (47b) we
find ∂h/∂t → ∞ as r → 0. Thus, the Kutta-Joukowsky condition—the tangential departure of the
interface from the plate edge—cannot be enforced. If, on the other hand, for 0 < δ̃ � 1 one formally
neglects the right-hand side in the second of equations (47)

θ = h(t,r) :
∂h

∂t
= 0, (50)

it entails h ≡ 0 if the interface was not deflected initially—this, in turn, would imply that the Kutta-
Joukowsky condition [18] is satisfied automatically due to the tangential departure of the interface.
However, the singularity (49) of vθ in the classical solution shows inconsistency with nondeflected
interface h = 0.

Finally, in the real physical situation δ̃ 
= 0 and We < ∞, which implies that both compressibility
and surface tension need to be taken into account, as will be discussed in detail in Sec. IV D. For
the purpose of the present discussion, we just mention that after reducing (47) to a single equation
it becomes clear that when σ̃ δ̃ ∼ O(1) surface tension effects must be taken into account and thus
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the solution (7) is valid only for the distances

ε 	 (Ma/κ)2/3

We1/3 . (51)

III. SINGULARITY r → 0: VISCOUS INCOMPRESSIBLE SUBLIMIT

A. On the prediction of δε(t) and unimportance of nonlinearity

The discussion of the viscous incompressible case in this section supplements and provides a
different angle on the problem of incompressible water impact compared to previous work [19]. To
develop some intuition on how viscosity may regularize δ(t) in the pressure-impulse theory, consider
the diffusion problem on a half-line, in which the boundary point x = 0 gets an initial release of a
finite energy at a single instant of time t = 0:

∂u

∂t
= ε

∂2u

∂x2
, (52a)

x = 0, t � 0 : u(t,0) = δ(t), (52b)

t = 0, x > 0 : u(0,x) = 0. (52c)

The solution of this problem

u(t,x) = x

2
√

π ε t3
e− x2

4εt (53)

is no longer singular, but in the limit ε → 0 (or t → 0) recovers δ(t). Hence, in our problem, in the
presence of viscosity it is natural to expect that δ(t) in the pressure p and acceleration ∂v/∂t is also
replaced by a delta sequence δε(t) with ε ∼ Re−1, which in the limit Re → ∞ (vanishing viscosity
ν → 0) gives δ(t). From physical and characteristics viewpoints [20], the reason for the singular
behavior is that the incompressible problem is elliptic, which means that the speed of propagation
is infinite—since the effective “front” is propagating as ∼√

ν t , its speed ∼√
ν/t is infinite

at t = 0 [21].
Therefore, in the regularized theory the velocity must have the form v ∼ Hε(t) rn, where n changes

from −1/2 in the inviscid region to some positive value in the viscous region to be determined in
what follows and Hε(t) is the Heaviside function smoothed by the viscosity, so that H ′

ε(t) = δε(t) is
the delta sequence approximating the Dirac delta function with limε→0 δε(t) = δ(t). Under such an
assumption, one can estimate the terms in the dimensional NSEs as follows:

∂v
∂t︸︷︷︸

V0

√
l
r
δε(t)

+ (v · ∇)v︸ ︷︷ ︸
V 2

0
l

r2

= − 1

ρ
∇p︸ ︷︷ ︸

V0

√
l
r
δε(t)

+ ν�v︸︷︷︸
νV0

√
l
r

1
r2

, (54)

where the strongest singularity in space (from the inviscid region) was assumed. Hence, only the
first, most singular in time, terms on the left- and right-hand sides in (54) can balance each other,
bringing us to (1). An alternative way to appreciate the linear structure of the governing equations
at early positive times is first to realize that since Eq. (1) is linear, due to continuity its extension to
t > 0 must be also linear at leading order up to some finite time: thus, in analogy with the problem
(52) one may expect that the Dirac delta function δ(t) in the solution for the impact on an ideal
fluid should be replaced by a delta sequence δε(t) in the impact on a real fluid, where ε represents
the physical effect (such as viscosity ν) responsible for smoothing δ(t). For positive times, t > 0,
regardless how small, one needs to account for viscosity and hence retain the viscous stresses term
∇ · τ in (8) in order to satisfy the no-slip boundary condition at the plate. A systematic justification
of the above considerations will be given in Sec. III B.
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B. Formal analysis

The requirements necessary for the validity of the incompressible viscous approximation include
the conditions on

importance of viscous terms: ε ∼ εvisc =
(

Ma

κ Re

)1/2

, (55a)

unimportance of nonlinearity :
δ Ma

ε κ
� 1, (55b)

incompressibility : ε κ � 1. (55c)

Combining these yields

κ � Re

Ma
and δ �

(
κ

Ma Re

)1/2

= 1

Ma

(
κ

Re/Ma

)1/2

. (56)

As follows from the first expression, the time scale becomes arbitrary in the limit Ma → 0. Next,
the parameter σ̃ in (28) becomes

σ̃ = 1

δ

Re

We
, (57)

from which we conclude that the closer to the edge, δ → 0 (obviously), the larger σ̃ and hence the
contribution of surface tension becomes important.

With these considerations, the viscous incompressible sublimit corresponds to the continuity
equation (36) and the (nondimensional) viscous stress tensor now reduces to τ = ∇v + (∇v)†, so
that ∇ · τ = ∇2v and the viscous incompressible momentum equation is

∂v
∂t

= −∇p + ∇2v. (58)

The dynamic boundary condition is just (28) or, in component form (29), with ε given by (55a) and
σ̃ by (57).

Historically, self-similarity was the key to understanding the flow structure near the plate edge in
both inviscid [22] and viscous [19] incompressible cases. Applying the affine group transformation
(the angle coordinate θ is naturally not transformed)

t → α t, r → β r, v → γ v, p → ζ p, (59)

to the system (36) and (58), where the pressure variable is needed in the incompressible approxima-
tion, and determining the conditions on the scaling factors α,β,γ,ζ under which this system stays
invariant, we find that α = β2, ζ = γ /β, which means that the solution is self-similar [19], i.e., the
velocity field has the form v ∼ ta ṽ(η) with η = r/t1/2 and some power a. Clearly, this self-similarity
is more restrictive than in the inviscid incompressible case: indeed, applying (59) to the system (36)
and (39), we find that the only restriction in the latter case is γ = ζα/β. We will revisit this discussion
in Sec. III C.

To analyze the system (36) and (58), one can introduce the stream function ψ such that

vr = 1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
, (60)

and hence, after applying ∇× to the incompressible momentum equation (58), it becomes

∂

∂t
�ψ = �2ψ. (61)
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(a) (b)

FIG. 4. Inviscid (a) and Stokes (b) streamline patterns near the plate edge in the eigensolution setting (only
leading-order terms in the asymptotic expansions (5) and (65) are plotted). In contrast to the Stokes solution
where the no-slip condition slows the flow down, the inviscid solution exhibits distinguished crowding of the
streamlines near the plate edge, where the velocities are considerable. Viscosity also affects the apparent slope
of the streamlines, though in both cases they end up meeting the interface orthogonally.

Finally, the boundary conditions are

no-slip : θ = −π : ψ = ψθ = 0; (62a)

free boundary : θ = 0 : Eqs. (28) and (30), (62b)

where the scalings in (28) and (30) should comply with the considerations at the beginning of this
section. Note that while in previous work [19] the solution to the above problem was constructed
by first finding self-similarity, and only then taking the limit t → 0 so that nonlinear terms are
neglected, here we first derived the general equation (61) and only then find its self-similar solution,
which is apparently a function of a self-similar independent variable r̃ = ε κ1/2Ma−1/2r/

√
t as (61)

is a diffusion-type equation. The time exponent in the self-similar representation of ψ is found from
the requirement that we need v ∼ r−1/2 in order to be able to match with inviscid asymptotics (4), so
that the stream function in the physical space V

5/4
0 l3/4t

1/4
ψ̃ (̃r) or, after application of (16) and (25),

in nondimensional form ψ = δ−1ε−1κ−1/4Ma1/4t1/4ψ̃ (̃r), where bar denotes dimensional variables
and ψ̃ (̃r) is the self-similar dependent variable.

As established in previous work [19], the solution to (61) and (62) uniformly valid in both
inviscid and viscous regions can be expressed in terms of confluent hypergeometric functions (for
further details the reader is referred to Ref. [19]). Its inviscid asymptotics for r̃ 	 ε1/2, where
ε = 2 κ ε2/Ma = 2/Re is different from ε introduced in (55a), reads

ψ̃ (̃r,θ ) = −C1

2
ε ln ε r̃1/2 cos

θ

2
, (63)

which allows us to determine the value of the constant C1 = 2
√

2/(ε ln ε) as there should be no ε

dependence in the inviscid limit; i.e., the leading-order term is

ψ̃ (̃r,θ ) = A0 r̃1/2 cos
θ

2
. (64)

The corresponding Stokes asymptotics for r̃ � ε1/2 is

ψ̃ (̃r,θ ) = C(c) r̃5/2

[
cos

5θ

2
− 5 cos

θ

2

]
, (65)

where C(c) = −C1/30 = −√
2/(15 ε ln ε). The regularity of this Stokes velocity field (cf. Fig. 4(b))

guarantees that the interface obeying (28) and (30) no longer exhibits a singularity, i.e., does not
stretch to infinity as predicted by the inviscid incompressible solution.

Clearly, (63) dominates (65) for ε1/2 � r̃ � |ε ln ε|1/2; note that the minimum of |ε ln ε|1/2 is
at ε = e−1, thus defining a nonvanishing O(1) interval of applicability of the inviscid solution.
The leading-order pressure, p̃ = Ma−1/4κ−3/4t3/4p = √

2 ln−1 ε r̃1/2 sin (θ/2), gives the following
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formula in physical space:

ρ0V
5/4

0 l3/4t
−3/4

p̃ = ρ V0

√
2 l

t
−1

ln ε
r1/2 sin

θ

2
, (66)

i.e., the pressure is singular at t = 0 (from this point on dropping the bar for the dimensional variables),
which is a consequence of the incompressible flow approximation. This formula is nothing more
than the pressure from the classical potential flow solution discussed in the introduction, with the
only difference that the Dirac delta function δ(t) is now replaced by the delta sequence [23] δε(t) =
−t−1/ ln ε. Since the formula for pressure (66) is uniformly valid in both viscous and inviscid regions,
the pressure distribution in space is the same as from the potential flow solution, but its singular time
dependence δ(t) is smoothed by the viscosity producing δε(t) such that in the limit of zero viscosity
it converges to the Dirac delta function:

lim
ε→0

δε(t) = δ(t). (67)

Hence, one must recover the inviscid potential solution (3) and the corresponding governing equation
(1) when taking the limit t → 0 in the NSEs in the weak topology sense, i.e., almost everywhere
except for an infinitely thin boundary layer, in the same way as the Euler equations are recovered
from the NSEs in the limit of zero viscosity [24]. Indeed, based on the definition of the delta sequence
(and the Dirac delta function) as a distribution [23]

(δ(t),ϕ(t)) = ϕ(0) (68)

for any test function ϕ ∈ C∞
0 (i.e., infinitely differentiable and with compact support), one finds

(δε,ϕ) = − 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(t)

t
dt = − 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(t) − ϕ(0)

t
dt − 1

ln ε

∫ τ2(ε)

−τ1(ε)

ϕ(0)

t
dt, (69)

where in the limit τ1,2(ε) → 0 as ε → 0 the first integral vanishes since ϕ(t) − ϕ(0) = O(t) as t → 0
and the second integral gives

−ϕ(0)

ln ε
ln

τ2(ε)

τ1(ε)
= ϕ(0)

ln ε
ln

τ1(ε)

τ2(ε)
. (70)

That is by appropriately choosing the interval of integration, τ1(ε)/τ2(ε) = ε as ε → 0, one proves
that our delta sequence δε(t) converges to the Dirac delta function δ(t), since limε→0 (δε,ϕ) = ϕ(0).
Note that the asymmetry of the time integration interval [−τ1(ε),τ2(ε)], as opposed to the symmetry
of integration limits in Cauchy’s principal value method, is dictated by the physical asymmetry of
the impact event in time: the fluid is undisturbed for t < 0 and disturbed for t > 0.

C. On Yakimov’s self-similarity

Just to conclude the discussion of the inviscid incompressible solution, let us revisit its self-similar
structure, which, as was shown in Sec. III B, admits a continuum of self-similar dependent variables.
Let us look at the above mentioned and Yakimov’s [22] self-similarities:

present : r → t1/2r̃ , v → t−1/4ṽ, (71a)

Yakimov’s : r → t2/3r̃ , v → t−1/3ṽ. (71b)

Notably, while both scalings give (4), since they are designed based on the asymptotics (4) of the
classical potential flow solution, Yakimov’s scaling (71b) hinges on the assumption that

v = dr
dt

, (72)
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which, together with (4), leads to (71b). Formally, this self-similarity is allowed in the inviscid
incompressible case, cf. discussion in Sec. III B. However, (72) is the equation for pathlines, i.e.,
the line traced by a given particle—this is a Lagrangian concept and therefore the application of the
Yakimov’s scaling obtained from it to the equations in Eulerian variables is fundamentally flawed.
Such an assumption can be valid only if the Lagrangian and Eulerian descriptions coincide, but they
are almost always different for unsteady problems: the streamlines and pathlines generally differ
in the unsteady case. The problem under consideration is obviously intrinsically unsteady. At the
interface, which is a material line, however, each point moves with the same velocity as the fluid
thanks to the kinematic boundary condition (11) and thus one arrives at the scaling (71b), which
explains why the comparison with experimental measurements of the interfacial motion in Peters
et al. [25] is in reasonable agreement with Yakimov’s scaling. As for the whole flow [19], Yakimov’s
scaling (71b) fails to preserve the property that “in the limit t → 0 in the Navier-Stokes equations
one must recover (1) and the corresponding inviscid potential solution (3)” (p. 7 of Ref. [19]) after the
self-similar scaling is applied to the NSEs, since in general self-similarity simply limits the possible
solutions of the corresponding PDE to a more narrow class (cf. Appendix B).

IV. SINGULARITY t → 0: INVISCID WEAKLY COMPRESSIBLE SUBLIMIT

After the mentioned earlier work of von Karman [1], the first significant quantitative advancement
in understanding compressible effects was made by Galin [26], who used the displacement potential
formulation [27] along with some results from supersonic aerodynamics [28], allowing him to obtain
the formula for the time-dependent force acting on the impacting plate of half-length l during the
times 0 < t < l/c0 and to predict rebound phenomena under certain conditions. Later, in the velocity
potential formulation, Flitman [29] and Mikhlin [30] analyzed the same problem, and Ogilvie [31]
extended Galin’s analysis for later times. Equivalently, the same problem of compressible impact in
the potential flow formulation can be solved in terms of the pressure variable, which was done by
Kubenko [32] and Sagomonian [33].

A. Weakly compressible limit

From the scaled continuity equation (26), it follows that in order to get its weakly compressible
limit

∂ρ

∂t
+ ∇ · v = 0, (73)

one should require [δ Ma/ε] κ−1�−1 ∼ 1 along with � � 1, which together with (32) and (34)
produces a Ma-independent condition

ε ∼ κ−1, (74)

which makes sense as the wave equation ∂2
t ∼ ∂2

x , after applying the scalings (25), implies that
κ ∼ ε−1 as required to resolve the shock-wave region. As follows from (35) and (74), the nonlinear
terms can be neglected provided

δ Ma � 1. (75)

Altogether, the inviscid weakly compressible sublimit corresponds to

∂p

∂t
+ ∇ · v = 0, (76a)

∂v
∂t

= −∇p, (76b)
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where we took into account that ∂ρ/∂t = (dρ/dp) ∂p/∂t with dρ/dp = 1 in the scaled variables
(16) and (25). In the case of potential flow, i.e., when v = ∇φ, (76) reduces to

∂2φ

∂t2
= �φ, (77a)

p = −∂φ

∂t
, (77b)

where the latter equation is again the Cauchy-Lagrange integral. At the interface, we get from (77b)
and (30)

θ = h(t,r) :
∂φ

∂t
= −σ̃ ∇ · n, (78a)

∂h

∂t
= δ̃

(
−vr

∂h

∂r
+ vθ

r

)
. (78b)

If We = ∞ (surface tension is not important), we get the classical case ∂φ/∂t |θ=h = 0 from where
it follows that φ|θ=h = 0 based on the same considerations as in Sec. II D. In general, surface tension
is important when σ̃ δ̃ = O(1) as can be seen by reducing (78) to a single equation.

B. Compressible inviscid solution: global problem and resolution of the singularity t → 0

Based on the above considerations, the global problem statement for the impact of a finite plate
in absence of surface tension is

y < 0 : (bulk) :
∂2φ

∂t2
= �φ, (79a)

t = 0 : φ = φt = 0, (79b)

y = 0 : (plate) :
∂φ

∂y
= −1, |x| < 1, (79c)

(free surface) : φ(t,x) = 0, |x| > 1, (79d)

where the initial condition (79b) represents the fact that due to the finite speed of signal propagation
the fluid is undisturbed right at the moment of impact. The solution to (79) in the entire lower
half-plane is formally determined from

φ(t,x,y) = 1

π

∫∫
�

w(τ,ξ ) dτ dξ√
(t − τ )2 − (x − ξ )2 − y2

, (80)

where the region of integration � is defined in Fig. 5 and the function w(t,x) = ∂φ/∂y|y=0 is known
only at the plate surface, w(t,x) = −1 for |x| � 1, while for |x| > 1 it needs to be found from the
integral equation

1

π

∫∫
�

w(τ,ξ ) dτdξ√
(t − τ )2 − (x − ξ )2

= 0. (81)

The solution of (81) is [29]

w(t,x) =
⎧⎨⎩0, x > t,

2
π

[
arccos

√
x
t

−
√

t
x

− 1
]
, x < t,

(82)

which has a singularity w(t,x) ∼ 1/
√

x as x → 0.
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0 1

(t,x)

- +

1

|y|
2

1

2 3

4

FIG. 5. The domain of integration σ in (80) and the regions (1–4) of the solution definition. Region σ

(shaded) is bounded below by the ξ axis and above by the curve �1 : τ = t −√
(x − ξ )2 + y2. Regions 1–4 are

separated by the ξ axis, the trajectory of the plate edge �2 : |ξ | = 1, and the characteristics �± : ξ − 1 = ±τ .
The plate corresponds to the points |ξ | � 1.

Given the knowledge of the function w(t,x) everywhere on the x axis, the solution to (79) can be
expressed as

φ(t,x,y) = − t

2
+ 1

π

∫ t

0
arcsin

x − 1 + τ −
√

(x − 1)2 + y2√
τ 2 − y2

dτ (83)

and is weakly discontinuous (i.e., continuous itself but has discontinuous derivatives): snapshots in
time are shown in Fig. 6. While (83) admits explicit integration in terms of elementary functions,
for the sake of brevity we will refer only to this integral representation. Also, note that pressure can
be readily found from (83) via p = −φt . In the compressible inviscid case, obviously pressure is no
longer a Dirac delta function at t = 0, i.e., the force which acts on the plate is finite, consistent with
the work of Galin [26].

C. Relaxation to inviscid incompressible solution without surface tension

To understand how the inviscid compressible solution (83) relaxes to the incompressible one (7)
near the plate edge, let us consider the limit t 	 r corresponding to the solution behind the shock
wave (or ε � κ−1 after (25) is applied). In this case, the integrand in (83) simplifies to

arcsin
x − 1 + τ −

√
(x − 1)2 + y2√

τ 2 − y2
� arcsin

1 − 2 sin2 θ
2

t/r
� π

2
− 2 sin θ

2√
t/r

, (84)

so that the velocity potential becomes

φ(t,r,θ ) = − 4

π
sin

θ

2
r1/2t1/2. (85)

One can arrive at this asymptotic solution independently, without knowledge of the complete
global solution (83), which also helps to highlight its physical significance. Given the problem
statement defined by the eigenproblem (79a) and (6), we can look for a local compressible inviscid
solution. The idea is that the form of the inviscid incompressible solution (7) should stay relevant
after the compression wave passed, t 	 r , so that we can expect the following form:

φ = const tmr1/2 sin
θ

2
, (86)

which makes the Laplacian part of the wave equation (79a) vanish. This means that time dependence
should be determined from some other principles (note that we dropped the initial conditions (79b)
since the solution is considered for t 	 r; this solution construction procedure can also be reconciled
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(a)

(b)

(c)

FIG. 6. Equipotential patterns (black lines) of (83) and velocity fields (blue arrows) near the plate edge at
three different times: (a) t = t1 � l/c0, (b) t = 2 t1, and (c) t = 4 t1; the half-circle shows the boundary of the
disturbance and its center corresponds to the plate edge. The scaling self-similarity of panels (a)–(c) suggests
self-similarity of the solution near the edge at early times.

by a recursive approach, cf. Appendix D). Physically, t 	 r means that we are studying decay (the
tail) of the signal after the compression wave has passed. Since the pressure and the velocity potential
are related via

∫
dp/ρ = −φt and one can view the plate edge as an instantaneous source of energy,

which creates the compression (strong shock, in the high energy case) wave, in such a situation
pressure is known to decay as

p ∼ t−1/2 (87)

after the propagation of a cylindrical shock wave produced by an instantaneous energy release from a
line source [34]; hence the exponent in (86) ism = 1/2. This theory is an extension of Taylor’s original
work [35] on an atomic explosion in the atmosphere from spherical geometry to the cylindrical one
[36] in the case when the shock propagation and its speed depend on the equation of state, such as
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in the underwater explosion [34,37,38]. In our case, however, weak compressibility is considered,
which brings us to the linear wave equation (79a) and hence the compression (shock) wave speed is
that of sound. Notably, (87) shows that the role of compressibility (liquid elasticity) is in the slower
relaxation of pressure compared to p ∼ δ(t) in the classical pressure-impulse theory, where pressure
impulse relaxes sharply for t > 0. Another way to view (86) with m = 1/2 is by taking into account
that the solution to (79) near the plate edge is self-similar (after applying the affine scaling (59) we
find that α = β):

φ ∼ t �(η,θ ), η = r/t, (88)

based on the symmetry of the wave equation (79a) and the boundary conditions (6)—the eigenvalue
solution corresponds to the choice of the powera inφ ∼ ta �(η,θ ) which gives the same leading-order
nondegenerate solution as in the incompressible case [8] (cf. Appendix C). The solution (85) can
also be constructed using the Laplace transform method (cf. Appendix E).

The global solution (cf. Sec. IV B) allows one to establish the value of the factor in (86), which is
−4/π valid for t 	 r , i.e., after the compression wave passed. In summary, after propagation of the
compression wave the solution “relaxes” back to the inviscid incompressible solution (7): compare
Figs. 4(a) and 6. As a result, the solution (85) does not allow one to take the limit t → 0 for a fixed r

since when t ∼ r the asymptotics becomes invalid and should correspond to the compression wave,
while for t < r the solution becomes zero (in the inviscid approximation) as the shock wave has not
propagated yet. However, in the viscous approximation the solution is nonzero even for t < r , which
will be elaborated on in Sec. V.

Applying the scalings (16) and (25) to (85) consecutively, we find the scaling for velocity

δ ∼ ε−1/2 κ−1/2, (89)

which is valid provided ε � κ−1. This means that in this limit (behind the shock wave)

δ 	 1, (90)

which is expected as the solution should relax to the incompressible one (42) singular near the plate
edge. Given (89), the nonlinear terms are negligible, as per (75), provided

ε 	 Ma2/κ, (91)

where clearly one needs κ 	 Ma2 (long time limit) as ε must be small. Altogether, solution (85) is
valid provided

Ma2/κ � ε � κ−1 � Ma−2 (92)

versus the analogous condition (45) in the incompressible case, cf. Fig. 3. Thus, nonlinearity in the
compressible case becomes important if ε ∼ Ma2/κ , i.e., close enough to the edge (the shorter the
time, i.e., the larger κ , the smaller this distance). Curves κ−1 and Ma2/κ apparently cannot intersect,
while the curves Ma2/κ and (Ma/κ)2/3 intersect at κ = Ma4, so that ε = Ma−2; however, one needs
κ 	 Ma2 for the solution (85) to be valid as per (92), so such an intersection is not possible.

Turning our attention to the boundary conditions (78) at the interface, with (89) the parameter δ̃

in (78b) becomes

δ̃ = δ Ma

ε κ
=
(

Ma2/κ

ε

)3/2
1

Ma2 , where
Ma2/κ

ε
� 1. (93)

The parameter σ̃ in (78a) can be put in the form

σ̃ =
(

Ma2/κ

ε

)1/2
1

ε

1

We
, where

Ma2/κ

ε
� 1, (94)

but, because ε � 1, the closer to the edge, the more important is surface tension. In fact, there is a
(short) distance close enough to the edge ε ∼ (Ma/κ)2/3/We1/3 (same as in the incompressible case,

054003-18



PHYSICS OF SINGULARITIES IN PRESSURE-IMPULSE …

cf. Sec. II D), at which surface tension is no longer non-negligible. Note that (91) can still hold while
σ̃ δ̃ becomes O(1) for small enough ε as follows from (93) and (94). Altogether, the solution (85)
is valid when surface tension effects can be neglected (51) as the boundary condition (78a) should
become ∂φ/∂t = 0, so that φ = 0 on the interface (79d).

D. Post shock wave asymptotics with surface tension

Given the above point that close enough to the plate edge surface tension becomes important, let
us consider the post shock wave asymptotics by taking into account surface tension in problem (79).
Then instead of condition (79d) we should use (78), where in (78b) we neglect the term vr ∂h/∂r

based on the same considerations as in the inviscid incompressible case (Sec. II D) since the horizontal
velocity component vanishes at θ = 0, cf. (85). The idea is to determine the post shock (long-time)
asymptotics with the help of the final value theorem in the Laplace transform theory [4] exemplified
in Appendix E for the case of no surface tension. Following the approach of Appendix E and applying
the Laplace transform in time to Eq. (78) linearized around θ = 0 we get

θ = 0 : σ̃ (2 ĥr + r ĥrr ) = λ φ̂, (95a)

λ ĥ = δ̃

r2

∂φ̂

∂θ
. (95b)

From the solution of Bessel’s equation for small r , cf. Appendix E, we know that φ̂ = C(θ )(λ r)n,
so that the first (dynamic) equation above gives

ĥ = C(0)

σ̃ (n + 1)(n + 2)
(λ r)n+1 for n 
= −1, − 2. (96)

The second (kinematic) equation (95b) yields in turn

1

(n + 1)(n + 2)
λ2r3C(0) = σ̃ δ̃ C ′(0), (97)

where λ r � 1 since we are interested in the asymptotics behind the shock wave, i.e., t 	 r , which
in the Laplace space variable implies λ−1 	 r . If σ̃ = 0, then C(0) = 0 as in the case considered in
the previous section without surface tension. If σ̃ 
= 0, then without loss assuming that σ̃ δ̃ = O(1),
the only reasonable option left is to consider C ′(0) = 0, which leads to quantization different from
the case without surface tension, namely

C(θ ) = const cos nθ, n ∈ Z. (98)

Note that C ′(0) = 0 implies that the angular velocity vθ vanishes at the interface (surface tension
“rigidifies” the interface) versus C(0) = 0 for the classical case We = ∞ considered in the previous
section. Hence, compressibility (as opposed to incompressibility) does not push the fluid upward at
this early stage—this is how compressibility and surface tension regularize the free surface behavior.
Since the case n = 0 gives a trivial solution, the lowest positive n leading to a nontrivial solution is
n = 1, i.e., the velocity field v = ∇φ is no longer singular. The basic physical interpretation of this
result is that surface tension regularizes the flow near the plate edge, essentially by suppressing it
even in absence of viscosity.

V. SINGULARITIES r → 0 AND t → 0: VISCOUS WEAKLY COMPRESSIBLE SUBLIMIT

The viscous weakly compressible sublimit corresponds to

∂ρ

∂t
+ ∇ · v = 0, (99a)

∂v
∂t

= −∇p + 1

κ ε2

Ma

Re
∇ · τ , (99b)
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where

∇ · τ = �v + χ ∇(∇ · v), (100)

as per (18) and the most nondegenerate case is when Ma/(κ ε2 Re) ∼ O(1), but we keep it general
for now. Applying the affine group transformation (the angle coordinate θ is naturally not being
transformed)

t → α t, r → β r, v → γ v, p → ζ p, ρ → ξ ρ (101)

to system (99) and determining the conditions on the scaling factors α,β,γ,ζ,ξ under which (99)
stays invariant, we find that α = β = 1, γ = ξ , implying that no self-similarity is present. Thus, the
analysis of the viscous compressible case is complicated by the absence of a symmetry even though
near the plate edge there is no characteristic geometric length scale. This means that for the existence
of self-similarities it is not sufficient to have only the absence of an independent geometric length scale
(near the edge there is none). Therefore, one can get self-similarities only in the sense of intermediate
asymptotics [39], e.g., when one of the effects (compressibility or viscosity) is dominating the other.

A. Irrotational and solenoidal components

The last term in (100) has the meaning of the gradient of the velocity divergence, i.e., it measures
how compressibility varies with respect to a particular direction and can be decomposed into

∇(∇ · v) = �v + ∇ × ω, (102)

where ω = ∇ × v is the vorticity and the term ∇ × ω is called the flexion field [40], which is
nonzero even in the 2D case considered here. Using the Helmholtz decomposition theorem [41],
we can resolve the velocity field outside the singular point (r = 0) into the sum of an irrotational
(curl-free) scalar field φ and a solenoidal (divergence-free) vector field A:

v = ∇φ + ∇ × A, (103)

respectively, where φ is a scalar potential and A is a vector potential, which in our 2D case is simply
A = ψ ez with some scalar ψ to be defined later and ez being the unit vector orthogonal to the plane
of motion.

The first observation to make is that the compressibility measured by ∇ · v is contributed only by
the irrotational part φ of v since the solenoidal part A vanishes after the application of the divergence
operation

∇ · v = ∇2φ + ∇ · (∇ × A) = ∇2φ = �φ = −∂ρ

∂t
(104)

in nondimensional variables (16). From (104), we also find that (102) is simply

∇(∇ · v) = ∇(�φ). (105)

Second, by taking the divergence of the momentum equation (100) and excluding the velocity
divergence ∇ · v using the continuity equation, we get decoupled equations for the density and the
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velocity vector:

∂2ρ

∂t2
= 1

ε2κ2

[
1 + κ

Ma

Re
(χ + 1)

∂

∂t

]
�ρ, (106a)

∂2v
∂t2

= 1

ε2κ2

[
1 + κ

Ma

Re
χ

∂

∂t

]
∇(∇ · v) + κ

Ma

Re

1

ε2κ2

∂

∂t
�v, (106b)

respectively. That is, the velocity components are coupled through the flexion field ∇ × ω because of
(102), so that when the flow is potential (and thus irrotational) the velocity components decouple and
obey the standard wave equation for Re = ∞. Both (106a) and (106b) reduce to the wave equation in
the limit of Re = ∞ and initially irrotational flow (so that the vorticity ω vanishes and thus ∇(∇ · v)
reduces to �v); the additional terms in (106) due to the presence of viscosity account for dissipation.
Remarkably, the coupled equations for the velocity components (106b) can be reduced to a scalar
equation for the velocity divergence ∇ · v identical to (106a) for the density:

∂2

∂t2
(∇ · v) = 1

ε2κ2

[
1 + κ

Ma

Re
(χ + 1)

∂

∂t

]
�(∇ · v), (107)

which shows how the quantity ∇ · v = −∂ρ/∂t evolves in time; note that (107) gives an equation
for �φ from (104).

Third, the equation for the vorticity evolution is obtained by taking the curl of the momentum
equation (99), producing the diffusion equation

∂ω

∂t
= 1

κ ε2

Ma

Re
�ω, (108)

where ω has only one component in 2D, i.e., in the ez direction, so that (108) is scalar in essence.
Equations (107) and (108) also form a closed system, but decoupled as opposed to the vector equation
(106b). Taking into account that in 2D the vorticity is expressed asω = ∇ × v = −�A and A = ψ ez,
one can rewrite (108) for the stream function ψ :

∂

∂t
�ψ = 1

κ ε2

Ma

Re
�2ψ. (109)

The velocity vector (103) can then be found from the knowledge of ∇ · v and ∇ × v after solving
(107) and (108), respectively, since φ = �−1(∇ · v) and A = −�−1ω.

The above discussion of the irrotational and solenoidal components of the solution allows one to
reach an important conclusion. Namely, as follows from Eqs. (107) and (108), the irrotational φ part
evolves according to the wave equation (hyperbolic), while the solenoidal A part evolves according to
the diffusion equation (parabolic). As we will see, these two processes are important for understanding
the interplay of compressible and viscous effects in the resolution of the pressure-impulse theory
singularities and can be related to the characteristic analysis of (99) to be performed next, in Sec. V B.
Finally, note that in general both components in (103) are nonzero at the interface and hence the
vorticity is important in understanding the interface evolution.

B. Characteristic analysis and the physics behind it

Performing a change of independent variables to the characteristic surface [42] (t,r) → �(t,r) in
(99) converted back to dimensional variables in order to highlight the physics of the signal propagation
processes, we find the following determinant defining the characteristic surface �(t,r):∣∣∣∣∣∣∣

ρ0�r ρ0�r �t

ρ0�t − μ�2
r − (

λ + μ

3

)
�2

r −(λ + μ

3

)
�2

r c2
0�r

−(λ + μ

3

)
�2

r ρ0�t − μ�2
r − (

λ + μ

3

)
�2

r c2
0�r

∣∣∣∣∣∣∣
= {

ρ0�t − μ�2
r

}{
ρ0�

2
t − �2

r

[
ρ0c

2
0 +

(
λ + 4μ

3

)
�t

]}
= 0, (110)
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where the first bracket on the right clearly stands for the parabolic behavior, while the second bracket
gives both hyperbolic (nondissipative terms) with a finite speed of propagation c0 = ±�t/�r and
parabolic behavior (dissipative terms). The analysis above is done for simplicity in the polar system
of coordinates, since we are interested in propagation of information along er . Note that the original
NSEs (8) have the same characteristic properties.

The mixed characteristic type of the system (99) has a simple physical explanation, which will be
crucial for our further considerations. Namely, over the time t since the moment of impact, viscous
effects (due to the initial wall jet propagating from the high-pressure region at the plate center to
the plate edge where the pressure is atmospheric) diffuse a distance lν = √

ν t and the compressible
effects propagate a distance lc = c0 t . Due to the difference in the time exponents, this observation
implies that up to the time

t∗ = μ/(ρ0c
2
0), (111)

and thus the distance

l∗ = μ/(ρ0c0), (112)

viscous effects propagate faster and, in fact, the speed of propagation at t = 0 is infinite as is common
in parabolic systems. This interesting property of the compressible viscous NSEs allows for their
(equations’) regularization at short times. For t > t∗, a compression wave propagates in the inviscid
region, but, of course, the compression wave itself is regularized by viscosity locally [43–45]. It
is notable that both t∗ and l∗ depend only on the fluid properties. For example, using values from
Ref. [46], for water one finds t∗ = 10−12 s and l∗ = 10−9 m, while for glycerol t∗ = 10−9 s and
l∗ = 10−6 m. The expressions (111) and (112) show that under certain conditions such as for water at
atmospheric pressure and room temperature the characteristic scales are at the limits of the continuum
description and therefore require insights into new physical phenomena not accounted in the NSEs
(cf. Appendix F).

To get a better understanding of the physical meaning of t∗ and l∗, recall that, compared to
gases and solids, interactions in liquids are both system specific and strong [47,48] and therefore
maintain modes with wavelengths ranging from the body size down to interatomic separations [49].
As argued by Frenkel [47], liquid flow results from thermally activated spatial rearrangement of
atoms (or molecules), which are not fixed, but may jump from their surrounding cage, accompanied
by large-scale rearrangement of the cage atoms—this process corresponds to each flow event and
is called a local relaxation with the associated time τ between these events at one point in space
estimated as μ/G, where G is the instantaneous shear modulus [50]. In this context, it must be
noted that the time scale t∗ estimated above (111) is comparable to the characteristic relaxation
time scale τ of liquid matter [47] below which liquids behave like solids, since t∗ ∼ μ/K , where
K is the bulk modulus typically of the same order as the shear modulus G [46]. This fact in turn
affects the interpretation of both the diffusion mechanisms (phonon vs nonphonon propagation) and
sound propagation since solids maintain not only longitudinal waves but also transverse waves—the
latter are absent in liquids and gases under normal conditions. However, on the time scales below t∗
liquids exhibit elastic shear stresses opposing deformations similar to solids, while under the normal
conditions, t 	 t∗, liquids (or any other fluids, for that matter) do not oppose resistance to shear
forces but only to rate of shear deformations.

Based on the above characteristic analysis and the discussion in Sec. V A, one arrives at the flow
structure shown in Figs. 7(a) and 7(b), when the viscous front could be faster than the shock wave
and the opposite, respectively. In Fig. 7(a), the shock wave is propagating in the region already
affected by viscous diffusion, while in Fig. 7(b) there is region 3, which is inviscid and affected by
compressibility due to the propagated shock wave, separating the viscous region 1 and the shock
wave 2, which is, of course, regularized by viscous effects. Hence, the competing diffusion and shock
wave propagation effects dictate the solution structure.
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(a)

1
4

2

(b)

1
3

2
4

FIG. 7. On the flow structure: (a) c0 t <
√

ν t , (b) c0 t >
√

ν t . Dashed line is the “viscous front”
√

ν t ; solid
line is the shock wave c0 t . Regions: 1—affected by viscous diffusion, 2—viscosity smoothened shock wave,
3—unaffected (yet) by viscous diffusion, 4—undisturbed (quiescent) fluid.

C. Early-time limit

As follows from the structure of Eq. (106b), it is not separable in general. However, by rewriting
it in the form

ε2κ2 Re

κMa

∂2v
∂t2

=
[

Re

κMa
+ χ

∂

∂t

]
∇(∇ · v) + ∂

∂t
�v, (113)

we can see that in the limit of early time, κ → ∞, while ε κ ∼ O(1) so that ε → 0 (close to the plate
edge), we are left with the diffusion part only (since for short times ∼ √

t grows faster than ∼t and
hence the wave equation component vt t ∼ �v is negligible):

χ
∂

∂t
∇(∇ · v) + ∂

∂t
�v = 0. (114)

The latter is also not separable in general, but becomes so in the vicinity of the plate edge v ∼ rn

for r → 0; as for values of χ we consider the interval χ ∈ [1/3,1], i.e., λ/μ ∈ [0,2/3]. Integrating
Eq. (114) with respect to time and without loss taking the constant of integration (function of space)
to be zero, we get χ ∇(∇ · v) + �v = 0 or in component form

1

r

∂

∂r

(
r

∂vr

∂r

)
+ 1

r2

∂2vr

∂θ2
+ χ

∂

∂r

[
1

r

∂

∂r
(rvr ) + 1

r

∂vθ

∂θ

]
= 0, (115a)

1

r

∂

∂r

(
r

∂vθ

∂r

)
+ 1

r2

∂2vθ

∂θ2
+ χ

1

r

∂

∂θ

[
1

r

∂

∂r
(rvr ) + 1

r

∂vθ

∂θ

]
= 0. (115b)

These equations are supplied with the no-slip boundary conditions at the plate,

θ = −π : vr = vθ = 0, (116)

and the following conditions at the interface. Assuming that the interfacial deflection from flat
interface is small for early times and close to the edge, so that n � eθ and t � er , we get the set of
boundary conditions linearized around θ = 0:

tangential :
1

r

(
∂vr

∂θ
− vθ

)
+ ∂vθ

∂r
= 0, (117a)

normal :
2

r

(
∂vθ

∂θ
+ vr

)
+ χ − 1

r

[
∂

∂r
(rvr ) + ∂vθ

∂θ

]
= 1

δ

Re

We
[2 hr + r hrr ], (117b)

kinematic :
∂h

∂t
= δ Ma

vθ

r
. (117c)

Note that (117b) follows from (29a), first rewritten as

θ = h(t,r) : n : p − 1

κ2 ε2

κMa

Re
n · τ · n = κMa / We

δ κ2 ε2
∇ · n, (118)
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then plugging (74) in and taking the limit κ → ∞ in

θ = h(t,r) : n :
Re

κ Ma
p − n · τ · n = 1

δ

Re

We
∇ · n (119)

yields (117b).
Since we are working on short distances from the plate edge, we can look for a solution in the

form vr = rnU (θ ) and vθ = rnV (θ ), which leads to two coupled ODEs:

Uθθ + [n2 + χ (n2 − 1)]U + χ (n − 1)Vθ = 0, (120a)

(1 + χ )Vθθ + n2V + χ (n + 1)Uθ = 0. (120b)

Putting (U,V ) = (Û ,V̂ ) emθ , we get the quadratic determinant for finding m2:

(1 + χ ) m4 + [2 n2(1 + χ ) − χ ]m2 + n2[n2(1 + χ ) − χ ] = 0, (121)

the solution of which is

m2 =
{
−n2, − n2 + χ

1 + χ

}
, i.e., m1,2 = ±i n,m3,4 = ±i

√
n2 − χ

1 + χ
, (122)

where it is clear that we are interested in n > 0 so that v is nonsingular. The boundary conditions on
U and V are

(tangential) θ = 0 : Uθ + (n − 1)V = 0, (123a)

(no-slip) θ = −π : U = V = 0. (123b)

From (120) we also find the relation between the amplitudes Û , V̂ :

V̂ = − χ m (n + 1)

m2(1 + χ ) + n2
Û , (124)

or, more specifically, for each choice of m:

m2
1,2 = −n2 : V̂1,2 = −n + 1

m1,2
Û1,2, (125a)

m2
3,4 = −n2 + χ

1 + χ
: V̂3,4 = m3,4

n + 1
Û3,4. (125b)

Hence, the solution to (120) reads(
U

V

)
=
∑
i=1,2

Ûi

(
1

− n+1
mi

)
emiθ +

∑
i=3,4

Ûi

(
1
mi

n+1

)
emiθ . (126)

With the assumed form of the velocity field, the normal dynamic condition (117b) can be
rewritten as

2 hr + r hrr = β rn−1, (127)

with β = const∼δ We/Re. Hence,

h = γ rn with γ = β

2 n + n (n − 1)
, (128)

from where, again, it is clear that one needs n > 0 as h must tend to zero for r → 0. If the interfacial
deflection can be neglected at early times close to the plate edge (cf. Sec. IV D) for r’s in the range
where the power law vr,vθ ∼ rn, and h ∼ rn is valid, then we get a fourth condition on U,V from
(117b):

(normal) θ = 0 : γ U + (χ + 1) Vθ = 0, with γ = 2 + (χ − 1)(n + 1). (129)
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FIG. 8. Solution to the viscous compressible problem near the plate edge for early times: (a) branches of
solutions n(χ ) and (b) streamlines in the viscous compressible case for χ = 0.5, n � 1.32427.

Applying the boundary conditions (123a), (123b), and (129) to the solution (126) produces a
homogeneous 4-dimensional system, the determinant of which must be equal to zero for a nontrivial
solution to exist:∣∣∣∣∣∣∣∣∣∣

e−m1π e−m2π e−m3π e−m4π

− n+1
m1

e−m1π − n+1
m2

e−m2π m3
n−1e−m3π m4

n−1e−m4π

m1 − n2−1
m1

m2 − n2−1
m2

2 m3 2 m4

γ − (n + 1)(χ + 1) γ − (n + 1)(χ + 1) γ + m2
3

n−1 (χ + 1) γ + m2
4

n−1 (χ + 1)

∣∣∣∣∣∣∣∣∣∣
= 0. (130)

Branches of solutions n(χ ) are shown in Fig. 8(a) with a sample solution for χ = 0.5 plotted in
Fig. 8(b), demonstrating noticeable differences from the incompressible flow patterns in Fig. 4.

VI. CONCLUSIONS

In conclusion, let us review the regions of validity of the key inviscid incompressible (3) and
compressible (83) approximations provided gravity (33), viscosity (38), and surface tension (51)
effects are irrelevant. If we compare the conditions (45) and (92), it follows that in the region of
interest, for a fixed ε with increasing time (horizontal arrow in Fig. 3), one first goes from the mostly
undisturbed region as the shock wave has not yet propagated through the fluid, to the shock wave, the
linear compressible, linear incompressible, then nonlinear incompressible, and finally compressible
regimes again. At the latter stage, while the curve Ma2/κ suggests that nonlinear effects should
be important, the solution amplitude decays and hence this stage is no longer of interest in the
context of resolution of singularities. Similar observations can be made for a fixed time κ with
decreasing distance from the edge (vertical arrow in Fig. 3). The nonlinearity becomes important in
the compressible case for ε ∼ Ma2/κ and in the incompressible case for ε ∼ (Ma/κ)2/3; both limits
are plotted in Fig. 3. The (lower) bounds on ε necessary for neglecting nonlinearity are different in
the compressible and incompressible cases because the latter is more restrictive since it requires the
incompressibility condition to be satisfied, which leads to (42), and hence its boundary is higher than
that for compressible case. Viscous effects engage at the distance εvis given by (55a), which may
happen in the compressible or incompressible regime depending on the relative values of κ , Ma, and
Re. Finally, surface tension effects come into play when inequality (51) fails in both incompressible
and compressible cases.

Because of the linear structure of the governing equations as justified by the physics of the impact
phenomena at early times, the solutions at each of the key stages properly defined in the (t,r) plane
by the relevant nondimensional parameters (Ma, Re, We, etc.)—viscous compressible (Sec. V C),
viscous incompressible (Sec. III B), inviscid compressible (Sec. IV B), and inviscid incompressible
(Sec. I)—can be constructed analytically with the help of a self-consistent asymptotic analysis. These
solutions prove to be self-similar in the region near the plate edge, though with different forms of
self-similarity and nonoverlapping regions of validity, thus making it impossible to recover one
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solution from another (by taking limits), except for the incompressible case [19]. This means that in
between these self-similar solutions in the (t,r) plane for a given set of nondimensional parameters
there must exist non-self-similar solutions providing appropriate transition (matching), but they
cannot be constructed analytically. The first three asymptotic solutions—viscous compressible,
viscous incompressible, and inviscid compressible—resolve the corresponding singularities: the
singularity at t → 0 and r → 0 is isolated in the sense that outside it one has the classical inviscid
incompressible solution (3), but its singularity does not propagate to t → 0 and r → 0, where the
physics unaccounted in the pressure-impulse theory resolves the singular behavior. In view of the
characteristic properties of the problem, the dynamics is dominated by diffusion in the limit of short
times, t → 0, which leads to incompressible viscous equations, whose solution is responsible for
the regularization of the singular limits t → 0 and r → 0 in the pressure-impulse theory. At the
same time, depending on the nature of the impacted liquid, this “incompressible viscous” stage may
require a deeper look at the submicroscopic physics when the NSEs are not applicable. Namely, the
momentum (energy) diffusion and compressibility (sound, shock wave) propagation mechanisms
can be different from those for liquids under normal conditions in view of the time scales below the
relaxation period—the existence of transverse sound waves and phonon-type diffusion are among
the processes atypical for normal conditions.

Questions requiring future study include energy and dimensionality effects. Namely, while in the
present study we limited ourselves to the case of barotropic fluids, p = p(ρ), it would be interesting
to understand the thermodynamic aspects of the impact when the equation of state depends on
temperature as well, p = p(ρ,T ), and thus the energy equation should be taken into account. Also,
while we considered the 2D flow only, one may wonder how the crucial difference in the structure
of the solution of the wave equation (106) between 2D and 3D—namely, the existence of sharp
signals in 3D as opposed to the 2D case—affects the impact phenomena. One consequence of this is
a stronger (lasting) effect of compressibility in 2D compared to that in 3D, which physically would
be the flow around a corner of a 2D impactor plate [8]. The evolution of vorticity does not differ,
however, between 2D and 3D since the linear vector equation (108) is the same regardless of the
dimension.

While the phenomena studied here proved to be interesting due to the sudden change in the
boundary conditions—from no penetration to the free boundary (2) in the inviscid case (exhibiting
singularity) and from no-slip to the free boundary (62) in the viscous case (partially regularizing the
singularity, i.e., the involved forces are still divergent)—substituting the no-slip by a slip condition
in (62), as is common in the moving contact line problem, might represent a means of further
regularization in the viscous case, in particular to make the forces finite. This could be especially
relevant for the solid-liquid combinations yielding a substantial slip [51] such as in the case of
polymer solutions or hydrophobic surfaces, i.e., whenever hydrodynamic shear can easily lead to
molecular slip [52]. It must be noted, however, that in the moving contact line problem the no-slip
condition leads to a singular shear stress even in the Stokes approximation versus our case as per
Eq. (65). Dealing with the contact line singularity becomes a necessity in the case of impacts of blunt
bodies and wedges, i.e., when there are moving contact lines. The latter type of impactors naturally
should also exhibit the linear and nonlinear as well as the compressible and incompressible impact
stages (albeit affected by the curvature or other geometric features of the impacting body) considered
in the present paper, which deals with the most singular situation of impact phenomena—the flat
plate impact problem.
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APPENDIX A: ENERGY GAINED BY FLUID AFTER IMPACT

Note that regardless of whether the impacting plate is considered to have a finite or an infinite
mass, the fluid gains only a finite energy; otherwise the whole idea of added mass [4] becomes
invalid. Thus, the kinetic energy of all the fluid set in motion right after the impact is finite even
though some parts of the impacted fluid (near the plate edges) move with an infinite speed, which
is because the mass of those fluid parts is infinitesimally small and thus the contribution to the total
kinetic energy of the entire semi-infinite fluid body is bounded. Therefore, the fact of an infinite
mass and finite speed (and thus infinite kinetic energy) of the plate does not entail that the energy
transferred to the fluid is infinite as well—in fact, it is finite and can be easily evaluated for the early
stage of the impact, in which we are interested, by following the standard considerations [4] for the
impact of a plate of width 2 l, cf. Fig. 1(a). Since the complex potential in the z plane is (3) and
the impulsive pressure in a fluid right after the impact P ≡ ∫ +0

−0 p dt = ρφ, then on the plate y = 0

P (z) = ρ Ref (z) = ρV0

√
l2 − x2, so that we can find the impulsive force acting on the plate at the

moment of impact:

F = ρV0

∫ l

−l

√
l2 − x2 dx = π

2
ρV0l

2, (A1)

which should be equal to F = m(V−0 − V0) by Newton’s second law, where V−0 is the plate
velocity before the impact, in general different from the velocity V0 ≡ V+0 after the impact due
to the plate finite mass m. Thus, because of the added fluid mass madd equal to half-cylinder of the
radius l (half-width of the plate), (π l2/2) ρ in (A1), the velocity of the plate decreases from V−0

to V0:

V0 = mV−0

m + πρl2

2

. (A2)

The momentum balance (A2) is applicable in the limit m → +∞ as well, which yields V−0 = V0.
To show that the energy acquired by the fluid is finite, append to the momentum balance (A2) the
energy balance

mV 2
−0

2
= mV 2

0

2
+ maddV

2
ave

2
, (A3)

which, when solved together with (A2), in the limit m → ∞ gives for the average velocity Vave =√
2 V−0 = √

2 V0 of the added mass madd, i.e., the energy acquired by fluid right after the impact is
finite. Note that based on (3), the velocity decays as r−2 with distance from the origin and thus the
energy decays as r−4, which explains why the added mass is finite and the kinetic energy of the fluid
acquired after the impact of a plate of an infinite mass is finite as well.

APPENDIX B: ON SELF-SIMILARITY OF THE WAVE EQUATION

The standard one-dimensional wave equation

∂2φ

∂t2
= c2 ∂2φ

∂x2
(B1)

has the obvious self-similar type symmetry, in which time and space coordinates are being stretched
with equal rates, thus allowing one to look for a solution in the form

φ = φ(η), η = t

x
; (B2)
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this means that the solution at the point (t,x) looks the same as at (α t,α x), α > 0. Substituting the
above anzatz produces an ordinary differential equation

d2φ

dη2
= c2

[
2η

dφ

dη
+ η2 d2φ

dη2

]
, (B3)

the solution of which is

φ = C1 + C2 ln

(
1 + c η

1 − c η

)
. (B4)

Now, if one compares this self-similar solution to the general solution of (B1)

φ = f (x − c t) + g(x + c t), (B5)

with some arbitrary functions f and g, it is clear that (B5) in general does not possess the
same symmetry (B2) since φ = f (x − c t) + g(x + c t) = f [x(1 − c η)] + g[x(1 + c η)]. Indeed,
the anzatz φ = f̃ (1 − c η) + g̃(1 + c η) satisfies (B1) only if g̃(y) = −f̃ (y) = ln(y). This illustrates
the basic fact that self-similar solution (B4) represents a subclass of a general solution set (B5).

APPENDIX C: COMPRESSIBLE INVISCID SOLUTION: SELF-SIMILAR STRUCTURE

When considering the water impact problem locally, near the plate edge, or, equivalently, assuming
the plate to be semi-infinite, one expects the solution to be self-similar in view of the absence of an
independent geometric length scale. The corresponding mixed boundary-value problem for the 2D
wave equation

1

c2

∂2φ

∂t2
= ∂2φ

∂x2
+ ∂2φ

∂y2
, (C1a)

y = 0 :
∂φ

∂y
= −V0, x < 0, (C1b)

φ = 0, x > 0, (C1c)

has an obvious affine symmetry group thus allowing the self-similar solution of the form

φ(t,x,y) = c2 t �(ξ,η), ξ = x

c t
, η = y

c t
, (C2)

which produces the equation

(1 − ξ 2)
∂2�

∂ξ 2
− 2 ξ η

∂2�

∂ξ ∂η
+ (1 − η2)

∂2�

∂η2
= 0 (C3)

of elliptic type in the region ξ 2 + η2 < 1. This illustrates an interesting property: while the original
problem (C1a) is hyperbolic, its restriction (C3) to a self-similar plane is elliptic. Applying the
Chaplygin transformation

ξ = r cos θ, η = r sin θ, r = 2�

1 + �2
(C4)

to Eq. (C3), we get the Laplace equation in the region � < 1:

�
∂

∂�

(
�

∂�

∂�

)
+ ∂2�

∂θ2
= 0, (C5)

the solution of which near the origin behaves as � ∼ �1/2 in analogy with the potential in
the incompressible case (7)—reverting back to the original variables, we get the leading-order
asymptotics (85) for the compressible case.
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APPENDIX D: ON SEPARABILITY OF THE WAVE EQUATION

In search for a separable solution to (B1), we assume φ(t,x) = A(t)B(x), which yields

Att

A
= c2 Bxx

B
= −λ2, (D1)

and hence harmonic solutions for both A(t) and B(x):

A = C1e
iλt + C2e

−iλt , (D2a)

B = C1e
iλx/c + C2e

−iλx/c, (D2b)

i.e., only smooth (Taylor expandable) solutions and therefore only integer powers of t and x.
As an alternative, let us look for a solution of (B1) in a recursive manner, i.e.,

φ(t,x) =
∑

i

aix
ni tmi , (D3)

where powers ni and mi are not necessarily integers. Substitution into (B1) gives the following
conditions for two terms to balance:

ni − 2 = nj , mi = mj − 2, ajmj (mj − 1) = c2aini(ni − 1). (D4)

If we are looking for solutions such that t 	 x/c, then if, say, nj = 1/2 and mj = 1/2, such a term in
the solution representation will be balanced by ni = 5/2 and mi = −3/2. This construction enables
the existence of a solution φ(t,x) ∼ t1/2 x1/2 with t 	 x/c, i.e., of the form (85).

APPENDIX E: POST SHOCK WAVE ASYMPTOTICS WITHOUT SURFACE TENSION

In nondimensional variables (16), the problem is formulated as follows:

y < 0 : (bulk) :
∂2φ

∂t2
= �φ = 1

r

∂

∂r

(
r

∂φ

∂r

)
+ 1

r2

∂2φ

∂θ2
, (E1a)

t = 0 : φ = φt = 0. (E1b)

y = 0 : (plate) :
∂φ

∂y
≡ −1

r

∂φ

∂θ
= −1, |x| < 1, (E1c)

(free surface) : φ(t,x) = 0, |x| > 1. (E1d)

It is clear that due to the boundary condition at y = 0, |x| < 1, the solution is not separable. Hence,
we will consider the “eigensolution” case for a half-infinite plate, i.e., focus only on the region near
the plate edge, when the boundary condition (E1c) is replaced by φθ = 0 at y = 0, x < 0. Letting
φ(t,r,θ ) = A(t)�(r,θ ) with �(r,θ ) = B(r)C(θ ), we arrive at the following problems: for A(t),

Att − λ2A = 0; t = 0 : A = At = 0; (E2)

for C(θ ),

Cθθ + n2C = 0; θ = 0 : C = 0, θ = −π : Cθ = 0; (E3)

and for B(r),

1

r

d

dr

(
r

dB

dr

)
−
(

n2

r2
+ λ2

)
B = 0, (E4)

which gives the solution in terms of modified Bessel functions

B(r) = C1In(λr) + C2Kn(λr), (E5)
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where Kn(λr) is singular at the origin and should be discarded. Clearly, with the initial conditions
taken into account, the solution is not separable, but if we are looking for a long time limit t 	 r ,
then the solution becomes separable. For that reason, it is convenient to solve the problem using the
Laplace transform,

L(φ) ≡ φ̂(λ) =
∫ +∞

0
φ(t) e−λt dt, (E6)

with the standard properties of the derivatives transformation:∫ +∞

0

dφ

dt
e−λt dt = λφ̂(λ) − φ(0),

∫ +∞

0

d2φ

dt2
e−λt dt = λ2φ̂(λ) − dφ

dt
(0) − λφ(0). (E7)

The solution for C(θ ) is clearly quantized because of (E3), thus giving

C(θ ) = const · sin
(

1
2 + m

)
θ, m ∈ Z. (E8)

If we are looking for the solution near the plate edge, r → 0, then the asymptotics of B(r) follows
from that of In(z) ∼ ( 1

2z)
n
/�(n + 1).

Since we are interested in the asymptotics behind the shock wave, i.e., t 	 r , which in the
Laplace space variable means λ−1 	 r or λ r � 1, and the asymptotics of the inviscid compressible
flow should be consistent with the asymptotics of the inviscid incompressible flow for r � 1, i.e.,
φ ∼ r1/2, then the leading-order term in the solution must correspond to m = 0:

φ̂ ∼ λ1/2r1/2 sin
θ

2
. (E9)

In order to recover the form of the solution in the physical space, note that the inverse Laplace
transform L−1 of λ−1/2 is

L−1

(
1√
λ

)
= 1√

πt
, (E10)

so that by differentiating the solution (E9) in the Laplace space

dφ̂

dλ
∼ λ−1/2 ∼

∫ +∞

0
t φ(t) e−λt dt (E11)

and comparing with (E10), we recover (85).

APPENDIX F: ON THE PHYSICS OF DIFFUSION IN LIQUIDS

While it is understood how an infinite speed of propagation occurs in the macroscopic diffusion
equation in the context of molecular diffusion (random walks) [53], the estimates of t∗ and l∗ in
Sec. V B imply that under certain conditions, e.g., when l∗ = 10−9 m, diffusion processes need to be
revisited in order to make a precise sense of the early times of the impact phenomena. First of all, it is
known that the standard diffusion equation fails at such scales [54,55]. Second, diffusion of viscous
effects is different from molecular diffusion since the former is momentum and energy transfer
(as opposed to mass transfer), which puts it in the realm of heat transfer and thus the dominating
physical mechanisms (phonons, electrons, photons, etc.) responsible for the diffusion differ from
material (random walk) transport of molecular diffusion and depend on the nature of the liquid. In
fact, the electromagnetic nature of the diffusion mechanisms allows faster than sound propagation
speeds, at least on small scales.

Depending on the nature of a particular liquid system, there could be several mechanisms
responsible for heat diffusion [49,56–58]—such as by phonons, molecular random walks, electrons,
photons, etc.—each of which would have a different speed of propagation. Each process of heat
diffusion is linear and therefore, if the heat was released at a point, leads to a Gaussian distribution.
Since a linear combination of Gaussians is not a Gaussian, the system is in a nonequilibrium state due
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to different carriers (phonons, molecules, electrons, photons, etc.) having different “temperatures”.
Given the linearity of the phenomena, such a nonequilibrium heat diffusion described by several
diffusion processes with different constant diffusion coefficients is qualitatively analogous to the
process described by a single linear equation model with a time-dependent diffusion coefficient. For
example, if we consider diffusion from the point source δ(x) on the real line x ∈ R,

∂u

∂t
= ε tα

∂2u

∂x2
, (F1a)

t = 0 : u(0,x) = δ(x), (F1b)

where α > 0, we find

u(t,x) = 1

2
√

πc2
e
− x2

4c2 , where c2 = ε tα+1

α + 1
; (F2)

i.e., the diffusion propagates with speed ∼√
ε tα+1 as opposed to ∼√

ε t in the constant diffusion-
coefficient case, which means that the speed of propagation may vary from infinite to finite.
While a macroscopic diffusion (viscosity) coefficient stands for the “front” (of the propagating
quantity—energy, vorticity, etc.—defined in some averaged statistical sense), some of the underlying
mechanisms propagate faster, though carrying only a portion of the energy. However, physically, this
fact is important as the media is disturbed through viscous diffusion faster than the compression
wave propagates into it. Later on, more energy is transferred, which effectively means that the
viscosity coefficient is growing and thus time dependent. Another important note to make is that
the mechanisms responsible for diffusion and sound propagation may overlap at submacroscopic
distances—for example, there exists a ballistic mechanism [54,55,59] responsible for transport
phenomena at scales comparable to the mean free path, which makes transport faster than the speed
of sound [60], not to mention that at the time scales below relaxation phonons make it possible for
the existence of both phonon-mediated diffusion and transverse sound waves otherwise absent in
liquids on longer time scales [61].
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