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Melting and, conversely, solidification processes in the presence of convection are key
to many geophysical problems. An essential question related to these phenomena concerns
the estimation of the (time-evolving) melting rate, which is tightly connected to the
turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the
liquid-solid interface. In this work, we consider a convective-melting model, constructed as
a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid.
As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and
eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann
numerical simulations employing an enthalpy formulation of the governing equations, we
explore the model dynamics in two- and three-dimensional configurations. The focus of
the analysis is on the scaling of global quantities like the heat flux and the kinetic energy
with the Rayleigh number, as well as on the interface morphology and the effects of space
dimensionality. Independently of dimensionality, we find that the convective-melting system
behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat
flux is only weakly enhanced with respect to that case. Such similarities are understood, at
least to some extent, considering the resulting slow motion of the melting front (with respect
to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the
height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical
properties of the material, also seems to have only a mild effect, which implies the possibility
of extrapolating results in numerically delicate low-Stefan setups from more convenient
high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically
relevant problem of modeling Arctic ice melt ponds.
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I. INTRODUCTION

Melting and solidification coupled with convective flows are fundamental processes in the
geophysical context. Convective melting (CM) is thought to have played a major role in Earth’s mantle
formation [1] and is commonly observed in magma chambers [2,3], lava lakes [4], or melt-ice lakes
[5,6]. All these systems are characterized by the presence of unsteady, chaotic, and often turbulent
flows. Turbulence arising from natural convection in fixed-shape domains like the Rayleigh-Bénard
(RB) system has been studied in depth through laboratory experiments, as well as theoretical and
numerical investigations [7–9]. Much less attention has been instead directed to the problem of
coupled turbulent natural convection and phase change, particularly in the case of basal (as opposed
to lateral) heating. A key difference between the CM and RB dynamics pertains to the role of time.
While the RB system can be considered stationary in a statistical sense, the CM system is intrinsically
nonstationary, due to the phase change occurring at boundaries, which leads to a continuously
time-varying fluid domain. An important question related to convective melting processes in all
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their generality is the prediction of the evolution of the melting rate, which is connected to the
heat-flux dynamics determined by the flow in the system. To what extent the knowledge acquired on
turbulent, i.e., high-Rayleigh-number, natural convection can be exploited to understand convective
melting is at the moment an open problem and a central question in this paper. A second open
issue that deserves attention concerns the characterization, at least in a statistical sense, of the shape
(often termed topography in geophysical applications) of the solid-to-liquid phase-change interface
resulting from the turbulent convective transport of heat.

The study reported in this article was motivated by the ongoing research on the dynamics of
ice-melt ponds that form during the summer season in the Arctic [5]. Such ponds absorb heat from
a source situated on their top side. Heat absorption is partly due to the contact with warmer air
(∼2 ◦C) and partly to a volumetric contribution from solar radiation. At the bottom of the pond,
the melt water is instead in contact with ice (�0 ◦C). Since the typical temperatures involved are
definitely lower than 4 ◦C [10], the density of the fresh water contained in ponds increases with
increasing temperature. Such fluid layers then are in a dynamically unstable state and display natural
convection coupled to a phase-change process on the bottom side. Ice-melt ponds are known to have
an important role in the global climate dynamics because they strongly affect the effective albedo
(i.e., the ratio of reflected over incoming solar radiation) in polar regions. Because water is a good
absorber of electromagnetic radiation, the low albedo of ponds, compared to that of snow or sea
ice, causes them to preferentially absorb heat, which further affects the bottom-side sea-ice melting
through a positive feedback mechanism [11]. A better understanding of the small-scale (few to some
tens of centimeters) mechanisms controlling the convective heat transfer in ponds is necessary in
order to provide useful guidelines for parametrizations in large-scale ice models [12–14]. The rate
of melting in water ponds depends on a variety of factors including the temperature of the air, the
effect of wind draft, the residual salinity of water in the ponds, and the intensity of the buoyancy
force leading to convection. Among these factors, convection plays a prominent role, as it enhances
water mixing and increases the total intake of energy into the system. The flow in ponds is generally
turbulent [10], with realistic values of the Rayleigh number in the range 106 to 109. In addition,
the topography of the bottom surface of a melt pond can affect the flow by creating flow patterns
and coherent thermal structures that can differ from those occurring between flat plates or plates
with prescribed roughness [8]. Because the absorption of solar radiation is a nonlinear function of
the water layer depth, the evolving bottom topography of ponds is also a key parameter for precise
estimations of the pond albedo [15].

In the present work, we investigate the behavior of a model system in which a pure substance
initially in the solid state is progressively melted by a horizontal heat source. The melt fluid layer is
thermally unstable and quickly develops convective motion of progressively higher intensity as the
depth of the melt layer increases. This simple realization of basal-heating-driven convective melting
allows thorough analyses of the dependencies of global flow observables, such as the total heat
flux and the total kinetic energy, on the varying melt-fluid-layer depth. It also reveals possible links
between the flow and the phase-change interface shaped by it.

The remainder of this paper is organized as follows. In Sec. II, we introduce the adopted model
system together with its evolution equations. A discussion about the global heat flux budget with
additional dimensional arguments for the heat flux scaling behavior in different flow regimes is
presented in Sec. III. Section IV concisely presents the numerical simulations, which are implemented
via a lattice-Boltzmann method capable of accurately describing both the turbulent convective
dynamics of the melt water and the solid-to-liquid phase change. The results of simulations in two
and three dimensions (2D, 3D, respectively) are presented and discussed in Sec. V. To interpret and
rationalize the observed trends in the scaling of global quantities, such as the Nusselt and Reynolds
numbers, we focus the discussion on the effects of space dimensionality, Secs. V B and V C, and we
analyze the morphology of the melting front in Sec. V D. The effects of varying the Stefan number
on the melting rate is studied in Sec. V E. Final discussions and conclusions are given in Sec. VI.
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FIG. 1. Schematic view (two-dimensional [2D] cut) of the melting system. This initially consists of a pure
solid at the melting temperature (Tm). The bottom temperature is kept fixed at a value T0 > Tm, allowing the
formation of a liquid phase. As time progresses, the bottom fluid layer becomes deeper and convection can
develop in it. The local height of the liquid-solid interface, measured from the bottom, is denoted zm; its average
over horizontal (x,y) coordinates is H .

II. THE CONVECTIVE MELTING SYSTEM WITH BASAL HEATING

The model system considered in this study consists of a solid layer of a pure substance of thickness
Hmax initially at a constant temperature, Tm, equal to the phase change (melting) temperature. At time
t > 0, the bottom boundary of the solid is heated at a constant temperature T0 > Tm and a melted fluid
layer begins to grow from below with the liquid-solid interface advancing in the direction opposite
to that of gravity. The density of the fluid is assumed to be a decreasing function of temperature, and
therefore the bottom heating produces an unstable stratification of the fluid layer. A diagram of the
model system is shown in Fig. 1.

We note that our model system is dynamically equivalent to the setting mentioned earlier of an
Arctic melt pond, although it is an upside-down representation of it. Indeed, in melt ponds, heating
occurs at the top rather than at the bottom, but warmer water parcels are negatively (instead of
positively) buoyant. Notice, however, that for simplicity we neglect the distributed thermal forcing
due to solar radiation and wind-induced shear at the hot boundary (the air-water interface for real
ponds).

A. Equations of motion

Under the assumption that the temperature differences occurring in the system are small enough
for the Boussinesq approximation to hold, the governing equations in the melt layer are

ρ0(∂t u + u · ∇u) = −∇p + μ∇2u + ρl g, (1)

∇ · u = 0, (2)

ρl = ρ0[1 − β(T − T0)], (3)

∂tT + u · ∇T = κ∇2T , (4)
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where u(x,t), p(x,t), and T (x,t) respectively are the fluid velocity, pressure, and temperature fields;
μ is the dynamic viscosity; and g is gravity acceleration. The fluid density ρl is assumed to linearly
depend on temperature, with ρ0 being the reference density at temperature T0 and β being the thermal
expansion coefficient; κ indicates the thermal diffusivity. Note that the flow is incompressible, as a
consequence of the Boussinesq approximation.

The boundary conditions associated to the above set of equations are isothermal and no-slip for
temperature and velocity, respectively, at the bottom wall, periodic at lateral boundaries, and no
slip and melting (i.e., Stefan condition for a solid at melting temperature [16]) at the phase-change
interface. The conditions at vertical boundaries then read

T |x=(x,y,0) = T0 ∀ (x,y) ∈ [0,L]2, (5)

u|x=(x,y,0) = 0 ∀ (x,y) ∈ [0,L]2, (6)

−κ ∇T |x=xm(t) = L
cp

ẋm(t) ∀ xm(t) ∈ I(t), (7)

u|x=xm(t) = 0 ∀ xm(t) ∈ I(t). (8)

Here L and cp respectively are latent and specific heat; xm(t) is the position vector of a point
belonging to the interface [denoted I(t)] and consequently ẋm(t) is the velocity at which the melting
front advances into the solid.

The temperature equation (4) together with the associated phase-change boundary condition (7)
can be recast as follows:

∂tT + u · ∇T = κ∇2T − L
cp

∂tφl, (9)

where the phase field φl(x,t) accounts for the volume fraction of the liquid phase (φl = 0 in the
solid and φl = 1 in the fluid). Such a formulation can be derived from the transport equation for
the enthalpy field H(x; t) = cpT + φlL, which is the sum of the sensible heat and the latent heat
associated to the phase-change process [17]. Finally, we note that the local instantaneous height of
the liquid melt layer can be obtained from φl :

zm(x,y,t) =
∫ Hmax

0
φl(x,t) dz. (10)

B. Control parameters

It is convenient to express the equations of motion of the system in dimensionless form. We define
nondimensional variables by dividing temperature by �T = T0 − Tm, density by ρ0, length by Hmax,
and time by the diffusive time H 2

max/κ . The evolution equations (1) and (4), with condition (2), made
nondimensional read

∂ ũ
∂t̃

+ ũ · ∇̃ũ = −∇̃p̃ + Pr∇̃2
ũ + Ramax Pr T̃ ˆ̃z, (11)

∇̃ · ũ = 0, (12)

∂T̃

∂t̃
+ ũ · ∇̃T̃ = ∇̃2

T̃ − 1

St

∂φl

∂t̃
, (13)

with tildes indicating nondimensional variables (note, however, that p̃ is a modified dimensionless
pressure that, unlike p, does not include the hydrostatic component and whose gradient reabsorbs
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other constant terms). In Eqs. (11)–(13), three global control parameters appear:

Ramax = βg�T H 3
max

νκ
, Pr = ν

κ
, St = cp�T

L . (14)

They respectively are the Rayleigh number (Ramax), accounting for the relative strength of buoyant
forcing and dissipative processes; the Prandtl number (Pr), expressing the ratio of kinematic viscosity
(ν ≡ μ/ρ0) to thermal diffusivity; and the Stefan number (St), giving the ratio of sensible to latent
heat. Note that with the latter definition, the singular limit St → 0 represents the case of a material
that needs an infinite time to melt.

In the present study, we are interested in the dynamics of the system before the melting interface
reaches the top boundary. This, combined with the fact that the solid is initially at the melting
temperature, means that Hmax is not a characteristic scale of the problem. In fact, it plays no role
here, given that there is neither thermal advection nor diffusion in the solid phase. For this reason,
it is more convenient to adopt as a reference length scale the instantaneous horizontally averaged
height of the fluid layer, H (t), which is defined as

H (t) = 1

L2

∫ L

0

∫ L

0
zm(x,y,t)dx dy, (15)

or, equivalently,

H (t) = 1

L2

∫
V

φl d3x = Hmax〈φl〉. (16)

In Eq. (16), the notation 〈· · · 〉 ≡ V −1
∫
V

. . . d3x indicates a volume average over the entire domain
(i.e., fluid and solid); hence 〈φl〉 denotes the global liquid fraction in the system. This allows us to
introduce the effective Rayleigh number:

Raeff = βg�T [H (t)]3

νκ
= Ramax 〈φl〉3. (17)

A further control parameter characterizing the system is the geometrical aspect ratio. Also, in this
case it makes sense to define an effective aspect ratio,

	eff = L

H (t)
= L

Hmax 〈φl〉 = 	min

〈φl〉 . (18)

Note that during its dynamics the convective melting system always explores a range of decreasing
effective aspect ratios, starting from 	eff = +∞ and reaching a value than cannot be smaller than
	min ≡ L/Hmax.

III. HEAT FLUX

In this section, we derive the global relations expressing the vertical heat flux across the fluid
layer. We shall distinguish between the heat flux at the bottom side of the system, that we will call
incoming flux, and the heat flux at the fluid-solid interface, that we will call outgoing flux. Here
we focus on the three-dimensional (3D) configuration. However, the developed arguments can be
adapted to the 2D case with no conceptual difficulty.

A. Global heat budget

We begin by considering the equation for temperature in the fluid domain with moving interface,
Eq. (4), in 3D. Writing it in conservative form and integrating over the volume Vl occupied by the
fluid, one obtains ∫

Vl

∂tT d3x +
∫

∂Vl

n · (uT − κ∇T )dS = 0, (19)
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after making use of the divergence theorem and where n denotes the outward-pointing unit normal
vector associated with the orientation of the surface ∂Vl . Because of the velocity and temperature
boundary conditions (Sec. II A), the contribution from the advective term n · uT is zero and one is
left with ∫

Vl

∂tT d3x +
∫ L

0

∫ L

0
κ∂zT |z=0dx dy +

∫
I
−κn · ∇T |x=xm(t)dS = 0, (20)

where the first surface integral is evaluated at the bottom flat boundary and the second at the melting
front. After normalizing each term by the horizontal bottom surface (L2) and rearranging, one gets

Qin = Qout + L−2
∫

Vl

∂tT d3x, (21)

Qin = −κ〈∂zT |z=0〉A, (22)

Qout = L−2
∫
I
−κn · ∇T |x=xm(t)dS, (23)

where 〈· · · 〉A stands for an average over a horizontal plane. In the above expressions, Qin can be
identified with the bottom heat flux (incoming into the fluid), expressed in ρ0cp units, and Qout with
the heat flux at the top of the fluid domain (outgoing into the solid), in the same units. The last
term in Eq. (21) expresses the total temporal variation of the temperature in the melt and it therefore
represents the global heating of the system. It results from the nonstationarity of the dynamics; in the
RB system this term vanishes when a time average is also performed. Equation (21) can be recast in
terms of the dimensionless Nusselt number, normalizing by κ�T/Hmax. This gives

Nuin = Nuout + Hmax

κ�T

1

L2

∫
Vl

∂tT d3x. (24)

As in Sec. II B, it seems convenient to introduce an effective Nusselt number here:

Nueff = Nu
H (t)

Hmax
= Nu 〈φl〉. (25)

The meaning of the effective Nusselt number is the usual one. It expresses the ratio between the total
heat flux and the one that would take place across the scale H (t) with a temperature gap �T in a
stationary process controlled by diffusivity (κ) only. We note that this way of normalizing the heat
flux was previously introduced in Ref. [18]. The nondimensional version of Eq. (24) is

Nuin
eff = Nuout

eff + 〈φl〉2〈∂t̃ T̃ 〉Vl
, (26)

where 〈· · · 〉Vl
indicates an average over the liquid volume Vl = H (t)L2.

To better appreciate the meaning of the term Nuout
eff in our system, let us consider the temperature

equation, Eq. (9), in the full (liquid and solid) domain:

∂tT + ∇ · (uT − κ∇T ) = − L
cp

∂tφl. (27)

Proceeding as before, but now with volume integrals over the whole domain, we obtain

Nuin
eff = 1

St

H 2
max

κ
〈φl〉d〈φl〉

dt
+ H (t)

κ�T

1

L2

∫
V

∂tT d3x (28)

and in dimensionless units

Nuin
eff = 1

St
〈φl〉d〈φl〉

dt̃
+ 〈φl〉〈∂t̃ T̃ 〉. (29)
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Observing, now, that 〈· · · 〉 = 〈φl〉〈· · · 〉Vl
+ (1 − 〈φl〉)〈· · · 〉Vs

, where 〈· · · 〉Vs
is the average over the

volume of the solid phase, and using this to transform the last term in Eq. (29), we get

Nuin
eff = 1

2St

d〈φl〉2

dt̃
+ 〈φl〉2〈∂t̃ T̃ 〉Vl

+ (〈φl〉 − 〈φl〉2)〈∂t̃ T̃ 〉Vs
. (30)

In the special case in which the solid is initially uniformly at the melting temperature Tm, no
conduction occurs in the solid phase and hence 〈∂t̃ T̃ 〉Vs

= 0. Comparing the above equation with
Eq. (26), one then recognizes that the outgoing heat flux is directly linked to the first term on the
right-hand side of Eq. (30), proportional to the melt fraction variation over time.

In summary, when the solid is initially at the melting temperature, we have

Nuin
eff = −〈∂z̃T̃ |z̃=0〉A〈φl〉, (31)

Nuout
eff = 1

2St

d〈φl〉2

dt̃
, (32)

Nuin
eff − Nuout

eff = 〈φl〉2〈∂t̃ T̃ 〉Vl
> 0. (33)

Equation (31) is the nondimensional analog of Eq. (22) for the incoming heat flux, and Eq. (32) relates
the outgoing heat flux to the liquid fraction, and in particular to the global melting rate, defined as
d〈φl〉/dt̃ . The last inequality, in Eq. (33), follows from the fact that one expects that not all the heat
input into the system will be transferred across the fluid layer, but that part of it will be used to warm
the liquid to an intermediate temperature between the minimum value Tm and the maximum one T0.

B. Scaling relations for the heat flux and the melt fraction

Before the onset of convection, i.e., for time small enough, the system evolution is governed by
heat conduction in the fluid layer and melting at its boundary with the solid. In such conditions, the
liquid-solid interface is flat; the incoming and outgoing heat fluxes are respectively given by

Nuin
eff = 2λ2

St
eλ2

and Nuout
eff = 2λ2

St
, (34)

where λ is a constant depending on St [16]. Further details can be found in Appendix A. Here we
only note that both Nuin

eff and Nuout
eff are time independent. In the limit of small St, it is possible to

show that λ � √
St/2 and, therefore, Nuin

eff � 1 + St/2 and Nuout
eff � 1.

In the convective regime, due to the important nonlinearities of the dynamics, the exact expression
of the liquid fraction as a function of time, and hence of the heat fluxes, is not available. However,
Eqs. (31)–(33) can still be used to extract informative scaling relations. Similar to what is done
for turbulent convection in the RB system, one can assume that the effective Nusselt number has
power-law dependencies on the control parameters of the system. We will here consider the outgoing
effective Nusselt number and assume

Nuout
eff ∼ Raα

eff Prδ Stγ . (35)

By using Eq. (32) to relate Nuout
eff to 〈φl〉, as well as the definition of Raeff [Eq. (17)], we then obtain

the following scaling for the melt fraction:

〈φl〉 ∼ t̃
1

2−3α Pr
δ

2−3α St
γ+1
2−3α . (36)

Few observations are in order. First, in the conductive case, because Nuout
eff is constant, one has

α = δ = γ = 0 and Eq. (36) gives the known behavior (see Appendix A) 〈φl〉 ∼ t̃1/2 St1/2 (where the
limit of small St has been taken too). Second, in the presence of convection, again by analogy with
the RB system, the value α = 1/3 may be considered. We note that in this context the 1/3 Rayleigh
exponent corresponds to the so-called Malkus scaling [19], a regime where the horizontal thermal
boundary layers are marginally stable or in which the vertical heat flux does not depend on height [8].
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In the CM context, the same scaling exponent, this time for the effective Rayleigh, corresponds to
a time-independent average melting front speed vm ∝ d

dt̃
〈φl〉 = const. Third, the so-called ultimate

regime of thermal convection, which is dominated by the flow dynamics in the bulk of the system
and is characterized by α = 1/2 and δ = 1/2, would give vm ∼ Pr t̃ , i.e., constant front acceleration.
Finally, we note that little is known about the Stefan dependency of the global heat flux in the
convective regime. However, we can observe that if Nuout

eff is independent of St (γ = 0) and at the
same time α = 1/3, vm would linearly depend on St, vm ∼ St.

IV. METHODS

We perform direct numerical simulations (DNS) of the convective melting system introduced in
Sec. II and, for comparison purposes, of thermal convection between fixed flat parallel plates, i.e.,
of the RB system. Different methods have been proposed in the past to simulate melting coupled
to flows. They can be grouped into two main classes: front-tracking (moving boundary) methods
and single-domain fixed-grid ones (as, e.g., the enthalpy method). Both types of approaches clearly
have advantages and drawbacks; if front-tracking generally allows for a smoother resolution of the
interface, the enthalpy method typically lends to simpler implementations, particularly in 3D setups.
Our simulations are based on a uniform mesh lattice-Boltzmann (LB) method [20] employing an
enthalpy formulation, similar to the one proposed in Ref. [21], to discretize Eq. (9). The technical
details of the numerics are discussed in Appendix B.

Having in mind melt ponds in the Arctic, we focus on water-ice dynamics. For this reason, we
keep the Prandtl number fixed at the value Pr = 10, close to that of fresh water just above the
freezing point (at temperatures 0.01 ◦C < T < 10 ◦C, Prandtl is 9.47 < Pr < 13.67) [22]. Ulvrova
and colleagues [18] addressed the same melting problem but for Pr = 7, St = 0.9 and for Pr = ∞,
St = 10; the former case can be representative of water at 20 ◦C while the latter seems a reasonable
approximation for convection in the solidifying Earth’s mantle. The O(1) value of the Stefan number
used in the study mentioned above is advantageous for numerical computations but not always
realistic for geophysical applications. For instance, in ice-melt ponds St is estimated to be O(10−2).
For computational reasons, in the present work we also take St = 1 in the majority of simulations, but
we will also present results of computationally more expensive simulations at St = 10−1 or cheaper
(faster) ones at St = 10 and 100.

The simulations are initialized by setting the fluid fraction to zero in the whole domain and
temperature at the melting value T = Tm. A small random perturbation (of amplitude Tε � 10−6)
is added to destabilize the system, which is known to be linearly unstable [23], as in the RB case.
Ensemble averages are performed over several simulations with different random initial conditions.
In Table I, we summarize the most relevant information on all the CM simulations performed,
listing both the numerical parameters adopted in the LB simulations and the resulting dimensionless
control parameters. To guide the reader, we also provide an indication on where the obtained data
are employed in the figures of the paper.

The RB simulations are performed with parameter values as close as possible to those of the CM
case. The Rayleigh number is here set by controlling the height of the system (Lz) and we make sure
to always have at least eight grid points in the thermal boundary layer. Simulations ran over tens or
hundreds of large-eddy turnover times. The turnover time is defined as Te = L/urms with L being
the width of the system, urms =

√
〈|u|2〉V , and the overbar denoting a temporal average.

Note that in the presence of melting the root-mean-square velocity urms is computed differently.
Indeed, due to the unsteady character of the flow it would be now inappropriate to average over time.
Moreover, because there is no velocity in the undeformable solid, it makes more sense to compute
the spatial average over the fluid domain only. Accordingly, one has

urms,Vl
=

√
〈|u|2〉Vl

=
√

〈|u|2〉V 〈φl〉−1/2 = urms 〈φl〉−1/2. (37)

This quantity will be used to construct the Reynolds number, which will be discussed in Sec. V.
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TABLE I. Summary of the parameter values for all CM simulations. We provide both dimensional (in
simulation units) and dimensionless control parameters. The time step is fixed to δt = 1 for all simulations. The
mesh is uniform and the numerical value of the grid spacing is δx = 1; Lx,Ly,Lz indicate the size of the system
in mesh units. The second column from the left, [No.], specifies the number of replica simulations performed,
which are employed to compute ensemble averages. The last column on the right indicates the figures of the
paper where the results of the simulations are used.

No. Lx Lz Ly ν κ β �T g L cp Pr St Ramax 	min Fig.

8 2000 1000 1 0.2 0.02 0.0005 1 1 1 100 10 100 1.25 × 108 2 10
8 2000 1000 1 0.2 0.02 0.0005 1 1 1 10 10 10 1.25 × 108 2 9, 10

2D
8 2000 1000 1 0.2 0.02 0.0005 1 1 1 1 10 1 1.25 × 108 2 2–6,8–10
8 2000 1000 1 0.2 0.02 0.0005 1 1 10 1 10 0.1 1.25 × 108 2 9, 10

3D 6 512 512 512 0.2 0.02 0.003 1 1 1 1 10 1 1.00 × 108 1 5–10

V. RESULTS

A. Qualitative description of the dynamics

We start by describing the typical evolution of the CM model system. This passes through different
stages. At the beginning, the melt layer grows solely by conduction and the system closely follows
the Stefan solution. There is no noticeable fluid flow and the phase-change interface remains flat.
At later times, a convective flow pattern develops. The onset of convection is delayed for increasing
values of St, as in Ref. [23]; the critical effective Rayleigh number recovers that of the RB system
only in the limit of vanishing St [24]. The convective onset occurs at around Raeff � 5 × 103 in
our 2D simulations. The flow visualization of Fig. 2 helps in elucidating the main features of the
CM dynamics, from the onset stage, in the 2D setting. The appearance of convection is marked
by a change in the shape of the phase-change interface from flat to a nearly periodic curve that is
associated with the formation of transversal rolls [Fig. 2(a) at Raeff = 5 × 104]. In this phase, the
convective rolls grow as if they were vertically stretched. This stage resembles the steady convection
observed immediately after the onset in the RB system, except for the vertical growth of the fluid
layer. At Raeff = 2.5 × 105 [Fig. 2(b)], the rolls start to oscillate laterally and, when the oscillations
are large enough, they can merge in pairs. This has a repercussion on the interfacial curve, which
is subsequently shaped by the new flow pattern after a time delay. Indeed, at Raeff = 2.9 × 105

[Fig. 2(c)], we see that all the rolls have merged, creating two or three times wider convection cells,
while the interface shape is not strongly affected yet. At Raeff = 5 × 105 [Fig. 2(d)], the interface
loses periodicity and becomes smoother (i.e., without cusps). At Raeff = 5 × 106 [Fig. 2(e)], larger
convective flow patterns establish. They are approximately twice as wide as those occurring at ten
times smaller Ra values. The interface now has cusps again and it is evident that such special points
pin the detachment of cold plumes. For even larger Raeff the convective cells are bigger and strongly
fluctuate in time and space [Fig. 2(f) at Raeff = 5 × 107].

B. Scaling in 2D

In order to address the quantitative features of the dynamics, we study the intensity of the heat
flux Nuin

eff as a function of the imposed forcing, here parameterized by Raeff . The rationale for the
choice of the incoming heat flux instead of the outgoing one is that it facilitates the comparison with
the RB system, where the heat flux can be computed exactly the same way, Eq. (31). Furthermore,
for numerical reasons, the computation of Nuin

eff in the CM simulations is less affected by numerical
noise. We will come back to the discussion of the differences between Nuin

eff and Nuout
eff at the end of

Sec. V E.
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FIG. 2. Visualization of the 2D CM system in different stages at increasing effective Rayleigh numbers (from
top to bottom). The lateral size of the system is 2Hmax (or Lx = 2000 in numerical units), while the vertical
size has been cut at ∼1.1 H (t). Color codes the normalized temperature deviation from the mean (T0 + Tm)/2
(red is for −0.5, blue is for 0.5, and white is for zero). Arrows represent the velocity field normalized by
the instantaneous maximum velocity magnitude. The thin white line in the top part of each temperature field
marks the liquid-solid interface. The global parameters are St = 1 and Pr = 10. A movie is available in the
Supplemental Material [25].
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FIG. 3. Incoming dimensionless heat flux Nuin
eff as a function of the effective Rayleigh number Raeff for the

CM and RB 2D systems. The minimum aspect ratio is 	min ≡ L/Hmax = 2, meaning that the domain’s width
is always much larger than its height. The other CM control parameters are St = 1 and Pr = 10. In the RB
case, Pr = 10, too; the aspect ratio is chosen to always match the corresponding one, 	eff , of the CM system.
Numerical results by Ulvrova and collaborators [18] are also shown; in this case the domain is laterally bounded,
Pr = 7 and St = 1.

Figure 3 shows Nuin
eff for both the 2D CM and the 2D RB systems. We can observe that the

onset of convection in the CM system happens at higher Rayleigh number (Raeff � 5 × 103) than
in the RB one (Ra � 1708). Furthermore, a sudden jump in Nuin

eff is observed when convection is
triggered in the CM system. A weakly nonlinear stability analysis based on a vanishingly small
Stefan number assumption has been proposed for the CM system in Ref. [24]. In that work, a set of
nonautonomous envelope equations was derived to describe the evolution of perturbations, which
allowed to predict that the system bifurcates with a superexponential amplitude growth at the onset
of convection, occurring at Raeff � Rac. Such a rapid growth is followed by a slower algebraic one,
resulting from a saturation mechanism in a weakly nonlinear regime. Although we cannot make a
direct comparison with the results in Ref. [24], valid in the limit of vanishing Stefan number, such
predictions are qualitatively consistent with the jump of Nuin

eff detected in our simulations at finite St
number. Apart from the convective onset, and a relatively small amplitude mismatch (Nu for CM is
larger by at most 20% with respect to RB), the trends are very similar and the actual values of Nu
tend to be indistinguishable as Raeff is increased. The same figure reports the numerical results of
Ref. [18] that, despite the different conditions (value of Pr, nonperiodic lateral boundary conditions,
initial temperature of the solid lower than the melting one Tm), are also close to ours. As for the RB
system, this similarity of results in different conditions attests the robustness of the Nu-Ra relation
also in the CM system.

To complement this picture, we also look at the scaling of kinetic energy. Reasoning in terms of
dimensionless variables, this amounts to consider an effective Reynolds number:

Reeff = urms,Vl
H (t)

ν
= urms〈φl〉1/2Hmax

ν
, (38)

where urms,Vl
is the fluid root-mean-square velocity computed over the liquid phase only [Eq. (37)]

and urms is its counterpart obtained from averaging over the whole volume. We observe here, Fig. 4,
that the agreement between the CM and RB behaviors is remarkable, particularly in the range
Raeff � 4 × 105. At lower Raeff the differences can be ascribed to the delayed (in Raeff ) transitions
occurring when melting is present, as compared to the RB system. For instance, the transition from
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FIG. 4. Effective Reynolds number vs the effective Rayleigh number for the CM and RB 2D systems. In
both cases, the control parameters are St = 1 and Pr = 10.

steady to laterally oscillating patterns occurs at around Ra � 6 × 104 and Raeff � 3 × 105 in the RB
and CM systems, respectively.

A possible explanation for the fact that the magnitude and scaling of global quantities in the RB
and CM systems are so close can be provided on the basis of a comparison between two characteristic
velocity scales. The first one is the typical flow intensity urms,Vl

, while the second one is the vertical
melting front mean velocity vm = dH (t)/dt . It is reasonable to conjecture that the CM system will
behave as the RB one if the melting front moves slowly with respect to the flow: vm � urms,Vl

. This
relation can be expressed in dimensionless form, via Eqs. (32) and (38):

Nuout
eff � Pr Reeff

St
. (39)

According to Eq. (33), we can expect Nuin
eff > Nuout

eff . Therefore, if the above condition is satisfied for
the in Nusselt number, it will be satisfied also for the out one. From Fig. 3, we see that 2 � Nuin

eff � 32
for 104 � Raeff � 108 and from Fig. 4 that 1 � Reeff � 500 in the same range of Rayleigh numbers.
Since here Pr/St = 10, it is then easily verified that indeed Nuin

eff � ReeffPr/St over this rather broad
range of Raeff values. Hence, Nuout

eff also fulfills condition (39) essentially at all stages of the CM
evolution, which indicates that the front speed is considerably smaller than the typical fluid velocity
fluctuations and justifies the similarity with RB dynamics.

C. Scaling in 3D

The differences in the functional behavior of global observables, such as the heat flux or the kinetic
energy, between 2D and 3D RB convection have already been investigated in depth. Recently, the
dynamics of laterally bounded 2D and 3D RB systems were compared in numerical simulations [26].
Exploring conditions corresponding to Rayleigh numbers up to Ra = 108, with 0.045 � Pr � 55 and
	 = 1, it was demonstrated that the 2D dimensionless global heat flux obeys the same scaling with
Ra as in 3D but for an approximately constant multiplicative factor, i.e., Nu2D � KNu3D with K < 1.
The aim of this section is to assess to what extent this observation also holds for the CM system.

As a preliminary numerical test, we perform 2D and 3D RB simulations and check the Nu −
Ra relation for laterally periodic systems. We also check the agreement with Grossmann-Lohse
(GL) theory [9,27,28], which is known to capture the Ra and Pr dependency of Nu and Re over
a wide parameter range. Although GL theory is based on the assumption that the system is three
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FIG. 5. (a) Incoming effective Nusselt number vs the effective Rayleigh number for 2D and 3D systems
with the same melting process’ configuration; the global parameters are St = 1 and Pr = 10. The Nu vs Ra
data for the RB 2D and 3D cases are also shown. The horizontal dashed line is the conductive value for the
effective Nusselt number, Eq. (34), while the solid black line is the prediction from GL theory, calculated as in
Refs. [27,28]. The inset shows the relative difference (in percentage) between the 2D and 3D global heat fluxes
for the CM and RB systems, for different Rayleigh numbers in the same range as in the main panel. (b) Same
as panel (a) but for the Nusselt number compensated by Ra1/3

eff .

dimensional, laterally bounded by no-slip and adiabatic walls, the agreement with our laterally
periodic 3D simulations appears satisfactory within the statistical accuracy of the numerics [see
Fig. 5(a)]. Note that in all cases the Nusselt scaling exponent with Ra is always smaller than 1/3.
This is better appreciated in the compensated plot of Fig. 5(b). As in Ref. [26], we observe that the
2D RB system is less efficient in transporting heat than the 3D one. The highest relative difference
among the 3D and 2D Nusselt numbers is of the order of 30% and it occurs at Raeff ≈ 3 × 105 [see
inset of Fig. 5(a)]. However, given the limited Ra range covered, it is presently not possible to make
statements on the variation of the scaling exponents with the Rayleigh number [see Fig. 5(b)].
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FIG. 6. Effective Reynolds number vs the effective Rayleigh number for 2D and 3D systems with the same
melting process’ configuration; the global parameters are St = 1 and Pr = 10. The Re vs Ra data for the RB
2D and 3D cases are also shown. The solid black line is the prediction from GL theory [28].

Let us now turn to the CM system. An equivalent 2D-3D hierarchy is also displayed in this case.
The 3D effective Nusselt number is always above its 2D counterpart at corresponding Raeff values. In
amplitude, the difference appears to be more important than in the corresponding RB situation, except
beyond Raeff ,Ra > 107 where it reaches similar values for the two systems [see inset of Fig. 5(a)].
A remarkable feature here is the enhanced heat flux displayed by the 3D CM system with respect
to the RB one, which reaches a relative increase of (47 ± 6)% at its maximum, occurring around
Raeff � 5 × 105. At larger Rayleigh numbers, such a difference appears to get smaller and eventually
vanish. We note, however, that this can be soundly confirmed only by performing simulations at even
higher Rayleigh numbers (Raeff ,Ra > 108).

We conclude by noting that the Reynolds number, Fig. 6, measured in 3D CM simulations is in
nearly perfect agreement with both the results from 3D RB simulations and with GL theory. We
observe that, contrary to the 2D case, Reeff in 3D does not show abrupt changes associated with
pattern transitions. With respect to what is found for the Nusselt number, for which Nu3D

eff > Nu2D
eff ,

at high Raeff we find that the effect of dimensionality is opposite for the Reynolds number, namely
Re2D

eff > Re3D
eff , in qualitative agreement with previous observations in 2D and 3D bounded RB systems

[26].
In summary, we have shown that the 3D CM system in the range of parameters studied here

(and with Pr = 10,St = 1) behaves in a qualitatively similar manner to a RB system. The role of
dimensionality is also alike in the CM and RB cases. However, while the Reynolds number is nearly
identical with or without melting, the Nusselt number displays a distinct behavior characterized by
NuCM

eff > NuRB
eff for 104 � Raeff � 107. At even higher Ra, such a difference seems to reduce and

might asymptotically vanish.

D. Morphology of the phase-change interface

In this section, we aim at a quantitative characterization of the phase-change interface shape. The
focus is on the trends as a function of the Rayleigh number at fixed Stefan number and on the possible
differences connected with space dimensionality. With this in mind, we consider simple quantifiers
of the fluid top boundary roughness that can be applied both in 2D and in 3D.

Let us first discuss the phase-change surface in the 3D setup. We will then contrast this case with
the 2D one. A sample visualization is reported in Fig. 7. In spite of the fact that convection starts at
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FIG. 7. Isolines of the phase-change interface from 3D simulations at different Rayleigh numbers; the color
codes zm(x,y,t)/Hmax. Panel (a) corresponds to a stage close to the convective onset where horizontally steady
patterns are observed. The shape of these convective cells is found to be approximately hexagonal. As can
be seen, few cells have already merged, creating elongated patterns. The merging process further intensifies at
higher Rayleigh numbers [panels (b)–(e)]. In panel (f), where the aspect ratio is 	eff � 	min = 1, a single pattern
has become dominant. A movie of this simulation is available in the Supplemental Material (SM) online [25].

the same value of Raeff in both 2D and 3D (see Figs. 5 and 6), we can see from Fig. 7(a) that, in 3D,
already at Raeff = 1.76 × 104 cellular-like (rather than roll-like) patterns form. This highlights the
role of dimensionality. The 3D CM system displays transient polygonal patterns that subsequently
merge into larger convective cells of similar shape [Fig. 7(c)]. This process goes on until a single
big cell, only limited by the lateral domain size, forms. Our results qualitatively agree with those
from previous experimental investigations. Indeed, polygonal patterns of phase-change interfaces
have already been observed in CM experiments using different substances [29–31]. In particular, in
Ref. [30], cellular polygonal patterns were detected in the melting interface of an ice block submitted
to horizontally uniform heating at its top.

Both in 2D and in 3D visualizations, the interface shape at a given time appears to be fairly well
characterized by two length scales: a single wavelength corresponding to the typical lateral size of
convective patterns (note that in 3D these are essentially isotropic on the horizontal) and a typical
roughness associated with the interface modulation along the vertical [see Fig. 8(a) for a schematic
view]. To measure the first of these scales, that we call Lc(t), we make use of one-dimensional
autocorrelation functions of the local interface height. In 2D, for zm(x,t) we have

C(r,t) = 〈zm(x + r,t)zm(x,t)〉A, (40)

while in 3D, for zm(x,y,t),

Cx(r,t) = 〈zm(x + r,y,t)zm(x,y,t) 〉A, (41)

Cy(r,t) = 〈zm(x,y + r,t)zm(x,y,t)〉A, (42)
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FIG. 8. (a) Schematic view of the melt layer with relevant interface length scales: horizontal correlation
length Lc(t), roughness σm(t), and mean height H (t). (b) Correlation length vs Raeff . In all different cases, Lc(t)
is at most slightly larger than one half of the domain width L (at the end of the simulations). For comparison,
we also show the measurement of the lateral wavelength normalized by the height H for the RB system, and its
theoretical prediction �c/H = (2π/kc) (Rac/Raeff )1/3. (c) Roughness vs Raeff . (d) Ratio of the roughness to the
correlation length, σm/Lc. In panels [(b)–(d)], the curves are obtained from ensemble averages; the shaded areas
in panels (b) and (c) account for the spreading of the measured values over different realizations, computed as
the difference between the maximum and minimum values. The large spreading at large Raeff in panel (b) is
due to limited statistics.

for the x and y coordinates, respectively. Clearly, we expect Cx ≈ Cy . In the above expressions, the
notation 〈· · · 〉A indicates a line average over x in 2D and a surface average over x and y in 3D. Let us
first observe that, in the hypothetical case of a sinusoidal interface, the position of the first minimum
of the autocorrelation function identifies the half wavelength of the interfacial curve. By analogy,
we define here the distance for which the first minimum is attained as Lc/2 and we identify the
longitudinal correlation length Lc with the characteristic width of convective cells. The computed
Lc(t), normalized by H (t), as a function of Raeff is shown in Fig. 8(b). Initially, i.e., for small Raeff ,
the interface is flat since convection is absent; in this case the correlation length is not really defined
(Lc → ∞). Later on, a finite Lc emerges due to the onset of convection, which triggers the formation
of recirculating patterns (cells) with an aspect ratio ≈1.5. The ratio Lc(t)/H (t) then decreases because
the number of convective rolls remains constant while the height of the melt increases. We note
that a corresponding measurement for the RB system can be performed by replacing the interface
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correlation length Lc by the lateral wavelength �c of the convection patterns (i.e., pairs of large-scale
circulation rolls). As can be observed [Fig. 8(b)], also the RB data decrease at increasing Ra with a
similar functional form as compared to the CM system, at least in the stationary regime of convection,
where the identification of the width of convection patterns is unambiguous. In such a stage, an
analytical prediction for the scaling of �c/H with Raeff can be obtained by taking as ingredients the
critical dimensionless lateral wave number kc � 3.114 and the critical Rayleigh number Rac � 1708
of the RB system [7]. This leads to the expression �c/H = (2π/kc) (Rac/Raeff )1/3, which closely
matches the RB measurements. This proves that the characteristic correlation length of the interface in
the CM system shows clear fingerprints of the convective patterns associated to the first supercritical
instability of the RB system. Beyond a certain height of the system, both the RB and CM systems
begin a cell-coarsening process accompanied by lateral oscillations. This is reflected in the sawtooth
behavior of Lc(t)/H (t), which is more evident for the more constrained 2D system. Asymptotically,
rolls of typical aspect ratio 1 tend to prevail, independent of dimensionality. This feature is also
common to RB convection between flat walls [26].

The roughness of the liquid-solid interface can be quantified by means of the standard deviation
of the local fluid-solid boundary height zm, i.e.,

σm(t) =
√

〈[zm(t) − H (t)]2〉A, (43)

where 〈· · · 〉A has the same meaning as in Eqs. (40)–(42). The same quantity was studied by
other authors with slightly different indicators [29,31,32]. The evolution of the normalized height
fluctuation σm(t)/H (t) with Raeff is shown in Fig. 8(c). After the initial conductive regime, in
which σm = 0, the roughness grows to approximately (5–15)% of the average melt height. In 3D it is
typically larger, by up to three times, than in 2D but the difference decreases when Raeff is sufficiently
large. The sawtooth trend is clearly visible for the 2D system. Finally, in Fig. 8(d), we report the
evolution of the ratio σm(t)/Lc(t). This is found to be roughly constant (with the 3D value close
to twice the 2D one) over three decades in Raeff when the latter is large enough, meaning that the
roughness increases as convective cells get larger. Stated differently, we can say that the shape of the
interface, as characterized by the two discussed global scales Lc and σm, appears to remain similar in
the highly convective regime. Even if the physical mechanism responsible for this feature could not
be identified and clearly deserves further studies, we advance the hypothesis that the overall shape
of the interface might be determined by the large-scale circulation (LSC) in each convective cell. A
stronger wind would indeed produce a wider convective cell (large Lc) and proportionally a more
penetrative hot flow (large σm).

We now discuss how the shape variations of the interface can be connected to the observed
differences in the global heat flux in the CM system with respect to their dimensionality, or in
comparison to the reference RB system. It is known that even tiny variations of the bounding geometry
of a RB cell can affect the thermal and velocity boundary layers and, hence, have an impact on the
mean heat-flux intensity [33,34]. In a variety of configurations, the Nusselt number results to be
increased (see, e.g., Ref. [35] for a numerical study and Ref. [8] for a recent review). Recently,
Ref. [36] has systematically investigated the effect of a sinusoidal top wall considering several
wavelengths (λ) and a roughness (h) relative to the total cell height (H ) of h/H = 1/10. A wavelength
value that is about 1/7 with respect to the average cell height was found to be optimal in enhancing
the Ra scaling of the total heat flux. Later on, in a numerical study for sinusoidal top-and-bottom
walls [37], it has been demonstrated that the enhanced scaling with respect to Rayleigh is a transient
feature linked to the ratios of the thermal boundary layer to roughness thickness. In contrast, the
overall increase of the heat flux is not a transient and it is controlled by the ratio h/λ of roughness
amplitude over wall-modulation wavelength and it is maximum for h/λ = 1. Like what happens
in RB systems, it is then plausible that the different geometrical properties found in 2D and 3D
in the present CM case are responsible of the differences detected in the 2D and 3D heat fluxes.
Furthermore, in analogy to the RB phenomenology, the weak heat-flux enhancement observed for
CM systems as compared to RB might be related to the soft shape modulation of the top interface.
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FIG. 9. (a) Incoming Nusselt number vs the effective Rayleigh at St = 0.1,1,10,100 in 2D. The horizontal
dashed lines correspond to the conductive values [Eq. (34)]. (b) Behavior of the 2D Nuin

eff , rescaled with its value
at St = 1, for the same values of St as in panel (a), for the conductive regime as well as for the convective regime
ranges Raeff ∈ [106,107] and Raeff ∈ [107,108]. The analytical Stefan solution and a power law of exponent
0.05 respectively account for the St dependencies in the conductive and convective regimes.

We indeed can estimate h/λ ∼ σm/Lc � 0.05 for 2D and h/λ ∼ 0.1 for the 3D CM system, and
observe that for comparable h/λ values rough-wall RB systems display only tiny increases of Nusselt
numbers as compared to the flat wall case [37].

E. Stefan dependency

Here we focus on the effect of varying the Stefan number on both global and morphological
quantities. Let us first remark that high values of St characterize materials for which melting is
energetically inexpensive while low St means that melting requires larger energy supply. In agreement
with stability analysis results [23], our simulations indicate that convection arises later for larger St
[Fig. 9(a)]. If this might seem counterintuitive, it should also be noticed that as St is higher, the
average melting front speed vm is larger. Moreover, Fig. 9(a) shows that, in 2D, increasing St causes
a small but detectable increase of the incoming effective heat flux but apparently does not change the
scaling with Raeff . This is better appreciated when inspecting how Nuin

eff , normalized by its reference
value at St = 1, depends on St [Fig. 9(b)]. In the conductive regime, the growth of the rescaled Nuin

eff
with St is well captured by the analytical Stefan solution. After the onset of convection, it can be
described by a power-law behavior; a best fit provides an exponent close to 0.05 and a prefactor equal
to 1 within 1% precision. In 3D, numerical simulations at St = 0.1,1,10 (results not shown) confirm
the same picture. Conversely, we do not detect any St dependence for the scaling of the global kinetic
energy. In our 2D simulations, in the range St ∈ [0.1,100] the measured value of Reeff is essentially
the same for all values of Raeff � 106.

We now shortly examine melting interfaces, again mainly discussing the 2D results. The horizontal
correlation length and roughness trends confirm that the St effect is weak. However, it is worth noting
that Lc decreases at smaller St and progressively approaches the analytical prediction for the RB
system close to the convective onset; see inset of Fig. 10(a). It is especially interesting to examine
the behavior of σm/Lc, because as we already discussed this ratio is equivalent to the ratio h/λ

of roughness amplitude over wavelength used to investigate the effect of nonflat boundaries in RB
convection [36,37]. It was pointed out that the heat-flux enhancement due to wall roughness has a
unique global maximum for h/λ � 1, but then quickly decreases to the smooth-wall intensity for
different h/λ values [37]. In the present case, the always small σm/Lc � O(10−2) further decreases
at increasing Raeff and possibly attains an asymptotic plateau [see Fig. 10(a)], implying a nearly flat
interface and corresponding weak variations in the heat flux as compared to a standard RB system.
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FIG. 10. (a) Ratio of roughness to correlation length σm/Lc of the melting interface versus Raeff for St =
0.1,1,10,100 in 2D. The inset shows the normalized correlation length Lc/H (t), same as in Fig. 8(b), for
the same Stefan values as in the main panel, as well as the corresponding prediction (2π/kc)(Rac/Raeff )1/3 for
the RB system of equivalent height. (b) Outgoing over incoming effective heat flux for St = 0.1,1,10,100. The
dashed lines are the corresponding values in conductive conditions exp(−λ2). The 3D case at St = 1 is also
shown.

On the other hand, the independence of the shape on St may be seen as a first partial confirmation to
the hypothesis that the shape of the interface is related to the LSC intensity, and so to Reeff , because
the latter quantity is also found here to be independent of Stefan.

Finally, we address the question of the inequality between the heat fluxes Nuin
eff and Nuout

eff , which
is tied to the nonstationarity of the CM system. Unlike the statistically stationary RB convection,
in the CM system a fraction of the incoming heat is used to raise the global temperature of the
cold fluid released by the melting process. One can expect that Nuout

eff /Nuin
eff will be small in systems

where melting is rapid, because most of the input heat will end up to warm the fluid. We remark
that already in the conductive melting regime, the incoming and outgoing heat fluxes are different;
the imbalance can be analytically computed as Nuout

eff /Nuin
eff = exp(−λ2). The fraction of transmitted

heat Nuout
eff /Nuin

eff as a function of Raeff is shown in Fig. 10 for both 2D and 3D simulations at different
Stefan numbers. As expected, the heat flux ratio decreases with increasing St, i.e., for faster melting.
Interestingly, the convective values are always close to the corresponding conductive ones even
when convection is very intense. A possible explanation of this fact might be that the heat flux ratio
is controlled by the thickness of thermal boundary layers, where only conduction plays a role. Due
to the high value of the Prandtl number used here, the thermal boundary layer is thinner than the
velocity one and hence less affected by the flow field than at smaller Pr, which could explain the
negligible impact of convection. However, we cannot rule out the possibility that Nuin

eff and Nuout
eff

depend on convection in the same way, thus giving a constant ratio as a function of Raeff due to a
compensation effect.

Let us conclude by mentioning that the present results about the link between the incoming and
outgoing heat fluxes have a relevance for the modeling of Arctic ice-melt ponds. With the Stefan
number of the latter being St ≈ 10−2, an extrapolation from our results would then indicate that
Nuin

eff ≈ Nuout
eff in them. This means that, at least for heat-transfer features, (relatively) simple RB

modeling is appropriate in that case.

VI. CONCLUSIONS

We examined the dynamics of the melting process of a pure solid substance horizontally heated
from below under the effect of conduction and natural convection by means of numerical simulations.
The analysis has focused on the scaling of global quantities like the heat flux and the kinetic energy
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at varying the control parameters (the effective Rayleigh number Raeff and the Stefan number St), as
well as on the effects linked to space dimensionality. We have conducted an extensive comparison
with the paradigmatic Rayleigh-Bénard system in order to gain insight on the possible similiarities
and differences with its dynamics.

We have shown that CM and RB systems have similar behaviors in terms of the functional
dependencies of the (effective) Nusselt and Reynolds numbers on the (effective) Rayleigh number; a
possible reason for this was identified in the low values of the melting interface speed with respect to
the typical fluid velocity fluctuations. The Reeff amplitudes have been found to be almost identical in
the CM and RB setups. Concerning the heat flux, Nueff was larger in the CM case (and particularly
in 3D), but the differences tend to vanish as the convection intensity increases (or, equivalently,
asymptotically in time). Such transient heat-flux enhancement may be related to the lower bulk
temperature of the CM system as compared to the RB one. This, together with the similarity of the
thermal bottom boundary layer thicknesses in both systems (a consequence of the closeness of their
Re numbers), should imply larger temperature gradients at the bottom wall. The fact that the CM
fluid layer is colder than the corresponding RB one can be understood considering that the phase
change process, represented by the Stefan term in Eq. (13) (which is always negative), accounts for a
temperature sink. We speculate that such reduced mean temperature is associated with the increased
heat pumping exerted by the system. With respect to the role of space dimensionality, similarly to
what happens in RB convection, the global heat flux is weaker in 2D than in 3D in the CM setting.
Altogether, these findings suggest that, in turbulent conditions, RB phenomenology can be useful to
give quantitative predictions for CM dynamics and that this is more true for more intense turbulence.

Visualizations of the melting front in 3D revealed the appearance of convective patterns with
approximately hexagonal, and more often irregular polygonal, cross section. As Rayleigh increases,
i.e., as the fluid layer grows, such cells undergo a coarsening process. Investigating the morphological
properties of the liquid-solid interface with statistical indicators, we found that this is characterized
by larger roughness in 3D than in 2D, which could be related to the differences detected in the
3D and 2D heat flux behaviors. However, the roughness reaches at most 15% in 3D (respectively
5% in 2D) of the melt height and, independent of the space dimensionality, it further decreases at
sufficiently high Rayleigh numbers. Such low values of the melting front roughness again point to
strong similarities between the CM and the flat-wall RB systems.

The Stefan number dependency has been mainly investigated in 2D in the range 0.1 � St � 100.
Although increasing St significantly delays the onset of convection, only quite small differences were
observed in the dimensionless global heat flux, notably for high Rayleigh numbers. With rather good
accuracy, the heat flux scaling with St was found to be given by a power law of small exponent (0.05)
over a broad range of Raeff values. This result has potentially important consequences for numerical
approaches, because it means that it is possible to extrapolate results of high-St fast simulations to
small-St conditions that would be otherwise unattainable in direct numerical simulations. Because
for asymptotically small St the CM system approaches the RB one, an interpolation procedure
for the estimation of the heat flux at any small St can be devised too. Finally, we addressed
the difference between the instantaneous incoming and outgoing heat fluxes, which is connected to
the mean temporal variation of the fluid temperature. We have shown that such heat-flux imbalance
is essentially controlled by conductive processes and that it is more pronounced in systems where
the melting process is faster, meaning for larger Stefan numbers.

The model analyzed in this study can be seen as a simple description of ice-melt ponds’ dynamics.
In our opinion, the present results indicate that the heat flux measured in a corresponding RB system
would give a reasonable approximation of the one occurring in a melt pond. Indeed, after the initial
phase of the melting process, controlled by conduction, the nonstationary character of the CM system
appears to play a minor role, due to the slow motion of the liquid-solid interface. Moreover, for a
pond, based on the estimate St = O(10−2), the corrugation of its bottom icy wall (in our model,
the relative roughness of the top boundary with respect to the average liquid layer height) can be
expected to be small. More explicitly, this tells that the average depth of a pond, H (t), can be safely
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used for the estimate of the albedo because the modulation of the bottom topography is likely to be
negligible.

We remark, however, that other important factors, here ignored for simplicity, participate in the
dynamics of real ice-melt ponds. Among these, it seems to us that it would be particularly interesting
to consider the thermal forcing due to solar-radiation heating and the effect of wind drafts at the
air-water interface (the pond top boundary), as they could affect the instability and evolution of
convective patterns. Addressing such effects needs careful investigations that are left for future
work.
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APPENDIX A: CONDUCTIVE MELTING REGIME

The conductive solution of the melting problem, known as Stefan solution [16], provides the
evolution of the liquid-solid interface and of the temperature field in the absence of convection.
Reasoning for simplicity on a one-dimensional system, one obtains

zm(t) = 2λ
√

κt, with λ exp(λ2) erf(λ) = St√
π

(A1)

for the height of the fluid layer, where λ is a constant specified by the above implicit relation (recall
that St depends on λ). For the temperature Tc of the fluid layer in this conductive state, one has

Tc(z,t) = T0 − (T0 − Tm)
erf

(
λ z

zm(t)

)
erf(λ)

, (A2)

where erf(...) is the error function. In 2D or 3D, the front associated with the phase change will stay
flat (and horizontal in our setting) at all times. The Stefan-like solution implies

〈φl〉 = 2λ
√

t̃ , (A3)

in nondimensional units, for the liquid fraction. Plugging (A2) in Eq. (31) and (A3) in Eq. (32), one
obtains the incoming and outgoing heat fluxes of Eq. (34).

APPENDIX B: NUMERICAL METHOD

Several computational methods are currently available for the description of problems where
fluid dynamics is coupled to the process of solid-to-liquid phase change. Classical computational
fluid-dynamics methods, namely finite-volume or finite-difference discretizations of the evolution
equations, either based on moving-boundary (front-tracking) or on single-domain (enthalpy-
formulation) schemes have been extensively employed. A benchmark review on the accuracy of
the different numerical methods used to treat laterally heated CM systems can be found in Ref. [38].
Basal melting in a geophysical context was more recently addressed in Ref. [18]. In that work,
the performances of the two above-mentioned approaches were also compared. In the past decade,
computational schemes for the treatment of the solid-to-liquid phase transition have been extended
also to the mesoscopic LB method for fluid dynamics. Such schemes can be classified in two groups:
(i) phase-field methods relying on Ginzburg-Landau theory [39–41] and (ii) enthalpy-based methods
[21,42,43], which are in fact very similar to the classic ones.

In the present work, a LB algorithm based on an enthalpy formulation of the phase-change process
is chosen, similarly to the one proposed in Ref. [21]. The scheme makes use of a single relaxation
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time LB algorithm, D2Q9 and D3Q19 lattice topologies, and a multipopulation method to resolve
the fluid velocity and temperature equations, coupled to an iterative enthalpy-based method to obtain
the melt fraction field. The phase-change term is therefore introduced as a source-sink term in the
temperature equation. In short, once the temperature has been calculated at the discrete time tn we
proceed to the evaluation of the local enthalpy (i.e., for any given position in the computational
domain):

H(tn) = cp T (tn) + L φl(tn−1). (B1)

This is used to estimate the melt fraction at time tn through a linear interpolation:

φl(tn) =
⎧⎨
⎩

0 H(tn) < Hs = cpTm,
H(tn)−Hs

L Hs � H(tn) � Hl ,

1 H(tn) > Hl = cpTm + L,

(B2)

and finally the liquid fraction increment is estimated by a first-order finite difference

∂φl

∂t
(tn) � φl(tn) − φl(tn−1)

tn − tn−1
. (B3)

Such a term is used to define a source term in the temperature equation, which is updated for computing
T (tn+1) after a propagation and collision step of the LB algorithm. To increase the precision of this
algorithm, one could repeat the above procedure iteratively; however, it has been shown in Ref. [21]
that a single iteration is sufficient to reach good agreement with the known analytical results in the
conductive regime. In order to avoid the possibility of deforming the solid due to spurious numerical
velocities in the part of the domain corresponding to it, we apply the following two corrections: First,
all external forces to the system are weighted proportionally to the local liquid fraction φl(x,t); in
the present case this means that the buoyancy force does not act in the solid phase. Second, we apply
a penalization force that strongly depends on φl :

f p = −χ (φl)u, (B4)

where χ (φl) = 1 − φ2
l is a penalization mask. We have checked that the specific form of χ (φl) does

not affect the results. The phase-change LB algorithm with penalization method was previously
introduced in Ref. [43]. Other authors (e.g., in Ref. [18]), impose a strong (i.e., exponential)
dependence of viscosity on the solid fraction 1 − φl . We thoroughly validated our algorithm against
known solutions of the Stefan problem, as well as by comparing its results with other numerical
results in convective melting configurations with lateral heat source [38].
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