
PHYSICAL REVIEW FLUIDS 3, 044602 (2018)

Numerical study of turbulent channel flow perturbed by spanwise
topographic heterogeneity: Amplitude and frequency modulation

within low- and high-momentum pathways

Ankit Awasthi and William Anderson*

Mechanical Engineering Department, The University of Texas at Dallas, Richardson, Texas 75080, USA

(Received 5 February 2018; published 9 April 2018)

We have studied the effects of topographically driven secondary flows on inner-outer
interaction in turbulent channel flow. Recent studies have revealed that large-scale motions
in the logarithmic region impose an amplitude and frequency modulation on the dynamics
of small-scale structures near the wall. This led to development of a predictive model for
near-wall dynamics, which has practical relevance for large-eddy simulations. Existing
work on amplitude modulation has focused on smooth-wall flows; however, Anderson
[J. Fluid Mech. 789, 567 (2016)] addressed the problem of rough-wall turbulent channel
flow in which the correlation profiles for amplitude modulation showed trends similar to
those reported by Mathis et al. [Phys. Fluids 21, 111703 (2009)]. For the present study,
we considered flow over surfaces with a prominent spanwise heterogeneity, such that
domain-scale turbulent secondary flows in the form of counter-rotating vortices are sustained
within the flow. (We also show results for flow over a homogeneous roughness, which
serves as a benchmark against the spanwise-perturbed cases.) The vortices are anchored
to the topography such that prominent upwelling and downwelling occur above the low
and high roughness, respectively. We have quantified the extent to which such secondary
flows disrupt the distribution of spectral density across constituent wavelengths throughout
the depth of the flow, which has direct implications for the existence of amplitude and
frequency modulation. We find that the distinct outer peak associated with large-scale
motions—the “modulators”—is preserved within the upwelling zone but vanishes in the
downwelling zone. Within the downwelling zones, structures are steeper and shorter. Single-
and two-point correlations for inner-outer amplitude and frequency modulation demonstrate
insensitivity to resolution across cases. We also show a pronounced crossover between
the single- and two-point correlations, a product of modulation quantification based upon
Parseval’s theorem (i.e., spectral density, but not the wavelength at which energy resides,
defines the strength of modulation).

DOI: 10.1103/PhysRevFluids.3.044602

I. INTRODUCTION

Near-wall turbulence is an important area of study due to its ubiquity in various flow conditions
in the environment and engineering applications. Turbulent structures get smaller as the wall is
approached [1], which makes laboratory measurement difficult and presents resolution challenges
for numerical simulations. These challenges become more pronounced with increasing Reynolds
number. There have been extensive studies on flow over smooth walls, which have revealed the
presence of coherent structures of different scales, ranging from those associated with the near-wall
cycle [2–5] to large-scale motions (LSMs) [6,7] encapsulated by hairpin vortices [8,9] within the
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logarithmic region. Roughness ablates the viscous near-wall region (inner cycle) by the formation of
roughness-scale eddies [10–12], resulting in the roughness sublayer [13,14]. The ratio of flow depth,
H , to aggregate element height, h, is widely used as an indicator of the outer (inertial) layer flow
state. For H/h � 30, roughness serves to impose a momentum deficit, �U+, without any structural
modification to outer-layer flow structures [1]. Outer-layer similarity has been confirmed by various
experiments [7,15–17]; however, some have reported roughness effects on the streamwise velocity
fluctuations in the outer layer [18] (in this article, the first, second, and third component of any vector
corresponds with its magnitude in the streamwise, spanwise, and wall-normal direction, respectively,
and we adopt x = {x,y,z} for spatial position). LSMs are zones of quasiuniform momentum deficit or
excess (low- or high-momentum regions), with streamwise extent, l1, comparable to the flow depth,
where l1/H ≈ 3 is commonly observed. LSMs exhibit a streamwise inclination angle, θ ≈ 17◦,
which provides a basis for their length sinceH/ tan θ ≈ 3H = l1. Individual LSMs generally undergo
a quasistreamwise coalescence [19–22], resulting in spatially meandering very-large-scale motions
(VLSMs) [7] with streamwise extent, l2/H ≈ 21. The existence of VLSMs has been well documented
in pipes [23,24], channels [25,26], and boundary layers [15,17,27].

The “signature” of VLSMs is readily discerned from pre-multiplied energy spectra (spectrograms)
[7,25,26]. The near-wall region, whether occupied by a roughness or viscous sublayer, features a
prominent peak in spectral density that diminishes with magnitude in the wall-normal direction.
In order to resolve VLSMs, two conditions are simultaneously required: (1) the test section (i.e.,
laboratory length or computation domain streamwise extent) must at least exceed l2, and (2) the
roughness Reynolds number, Reτ = uτH/ν, where uτ is shear velocity and ν is kinematic viscosity,
must be Reτ � 2000 [7]. When these conditions are simultaneously attained, spectrograms will
exhibit a second peak within the logarithmic region and residing at wavelength equivalent to the length
of VLSMs. In recent times, the simultaneous coexistence of outer- and inner-layer structures—where
“inner” is used here in a broad sense to encompass both the inner cycle for smooth walls and
the roughness sublayer for rough walls—has received significant attention [28–32]. Experimental
measurement of smooth-wall turbulent boundary layers has revealed a distinct modulation of the
amplitude [28,29] and frequency of inner-layer velocity fluctuations [33–35], while more recent
studies have demonstrated an analogous amplitude modulation of the roughness sublayer by outer-
layer LSMs [35–37].

Mathis et al. [29] used the Hilbert transform of the low-pass-filtered velocity fluctuations to
compute the degree of small-scale amplitude modulation by ambient large-scale features. They
concluded that large-scale structures appeared to amplitude-modulate the small-scale fluctuations
and showed that during an event of large-scale momentum deficit there are reduced small-scale
fluctuations in the near-wall regions, whereas during a large-scale momentum excess event the
small-scale fluctuations are enhanced. And this phenomenon is reversed away from the wall, since
the small-scale fluctuations tend to align themselves with the large-scale momentum deficit region
[29]. These studies on inner-outer interactions led to the development of a predictive model for
near-wall dynamics [30]. In this model, Mathis et al. [30] used empirically determined parameters
to predict the statistics of small-scale velocity fluctuations near the wall. Anderson [36] followed
the approach outlined by Mathis et al. [29] for atmospheric boundary-layer-like flow over an array
of wall-mounted blocks. This study demonstrated an analogous modulation of roughness sublayer
amplitude with the passage of outer-layer LSMs.

Most preceding studies on inner-outer interaction have been devoted to smooth walls or idealized
roughness (homogeneous sandpaper or distributions of elements composed of a few scales). Such
canonical arrangements are, of course, the exception in realistic engineering and geophysical flows. In
this article, we highlight how one particular surface complexity—spanwise heterogeneity—disrupts
the coexisting inner-outer structural paradigm, and we characterize the implications of this for large-
scale modulation of small-scale amplitude and frequency. To this extent, we stress a complementary
article by Pathikonda and Christensen [35], who performed an experimental assessment of the
roughness-induced changes on amplitude and frequency modulation. They concluded that even
though the correlation profiles are similar to those for smooth walls, amplitude and frequency

044602-2



NUMERICAL STUDY OF TURBULENT CHANNEL FLOW …

FIG. 1. Illustration of the topographies considered in present study: (a) case 1, (b) case 2, and (c) case
3 (cases 4 and 7 are higher-resolution versions of case 1, and so on, which precludes the need to provide
images of the additional cases). The panels include annotation of the reference heights, zRef., needed to compute
correlations for amplitude and frequency modulation. The panels also include annotation of virtual towers over
which time-series measurements of fluctuating velocity was recorded (in (a), we say simply “Tower 1” and
“Tower 2,” since this case is a homogeneous roughness without any “Trough” or “Crest”). Table I contains
additional simulation attributes.

modulation is more intense in rough-wall flows (this observation is also consistent with amplitude
modulation observations by Anderson [36]). This increased correlation was shown to be due to
Reynolds-averaged secondary motions sustained by the surface heterogeneity. For this work, we
perform a similar study, but applied to a limiting topographic arrangement which features the
salient characteristics of spanwise heterogeneity, absent small-scale topographic features that might
otherwise diminish the generality of the results.

A. Low- and high-momentum pathways

Recent studies have shown that there is a high degree of spanwise heterogeneity in the Reynolds-
averaged flow when the surface roughness features a prominent spanwise heterogeneity [38–46].
This has been confirmed via experiments and numerical simulations, wherein the Reynolds-averaged
flow features heterogeneities in the spanwise–wall-normal plane that would otherwise vanish in the
absence of spanwise surface heterogeneity. Notably, the Reynolds-averaged streamwise momentum
exhibits pronounced spanwise undulations about the mean profile, where momentum excesses and
deficits have been labeled high-momentum pathways (HMPs) and low-momentum pathways (LMPs),
respectively, by Christensen et al. [12,42]. These LMPs and HMPs are flanked by mean secondary
cells, such that downwelling and upwelling occur above the regions of “high” and “low” roughness,
respectively.

Anderson et al. [43] demonstrated that the turbulent secondary flows [47] were a manifestation
of Prandtl’s secondary flow of the second kind: driven and sustained by spanwise heterogeneity
in components of the Reynolds stresses [48–51]. Other studies have recently explored how
spacing between spanwise-adjacent surface heterogeneities affects the flow [45,52], and how such
heterogeneities disrupt the structural attributes of low- and high-momentum regions within the
flow [44]. Although the application of these concepts to wall turbulence is a relatively recent
development, the work itself leverages concepts already explored by the hydraulic engineering
community [47,53–55] and turbulent duct flow community [47,48,50,56,57].

For this article, we have explored how topographically driven Reynolds-averaged turbulent
secondary flows disrupt the morphology of outer (inertial) layer turbulence, and we have quantified
the implications of this for inner-outer interactions. We have used topographies featuring dramatic
spanwise heterogeneity, which guarantees the sustenance of turbulent secondary flows and the
associated low- and high-momentum pathways. Figure 1 shows the cases considered (two spanwise
heterogeneous cases, and a homogeneous roughness case, against which we compare results;
discussion to follow in subsequent sections). Spectrograms reveal that the distribution of spectral
density is changed substantially by LMPs and HMPs, yet the magnitude of inner-outer correlations
still compares reasonably well against canonical flows. The results thus highlight the underlying
presence of an inner-outer interaction even under conditions very different from the canonical
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wall flows for which the schemes were originally developed. For this work, we have adopted
the wavelet-based computation of correlations, following Baars et al. [34] and Pathikonda and
Christensen [35].

B. Wavelet analysis

Wavelet decomposition allows the content of an input time series to be decomposed in joint
time-frequency space, which is particularly helpful for studies such as this where the large scales
(low frequency) are regarded as modulators of the small scales (high frequency). Herein, we obtain a
time series of streamwise velocity fluctuations by subtracting the Reynolds-averaged velocity from
the instantaneous, ũ′(xl,yl,z,t) = ũ(xl,yl,z,t) − 〈ũ(xl,yl,z,t)〉T , where 〈·〉T denotes the time average,
·̃ denotes a grid-filtered (large-eddy simulation [LES]) quantity, and {xl,yl} is a discrete local position
in the horizontal (x-y) plane at which a virtual tower is placed [58]. A comprehensive description
of the LES code is provided below, and we have utilized the LES nomenclature here in order to
promote consistency with the latter sections of this paper. Figure 1 illustrates the cases considered in
this study, where the virtual towers are annotated by vertical profiles at fixed spanwise locations [note
that Fig. 1(a) shows a homogeneous roughness, which serves as a comparison case for other results
in this paper). The large-scale component of ũ′(xl,yl,z,t) the component associated with large-scale
motions—can be attained via convolution with a low-pass filter, ũ′

L(xl,yl,z,t) = GL � ũ′(xl,yl,z,t),
where � denotes convolution and GL is a filtering kernel with scale, L = δT U0H

−1 = 2.0, where U0

is an “outer” characteristic advective velocity, H is the flow depth, and δT is the (dimensional) time
associated with the overturning of one domain-scale eddy. In this work, the inner and outer layers
are separated by filtering at two large-eddy turnovers, following the precedent already established in
preceding studies of smooth- and rough-wall flows [30,36]. Below, we present the techniques used
to quantify how ũ′

L(xl,yl,z,t) modulates the amplitude and frequency of the small-scale component,
ũ′

S(xl,yl,z,t) = ũ′(xl,yl,z,t) − ũ′
L(xl,yl,z,t). Here, we use Morlet wavelets, which are given by the

expression

ψ(t/ts) = eiωψ t/ts e−|t/ts |2/2, (1)

where ts is the wavelet timescale normalized by the eddy-turnover time (δT U0/H ). Joint time-
frequency analysis is accomplished via convolution of ũ′ with a spectrum of wavelet functions:

ũ′
∗(xl,yl,z,t ; ts) =

∫ ∞

−∞
ũ′(xl,yl,z,τ )ψ

(τ − t

ts

)
dτ, (2)

where ũ′
∗(xl,yl,z,t ; ts) is the decomposed fluctuating velocity in time-frequency space. Now, the

spectral density is obtained by taking the squared modulus of the coefficients obtained by the
convolution:

E(z,t,f ) = |ũ′
∗(xl,yl,z,t ; ts)|2, (3)

where E(z,t,f ) is the pre-multiplied wavelet power spectrum (WPS) at a given time, t , and frequency,
f , based on the input time series, ũ′(xl,yl,z,t) (for brevity, we exclude the horizontal location from
within the WPS field). To obtain the energy content associated with the small-scale energy of the
WPS, we use Parseval’s theorem as shown in the work of Baars et al. [34]:

σS(z,t) =
[∫ fN

fc

E(z,t,f )df

]1/2

, (4)

where σS(z,t) is the instantaneous standard deviation associated with the small scales, fc corresponds
to the separation scale between large- and small-scale velocity fluctuations, and fN corresponds to
the Nyquist frequency, which is half of the sampling frequency, fS . Herein, we set fc = HU−1

0 δ−1
T =

L−1 = 0.5; in fact, the choice of fc had virtually no implications for the resultant measure of
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amplitude and frequency modulation, since the inner and outer peaks reside at distinctly different
wavelengths. Provided fc ≈ 1, the resultant correlations will only differ moderately.

Equation (4) gives the instantaneous standard deviation, which can be decomposed into its
(nonzero) mean and fluctuating component: σS(z,t) = √〈u′

S(z,t)2〉T + σ ′
S(z,t). The aim of this work

is to investigate how large-scale (low-frequency) velocity fluctuations modulate small scales (high
frequency). The approach outlined here is ideally suited for such studies, as it simultaneously provides
information on the time-varying small- and large-scale energy. In order to obtain the large-scale
variation of the small-scale amplitude, we apply the low-pass filter, yielding σ ′

SL(z,t) = GL � σ ′
S(z,t)

(this filtering of the small-scale amplitude is a widely used practice [30,34–36] to capture salient
features of the small scales). In order to quantify the modulation of small-scale frequency, we
construct a time series for instantaneous frequency [59,60] by computing the first spectral moment
of the instantaneous WPS:

f ∗(z,t) = 1

|σs(z,t)|2
∫ fN

fc

E(z,t,f )f log10 f d log10 f, (5)

where

fS(z,t) = 10f ∗(z,t). (6)

We obtain the fluctuating component of the instantaneous frequency by subtracting the mean,
f ′

S(z,t) = fS(z,t) − 〈fS〉T (z), which is then low-pass filtered, f ′
SL(z,t) = GL � f ′

S(z,t). Having
completed the preceding steps, we can now quantify the extent to which ũ′

L(xl,yl,z,t) modulates the
amplitude and frequency of its small-scale counterpart via correlation with σ ′

SL(z,t) and f ′
SL(z,t),

respectively, via

Ra(z; z) = 〈ũ′
L(z,t)σ ′

SL(z,t)〉T√〈
ũ′2

L (z,t)
〉
T

√〈
σ ′2

SL(z,t)
〉
T

(7)

and

Rf (z; z) =
〈
ũ′

L(z,t)f ′
SL(z,t)

〉
√〈

ũ′2
L (z,t)

〉
T

√〈
f ′2

SL(z,t)
〉
T

. (8)

The correlations, Ra(z; z) and Rf (z; z), quantify the degree of amplitude and frequency modulation,
respectively, of the small-scale structures due to large-scale content. The correlations are “single
point” (i.e., same elevation), which fails to attain any measure of how large-scale content in the outer
layer modulates small-scale content in the inner layer. In order to gain a quantitative description of
how large scales in the outer layer—those associated with the outer peak—modulate the amplitude
and frequency of small scales in the roughness sublayer, two-point correlations are also computed.
That is, we correlate the large scales at a fixed location, ũ′

L(zRef.,τ (z; zRef.)), with the small-scale
amplitude and frequency over the depth of the flow:

Ra(z; zRef.) = 〈ũ′
L(zRef.,τ (z; zRef.))σ ′

SL(z,t)〉T√〈
ũ′2

L (zRef.,τ (z; zRef.))
〉
T

√〈
σ ′2

SL(z,t)
〉
T

(9)

and

Rf (z; zRef.) = 〈ũ′
L(zRef.,τ (z; zRef.))f ′

SL(z,t)〉T√〈
ũ′2

L (zRef.,τ (z; zRef.))
〉
T

√〈
f ′2

SL(z,t)
〉
T

. (10)

Unlike Eqs. (7) and (8), for which we will use simultaneous input arguments for the large
and small scales, for Eqs. (9) and (10) we must impose an advective correction on the large
scale (i.e., ũ′

L(zRef.,t) → ũ′
L(zRef.,τ (z; zRef.)), where τ (z; zRef.) = t + λ(z; zRef.) and λ(z; zRef.) is

an advective correction [36,58,61]). λ(z; zRef.) is needed to ensure that two-point correlations are
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TABLE I. Summary of large-eddy simulation parameters, where Lx and Ly represent the computational
domain streamwise and spanwise extent, respectively, here normalized by the flow depth H . Nx , Ny , and Nz

represent the number of grid points in the streamwise, spanwise, and wall-normal directions, respectively; hmax

is the maximum height of the topography; and the far-right column, δT U0H
−1, is the number of large-eddy

turnovers associated with each simulation.

Case Lx/H Ly/H Nx Ny Nz hmax/H T Uo/H

1 8π 2π 256 64 64 0 10000
2 8π 2π 256 64 64 0.05 10000
3 8π 2π 256 64 64 0.1 10000
4 8π 2π 384 96 96 0 6500
5 8π 2π 384 96 96 0.05 6500
6 8π 2π 384 96 96 0.1 6500
7 8π 2π 512 128 128 0 2000
8 8π 2π 512 128 128 0.05 2000
9 8π 2π 512 128 128 0.1 2000

correctly made between the modulator—LSMs, which exhibit positive streamwise inclination and,
thus, negative temporal inclination [58]—and the corresponding small scales at differing heights.
Herein, we compute the advective lag profiles a posteriori, which are used to correct the large
scales before computation of amplitude and frequency modulation. Figure 1 provides a graphical
indication of the reference location, zRef. (the annotation is only for discussion, and precise values
of the reference location are provided later in the article). For this article, we have explored how
topographically forced turbulent secondary flows alter the distribution of spectral density in the outer
layer and the implications of this for inner-outer interactions using Eqs. (7)–(10).

C. Present study

LES has been used to model turbulent channel flow over a variety of rough lower boundaries. We
considered flow over two cases of varying topographic height, as shown in Figs. 1(b) and 1(c). These
results were compared against results for turbulent channel flow over a homogeneous roughness,
Fig. 1(a), in which drag is modeled via the equilibrium logarithmic law through prescription of
an aerodynamic roughness length. Table I summarizes key attributes of the surfaces, including the
maximum height. The two-dimensional spanwise heterogeneous topographies were constructed via
the outer product of two one-dimensional arrays—one featuring two Gaussian mounds, the other
featuring a harmonic distribution. These topographies were then rescaled such that the maximum
height, hmax, was varied (see also Table I). For the present simulations, the domain spatial extent
(x,y,z) : 0 � x/H � 8π,0 � y/H � 2π,0 � z/H � 1, where H is the half-channel depth (quick
inspection shows that the domain streamwise extent, 8π ≈ 24, is sufficiently long to capture at least
the beginning of the outer peak [25,30,36]. The friction Reynolds number, Reτ = uτH/ν ∼ O(106),
indicating that (1) the simulations were carried out under “fully rough” conditions [13], thereby
enabling comparison with literature data sets under dynamic similarity, and (2) the inertial conditions
satisfied the criteria required for the existence of VLSMs [7]. The simulations are run at three
resolutions, as shown in Table I. So, cases 1, 4, and 7 are the Fig. 1(a) topography, cases 2, 5, and 8
are the Fig. 1(b) topography, and cases 3, 6, and 9 are the Fig. 1(c) topography.

Modeling flow over the same topography, but at different resolution, allowed us to assess how
domain discretization affected the resultant turbulence statistics and correlation profiles [36]. The
maximum heights for cases 1, 2, and 3 were hmax/H = 0, 0.05, and 0.1, respectively. In Sec. II, we
present a summary of the LES code and additional details of the cases (time and spatial discretization,
subgrid-scale turbulence closures, numerical procedures, etc.). A series of results is presented in
Sec. III, from instantaneous flow visualization to demonstration of topographically driven structural
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alterations to the outer flow statistics, which ultimately culminates in vertical profiles of the Eqs. (7)–
(10) correlations. We demonstrate resolution invariance of the correlation profiles and that the choice
of the reference height, zRef., plays a major role in the magnitude of the two-point correlation.
Moreover, we find a crossover between the single- and two-point amplitude modulation correlations;
thus, at a single elevation, the amplitudes of small-scale processes in the roughness sublayer possess
equivalent correlation with the large-scale dynamics at the same elevation, or at an elevation in
the outer layer. This result, in particular, provides further evidence for the underlying merit of
wall models predicated upon amplitude and frequency modulation. Concluding remarks are made
in Sec. IV.

II. LARGE-EDDY SIMULATION

The LES code used in this study solves the three-dimensional, grid-filtered momentum transport
equations in rotational form [62,63],

∂ ũ
∂t

+ 1

2
∇(ũ · ũ) − ũ × ω̃ = − 1

ρ
∇p̃ − ∇ · τ + � + f , (11)

where τ = ˜u ⊗ u − ũ ⊗ ũ is the subgrid-scale tensor, ω̃ = ∇ × ũ is vorticity, f is a body force
term that imposes drag associated with solid obstacles [64,65], ∇p̃ is the pressure correction, and
� = {u2

τ /H = 1,0,0} is an imposed pressure-gradient forcing, where H is the channel half height.
This code has been diversely used in various flow conditions [66–74].

The present LES code is used to model turbulent channel flow under “fully rough” inertial
conditions [13], Reτ = uτH/ν ∼ O(106). In order to maintain a solenoidal velocity field, the
divergence of Eq. (11) is computed and the incompressibility condition, ∇ · ũ = 0, is applied. The
resultant pressure Poisson equation is solved with Neumann boundary conditions at the top and
bottom of the domain, ∂p̃/∂z|z/H=1 and ∂p̃/∂z|z/H=0, respectively. Channel centerline conditions
are imposed with zero stress, ∂ũ/∂z|z/H=1 = ∂ṽ/∂z|z/H=1, and zero penetration, w̃(x,y,z/H =
1,t) = 0. Periodic boundary conditions are imposed on the vertical planes of the domain owing to
spectral discretization in the horizontal directions. Surface boundary conditions are implemented via
the equilibrium logarithmic law and an immersed boundary method (IBM), depending on the value
of h(x,y). For h(x,y) = 0, the stress is set as

τw
xz(x,y,t) = −

[
κU

(
x,y, 1

2δz,t
)

log
(

1
2δz/z0

) ]2 ũ
(
x,y, 1

2δz,t
)

U
(
x,y, 1

2δz,t
) (12)

and

τw
yz(x,y,t) = −

[
κU

(
x,y, 1

2δz,t
)

log
(

1
2δz/z0

) ]2 ṽ
(
x,y, 1

2δz,t
)

U
(
x,y, 1

2δz,t
) , (13)

where z0/H = 10−3 is a prescribed roughness length, and ·̃ denotes test filtering [66,75], which is used
to suppress numerical contamination due to localized implementation of the equilibrium logarithmic
law. For h(x,y) > 0, an IBM [65] is used to define f in Eq. (11), which has been successfully
used in similar studies [36,43]. The deviatoric component of τ is evaluated using the eddy-viscosity
modeling approach, τ − (1/3)δTr(τ ) = −2νt S̃, where νt = (Cs�)2|S̃| is the turbulent viscosity, Cs

is the Smagorinsky coefficient [76], � is the filter size, S̃ = (∇ũ + ∇ũT)/2 is the resolved strain-rate
tensor, and |S̃| = (2S̃ : S̃)1/2 is the magnitude of the resolved strain-rate tensor. CS is evaluated using
the Lagrangian-averaged scale-dependent dynamic model of Bou-Zeid et al. [66].

Flow stationarity is ensured by running the simulations for the period 103 � δT U0/H � 104,
where δT U0/H is considered one large-eddy turnover. This is needed to ensure that a sufficiently
large number of structures advect through the domain during the averaging period [36,77]. Table I
summarizes the averaging time for all simulations, and one immediately observes that the averaging
time decreases with increasing resolution, which is a natural product of the practical difficulties
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associated with simulations at higher resolution. The affects of this are readily discernible in the
turbulence statistics, wherein the cases with Nx = 256 and 384 are in close agreement (cases 1–6),
while agreement is not as strong for Nx = 512 (cases 7–9). Nonetheless, the agreement is reasonable
and indicates that we have appropriately reconciled the need for high resolution with the practical
constraints inherent to such simulations.

Equation (11) is integrated in time with nondimensional time step δt∗ = δtuτH
−1, where δt∗ =

9 × 10−5, 4.5 × 10−5, and 4.5 × 10−5, for cases 1–3, 4–6, and 7–9, respectively. The computational
mesh is discretized with δx = Lx/Nx , δy = Ly/Ny , and δz = 1/Nz, respectively.

III. RESULTS

This section is composed of five sections. Section III A provides a sampling of instantaneous and
Reynolds-averaged flow visualization, which helps to graphically illustrate how the spatial nature of
the flow changes in response to a prominent spanwise heterogeneity. We show qualitative evidence
that meandering large-scale motions feature similar structural characteristics within LMPs, with
inclination angles of θ ≈ 15◦, but within HMPs the structures get progressively steeper. Following
this, in Sec. III B, we show vertical profiles of Reynolds-averaged quantities from virtual towers
above the crest and trough, which further highlights major changes to the flows due to spanwise
topographic heterogeneity.

Spatial correlations above the crest and trough are used to confirm that, indeed, the structures
undergo steepening above the crest (within HMPs), and this result is used to explain how spectral
density is shifted across wavelengths in Sec. III D. Finally, in Sec. III E, we show profiles of single-
and two-point correlations for modulation of small-scale amplitude and frequency [based on Eqs. (7)–
(10), and accompanying text]. The figures reveal a distinct crossover in the single- and two-point
correlations, which is a unique result. This result is a consequent of Parseval’s theorem: since our
description of amplitude modulation is predicated upon the spectral density associated with the small
scales, but not the wavelength at which the spectral density resides, correlation crossovers are entirely
possible.

Throughout this section, results are cited as being retrieved from a virtual tower above the crest or
trough (see also Fig. 1). Of course, the homogeneous rough cases (1, 3, and 7) possess neither a crest
nor a trough, but we have nonetheless recorded and presented data from towers located at the crest
and trough locations of the spanwise heterogeneous cases. This presentation format is designed to
maximize consistency between the presentation of results for the spanwise heterogeneous cases—for
which spanwise averaging is not permitted—and the homogeneous cases. Moreover, it provides an
additional sampling of data for the homogeneous cases, which thus helps to further justify the results.

A. Flow visualization

To illustrate the effect of spanwise-topographic heterogeneity on the inclination of coherent
structures, we present instantaneous visualization of streamwise velocity fluctuations in the x-z
plane. Figures 2(a)–2(c) and Figs. 2(d) and 2(e) correspond to planes above the crest and the trough,
respectively, for case 1 [Figs. 2(a) and 2(d)], case 2 [Figs. 2(b) and 2(e)], and case 3 [Figs. 2(c) and
2(e)]. The instantaneous flow field is composed of alternating parcels of momentum excess (red)
and deficit (blue), where the interfacial zones between such parcels exhibit consistent inclination.
The vector map provides further information on vortical activity in the interfacial regions. This is
entirely consistent with the spatially inclined nature of large-scale motions [17,27,58]. The “standard”
inclination angle, θ ≈ 15◦, has not been annotated on the sketches, since the parcels of fluid are
meandering spatially. In Sec. III C, results of a detailed computation of the inclination angle are
shown. It will be shown that about the crest, the structures are relatively steeper due to enhanced
mixing within high-momentum pathways; above the trough, the structures are unaffected by the
secondary flows.
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FIG. 2. Color flood contour of instantaneous streamwise velocity fluctuations, ũ′(x,yl,z,tl), in the x-z plane
at discrete spanwise location, yl , at arbitrarily selected local time, tl : (a)–(c) crest and (d)–(f) trough (see also
Fig. 1). Vectors of {ũ′(x,yl,z,tl),w̃′(x,yl,z,tl)} have been superimposed, for reference. (a), (d) Case 1, (b), (e)
case 2, and (c), (f) case 3 (see also Table I).
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FIG. 3. Color flood contour visualization of time- and x-averaged swirl strength,
〈λci〉x,T (y,z)(〈ω̃x〉x,T (y,z)/〈ω̃〉x,T (y,z)), in the y-z plane, with {〈ṽ〉x,T (y,z),〈w̃〉x,T (y,z)} vectors superimposed.
(a) Case 1, (b) case 2, and (c) case 3 (see also Table I). In (b) and (c), we have added annotation for the location
of topographically driven LMPs and HMPs.

As shown in the following figure, the crest is the “high-roughness” location, and we thus anticipate
that the HMP should be located above this location [41–43]. It has been shown that the secondary
flows are the product of a production-dissipation imbalance above the crest, where elevated turbulent
kinetic energy (TKE) production above the crest necessitates a downwelling of low-TKE fluid from
the outer region [51]. We contend, then, that the steepened structures are a manifestation of vigorous
mixing above the crest, which attenuates large-scale correlation. Note, too, that structural steepening
has been reported in other studies of flows over very rough walls [78,79]. In a subsequent section,
we show that the qualitative observations of steepened structures in Figs. 2(a)–2(c) can be recorded
in spatial correlations of fluctuating streamwise velocity.

Figures 2(d)–2(f) show quantities identical to those in Figs. 2(a)–2(c), but at a spanwise location
corresponding with the domain trough (the homogeneous roughness cases—Figs. 2(a) and 2(d)—do
not have a “crest” and “trough,” but we have nonetheless presented transects at the same locations
to promote consistency with the other cases). As per Sec. III C, the structural inclination angle
with LMPs is essentially equivalent to the inclination angle for flow over homogeneous roughness.
Thus, above the “low roughness” and within LMPs [41], where the flow exhibits a mild upwelling
[41,42], coherent structures meander through the domain and their structural attributes resemble those
anticipated in canonical shear-driven wall turbulence [7]. Note, too, that while Fig. 2 corresponds with
cases 1–3 (Table I), the other cases are in qualitative agreement (for brevity, we have not presented
visualization for these cases).

Figure 3 shows the time- and streamwise-averaged swirl strength, signed by the mean streamwise
vorticity, 〈λx〉x,T (y,z)îω̃x

[80], where îω̃x
= 〈ω̃x〉x,T (y,z)/〈ω̃〉x,T (y,z) is the streamwise component

of the Reynolds-averaged vorticity unit vector. Figure 3(a) shows a visualization for case 1, which
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is the homogeneous roughness case and a benchmark against the effect of spanwise heterogeneity
[Figs. 3(b) and 3(c), for cases 2 and 3, respectively]. We deliberately set all the color bar limits in
Fig. 3 equivalent in order to make comparisons. It is clear that even for the homogeneous rough case,
there are persistent rolls in the flow, although the results have been averaged for ≈103 large-eddy
turnovers. The presence of persistent spanwise–wall-normal rolls is well known in wall turbulence
[81,82], and these rolls would likely remain after even further averaging. Nonetheless, relative to the
cases with spanwise heterogeneity, their magnitude is relatively mild. This figure reveals the existence
of alternating low- and high-momentum pathways [12], due to spanwise topographic heterogeneity.
In this study, we fix the spanwise spacing between the adjacent Gaussian mounds to be sy/H > 2.
Therefore, the secondary flows are observed in both the roughness sublayer and inertial layer [44],
although we note recent experimental research suggesting a reversal of the flow patterns for smaller
spacing [45,52]. The upwelling and downwelling motions are present within LMPs and HMPs,
respectively, which is consistent with previous findings [44]. Another conclusion that can be made
from Fig. 3 is that the strength of the secondary flow increases with topographic height. Previous
studies have revealed that secondary flows have an affect on the dynamics of the mean flow [41–43],
and in this study we speculate that these secondary flows also have an impact on the mean inclination
angle of the coherent structures and thus on the existence of any modulation of small-scale amplitude
and frequency.

B. Profiles

Figure 4 shows vertical profiles of time- and streamwise-averaged streamwise [Figs. 4(a)–4(d)]
and wall-normal [Figs. 4(e) and 4(f)] velocity components above the crest [Figs. 4(a), 4(c), and
4(e)] and trough [Figs. 4(b), 4(d), and 4(f)]. For Figs. 4(a) and 4(b), 〈ũ〉x,T (yl,z) is normalized
with the outer streamwise velocity, U0 = 〈ũ〉x,y,t (z/H = 1), while for Figs. 4(c)–4(f), shear velocity
is used to normalize velocity. From these figures, we can observe that the streamwise velocity
profile above the crest and trough for cases 2 and 3 differs significantly from the homogeneous
rough case. Above the crest [Fig. 4(a)], the outer-normalized velocity exhibits a prominent deficit
in the lowest 10% of the domain, while for (z − hmax)/H � 0.2, there is a modest (but significant)
momentum excess, relative to the homogeneous rough case. This is entirely consistent with the
underlying physics responsible for sustenance of the secondary flows, wherein near-wall production
of turbulence is strongest and the vertical gradient in 〈ũ〉x,T (yl,z) is most dramatic. Note, also,
that with hmax increasing, 〈ũ〉x,T (yl,z) monotonically decreases. Above the trough, 〈ũ〉x,T (yl,z)/U0

features a momentum deficit relative to the homogeneous case, and this is the location corresponding
with the LMP.

When the vertical profiles of 〈ũ〉x,T (yl,z) are normalized by uτ (yl) [Figs. 4(c) and 4(d)], the
differences become more pronounced. First, between the locations corresponding with the crest and
trough, note that the profiles for case 1 exhibit negligible differences (this result is precisely as
expected, and is helpful when drawing comparisons to the cases perturbed by spanwise topographic
heterogeneity). Above the crest, the 〈ũ〉x,T (yl,z)/uτ (yl) does not comply at all with logarithmic
scaling, nor should it given the antecedent contributions upon which production-dissipation
imbalances [51] are attributed to sustenance of the secondary flows [43]. We also see, again, that the
profiles are monotonically reducing in streamwise momentum with increasing topographic height.
Interestingly, however, above the trough we observe logarithmic scaling for 〈ũ〉x,T (yl,z)/uτ (yl) (or, at
least, one could argue that the flow is closely approaching logarithmic scaling). Recall that within the
LMPs, the spatial attributes of coherent structures were shown to resemble those found in canonical
shear-driven wall turbulence, which suggests that HMPs are responsible for far greater departure
from logarithmic conditions than LMPs (although, of course, they both coexist as a product of the
same phenomenon).

Vertical profiles for 〈w̃〉x,T (yl,z)/uτ (yl) above the crest and trough are shown in Figs. 4(e) and 4(f),
respectively. First, again note that for the homogeneous rough wall (case 1), 〈w̃〉x,T (yl,z)/uτ (yl) ≈ 0
throughout the depth of the flow, and as the averaging time approached infinity, the simulations
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FIG. 4. Time- and streamwise-averaged vertical profiles of (a)–(f) first-order and (g), (h) second-order flow
statistics. Profiles are derived from above the (a), (c), (e), (g) crest and (b), (d), (f), (h) trough, respectively.
Profiles are normalized by (a), (b) the maximum advective velocity and (c)–(h) friction velocity, uτ . Black, case
1; dark gray, case 2; and light gray, Case 3. Dashed black lines in (c), (d) denote the logarithmic profile with
roughness length, z0, selected to optimally fit the LES data set. The horizontal dashed black lines in (g), (h)
denote hmax/H (see also Table I).
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would predict 〈w̃〉x,T (yl,z)/uτ (yl) → 0. Above the crest, we see that 〈w̃〉x,T (yl,z)/uτ (yl) undergoes
a change in sign at z/H ≈ 0.1: for z/H � 0.1, 〈w̃〉x,T (yl,z)/uτ (yl) > 0, while for z/H � 0.1,
〈w̃〉x,T (yl,z)/uτ (yl) < 0. The elevation over which 〈w̃〉x,T (yl,z)/uτ (yl) < 0 approximately corre-
sponds with the HMP discussed for Fig. 4(a), for z/H � 0.1. The zone of downwelling is a product of
local (roughness sublayer) circulations, which have been well documented in other studies [38,44,52].
Within the LMP [Fig. 4(f)], Reynolds-averaged upwelling is active over the depth of the flow, and
the magnitude of upwelling increases for the more dramatic topography.

Figures 4(g) and 4(h) show vertical profiles of the Reynolds-averaged (total) streamwise–wall-
normal momentum fluxes over the depth of the flow at the crest and trough, as outlined in the figure
caption. Note that “total” here, with our wall-modeled LES [83], implies the sum of the resolved
and subgrid-scale stresses, 〈u′ ⊗ u′〉T = 〈ũ′ ⊗ ũ′〉T + 〈τ 〉T . Note, first, that the momentum flux
profiles are effectively equivalent for case 1 at the different locations, which serves as a basis for
comparison with the cases perturbed by spanwise topographic heterogeneity. For cases 2 and 3, the
Reynolds stress is redistributed due to spanwise heterogeneity, and a local friction velocity, uτ (yl) =
(−〈u′w′〉x,T (yl))

1/2, must be introduced. For case 2 above the crest and trough, uτ (yl)/〈uτ 〉y = 1.43
and uτ (yl)/〈uτ 〉y = 0.883, respectively; for case 3 above the crest and trough, uτ (yl)/〈uτ 〉y = 1.47
and uτ (yl)/〈uτ 〉y = 0.75, respectively. This is consistent with enhanced momentum fluxes (i.e., drag)
above the crest, due to elevated wall-normal gradients of streamwise velocity [Figs. 4(a) and 4(c)]
and associated downwelling [Fig. 4(e)]. If we had normalized the vertical profiles of momentum
fluxes by a spanwise-averaged shear velocity, 〈uτ (y)〉y (which is, by definition, unity in the present
channel flow), we would immediately see that the stresses are larger in HMPs over the depth of
the flow. Note that the profiles for the high-resolution cases (cases 4–9, Table I) compare favorably
against the profiles shown for cases 1–3, and for brevity we have not included them here.

C. Structural attributes and topographic heterogeneity

The preceding sections have highlighted the dramatic extent to which topographically driven
secondary flows alter turbulence characteristics relative to a canonical shear-driven channel. We
have made numerous references to the steepening of coherent LSMs within the HMPs (Fig. 2 and
accompanying Sec. III A text), and the implications of this for turbulence statistics (Fig. 4 and
accompanying Sec. III B text). In order to fully clarify this result, and to provide confirmation
of heretofore heuristic arguments, we have computed spatial cross correlations of the resolved
fluctuating streamwise velocity at spanwise locations corresponding with the crest and trough:

ρxx(δx,y,z; zRef.) = 〈ũ′(x,y,zRef.)u′(x + δx,y,z)〉xt

σx(z)2
, (14)

where δx is the streamwise separation, zRef. is a wall-normal reference elevation, and σx is
the root-mean-square value of the streamwise velocity fluctuation. In this article, we compute
ρxx(δx,y,z; zRef.) during simulation and perform a posteriori time averaging, thereby eliminating
the need to adopt Taylor’s frozen turbulence hypothesis and prescribe an advective velocity.

Figure 5 shows ρxx(δx,yl,z; zRef.) color flood contours at spanwise locations, yl , corresponding
with the crest [Figs. 5(a), 5(c), and 5(e)] and trough [Figs. 5(b), 5(d), and 5(f)], respectively, for cases
summarized in the caption. Black circles correspond with the maximum correlation,

δxm(z; zRef.) = argmax︸ ︷︷ ︸
δx

[ρxx(δx,yl,z; zRef.)], (15)

at each wall-normal location [26]. For the Fig. 5 correlations, we used zRef./H = 0.01 at all
spanwise locations corresponding with the trough [Figs. 5(b), 5(d), 5(f), and 5(h)]. For the correlation
maps in Figs. 5(a), 5(c), and 5(e), we used zRef./H = 0.01, zRef./H = 0.056, and zRef./H = 0.12,
respectively, and these elevations have been superimposed on Fig. 5(g). These figures reveal that,
as the topographic height is increased, the streamwise velocity correlation is diminished above
the crest [Figs. 5(a), 5(c), and 5(e)], which was also reported by Yang and Anderson [44]. This
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FIG. 5. Spatial correlation map of fluctuating streamwise velocity, ρxx(δx,y,z; zRef.) [Eq. (14)], in the
streamwise lag–wall-normal plane for (a), (b), (d), (f) zRef./H = 0.01, (c) zRef./H = 0.056, and (e) zRef./H =
0.12, above the (a), (c), (e) crest and (b), (d), (f) trough, respectively. Superimposed on the ρxx(δx,y,z; zRef.)
color flood contours is the streamwise lag corresponding with maximum correlation, δxm(z; zRef.) [Eq. (15)].
(a), (b) Case 1, (c), (d) case 2, and (e), (f) case 3. δxm(z; zRef.) for cases 1–3 above the (g) crest and (h) trough,
respectively, where solid horizontal lines denote the reference heights used in Eqs. (14) and (15), while the
inclined solid lines are used to interpret the LES data points. Symbol colors correspond with case 1 (solid
black), case 2 (solid dark gray), and case 3 (solid light gray).

result is consistent with prior findings on elevated mixing above the high-roughness regions, and
the corresponding spatial decorrelation due to vigorous mixing. Above the trough, however, the
correlation profiles are mostly similar, which is consistent with the results in Secs. III A and III B
regarding the state of the flow within the present LMPs.

For all cases, we superimposed δxm(z; zRef.) upon the correlation color floods in Figs. 5(a)–5(f).
To complete the discussion, we summarized δxm(z; zRef.) above the crest and trough in Figs. 5(g)
and 5(h), respectively. To assist with interpretation of the LES data points, we added linear profiles
at different inclinations, where θ = tan−1 (δz/δxm(z; zRef.)) is the structural inclination angle.

As anticipated, above the trough [Fig. 5(h)], the data points all suggest a linear best fit with
θ ≈ 15◦, which is entirely consistent with prior studies on flow over smooth or rough walls [16,17]
(assuming validity of Townsend’s outer-layer similarity hypothesis [1]). Above the crest, however, the
turbulence spatial attributes indicate a significant steepening. Thus, we contend that the established
structural paradigm for rough wall flow structures encapsulated by hairpins remains valid, but the
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FIG. 6. Color flood contours of Fourier-mode spectrograms of ũ/uτ . (a, b) Case 1, (c, d) case 2, and (e, f) case
3 above the (a, c, e) crest and (b, d, f) trough. Annotations have been added for the LES grid-filter width �/H ,
domain length Lx/H , and separation wavelength 2; we have also added annotations for two reference locations,
zRef.1 and zRef.2 , which are used in Sec. III E to determine two-point modulation of small-scale amplitude and
frequency. For cases 2 and 3 above the crest, vertical dashed lines denote hmax/H .

hairpins themselves enclose steeper structures. This result is consistent with previous observations
in this article, but its implications for modulation of small-scale amplitude and frequency have not
received attention. In the following section, we demonstrate how topographically driven structural
steepening shifts the outer peak to relatively shorter wavelengths, and how this affects the modulation
correlation computations outlined in Sec. I B.

The correlation lengths summarized in Figs. 5(g) and 5(h) can be used to quantify the advective
lag, λ(z; zRef.), required to compute two-point modulation correlations of small-scale amplitude and
frequency [Eqs. (9) and (10)]. This was done a posteriori via the linear operation, λ(z; zRef.) =
δxm(z; zRef.)/U0, where for consistency with other aspects of this work we have set U0 equivalent to
the Reynolds-averaged channel centerline velocity.

D. Pre-multiplied energy spectra

Figure 6 shows contours of pre-multiplied energy spectra of resolved (LES) streamwise velocity,
kxEũ′ũ′/u2

τ , where kx = 2π/λx is wave number and λx is wavelength [84]. These spectrograms
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are based on projection on Fourier modes, as opposed to wavelets (discussion to follow). For the
homogeneous rough case [Figs. 6(a) and 6(b)], we see a clear separation between the outer and
inner peak, where the former is a product of VLSMs while the latter is a product of surface layer
shear [84]. The separation wavelength, λx/H = 2, is used as a demarcation between the large and
small scales, although as can be seen a range of values would ultimately yield the same outcome
owing to the disparate length scales at which the outer and inner peaks reside [26,36,84]. Note also
that the spectrograms at the two spanwise locations [Figs. 6(a) and 6(b)] are effectively equivalent,
and both reveal the presence of a spectral plateau over the range 5 � λx/H � 101. The case 1
spectrograms are not precisely equivalent, as they were taken from discrete virtual towers and we
did not leverage spanwise homogeneity, as we would have otherwise done [26]; but the agreement
is certainly reasonable and provides a foundation for assessing the role of topographically driven
secondary flows.

Figures 6(c) and 6(d) and Figs. 6(e) and 6(f) show Fourier-based spectrograms for cases 2 and
3, respectively, at spanwise locations corresponding with the crest [Figs. 6(c) and 6(e)] and trough
[Figs. 6(d) and 6(f)]. Considering first the crest, we see that the distinct outer peak has completely
vanished, and spectral density diminishes with increasing wall-normal elevation and wavelength.
There is, however, spectral density residing at wavelengths exceeding the large-scale cutoff noted
in Sec. I B, GL, where L = δT U0H

−1 = 2.0, and results below demonstrate that this is sufficient
for inducing a non-negligible modulation on the small scales across the depth of the flow. This
argument is true for case 2 [Fig. 6(c)] and case 3 [Fig. 6(e)], although for case 3 the spectral density
is vertically displaced by virtue of the topography. Note, too, that the series of elevated kxEũ′ũ′/u2

τ

above the topography, for both cases, is a product of vortex shedding from the roughness elements
(Fig. 1).

For cases 2 and 3 above the trough [Figs. 6(d) and 6(f)], the spectrograms are ostensibly
similar to that for the homogeneous roughness (case 1). However, closer inspection reveals an
important difference: although the spectrograms indicate a distinct outer peak, it has shifted to smaller
wavelengths (λx/H ≈ 8), as opposed to the value λx/H ≈ 21 expected for a pure channel. Moreover,
by using color bars with equivalent quantitative range for all the spectrograms, it is apparent that
variance (via Parseval’s theorem) is weaker in the “surface layer” region above the trough, all of which
is consistent with antecedent results in this article and prior studies. Nonetheless, the spectrograms
shown here indicate that large-scale motions in the present flows—even given the relatively extreme
spanwise heterogeneity—should be capable of modulating the small scales. Since the correlations
considered here [Eqs. (7)–(10)] are based on wavelet-based processing of the input time series
(Sec. I B), we have also prepared spectrograms of global wavelet power spectrum in frequency-height
space.

Figure 7 shows wavelet-based spectrograms from virtual towers corresponding with the crest
[Figs. 7(a), 7(c), and 7(e)] and trough [Figs. 7(b), 7(d), and 7(f)], for case 1 [Figs. 7(a) and
7(b)], case 2 [Figs. 7(c) and 7(d)], and case 3 [Figs. 7(e) and 7(f)]. Wavelet-based spectrograms
are generated via the processing steps outlined in Sec. I B, where the wavelet power spectrum,
E(z,t,f ), is time averaged, yielding the global wavelet power spectrum, G(z,f ) = 〈E(z,t,f )〉T ,
which is then presented in the Fig. 7 color flood contours. Since f ∼ t−1, it follows that small
frequency corresponds with large time (or length), and thus the wavelet-based spectrograms should
approximately be a vertically mirrored version of the Fourier-based spectrograms; quick inspection
of Fig. 7 proves this to be true. Although the spectrograms show undulations in the frequency-height
space, which are due to insufficiently long time-averaging periods, salient features of the flow are
nonetheless captured and the results are consistent with the Fourier-based projection (Fig. 6 and
accompanying text).

Figures 7(a) and 7(b) show the accumulation of spectral density at high frequencies within the
roughness sublayer (z/H � 0.1). Since these panels are for the homogeneous roughness case,
such that the two spanwise locations are physically equivalent, no substantial differences can be
expected between the panels (beyond, simply, the effects of averaging). Figures 7(a) and 7(b) show
the selected separation frequency, fc (orange line), which has clearly been placed within the band
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FIG. 7. Color flood contours of wavelet-based spectrograms of ũ/uτ . (a), (b) Case 1, (c), (d) case 2, and (e), (f)
case 3 above the (a), (c), (e) crest and (b), (d), (f) trough. Annotations have been added for the shear-normalized
LES grid-filter frequency f ∗

minH/U0, domain length f ∗
maxH/U0, and shear-normalized separation frequency

fcH/U0 = 0.5; we have also added annotations for two reference locations, zRef.1 and zRef.2 , which are used in
Sec. III E to determine two-point modulation of small-scale amplitude and frequency. For cases 2 and 3 above
the crest, vertical dashed lines denote hmax/H .

of frequencies between the inner and outer peaks. In fact, since the inner and outer peaks reside
at different frequencies, we could have used a large range of frequencies to separate the large and
small scales. In work not presented here, we experimented with different fc and found no discernible
influence on the statistics, which is consistent with the complementary work of Ganapathisubramani
et al. [33].

For cases 2 and 3, the wavelet-based spectrograms above the trough are, at first glance, spatially
similar to that for case 1 [Figs. 7(d) and 7(f)]. However, closer inspection reveals that the outer peak,
which was located at f H/U0 ≈ 0.03 for case 1 [Figs. 7(a) and 7(b)], has shifted to higher frequencies
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(f H/U0 ≈ 0.07), which is consistent with observations of the Fourier-based spectrograms. This
result, by itself, demonstrates that while flow processes within LMPs may appear unaffected by the
secondary motions to first order [i.e., Figs. 2(e) and 2(f) or Figs. 4(b) and 4(d)], higher-order statistics
reveal nontrivial modifications.

Figures 7(c) and 7(e) show wavelet-based spectrograms above the crest for cases 2 and 3, where
the separation frequency, fc, and maximum topographic height have been annotated for discussion.
As per Fig. 6, there are no longer two distinct peaks residing at different wavelengths (or frequencies),
and instead spectral density is clustered around fc. At frequencies exceeding fc, this result is
consistent with the presence of vigorous roughness sublayer mixing above the topography, while for
frequencies less than fc, the result indicates that the outer peak has vanished. This demonstrates that
downwelling and the associated vigorous mixing within HMPs attenuates large-scale correlation,
and only relatively smaller structures are preserved. We nonetheless show that sub-fc structures are
capable of imposing a modulation of the small-scale frequency and amplitude.

E. Correlation profiles

Figures 8 and 9 show the single- and two-point correlation profiles for modulation of small-scale
amplitude and frequency, respectively, as per the postprocessing procedure outlined in Sec. I B
[34,35]. Equations (7)–(10) quantify how the large-scale content, ũ′

L(xl,yl,z,t), correlates with the
amplitude and frequency embodied in the small scales. Though more cumbersome, consideration of
two-point correlations (right ordinates of Figs. 8 and 9) provides the best context for assessing how
the passage of structures in the outer layer is correlated with the dynamics of the near-wall region.

In the interest of brevity, we opted to show only correlations for cases 1 and 3, these being the
limiting cases considered (all prior statistics in this paper have reported monotonic trends, and we
can report similar properties for the amplitude and frequency modulation profiles of the intermediate
cases). We have, however, shown the profiles across resolutions (in Figs. 8 and 9, black, dark gray,
and light gray correspond with low-, intermediate-, and high-resolution versions of the same flow-
topography arrangement, respectively). Establishing insensitivity to computational mesh resolution is
of pivotal importance to studies of amplitude and frequency modulation [36], since such insensitivity
demonstrates that the conceptual framework of any predictive model [28] can be utilized in a general
sense. We made our best efforts to integrate the high-resolution cases for a sufficiently long time [77],
although these cases do present logistical challenges. For this reason, statistics for the high-resolution
cases (cases 7–9; Table I) were based on averaging over a period, T U0H

−1 ≈ 103, approximately
30% and 20% of the averaging period used for the intermediate (cases 4–6) and low resolution (cases
1–3), respectively. Thus, we observe generally strong agreement between the low- and intermediate-
resolution cases, both of which deviate modestly from the high-resolution cases. These results add
to evidence that existing techniques for quantifying amplitude and frequency modulation [34] are
not susceptible to mesh resolution [36]. This result is compliant with the conceptual foundations of
LES, wherein Reynolds-averaged turbulence quantities should be equivalent even as the subgrid-
and resolved-scale contributions vary with varying filter scale.

Beginning first with the vertical profiles for amplitude modulation (Fig. 8), it is apparent that the
single- and two-point correlations for all cases are correctly equivalent at the reference heights. We
also see that the amplitude modulation profiles are very similar above the “crest” and “trough” for
cases 1, 4, and 7 [Figs. 8(a), 8(b), 8(e), and 8(f)], which is a logical consequence of the spatially
homogeneous surface conditions for these cases. Moreover, we see that |Ra(z; z)| � |Ra(z; zRef.)|
over the depth of the flow, since the small scales are closely correlated with large scales at the same
height. However, for zRef.1/H = 0.5, there is a narrow range, 0.1 � z/H � 0.2, where |Ra(z; z)| <

|Ra(z; zRef.)|; the Fourier- and wavelet-based spectrograms (Figs. 6 and 7, respectively) indicate that
zRef.1/H is “above” the outer peak, while the range in which |Ra(z; z)| < |Ra(z; zRef.)| corresponds
with the spectral plateau. Since the input argument, σ ′

SL(z,t), does not change between Eqs. (7) and
(9), the differences must be generated by differences to the large scale, ũ′

L(zRef.,τ (z; zRef.)): the zone
of |Ra(z; z)| < |Ra(z; zRef.)| is thus attributed to the persistent momentum excess above the crest,
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FIG. 8. Vertical profiles for small-scale amplitude modulation by large scale, ũ′
L(xl,yl,z,t), at discrete

streamwise-spanwise locations, {xl,yl}, corresponding with the (a), (c), (e), (g) crest and (b), (d), (f), (h) trough.
Dashed and solid profiles correspond with single-point [Eq. (7)] and two-point [Eq. (9)] correlation, respectively,
and corresponding values for both are shown by the left and right figure ordinates. (a), (b), (e), (f) Black, dark
gray, and light gray correspond with cases 1, 4, and 7, respectively; (c), (d), (g), (h) black, dark gray, and
light gray correspond with cases 3, 6, and 9, respectively. The reference heights used for (a)–(d) and (e)–(h)
are zRef.1/H = 0.5 (red) and zRef.2/H = 0.25 (blue), respectively, and both were included on the spectrograms
(Figs. 6 and 7).
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FIG. 9. Vertical profiles for small-scale frequency modulation by large scale, ũ′
L(xl,yl,z,t), at discrete

streamwise-spanwise locations, {xl,yl}, corresponding with the (a), (c), (e), (g) crest and (b), (d), (f), (h)
trough. Dashed and solid profiles correspond with single-point [Eq. (8)] and two-point [Eq. (10)] correlation,
respectively, and corresponding values for both are shown by the left and right figure ordinates. (a), (b), (e), (f)
Black, dark gray, and light gray correspond with cases 1, 4, and 7, respectively; (c), (d), (g), (h) black, dark gray,
and light gray correspond with cases 3, 6, and 9, respectively. The reference heights used for (a)–(d) and (e)–(h)
are zRef.1/H = 0.5 (red) and zRef.2/H = 0.25 (blue), respectively, and both were included on the spectrograms
(Figs. 6 and 7).
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associated with the HMP. Note, too, that the correlations cross over at z/H ≈ 0.1, below which
|Ra(z; z)| > |Ra(z; zRef.)|.

Interestingly, for zRef.1/H , amplitude modulation above the trough [Figs. 8(b) and 8(d)] shows
much closer agreement between cases 1, 4, and 7 relative to cases 3, 6, and 9. We have argued and
demonstrated in all preceding stages of this article that—at least for the topographies considered—it
is within HMPs (above crest) that flow physics are most dramatically perturbed, while LMPs (above
the trough) are far less disruptive to the structural characteristics expected for canonical shear-driven
channel flow turbulence. Figures 8(b) and 8(d) and Figs. 8(f) and 8(h) provide further support for
this conclusion.

From Figs. 6 and 7, it is clear that zRef.1/H does not intersect the outer peak, and for this
reason we considered the second location, zRef.2/H , which strikes precisely through the outer peak
for the homogeneous rough case and above the trough for the spanwise-heterogeneous cases. We
subsequently observe a much closer agreement between the single- and two-point correlations [35].
For cases 3, 6, and 9, despite the lack of any distinct outer peak [Figs. 6(e) and 7(e)], we nonetheless
find strong correlations. Above the crest, elevated production of turbulence ultimately attenuates
large-scale correlation in the flow, and instead spectral density is concentrated in a larger zone.
However, the underlying approach to amplitude modulation, which is predicated upon Parseval’s
theorem, is contingent only upon the variance within the flow, not the wavelength or frequency at
which spectral density resides.

Figure 9 shows the frequency modulation correlations for cases 1, 4, and 7 [Figs. 9(a), 9(b),
9(e), and 9(f)] and cases 3, 6, and 9 [Figs. 9(c), 9(d), 9(g), and 9(h)], above the crest [Figs. 9(a),
9(c), 9(e), and 9(g)] and trough [Figs. 9(b), 9(d), 9(f), and 9(h)], for reference elevations, zRef.1/H

[Figs. 9(a)–9(d)] and zRef.2/H [Figs. 9(e)–9(h)], cited in the figure caption. As per Fig. 8, there
is some disagreement between the high-resolution cases and those for the intermediate- and
low-resolution cases, although the overall trends agree. For these cases, Rf (z; z) > Rf (z; zRef.),
with the exception of z = zRef., at which elevation the correlations are by definition equivalent.
The single-point correlation continues to rise as the surface is approached, while the two-point
correlations (above the crest and trough) remain constant with depth after reaching their upper limit.
Moreover, we again see that when the reference elevation is selected to intersect the outer peak,
the single- and two-point correlations agree closely over a large vertical region, relative to when the
reference location does not intersect the outer peak. Note, too, that the frequency modulation profiles
above the trough for cases 1, 4, and 7 are similar to those above the trough for cases 3, 6, and 9,
which is consistent with all previous findings regarding the modestly disruptive influence of LMPs,
relative to HMPs.

IV. CONCLUSION

We used LES to systematically explore how topographically driven turbulent secondary flows
disrupt the spatial nature of turbulent flow physics in a channel, and presented all results against a
benchmark homogeneous roughness. The spanwise-heterogeneous topographies were constructed
with element-to-element multiplication of two-dimensional Gaussian distributions, which yields
topographies with a prominent spanwise heterogeneity that are also undulating in the streamwise
direction. For the inertial-dominated, fully rough flow conditions considered in this study, the results
(and scientific conclusions) are expected to transcend topographic arrangements; that is, provided
the lower surface is capable of sustaining domain-scale secondary flows in the form of HMPs and
LMPs, results for different surfaces should closely resemble those presented here. We recognize that
in recent times this topic has received attention, and the role of spacing between spanwise-adjacent
heterogeneities has been under consideration [44,45,52], but for the very large spanwise spacing
considered here we expect the HMPs and LMPs to be clearly anchored above the crest and trough,
respectively [41,43].

We have systematically demonstrated that within HMPs, large-scale correlation is attenuated by
virtue of vigorous mixing above the crest, and VLSMs are absent. Within LMPs, however, large-scale
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correlation in the form of VLSMs is mostly preserved, although the signature of their presence shifts
to shorter wavelengths. This is shown qualitatively and via assessment of first- and second-order
turbulence statistics. This is somewhat surprising, since LMPs and HMPs coexist as a product of
the same external condition—spanwise topographic heterogeneity—and yet LMPs appear far less
influential to the flow physics.

These results were viewed in the context of small-scale frequency and amplitude modulation by
the large scales. We showed that frequency and amplitude modulation profiles are relatively similar
within HMPs and LMPs, relative to the benchmark homogeneous rough case. We also showed that the
presently used measure of small-scale amplitude and frequency modulation is sensitive to the choice
of outer, reference elevation. When the reference elevation intercepts the outer peak, the single- and
two-point correlations are similar over a larger range of elevations, relative to when the reference
height does not intersect the outer peak. We modeled flow over the three topographies with three
different resolutions, which provided an opportunity to assess any sensitivity to resolution. We found
virtually no dependence on resolution, which bodes well for longer-term efforts to incorporate these
concepts into development of surface flux closures for deployment in wall-modeled LES.
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