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Numerical simulations of positively buoyant suspension in a horizontally rotating cylinder
were performed to study the formation of radial and axial patterns. The order parameter
for the low-frequency segregated phase and dispersed phase is similar to that predicted for
the settling suspension by Lee and Ladd [J. Fluid Mech. 577, 183 (2007)], which is the
average angular velocity of the particles. The particle density profiles for axial bands in the
buoyancy-dominated phase shows an amplitude equivalent to the diameter of the cylinder.
Axial density profiles show sinusoidal behavior for the drag-dominant phase and oscillating
sinusoidal behavior for the centrifugal-force-dominant phase. Results also indicate that the
traveling bands are formed as a consequence of the inhomogeneous distribution of particles
arising from a certain imbalance of drag, buoyancy, and centrifugal forces. In the centrifugal
limit, particles move towards the center of the cylinder, aggregating to form a dense core
of particles with its axis coinciding with that of the rotating cylinder, a behavior which is
in contrast to the sedimenting particles. The particle distribution patterns obtained from the
simulations are found to be in good agreement with the experiments of Kalyankar et al.
[Phys. Fluids 20, 083301 (2008)].

DOI: 10.1103/PhysRevFluids.3.044301

I. INTRODUCTION

Pattern formations like periodically spaced ripples on sand or water, patterns on a basin floor, and
Fibonacci patterns on leaves have been of interest to mathematicians, physicists, and researchers of
various disciplines due to their omnipresence in nature. One can encounter an exhibition of such
rich patterns in the flow of both dry and wet granular matter under a different set of conditions.
Study of the dynamics of suspensions consisting of micrometer and submicrometer particles holds
many applications in industrial, domestic, and environmental avenues. Although being ubiquitous,
the flow of noncolloidal suspensions itself is not completely understood. This dearth of knowledge
on suspension flows can be ascribed to the mathematical complexity associated even with dilute
systems.

Flows in a horizontal rotating cylinder or a Taylor-Couette device also display various nonequilib-
rium patterns. Experiments with dry granular particles in rotating cylinders revealed that the particles
separate into a series of bands and get stacked along the horizontal axis [1]; these experiments probed
the evolution of axial bands and its dependence on the rotational velocity of the horizontal cylinder.
Other experiments showed that dry granular matter segregates by mass and size in the cylindrical
geometry [2]. In dry granular matter the dominant interactions are inelastic frictional collisions
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between the particles; nevertheless, wet granular slurries too exhibit particle segregation in which
the particle interactions are mediated by the interstitial fluid. For a range of rotational frequencies,
suspensions exhibit the phenomenon of axial segregation, which appears like stripes of particles
interlaced in a pure fluid [3]. The phenomenon of nonequilibrium patterns along the radial and axial
directions for particle-laden flows in horizontal rotating cylinders has been of interest to researchers
owing to diversified applications. These patterns in horizontal cylinders appear in two cases: first,
with the interaction of a rotating bulk suspension of particles with a free surface and, second, in
the case of fully filled cylinders suspending non-neutrally buoyant particles. Moreover, these two
types can be further subdivided with reference to the nature of the suspended particles. Experimental
works revealed that for fully filled cylinders to exhibit axial segregation, the suspended particles
should necessarily be non-neutrally buoyant. Though a fair amount of investigation has been done
on both the experimental and numerical fronts, a unifying mechanism to explain axial segregation
has not yet been deterimine. Significant contributions from various analyses (both experimental and
theoretical) are briefed below to arrive at the objective of the current work.

Bands of particles are reported to be observed in partially filled Taylor-Couette devices with the in-
ner cylinder rotating and concentration of particles being as low as 1% to as high as 65%. The banding
patterns usually take a considerable time to appear for less concentrated suspensions and appear soon
if the concentration of particles in the suspension is maintained high. In another independent study,
experiments were conducted in a Taylor-Couette system for different fill fractions and neutrally
buoyant suspended particles [3,4]. In addition to reporting the occurrence of bands due to axial
segregation of particles, this work also reiterated the proposition of Boote and Thomas [5] that axial
banding does not result from the presence of the wave front as suggested by Melo [6]. Later Joseph
et al. [7] performed experiments in particle-laden rimming flow with floating particles. Particles were
either less dense than the carrier fluid or hydrophobic allowing them to float on the liquid-air interface.

A theoretical explanation of the formation of granular bands with the help of a mathematical model
was first attempted by Govindarajan et al. [8]. Based on the concept on shear-induced migration of
particles and a concentration-dependent viscosity in the presence of a free surface, the approach
claimed to have provided a qualitative explanation to the phenomenon observed in Refs. [3] and
[4]. However, the work done by Timberlake and Morris [9] revealed that the timescale for shear-
induced migration to affect the particle clustering dynamics is nearly 40 times less than the observed
experimental timescale. Later, Jin and Acrivos [10,11] examined the stability of the suspension to
axial disturbances in the concentrations of the particles by performing a linear stability analysis. In
their work it was assumed that the radial patterns of the suspension precede axial segregation. The
investigations done in Ref. [11] concluded that the underlying cause for the instabilities in the particle
distribution to the axial perturbations could be surface tension. Therefore the selection of wavelength
of the most rapidly amplified disturbance could be attributed to surface tension. Duong et al. [12]
used the variable viscosity approach to report the existence of alternating solid-like and liquid-like
states in highly concentrated suspensions. Raiskinmaki et al. [13], however, coupled the application
of direct numerical simulations with variable viscosity approximation to comprehend formation of
clusters in Couette flows. Theoretical works to date could not completely establish a comprehensive
mechanism behind suspended particles leaving the pool of liquid to get radially segregated inducing
particle clustering along the axis of the cylinder.

Apart from probing the formation of axial bands in partially filled cylinders, a few experiments
were performed with dilute suspensions entirely filling the rotating cylinder. One of the major
differences between the cases of suspension partially and fully filling the cylinders is the existence of
a free surface. The segregation mechanisms for the partially filled suspensions are governed strongly
by the free-surface dynamics [10]. However, even with the fully filled rotating cylinders apparently
similar band formation was observed [14]. To start, it is to be noted that most of the studies which
explored the parameter space of the axial banding phenomenon for the case of fully filled cylinders
were conducted with sedimenting particles. Lipson [15] reported alternating concentration bands
of particles along the axial direction of the rotating cylinder. His experiments were directed at
measuring the average spacing of bands as a function of the ratio of length and radius of the cylinder.
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Millimeter-sized particles which constitute the suspension are responsible for the high-particle-based
Reynolds numbers (Rep = 2au0/ν where a is the particle radius, u0 is the settling velocity of an
isolated particle, and ν is the kinematic viscosity of the carrying fluid) ranging from 6.5 to 735 in
their experiments, whereas the effect of high rotational frequencies is reflected in the high-flow-based
Reynolds number (Ref = �R2/ν, where � is the rotational velocity of the cylinder and R is radius
of the cylinder).

Breu et al. [16,17] performed extensive studies with low viscosity interstitial fluids suspending
glass beads. These studies were performed at high rotational frequencies of the cylinder. They
observed instabilities which highlight the hysteric character of the transition states as the rotational
velocity is lowered. The axial bands also periodically expand and shrink along the axis depending
on the rotation rate of the cylindrical drum. A particle-based Reynolds number for the experimental
conditions of Breu et al. [16,17] is Rep ∼ 20, clearly implicating that inertia plays a significant role
in band formation.

Matson and co-workers [18–20] used carrier fluids with viscosities ranging from 0.05 to 1cm2/s.
A series of experiments were performed to identify the phase space of the various nonequilibrium
states. For their experimental conditions, in the low rotational frequency limit and for various
fluid viscosities, the particle-based Reynolds number Rep < 0.1. Therefore, in this limit inertia
is negligible, and without loss of generality one can apply the Stokes flow approximation. At low
rotational frequencies, the alternate concentrated particle stripes were sinusoidal in nature, while at
higher frequencies they were more pronounced but asymmetric.

Lee and Ladd [21] proposed a theory to comprehend the underlying particle dynamics for the
nonequilibrium patterns observed by Matson et al. [18]. They claimed that for a suspension of
centrifuging particles, different centrifugal forces on particles at different radial positions produce an
attractive interaction and relative motion between the particles along the axial direction. The relative
motion between the particles in turn amplifies the axial density fluctuations, forming concentrated
particle bands along the rotational axis. Their claim also suggests that for a suspension of non-
Brownian buoyant particles, differential centrifugation produces a repulsive interaction between
the particles which stabilizes any axial density fluctuations if present. Note that Lee and Ladd
[21] approximated the canceling field of the cylindrical wall with a flat wall. However, it was later
realized that the correct treatment of the no-slip cylindrical boundary condition should exactly nullify
any interaction between ring Stokeslets due to differential centrifugation, which, therefore, cannot
amplify any axial density perturbation [22,23]. In their follow-up works [22,24] Stokeslet simulations
were used to reproduce the low-frequency patterns obtained in the experiments done by Matson
et al. [18] and they reported that the axial banding might be a result of the secondary flow caused by
sedimenting clusters during the dynamic phase transition in the radial plane.

Motivated by the theory put forward by Lee and Ladd [21], Kalyankar et al. [25] conducted
experiments with buoyant non-Brownian suspension and performed a comparative study with the
settling suspension. Except for the densities of the suspended particles, most other parameters like
the cylinder diameter, length, and particle sizes were similar to those used in Matson et al. [18–20].
It was found from their experiments that when the action of gravity overcomes centrifugal forces,
nonequilibrium states for the buoyant and the settling suspensions can be correlated. Reference
[25] used glycerine-water mixtures as the carrier fluid with kinematic viscosities ranging from 0.25
to 1cm2/s. The particle-based Reynolds number Rep ∼ 0.01–0.1 while the flow-based Reynolds
number at the lowest and highest frequencies of rotation Ref ∼ 1–100. However, for most of the axial
band phases exhibited in their experiment Ref ∼ 1. As many as nine independent nonequilibrium
patterns were observed for the buoyant particle system. Among those, a low frequency axial
segregation was also reported, contradicting the suggestion in Ref. [21] based on an underestimated
canceling field.

The present work is aimed at studying the dynamics of radial and axial patterns in a rotating
suspension of positively buoyant particles. As the experimental conditions of Ref. [25] are similar to
those of Matson et al. [18–20], we followed the simulation method detailed in Ref. [24] to investigate
the low-frequency banding phases that were reported. In this method, the hydrodynamic flow fields
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around particles are approximated by Stokeslets and summed up with the flow field generated by
imposing a no-slip boundary condition on the cylinder surface. The simulations reproduced the
transference of axial bands of high and low concentration, which occurs at a relatively high frequency
compared to those reported in Ref. [22].

II. SIMULATION METHOD

In this section, the simulation methodology adopted in the current work is described briefly. We
consider a dilute suspension of monodisperse solid spheres of radius a in a horizontal cylinder of
radius R, rotating at an angular velocity �. The equation of motion of a particle i with mass m is
given by

m
dui

dt
+ 2m� × ui = mBg − mB� × (� × ri) +

∫∫
σ dsi , (1)

where, ui is the velocity of particle i, mB is the buoyancy corrected mass, and σ is the fluid stress
integrated over the particle surface si . The last term on the right-hand side of the equation is the
contribution of the drag force, which depends on positions of the surrounding particles.

The suspending fluid in the cylinder is assumed to be Newtonian, and the inertial forces are
neglected based on the experimental conditions in Ref. [25]. On applying this approximation to
Eq. (1), it reduces to

Fj = mBg + mB�2rj = ξ [uj − u(rj )], (2)

where u(rj ) is the fluid velocity at particle location rj , mB = (ρf − ρp)Vg; here V is the volume
of the sphere and ξ = 6πμa.

A. Single-particle dynamics

Before proceeding to understanding the collective behavior of the suspended particles in the
viscous fluid, an attempt is made to understand the dynamics of a single particle. This study is
performed to classify the system based on the strength of gravitational, centrifugal, and drag forces
acting on it. A positively buoyant particle placed in a viscous fluid which rotates along its horizontal
axis experiences a buoyancy-corrected gravitational force and a centrifugal force given by −mBgŷ
and mB�2r r̂, respectively (ŷ and r̂ are the unit vectors in the y and r directions, respectively). In
isolation, the resultant of these forces gives rise to a rising velocity uf ŷ and a centrifuging velocity
ucr̂ where uf = mBgξ−1 and uc = mB�2rξ−1. On solving the instantaneous force balance equation
the velocity of the isolated particle when resolved into the cylindrical coordinate system is given by

ur = uf

(
r

D1R
+ sin θ

)
,

uθ = uf

(
r

D2R
+ cos θ

)
, (3)

where D1 = g/�2R and D2 = uf /�R are dimensionless numbers which describe the relative
magnitudes of the gravitational, centrifugal, and drag forces acting on the isolated particle as defined
by Lee and Ladd [24]. Trajectories on which the radial and the angular velocities become zero for
the particle under consideration can be obtained by equating ur and uθ to zero. The loci so obtained
are circles C1 and C2 with diameters D1R and D2R as shown in Fig. 1(a), which intersect at point P
(unstable equilibrium). At very low rotational velocities D2 > 1, and hence the particle reaches the
point of stagnation A in Fig. 1(b). Locations of P and A differ from Ref. [24] owing to the reversal
of the direction of centrifugal force.

The trajectories of a single particle for three different rotational frequencies shown in Fig. 2
signify the balance of forces acting on the particle. As discussed earlier, the particle rises up and
moves along the wall for very low rotational frequency [see Fig. 2(a)] and swirls towards the center
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FIG. 1. The circles C1 (blue) and C2 (red) describe the locus of zero radial and angular velocities,
respectively. Panel (a) corresponds to the drag dominant phase with the point P indicating the dynamical
center of the system, and panel (b) corresponds to centrifugal dominant phase; here the point A indicates the
stagnation point.

due to high centrifugal force as shown in Fig. 2(c). Nevertheless, it has a closed trajectory in Fig. 2(b)
implicating a balance of forces acting on the system. In lieu of the above arguments it is justified
to classify the system into three regimes: (1) buoyancy-dominated, (2) a balance between buoyancy
and centrifugal forces, and (3) a centrifugal-force-dominating regime.

B. Stokeslets confined in a cylinder

In the case of multiparticle dynamics, the hydrodynamic interactions also play a role in addition to
the forces detailed in single-particle dynamics. Since the interest lies in comprehending the collective
behavior of particles in the suspension, the additional contribution to the particle velocities from
interactions is incorporated. The approach followed to understand collective particle dynamics is
similar to the molecular dynamic simulation. First, the particle positions are initialized using a Monte
Carlo method to generate random initial configuration for the particles. The initial configuration is
generated by maintaining the volume fraction of the particles φ ∼ 0.02 pertaining to the experimental
conditions. In the second step the velocity field for the system is computed from Eq. (5); this is done
by approximating the particles as Stokeslets and summing up with the flow field due to the cylinder
surface. Formulation of this velocity field is stated briefly below.

FIG. 2. Particle trajectories at different velocities of the cylinder rotating counter-clockwise as indicated by
the arrow. Initial position of the particle in all three cases is (r,θ,z) = (0.5,0,0). (a) � = 0.1: drag-dominant
regime, the particle rises to reach the cylinder wall and gets dragged down because of rotation. (b) � = 1: balance
of gravity, drag, and centrifugal forces imposing a closed trajectory to the particle. (c) � = 10: centrifugal-force-
dominant regime, the particle swirls inward to the center.
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FIG. 3. Schematic representation of a rotating suspension in a horizontal cylinder.

Starting from the fundamental solution for Stokes flow termed the “Stokeslet,” we can construct a
general solution for the dynamics of point particles confined in a cylindrical boundary. A schematic
representation of the cylinder with its rotational axis aligned along the z axis and fully filled with
suspension is shown in Fig. 3.

In the Stokes regime, fluid flow field u(r) due to the presence of a point force F at r0 is represented
by

u(r) = G (r,r0)F. (4)

In mathematical terms, the second order tensor G (r,r0) is the Green’s function for the Stokes
equation. The expressions for Green’s function (mobility tensor) for a single particle placed along
the axis of a rotating cylinder was elucidated by Liron and Shahar [26]. Lee and Ladd [24] extended
the mobility tensor to N Stokeslets in a rotating cylinder, proposing order N algorithms for both the
source field and the canceling field. On evaluation of the Green’s function, the particle velocity can
be represented as the sum of the contributions from the hydrodynamic interactions and the Stokes
velocity as shown by

uj = Fj

ξ
+

N∑
i �=j

G (rj ,ri)Fi . (5)

Neglecting the Stresslets and other higher order contributions to the force density on the particle
surface eases the computational effort and can simulate approximately 104 particles in most of the
cases. The overall velocity field u(r) can be divided into a source field v(r) and a canceling field ω(r),
which can be independently calculated and the canceling field also satisfies the equation ω(R) =
−v(R) at every point on the surface of the cylinder. The source field consists of nine components
vα

β corresponding to the three directions of the Stokeslet α and three directions of the velocity β;
here α and β are components (r, θ or z) in cylindrical coordinates. The derivation and expressions
for these components are detailed in Ref. [24]. The issues of numerical convergence such as the
truncation of the infinite sum and the number of Fourier modes requisite for a specified accuracy are
also addressed in Ref. [24].

Finally, from the knowledge of the particle velocities a fourth order Runga-Kutta method is used
to solve the differential equation so that the new positions of the particles are determined. This
process is looped over until a steady state configuration is reached. All the simulations irrespective
of the value of L/R have the axially periodic boundary condition imposed in the present work.

III. RESULTS AND DISCUSSION

Our simulations were inspired by the experimental results in Ref. [25]. Therefore, the parameters
necessary for the simulations were maintained similar to the conditions of their experiments. In our
simulations the particle radius a was 100 μm and the radius of the cylinder (R) was 100a. The
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length of the cylinder (L) for radial and axial segregation studies was 0.2R and 5R, respectively.
The fluid viscosity (µ) was 55cp (except for DB and CL cases, which was 80 cp), and its density
(ρf ) was 1.16 g/cc. The particle density (ρp) in all but one simulation was 0.15 g/cc. Simulations
were performed for various rotational frequencies (�). The flow Reynolds number (Ref = ρ�R2/μ)
varied between 0.18 (for GB case) to 41 (for the CL case).

Kalyankar et al. [25] observed as many as nine independent steady states, which can be
distinguished by the exhibition of various radial and axial patterns. It is to be noted that in their
experiments for recording observations in the radial plane a shorter cell with a diameter 1.97 cm but
with a length of 2.25 cm was used corresponding to the average length of a single “band” observed
in the studies of axial pattern in much longer cylinders. Starting from the granular bed (GB) phase
to the centrifugal limit (CL) phase, both the settling and buoyant systems contain a large array of
identical properties and phases. Our simulations could reproduce most of the phases observed in the
experimental results and to understand the dynamics of axial band formation. In the discussion below,
radial and axial segregation patterns obtained from simulation results are presented exclusively.

A. Radial patterns

Several patterns distinct in the radial plane occur for different rotational rates of the cylinder.
Simulations performed could reproduce most of the patterns that form in the radial plane for a
buoyant suspension. To observe radial patterns, a cylinder with R = 1cm and L = 0.2R (to nullify
axial density variations) is considered with around 2300 particles; the fluid viscosity is maintained
at 55 cP at all times, but for DB and CL phases the viscosity was 80 cP. The density of the fluid
and particles were taken to be 1.16 g/cc and 0.15 g/cc respectively. The discussion below details
the steady state dynamics of the particles for a wide range of rotation rates which fall into the three
regimes shown in Fig. 2.

1. Granular bed (GB)

At very low rotational frequencies of the cylinder, the particles are stacked near the upper section
of the cylinder forming a bed as shown in Fig. 4(a). This bed formation is because the dominant force
in this phase is the buoyancy. As the cylinder rotates, particles from the bed are carried down along
the rotating wall in a thin layer which has a thickness equivalent to the diameter of the suspended
particles. At a certain downward location the vertical component of the viscous drag is overcome by
the upward buoyancy force, and the particles rise back into the bed with a much higher rising velocity.
As the particles are dragged upwards by the buoyant force they set a clockwise current near the bed.
It is evident from Fig. 4(a) that GB for the floating system is similar to that of the settling system
[Fig. 4(a) in Lee and Ladd [24]], which is because the effective direction of bed formation is reversed.

2. Fingering flow I (F1)

As the rate of rotation of the cylinder is slightly increased one can observe the elongation of the
tail of GB with not much change in the properties of the bed. There is a decrease in the concentration
of particles in the bed since more particles get dragged along the wall of the cylinder. The particles
which are dragged down along the wall begin to move towards the bed once they reach near the
bottom of the cylinder. The particles are dragged downward along the rotating wall till the point
where the vertical component of the drag force is greater than the buoyancy force. Near the bottom
of the cylinder the buoyancy force overcomes the drag, and the particles escape from the downward
velocity imposed by the wall. The rising particle drags its neighboring particles as it passes through
the fluid. The region of the circulating counter currents which started to grow in the GB phase
develops further in this phase owing to the increase in the rotational frequency as shown by the
velocity vector plot in Fig 4(b). The F1 phase too is identical to that of the settling suspension.

3. Fingering flow II (F2)

The F2 phase appears at slight higher velocities from F1; in this phase the particle distribution
can be divided into three zones based on the circulation currents in the cylinder. It is evident from
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FIG. 4. Velocity vectors and particle distribution at steady state for a buoyancy-dominated regime. Red
particles move downwards, whereas the blue particles move against gravity. (a) � = 0.09 rad/s, particles form
a bed at the top (GB); (b) � = 0.12 rad/s, particles which are dragged along the cylinder tend to rise (F1); (c)
� = 0.15 rad/s, more particles are dispersed into the cylinder (F1/F2); (d) � = 0.3 rad/s, particles transit into
the right half of the cylinder (LT).

the particle distribution in Fig 4(c) that the flow is clockwise to the left of the rotating axis as the
particles that get detached from the wall tend to float back to the top. As there is no presence of
particles to the right of the rotating axis, the fluid follows the course of the cylinder wall and imparts
a counter-clockwise flow. These opposite currents in the left and right sections of the cylinder distort
the bed further by creating another clockwise circulation near the top as shown in Fig 4(c).

4. Low-rotation-rate transition (LT)

This phase is a result of continuous evolution from the F2 phase as the rotational velocity is
increased. A small increase in the rotational speed is enough to destroy the secondary flows associated
with the fingering flow phases. The particle bed at the upper section of the cylinder which is prominent
in the first three phases is completely destroyed. The circulation shown for F2 phase near the particle
bed in Fig. 4(c) becomes fully blown, spreading the particles as depicted in Fig. 4(d).

Instantaneous particle positions at different times are shown in Fig. 5 to illustrate the evolution
of steady state nonequilibrium patterns in the drag-dominated phases from initially homogeneous
distribution of particles. It is apparent that in the radial direction, the system does not take much time
to attain steady state for a corresponding rotational velocity. Evolution to the GB phase illustrates
the gradual movement of particles towards the top due to the dominance of drag. In the evolution to
F1 phase, it can be observed that the rotation of the cylinder provides the necessary impetus for the
particles to be slightly dispersed away from the cylinder. The GB, F1, and F2 phases do not require
too many rotations of the cylinder to reach steady state since the rotational velocity is very low. It
is also obvious from the figure that the LT phase evolves to steady state configuration much faster
owing to the increased rotational velocity.

5. Homogeneous region (HR)

From Fig 6(a) we can see that there are absolutely no secondary flows associated to the rotational
flow of the suspension. This leads to almost uniform distribution of particles along the radial plane.
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FIG. 5. Phase evolution for drag-dominated regime. Here nr represents the number of rotations of the
cylinder, red particles move down and blue particles move up. Black particles indicate initial configuration
(nr = 0).

The bed formed due to particle aggregation near the top due to buoyancy in the previously observed
phases is destroyed completely. Velocity vectors and particle distribution indicate that the flow is
equivalent to rigid body rotation as a majority of particle trajectories have a fixed axis of rotation.
The occurrence of the HR phase coincides with the balance between the buoyancy and centrifugal
forces since the phases before this show the dominating nature of buoyant force while the phases
which occur after HR indicate that centrifugal forces have stronger influence.

6. Discontinuous banding (DB)

Figure 6(b) shows the radial pattern observed at 15 rad/s. Since the particles are less dense than
the suspending fluid, centrifugal force draws the particles radially towards the center of the cylinder.
As these particles are drawn towards the center of the cylinder, they tend to form a core around the
rotational axis with the remaining particles forming a cloud around the central core.

7. Centrifugal limit (CL)

In the case of settling suspension the particles swirl out to the wall of the cylinder, whereas
the particles in this system form a cluster around the rotating axis of the cylinder. Our simulations
reproduced the fact that the fraction of particles which constitute the central core is ∼0.6 of the total
number. Direction of motion of the particles indicated by arrows show similar behavior to the DB
phase as the qualitative behavior of particles remains the same in both the phases.

044301-9



KONIDENA, LEE, REDDY, AND SINGH

FIG. 6. Velocity vectors and particle distribution at steady state for the centrifugal-force-dominating regime.
(a) � = 0.75 rad/s, particles are dispersed throughout the cylinder (HR); (b) � = 15 rad/s, increased centrifugal
force propels particles towards the rotating axis (DB); (c) � = 30 rad/s, (CL) particles congregate around the
center of the cylinder; (d) � = 35 rad/s, (CL) further increased velocity produces no change in the qualitative
behavior of the particles. Red particles move downwards, whereas the blue particles move against gravity.
Magenta indicates radially inward motion.

Figure 7 gives the evolution of steady state nonequilibrium patterns in the centrifugal-force-
dominated phases. It is clearly observed that the qualitative behavior of the particles in DB and CL
phases is mostly similar. Change in the direction of the particle motion (as to where they settle at
steady state) owing to the increase in the rotation rates is evident. Moreover, we can also understand
that the increase in the rotation rates in turn tends to increase the centrifugal forces as particles show
more affinity to form clusters at the center of the cylinder. The increase in the number of rotations
of the cylinder to attain steady state is because it takes a while to form a dense core of particles.

Figure 8 shows the radial-concentration profile at different frequencies along the positive y axis.
In the GB phase the buoyancy force is much larger compared to the viscous drag and centrifugal
forces. This causes all the particles to rise and accumulate near the top. For the HR phase the profile
is almost flat, suggesting nearly homogeneous distribution of particles throughout the cylinder. In
this regime the magnitude of different forces is comparable. The DB and CL phase profiles indicate
the build-up of particle beds along the rotating axis of the cylinder.

B. Order parameter

The particle distribution and the direction of particle motion from Fig. 4 suggest that the order
parameter can be defined as 〈θ̇〉=〈∑N

i=1 θ̇i 〉/N based on the time-averaged angular velocity. It could
distinguish between the drag-dominating segregated phases where the particle returns to the bed
soon after getting detached from it and homogeneously distributed. The order parameter given
by the expression Q = 〈θ̇〉

�
was defined in Ref. [22] for the sedimenting particle system. Since

the experimental conditions for both the settling and the floating particle systems are identical,
the postulation in Ref. [22] could be used for the present work. The significant quantities which
characterize Q are the velocity of the fluid and the rising velocity of the particle (uf = mBgξ−1) as
defined in the single-particle dynamics, with l being the characteristic length. Therefore, flow under
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FIG. 7. Phase evolution for centrifugal-force-dominated regime. Black is used for the initial configuration.
Here nr represents the number of rotations of the cylinder; red particles move down, and blue particles move
up. Magenta indicates inward motion towards the center of the cylinder.

the experimental conditions can be categorized by the dimensional ratios uf

�l
and uc

�l
. As discussed

earlier all phases prior to the occurrence of the homogeneous region fall under the buoyancy- or
gravity-dominated regime, and the phases which follow after HR fall under the influence of centrifugal
force due to the rotational velocity of the cylinder. Hence the dimensionless ratio uf

�l
is used in

the determination of the order parameter for the buoyancy-dominated regime. Figure 9 shows the
variation of the order parameter Q with the rotational frequency of the drum. Figure 9(a) shows that
the size of the cylinder has no influence on the transition frequency. However, it can be seen that the
mean particle concentration affects the transition frequency, as it affects the mean rising velocity of
particles in the buoyancy-dominated regime. The numerical value of Q lies between 0 and 1, each
representing completely segregated and fully dispersed phases. In Ref. [22] it is suggested that for
a settling system, the mean interparticle separation d = n

−1/3
0 is the characteristic length, where n0

is the average particle concentration. Figure 9(b) affirms the claim that even for the floating system
the mean interparticle separation is the characteristic length. Choice of mean interparticle distance
for the characteristic length is supported mathematically by a mass balance over the low rotational
frequency phases. The up-flux of the particles due to buoyancy scales as Ṁ ∼ uf nRL (here n is the
number of particles in the monolayer), whereas the down-flux of a monolayer of particles getting
dragged down by the rotation of the cylinder scales as Ṁ ∼ �anRL (the monolayer of particles
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FIG. 8. Equilibrium concentration profiles in the radial direction for different frequencies of rotation. Here
np and N0 are the number of particles after reaching steady state and at t = 0, respectively.

have a thickness proportional to their radius a). A balance over these fluxes shows that the resulting
dimensionless number Is �a/uf [22].

C. Axial segregation

To observe axial segregation, simulations were performed with L = 5R and with a total of 12 435
particles. All the studies in this section are performed with a random initial configuration of particles
as shown in Fig. 10(a). Several distinct phases such as HR, LD, SB, and CL observed experimentally
were reproduced through the simulations. HR shows complete mixing, whereas LD and SB exhibit

FIG. 9. Order parameter (Q) for various particle concentrations is plotted versus the two dimensionless
numbers (a) �a/uf and (b) �d/uf , where n0 is the average particle concentration, a is the particle radius, and
d is the mean interparticle separation (d = n

−1/3
0 ).
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FIG. 10. Axial patterns observed in the centrifugal-force-dominated regime. Red particles move towards
the right, and the blue particles move to the left. (a) Aandom initial configuration of particles suspended
in the cylinder; (b) HR phase, � = 1.25 rad/s, uniform distribution of particles throughout the cylinder;
(c) LD, � = 2.5 rad/s (top view, gravity is pointing into the plane of the paper), and particles converge into
high-concentration regions while rising and spread out as they reach the top; (d) LD, � = 2.5 rad/s (front view,
gravity is pointing downward).

axial particle bands. Fluctuations of particle density in the radial plane induce additional movements
of particles in the axial direction. These additional movements in the axial direction serve as a
perturbation to the axial particle density. As steady state is reached, the perturbations grow into large
axial density variations, thereby leading to the formation of axial banding patterns. The observations
are detailed in the description of LD and SB phases.

1. Homogeneous region (HR)

From Fig. 10(b) it is evident that the particle distribution in the cylinder shows uniformity. The
particle clusters which remain near the wall which appear for GB, F1, and F2 phases are completely
destroyed as the particles mix uniformly. The influence of drag seen in LD is absent in this phase as
the particle motion becomes identical to rigid body rotation. The particles can be seen to be moving
both in the positive and negative z direction, signifying particle mixing leading to a homogeneous
distribution.

2. Local-structure dropout (LD)

Unlike the previous phases the LD does not show any form of resemblance to the settling system.
The settling system which is characterized by the redistribution of particles spreads from one location
along the axial direction, but for the buoyant system there is spatiotemporal chaos. The phase is
characterized by exchange of particles between the bands and oscillation in bands with time observed
as a consequence. This oscillation of bands and their nonuniform structure is well illustrated in Fig. 11;
particle concentration for different number of rotations indicates the drifting mechanism experienced
by the particles. In this phase, the centrifugal forces are not as weak as in the case of phases prior to
the HR phase. As the particles are less dense than the fluid, these particles are pulled in towards the
center of the cylinder. The interplay between a relatively strong centrifugal force and the buoyant
force causes these particles to apparently spiral inwards and outwards, causing exchange of particles
and oscillation of bands. This form of oscillation in bands is similar with the phenomenon reported
in Ref. [17]. The axial patterns shown in the associated Fig. 10(c) and Fig. 10(d) are obtained after
750 rotations of the cylinder at 2.5 rad/s.
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FIG. 11. Concentration profiles at three different instants indicating exchange of particles (traveling bands)
along the axial direction for particle density, ρp = 0.15 g/cc and � = 2.5 rad/s. Here np and N0 are the number
of particles after reaching steady state and at t = 0, respectively.

3. Centrifugal limit (CL)

On the occurrence of the CL phase, most of the particles concentrate around the axis of rotation
of the cylinder. Along the axial direction Fig. 12 shows the central particle core, which has a fraction
(∼0.6) of the total particles, while the rest of the particles form a cloud surrounding the central core.
However, the simulations were unable to reproduce bands in the DB phase and during the transition
from DB to CL phase, which were reported experimentally.

These observations could lead us to a conclusion that hydrodynamic interactions involved in the
dilute system influence particles closer to each other to develop a buckling instability, which leads
into clustering of particles. It can now be firmly implicated that the axial differences in particle
concentration are catalyzed by these particle clusters, which become denser as more particles get
drawn into the already formed clusters. The curved cross section of the rotating vessel also enhances
the growth of this instability, which results in axial banding. This is reinstated by the fact that the
fluid down-current due to the rotation of the drum enhances the rate at which particles rise to the
top of the cylinder. Nevertheless, occurrence of the HR phase between phases where axial banding

FIG. 12. Central core formation in the centrifugal limit (CL) for � = 30 rad/s. Particles congregate around
the rotational axis of the cylinder reaching the maximum packing limit for a suspension.
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FIG. 13. Axial segregation (ρp = 0.19 g/cc) in the stable band phase for � = 2.25 rad/s: (a) front view at
800 rotations of the cylinder; (b) top view at 800 rotations; (c) front view at 900 rotations; (d) top view at 900
rotations. Red particles move towards the right, and the blue particles move towards the left. Gravity points
downward on the plane of the paper in front view and into the plane of the paper in top view.

was evident implies that the balance among forces acting on the suspension and the cross section of
the cylinder are pivotal for the instability to develop. Any imbalance among these forces leads to a
buckling instability causing periodic clustering of particles in the cylinder. The imbalances among the
centrifugal and buoyancy (gravity and drag) cause a variation in the radial concentration of particles,
eventually leading into particle clustering and banding along the axial direction. Both numerical
and experimental results reestablish that there would be no axial concentration bands when there is
homogeneity in the concentration of particles in the radial plane.

4. Stable bands (SBs)

We have carried out one simulation where the density of particle was increased to 0.19 g/cc and
the rotational frequency was 2.25 rad/s as indicated in Fig. 13. Figure 14 shows the plot of particle
number density along the axial direction. Unlike the travelling bands in the LD phase (Fig. 11), the
stripes of particles in SB phase remain stationary as steady state is reached. This indicates that in the
SB phase there may not be any exchange of particles between consecutive bands. This reinforces the
statement made earlier that the traveling of bands is observed only for certain imbalance between
buoyancy and centrifugal forces. It is also evident that the number of bands is increased to three
from the LD phase (ρp = 0.15 g/cc,� = 2.5 rad/s), which contains only two bands. We are unable
to provide any explanation for the difference in the number of bands between the LD and SB phase.

IV. COMPARISON WITH EXPERIMENT

As reported earlier, nine independent nonequilibrium states were observed in the experiments of
Kalyankar et al. [25] for positively buoyant suspensions. Our simulation studies could reproduce the
characteristic behavior of almost all the phases. For the three regimes classified earlier, the radial
patterns were reproduced quite convincingly. The axial banding patterns observed in the SB and LD
phase have both qualitative and quantitative agreement with the experimental results. However, for the
axial bands for the high-frequency DB phase and in the low-frequency regime for the GB/F1 phases,
the simulations do not capture completely the experimentally reported behavior. These discrepancies
with the experimental observations evidently occur when the concentration of the particle is relatively
high. In the simulations the particles are approximated as Stokeslets, and the contribution from higher
order multipoles arising from the finite size of the particle is neglected. Reasonable agreement of
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FIG. 14. Equilibrium concentration profiles of particles for ρp = 0.19 g/cc at � = 2.25 rad/s. There is
almost no exchange of particles along the rotating axis over time indicating stable band patterns. Here np and
N0 are the number of particles after reaching steady state and at t = 0, respectively.

radial patterns was observed for GB and CL phases where the particle concentration in certain regions
goes up. In the granular bed regime, though the particle concentration is very high, there is not much
movement of the particles, and the hydrodynamic drag is weaker compared to the buoyancy force.
On the other hand, in case of the centrifugal limit, though the particle velocities are higher the
radially symmetric distribution may ensure that the results from point particle simulations would be
qualitatively similar to the case of finite-sized particles at higher volume fractions.

Recent studies [27–29] incorporated higher order multipolar solutions to analyse the case of
many-body dynamics inside a cylinder by applying proper no-slip boundary conditions on the
particle surface. Unlike the case of point particles, inclusion of higher order multipoles takes into
account the effects of the finite size of the particle. Addition of the effects of the particle size would
probably capture the dynamics in the low- and high-frequency regimes where the phases exhibit high
concentration as these interactions are primarily due to mutual hydrodynamic influence or direct
contact in collision. These short-range lubrication forces are expected to cause enhanced diffusivity
as indicated by Zurita-Gotor et al. [30]. The enhanced diffusivity is a prime factor for the observed
difference in the value of the dimensionless frequency �∗(=�d/uf ), which ranges between 1.1
and 1.5 for experiments and 1.35 and 1.75 for simulations. The deviations of the simulation results
from experimental observations and the axial patterns in the DB phase arise due to the exclusion of
Stresslets and lubrication forces. Another reason for the deviation from experimental results could be
due to the periodic boundary conditions in the simulations, which is different from the experimental
boundary conditions of no-slip rotating end-walls. It can be expected that the no slip rotating end wall
might strengthen the rigidly rotating fluid field near the wall. However, the simulation methodology
is currently not equipped with providing an end wall with no slip condition.

The convective contribution to band formation might also be a factor for the band formation in DB
phase, but it has no effect on the low-frequency phases. Inclusion of convective effects may capture
the dynamics of particles in the DB phase, and the study might as well be extended to understand
the patterns reported in Refs. [15] and [16].

V. CONCLUSION

The present work is an application of the method proposed by Lee and Ladd [22] to understand the
formation of axial bands for a buoyant particle system experimented by Kalyankar et al. [25]. Most
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of the distinct patterns which appeared in both radial and axial directions obtained by Kalyankar
et al. were reproduced by this simulation technique, which includes only the far-field hydrodynamic
interactions. The oscillation of bands with time in the LD phase was also observed. The order
parameter Q and the characteristic length l are comparable with the settling system in Ref. [24] in
the buoyancy-dominated regime. Axial banding observed in Ref. [25] in the DB phase could not be
reproduced in the simulations.

According to Lee and Ladd [21], buoyant system would not be able to produce axial patterns as
there would be repulsive interactions among floating particles, unlike settling particles, which always
have attractive interactions. However, this theory seriously underestimated the strength of a canceling
field with a flat wall approximation. Although the source field interaction should be indeed attractive
or repulsive for heavier or lighter particles than the medium, the canceling field exactly nullifies
the source field interaction between ring Stokeslets along the axial direction. Both experiments and
simulations could recover banding patterns in the axial direction for a buoyant particle system. This
can be ascribed to the inhomogeneous distribution of particles in the radial plane due to imbalance
in the forces acting on the particle as explained for settling particles in Ref. [24].

Though there is a difference in the direction of centrifugal force for the settling and floating
particle suspensions, it is clear that the axial banding phenomenon is observed in either system.
Simulation results show that to achieve complete mixing of particles there must be perfect balance
of all the forces acting on them. Therefore it is apparent that the axial bands are formed only when
there is a certain imbalance in the forces acting on the particles. This imbalance in both the systems
changes due to the change in the direction of the centrifugal force, causing the appearance of HR
phase before the SB phase in the buoyant system. If we recall from the single-particle dynamics,
the HR phase is apparently a balance between the forces in the system. As the domination of forces
shifts from buoyant to centrifugal there is formation of HR phase and hence the shift in position from
the settling system.

VI. NOMENCLATURE

a Radius of particle (cm) uθ Angular velocity of the particle (cm s−1)
d Mean interparticle separation (cm) si Particle surface
g Acceleration due to gravity (cm s−2) V Volume of spherical particle
G Green’s function for the Stokes equation µ Viscosity of the fluid
L Length of the cylinder (cm) v Kinematic viscosity of the fluid
m Mass of the particle � Rotational velocity of the cylinder (rad s−1)
mB Buoyancy corrected mass of the particle ρf Density of the fluid (g cc−1)
nr Number of rotations of the cylinder ρp Density of particle (g cc−1)
N Total number of particles GB Granular bed
n0 Average particle concentration F1 Fingering flow I
np Number of particles in radial/axial bin at steady state F2 Fingering flow II
N0 Number of particles in radial/axial bin at t = 0 LT Low rotation rate transition
R Radius of the cylinder (cm) HR Homogeneous region
Ref Flow-based Reynolds number SBs Stable bands
Rep Particle-based Reynolds number LD Local structure dropout
u0 Settling velocity of the particle (cm s−1) DB Discontinuous banding
uf Rising velocity of the particle (cm s−1) CL Centrifugal limit
ur, Radial velocity of the particle (cm s−1)
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