
PHYSICAL REVIEW FLUIDS 3, 044201 (2018)

Investigation of the Klinkenberg effect in a micro/nanoporous medium
by direct simulation Monte Carlo method
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The pressure-driven gas transport characteristics through a porous medium consisting
of arrays of discrete elements is investigated by using the direct simulation Monte Carlo
(DSMC) method. Different porous structures are considered, accounting for both two- and
three-dimensional arrangements of basic microscale and nanoscale elements. The pore scale
flow patterns in the porous medium are obtained, and the Knudsen diffusion in the pores is
studied in detail for slip and transition flow regimes. A new effective pore size of the porous
medium is defined, which is a function of the porosity, the tortuosity, the contraction factor,
and the intrinsic permeability of the porous medium. It is found that the Klinkenberg effect
in different porous structures can be fully described by the Knudsen number characterized
by the effective pore size. The accuracies of some widely used Klinkenberg correlations are
evaluated by the present DSMC results. It is also found that the available correlations for
apparent permeability, most of which are derived from simple pipe or channel flows, can
still be applicative for more complex porous media flows, by using the effective pore size
defined in this study.
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I. INTRODUCTION

Fluid flow in porous media with micro- and nanopores has attracted numerous investigations
due to its great importance in a wide range of application fields [1,2], including CO2 sequestration,
unconventional gas production, hydrogen storage, etc. The emerging MEMS technology, where
complex networks of microchannels are often used, also brings great demands for the study of
micro- and nanoscale gas transport mechanisms [3]. For gas flow in such small domains, the collisions
between gas molecules and solid walls are significant, and the velocity profile behaves differently
compared to that predicted by conventional macroscopic theory. This phenomenon is also called
Knudsen diffusion and is quantified by the Knudsen number, which is defined as the ratio of the mean
free path length (λ) of gas molecules to one characteristic dimension of the flow (Lch, can be chosen
as diameter, pore size, etc.), i.e. Kn = λ/Lch. Based on the Knudsen number, the gas flow can be
empirically classified to four regimes: continuum flow (Kn � 0.001), slip flow (0.001 < Kn � 0.1),
transition flow (0.1 < Kn � 10), and free-molecular flow (Kn > 10). For fluid flow in continuum
and slip flow regions, the Navier-Stokes equations are applicable, with no-slip boundary condition
or with appropriate velocity-slip/temperature-jump boundary conditions. However, for fluid flow in
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the transition and free molecular flow regions, the continuum hypothesis is no longer applicable, and
the Boltzmann equations should be adopted to describe the flows.

A particle-based method, direct simulation Monte Carlo [4] (DSMC) is a promising method for
flows in the transition and free molecular flow regions, and it has been validated against experimental
data in a wide range of Knudsen numbers [5,6]. DSMC converges to the Boltzmann equations [7]
based on direct statistical simulations of molecular processes described by the kinetic gas theory.
As DSMC replaces the deterministic motion by a stochastic approximation for the collision process,
it is more efficient than the molecular dynamic (MD) method for certain problems. On the other
hand, due to its high accuracy, the results simulated by DSMC have also been used frequently as
benchmarks to validate other numerical methods, such as the Lattice Boltzmann method [8].

From the macroscopic view, the rarefaction effect caused by the Knudsen diffusion in the pore scale
leads to the increase of the gas permeability (apparent permeability) from the intrinsic permeability
of the porous medium, which is known as the Klinkenberg effect. Klinkenberg [9] derived the
expression for the apparent permeability as Ka = K∞(1 + b/P ), where b is the correction factor.
This correlation has been a consistent basis for the developments of several new correlations [10].
To predict the Klinkenberg effect, it is significant to accurately obtain the pore scale flow patterns in
the porous medium and then use an upscaling method. A few examples can be found in the literature
where the DSMC method is used to solve gas transport problems in porous media. Stern et al. [11]
performed microscale simulations of spacecraft thermal protection system (TPS) materials. They
showed that their simulations by DSMC were feasible at relevant scales and conditions. Kawagoe
et al. [12] simulated pressure-driven gas flow through randomly arranged solid spherical particles
with the porosity ranging from 0.3 to 0.5 by DSMC. It was confirmed that Darcy’s law was valid even
in the case of porous media with micro- and nanoscale pores. Christou and Dadzie [13] performed a
DSMC study for Berea sandstone for a pressure driven flow of CH4 at different Knudsen numbers,
and Kn was found to play an important role for the velocity profiles. Borner et al. [14] computed
the permeability of several fibrous substrates to high-temperature gases. The actual porous geometry
of the materials was digitized using X-ray microtomography and the range of the porosity was 0.8
to 0.9.

The objective of this work is to provide a deeper understanding of the gas transport characteristics
through a micro- and nanoporous medium by DSMC. On the basis of pore scale flow patterns, the
apparent permeability will be further investigated in detail. Another important aim is to assess the
accuracies of different available Klinkenberg correlations, most of which were proposed based on
simple geometries of channels or tubes, and to find a possible way to link them with a more complex
porous media flow. The rest of this paper is organized as follows: in Sec. II, the physical model of
interest is introduced; in Sec. III, the DSMC method is described in detail, some numerical parameters
are provided, and the effective pore size of a porous medium is defined; in Sec. IV, the results are
firstly presented for a porous medium with 2D array of square elements, the local flow patterns under
various Knudsen numbers and porosities are obtained, the apparent permeabilities are calculated,
and the available Klinkenberg correlations are evaluated for different porous structures and for 3D
arrangements. The paper closes with some key conclusions in Sec. V.

II. PHYSICAL MODEL

Figure 1 illustrate an example of a two-dimensional idealized porous medium along with the
relevant dimensions considered in the present study. A large number of solid elements are arranged
periodically, which form a porous medium. The distance between neighboring elements is H . The
geometry is in the atmosphere of nitrogen gas with a temperature of Tin. The porosity is defined as
the fraction of pore space �f in the porous medium of total volume �. For elements with square
cross-sections, as shown in Fig. 1, the porosity of the porous medium is calculated as

ε = �f

�
= 1 − D2

H 2
. (1)
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FIG. 1. Schematics of flow past arrays of two-dimensional square elements.

The geometry is considered infinite in the Y direction but of finite length in the X direction.
Therefore, a computation domain of H × L is adopted in this study (see Fig. 1). Periodic boundary
conditions are used on the upper and lower boundaries. The pressures on the left and right sides of the
porous medium are Pin and Pout, respectively (Pin > Pout). Even though a periodic boundary could
also be used in the X direction for the gas inlet and outlet, which would reduce the computation size,
the usage of pressure boundaries are more in accordant with practical situations as flows in nano-
and microchannels are typically driven by large pressure gradients [15].

The effect of the length of the computational domain L on the permeability of the porous medium
is also checked, to choose a proper computation domain (detailed results are shown in Appendix A).
L = 12H has been proven to be sufficient to represent a porous medium. The temperatures of the
inlet gas (Tin) and at the surfaces of the square elements (Tw) are both equal to 300 K in this study.

III. METHOD

A. DSMC method

The investigation is performed by using the direct simulation Monte Carlo (DSMC), which is a
particle-based method performed by modeling independent simulated particles [4]. The DSMC code
used in the present work has been implemented in OpenFOAM, an open-source C + + tool box for
computational fluid dynamics [6,16]. The computation domain is divided into a large number of grid
cells, and the cell length is carefully chosen such that it is a fraction (1/3, in this study) of the smallest
mean free path. The time step (�t) for the simulations is also chosen as a fraction (1/5, in this study)
of the mean collision time in DSMC [17]. To reduce statistical scatter and to ensure that collisions
are performed accurately, a minimum of 10 particles per computational cell are used. As it can be
inferred from the study of Sun et al. [18], the maximum relative difference of velocities between
the cases using 10 particles per cell and 20 particles per cell is less than 1%. Diffuse wall reflection
boundaries are adopted for the solid surfaces of the square elements. The collision pairs are selected
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using the no-time-counter (NTC) method, and the collisions between particles are simulated using
variable hard sphere (VHS) collision model and Larsen-Borgnakke internal energy redistribution
model [4].

B. Inlet and outlet boundary conditions

Gas flows in a micro- and nanoporous medium are typically of low velocities and driven by a
pressure gradient. It is likely that particles will have thermal velocities orders of magnitude larger
than the stream velocity. This may make it likely that fluids do not always flow in the streaming
direction. Due to experimental limitations, the microscale velocity profiles are usually not known
at the boundaries. Therefore, the pressure boundary condition is adopted in the present simulation,
where the inlet pressure, inlet temperature, and outlet pressure are set up before calculation. The
number flux of the particles entering the computational domain can be described from the equilibrium
Maxwell–Boltzmann distribution:

ṅ =nVmp

2
√

π
[exp(−s2cosθ2)+√

πs cosθ{1 + erf(s cosθ )}], (2)

s = V

Vmp
, (3)

Vmp=
√

2kBT

m
, (4)

where “erf” represents the error function. θ is the angle between the velocity vector and normal to
the boundary element. V is the local stream velocity, Vmp is the local most probable thermal velocity,
T is the macroscopic temperature at the boundary, and kB is the Boltzmann constant. The implicit
velocity treatment by Wang and Li [19] is used at the inlet, where statistical macroscopic velocity
is obtained from particles in the cells near the inlet boundary. The outlet boundary is treated by the
method proposed by Liou and Fang [20].

C. Solution procedure

The DSMC is performed either in two- or three-dimensional in this study, depending on the
porous structures. A typical procedure of the DSMC method consists of indexing particles into cells,
tracking the movement of particles, computing collisions, and calculating post-collision properties.
These steps are repeated to increase the sample size until the statistical errors are small enough. The
macroscopic flow characteristics are obtained by statistically sampling and averaging the molecular
properties in each cell. For example, the density, velocity, and overall temperature can be calculated
as

ρ = nm̄ = n
1

N

N∑
i=1

mi, (5)

V = 1

N

N∑
i=1

Vi, (6)

T = 3Tr + ζTrot

3 + ζ
, (7)

where n, m, N , Tr,Trot, and ζ are number density, molecular mass, number of particles in the
cell during the specific time, translational temperature, rotational temperature, and the number of
rotational degrees of freedom, respectively.
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At the initial time, the simulated particles are uniformly distributed statistically in the cells in the
computation domain, at the state of (Pin + Pout)/2 and Tin. The number of DSMC particles and the
average linear kinetic energy are monitored in the simulations. After the flow reach steady states
(The solution was considered to be steady when the two monitored parameters do not change over
time [16]), time averaging of the instantaneous microscopic properties is performed to build up the
macroscopic fields.

The magnitude of velocity fluctuation of the flow velocity can be estimated to be
(1/

√
Ntotal)

√
kBT /m), where Ntotal(=

∑Nsamp

i=1 Ni, Nsamp = tsamp/�t) is the total number of sampled
particles. Therefore, the uncertainty of the velocity can be reduced by increasing number of sampled
particles, i.e., increasing sampling time (tsamp). The smaller the average velocity in the computation
domain, the longer the sampling time is needed. In this study, the time for averaging in each case is
determined to make the statistic uncertainty of average velocity less than 0.1%.

All cases in this study are simulated on a cluster with dual processor Intel(R) Xeon(R) CPU
E5-2690 v4 at 2.60 GHz. In total 28 nodes are used for each case. The computational time has been
found to greatly increase as the Knudsen number decreases. For example, the computation times is
about 350 h for the case of KnD = 0.0455 and about 15 h for KnD = 0.445 at ε = 0.75.

D. Knudsen number and effective pore size

The extent of gas rarefaction is characterized by the Knudsen number Kn,

Kn = λ

Lch
, (8)

where λ denotes the mean free path of gas molecules, and can be expressed as

λ = kBT√
2πd2P

, (9)

where kB is the Boltzmann constant, and d the molecule diameter. According to the VHS model [4],
the mean free path for a real gas accounting for a temperature coefficient ω can be expressed as

λ = 2(5 − 2ω)(7 − 2ω)

15

( m

2πkT

) 1
2

(
μ

ρ

)
. (10)

Lch in Eq. (8) is a characteristic length of the flow. In previous studies concerning flow through
a porous medium, various characteristic lengths have been used [21–24]. In this study, we use both
the size of the elements (D), as many studies in literatures did, and also the pore size (Dp) to define
the Knudsen numbers:

KnD = λ

D
, (11)

Knp = λ

Dp

. (12)

Due to the great variety and complex connections of the pore structure, the actual pore size that
affect the permeability of a porous medium cannot be obtained straightforward by measuring the
hydraulic diameter/radius. Therefore, an effective pore size should be defined.

By analogy with electrical conductance, the intrinsic permeability of a porous medium can be
fully described by the combined effects of the porosity, the characteristic length, the tortuosity, and
the constriction factor [25].

K∞=τ 2L2
chε

8C
, (13)

044201-5



GUANG YANG AND BERNHARD WEIGAND

where K∞ is the intrinsic permeability of the porous medium. τ in Eq. (13) is the tortuosity of the
porous structure [26], which is defined as the length of the porous medium (L) divided by the length
of the streamline (Ls):

τ = L

Ls

. (14)

Based on this definition, τ is always less than or equal to 1. A smaller tortuosity indicates the fluid
needs to travel longer in the porous medium for a fixed L. C in Eq. (13) is the constriction factor of
the porous structure, which represents the effect of the variation in cross-sectional area [27]:

C = 1

L2

∫ L

0
A(x)dx

∫ L

0

1

A(x)
dx, (15)

where A(x) is the cross-sectional area of the flow path at point x. It can be inferred from Eqs. (1),
(14), and (15), that C, τ, and ε depend only on pore structures and the flow direction.

As is well known, the intrinsic permeability of a porous medium is also only a function of material,
regardless of the flow field. Therefore, the effective pore size (Dp) of a porous medium can be defined
as

Dp=
√

8 K∞C

τ 2ε
. (16)

As can be inferred from above, Dp is also a property of the porous structures.

E. Data reduction

As the mean free path of gases λ varies with gas pressure [see Eq. (9)], local Knudsen numbers
change significantly from inlet to outlet of the geometry for a pressure driven flow. The average
Knudsen numbers (KnD and Knp) are also defined, by replacing λ in Eqs. (11) and (12) with the
average mean free path λ̄. λ̄ is calculated based on the properties for the average pressure P̄ in the
porous medium. Though the variation of P is not perfectly linear in the geometry (Appendix B), P̄

is simply calculated as P̄ = (Pin + Pout)/2, as it is more feasible in practical applications [12,28].
Based on Darcy’s equation, the apparent permeability (Ka) of the porous medium for a pressure-

driven isothermal flow of ideal gas can be calculated as [29]

Ka = 2μLPoutVx,out

Pin
2 − Pout

2 , (17)

where Vx,out is the macroscopic average velocity at the outlet of the porous medium:

Vx,out =
∫ H/2
−H/2 VxdY

H
. (18)

IV. RESULTS AND DISCUSSION

A. Local flow patterns

The distributions of the velocity magnitude, along with the streamlines, in the two-dimensional
square element array (pores of the porous medium) for different element sizes D = 1μm, 400 nm,
100 nm, and 20 nm are presented in Figs. 2(a)–2(d), under the same boundary condition of
Pin = 0.25 MPa and Pout = 0.05 MPa and at a fixed porosity of ε = 0.75. The corresponding
average Knudsen numbers are KnD = 0.0445,0.111,0.445, and 2.23, respectively. As is driven by
the pressure difference between the inlet and outlet, the nitrogen flows from left to right. For each
case, the maximum velocity distributes near the outlet. This is because the mass flow rate in each
cross section is constant, but as a lower local pressure leads to a lower density of the fluid, the volume
flow rate increases along the flow direction. It can also be inferred from the legends of Figs. 2(a)–2(d),
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FIG. 2. Velocity distribution and streamlines for D = (a) 1 μm, (b) 400 nm, (c) 100 nm, and (d) 20 nm,
ε = 0.75.

that the flow rate through the porous medium decreases with decreasing pore sizes, under a given
pressure difference.

To study the velocity profiles in more detail, the distributions of the velocity in axial direction
(Vx) at different locations (X = 2H , 4 H , 6 H , 8 H , and 10 H ) for ε = 0.75,D = 400 nm,Pin =
0.25 MPa, and Pout = 0.05 MPa [Fig. 2(b)] are presented in Fig. 3(a). Because of the Knudsen
diffusion, the gas velocities at the solid walls are always nonzero. With increasing axial distances,
the “slip” velocity at the walls increases, due to the decrease of local pressures (increasing local
Knudsen number). The centerline velocity is also found to increase accordingly. The axial velocity
(Vx) distribution at X = 6H for different element sizes of D = 1μm, 400 nm, 100 nm, and 20 nm
and ε = 0.75 are presented in Fig. 3(b). The difference in the “slip” velocity at the walls for the
different cases is small, but the velocity at the centerline is strongly increased with increasing D.
Therefore, the variation of the velocity along Y is less pronounced for smaller D.

(a) (b)

FIG. 3. Distribution of Vx along Y for different (a) locations and (b) element sizes.
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FIG. 4. Velocity distribution and streamlines for ε = (a) 0.84, (b) 0.75, (c) 0.556, and (d) 0.36, D = 400 nm.

The velocity profiles, along with the streamlines, in the porous medium for different porosities
of ε = 0.84, 0.75, 0.56, and 0.36, at D = 400 nm, and for Pin = 0.25 MPa and Pout = 0.05 MPa are
presented in Figs. 4(a)–4(d). The flow rate is found to decrease drastically with decreasing porosity
for a given D. This is because the size of the pores, where gas flows, is decreased as the decrease of
porosity. It can also be found from Figs. 2 and 4 that the statistical noises in the velocity fields are
quite small for all the cases, even when the velocity is low.

B. Apparent permeability for various porosities

Due to the velocity slip at the walls for Kn > 0.001, the permeability of the porous medium for
gas flow (apparent permeability) is always higher than the intrinsic permeability, which is called as
Klinkenberg effect. Prior to the study of the Klinkenberg effect, the intrinsic permeabilities for the
geometry in Fig. 1 for different porosities were calculated. Numerical simulations were performed
using water as flow medium and using a conventional finite-volume method based on the continuity
and Navier-Stokes equations. The detailed numerical procedure can be found in other works [30].
The results of the dimensionless intrinsic permeabilities K∞/D2, determined from the linear form of
Darcy’s law, are presented in Fig. 5. The results are also validated by the studies of Aerov and Tojec
[31], Drummond and Tahir [32], Gebart [33] and Yazdchi et al. [34], and show very good agreement.

Based on the DSMC results for different Knudsen numbers, the apparent permeability for various
porosities are calculated by Eq. (17), and the ratio of Ka and K∞ are plotted for different KnD

in Fig. 6. For a fixed porosity, Ka/K∞ increases monotonically with increasing KnD , due to the
increased Knudsen diffusion effect, as was previously shown in Fig. 2. Ka/K∞ is also found to
decrease with decreasing porosity, if KnD is kept constant. This is because even though KnD is fixed,
decreasing porosity decreases the pore size, thus the collisions between gas molecules and solid walls
are enhanced. Therefore, the Knudsen number characterized by the element size (KnD) is not able to
reflect the “effective” Knudsen diffusion in the porous medium, if various porosities are considered.
A similar result was also presented in the work of Kalarakis et al. [41] by using the characteristic
length of 4ε/Sv in the Knudsen number, where Sv is the internal surface area per unit volume.

The variation of Ka/K∞ with Knp, for ε = 0.36, 0.556,0.75, and 0.84, is shown in Fig. 7. As the
effective pore size in Knp concerns all the properties of the porous structure Eq. (16), Ka/K∞ for
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FIG. 5. Dimensionless intrinsic permeability for various porosities [31–34].

various porosities lie almost on one curve with Knp, as shown in Fig. 7. Furthermore, some widely
used Klinkenberg correlations or models, as listed in Table I, are also presented in Fig. 7 (lines 1–7)
to compare with present DSMC results. The variation trends of Ka/K∞ with Knp by the available
correlations are found similar with present data for 0.01 < Knp < 10. Outstandingly, the predicted
values by Knudsen [35], Sakhaee and Bryant [36], Civian [10], and Beskok and Karniadakis [37] are
very close to the present data, with average relative deviations of 5.37%, 6.75%, 9.00%, and 9.42%,
respectively. Please note that the line 8 in Fig. 7 is an analytical equation, which has been developed
only under the assumption of slip flow regime. It proves that the slip assumption at the solid walls
becomes invalid if Knp > 0.1.

It should be noted that most of the Klinkenberg correlations listed in Table I are derived from simple
pipe or channel flows. In a recent study of Wu et al. [24], it was pointed out that all the currently widely
used empirical solutions, derived from straight cylindrical tube, should be reformulated for a porous
medium. However, the results in Fig. 7 prove that these correlations are still applicative for flows

FIG. 6. Variation of Ka/K∞ with KnD for various porosities.
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FIG. 7. Variation of Ka/K∞ with Knp for various porosities [8–10,12,23,24,35–37,41].

in more complex geometries, provided that an appropriate Knudsen number is used. Furthermore,
some data for the porosity of ε = 0.84 by Wu et al. [24], which were originally plotted with another
definition of Knudsen number, are converted to the present Knp. It can be seen in Fig. 7 that their
result can also fit well with present data and with these correlations.

There are also available correlations considering the Klinkenberg effect obtained from more
complex natural porous media (such as sandstones, reservoirs), which are provided in the form of

Ka/K∞ = 1 + b

P
. (19)

Jones [39] experimentally found b ∝ K∞−0.36; Bravo [40] considered b as a function of K∞
and the Knudsen diffusivity coefficient, and the latter could also be correlated as a function of K∞.
However, the effect of pore-scale geometry features was not included in these correlations. Therefore,
these correlations are accurate only for porous media of specific microstructures. Kalarakis et al.
[41] improved the expression of b on the basis of Bravo [40] by including a numerical factor a for
the length-to-width ratio of the pore. However, that study only gave empirical values of a = 3.4 and
4 for the porous structures used in their study with ε = 0.7 and 0.8, the expressions to fully describe
the geometry features were unavailable. By using an estimated value of a = 3.5, the expression of

TABLE I. Correlations of Ka/K∞ with Kn from literature.

Ref. f (Kn) Remark

Knudsen, 1909 [35], Kawagoe et al., 2016 [12] 1 + 64
3π

1+cK
1 p

1+cK
2 p

Kn cK
1 p = √

π

2
2

Kn ; cK
2 p = √

π

2
2.47
Kn

Klinkenberg, 1941 [9] 1 + 4c Kn c = 1.037

Sakhaee-Pour and Bryant, 2011 [36] 1 + 64
3π

Kn Dust gas model

Beskok and Karniadakis, 1999 [37] (1 + αKn)(1 + 4Kn
1−bKn ) α = α0

2
π

tan−1α1Knα2

Civan, 2010 [10] (1 + αKn)(1 + 4Kn
1−bKn ) α0

α
− 1 = A

KnB

Mohammadmoradi and Kantzas, 2016 [23] 1 + a Kn a = 9.62
Zhao et al., 2016 [8] 1 + 4c Kn c = 0.8
Florence et al., 2007 [38], Civan, 2010 [10] 1 + 4Kn

1+Kn Analytical model for slip-flow regime
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FIG. 8. Porous structures consisting of two-dimensional arranged (a) circular and (b) rectangular elements,
and (c) three-dimensional arranged cubic elements.

Knudsen diffusivity coefficient from Bravo [40], and the presentDp , the predicted results by Kalarakis
et al. [41] are also presented in Fig. 7 and compared with the present DSMC data at ε = 0.75.
The relative deviations of the predicted Ka/K∞ are about 9.34% and 17.9% for Knp = 2.17 and
Knp = 0.04, respectively.

C. Effect of pore structures

To further check if the defined Knp can fully describe the Klinkenberg effect in a porous
medium, simulations are performed for the periodic porous structures consisting of elements of other
shapes (circle and rectangle), and also for different arrangements (both two- and three-dimensional
structures). The porous structures are schematically shown in Fig. 8. The element size and the distance
between neighboring elements are also varied to get different porosities and Knudsen numbers.
The detailed parameters (element shape, element size, distance of neighboring elements, porosity,
constriction factor, tortuosity, intrinsic permeability, and effective pore size) of the porous structures
in consideration are provided in Table II. The porosity of these structures varies from 0.36 to 0.84,
the constriction factor varies from 1.060 to 1.512, and the tortuosity varies from 0.556 to 0.926 for
the different cases. The variation of Ka/K∞ with Knp, for these different pore structures are shown
in Fig. 9, where the results are found to fit well with those predicted values by Knudsen [35] with
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TABLE II. Structure parameters for the porous medium.

Distance of Intrinsic
Element Element neighboring Constriction permeability Effective pore
shape size elements (m) Porosity factor Tortuosity (m2) length (m)

Square Da× D 2.5D 0.840 1.060 0.833 1.268 × 10−1D2 1.360D

2D 0.750 1.130 0.800 4.252 ×10−2D2 0.893D

1.5D 0.556 1.300 0.750 6.392×10−3D2 0.461D

1.25D 0.360 1.510 0.714 9.168 × 10−4D2 0.246D

Circle Diameter D 2D 0.804 1.078 0.926 7.109 × 10−2D2 0.943D

1.333D 0.558 1.293 0.894 5.150 × 10−3D2 0.345D

Rectangle D1
a×D2

a 2D1; 2D2 0.750 1.125 0.667 1.472 × 10−2D2
1 0.630D1

1.25D1; 1.25D2 0.360 1.512 0.556 2.561 × 10−4D2
1 0.167D1

Cube D × D × D 1.5D 0.704 1.079 0.889 1.562 × 10−2D2 0.492D

1.2D 0.421 1.212 0.842 9.539 × 10−2D2 0.176D

aThe elements size D, D1, and D2 vary in the ranges from 20 nm to 1 μm.

an average difference of less than 6%. Thus, it further proves that the Klinkenberg effect in a porous
medium can be fully described by using the Knudsen number characterized by the effective pore
size as defined in this study.

Based on the first- and second-order Klinkenberg correlations:

Ka/K∞ = 1 + aKnp, (20)

Ka/K∞ = 1 + bKnp + cKnp
2, (21)

the constants of the correlations can also be correlated by the present DSMC results. Here, for
Eq. (20), the correlated value of a is 7.23 and the R-square of the correlation is 0.995. For Eq. (21),

FIG. 9. Variation of Ka/K∞ with Knp for various pore structures [35]: first-order correlation [Eq. (20)],
second-order correlation [Eq. (21)].
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b is 7.08 and c is 4.85 × 10−2, and the R-square of the correlation is 0.996. The results of Eqs. (20)
and (21) are also presented in Fig. 9. It can be seen the second-order correlation does not add much
to the accuracy compared to the first order one in the ranges of parameters studied in this study.

V. CONCLUSION

Direct simulation Monte Carlo (DSMC) method has been used in this study to investigate the
pressure driven gas transport characteristics through a porous medium with micro- and nanopores
for the porosities of 0.36 � ε � 0.84 and for different Knudsen numbers, based on the effective
pore size, of 0.01 � Knp � 10. The effective pore size is defined as a function of the porosity, the
tortuosity, the contraction factor, and the intrinsic permeability of the porous medium, which can be
calculated if the structure of the porous medium is determined.

The pore scale flow patterns in the porous medium have been obtained, and the gas slip phenomena
have been found at all solid walls. Both the velocities at the wall and in the pores increase along the
flow direction, as the gas pressure decreases from inlet to outlet of the porous medium. For a constant
element size and a constant pressure difference, the bulk velocity in the porous medium decreases
with the decreasing porosity.

The apparent permeability of gas transportation is calculated based on the DSMC results and
Darcy’s equation. The ratio of the apparent permeability to the intrinsic permeability, Ka/K∞, for
various porosities, element sizes, and porous structures are found to collapse to one curve if the
Knudsen number is characterized by the effective pore size. The variation trends of Ka/K∞ with
Knp by the available Klinkenberg correlations are similar with those of the present data, and some
predicted values (e.g., Knudsen [32], Sakhaee and Bryant [33], Civian [10], Beskok and Karniadakis
[34]) even show deviations of less than 10% compared to the present data. This, for the first time, has
proven that the available correlations for apparent permeability, even though most of them have been
derived from simple pipe or channel flows, are still applicative for flows in more complex geometries
driven by large pressure differences, by using the effective pore size defined in this study.

The present results have also been validated by simulating gas transport in porous media with
different shapes of unit elements, accounting for both two and three-dimensional porous structures.
Therefore, this work demonstrated how the apparent permeability of a porous media can be calculated
by the Klinkenberg correlations through fundamental and measurable descriptors of the pore
structure. Also, it should be noted that our conclusions are based on DSMC simulations in porous
structures without dead-end pores and consisting of somehow regularly and periodically distributed
micro elements. How the effective pore size equation [Eq. (16)] should be modified to meet all types
of natural and engineering used porous media will be further studied in our future work.
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APPENDIX A: EFFECT OF THE COMPUTATIONAL DOMAIN LENGTH

The effect of the length of the computational domain (L) is studied, using the method in Sec. III,
prior to the investigation to check if L is sufficiently large, that the computed permeability of the
present geometry can represent that of a porous medium with the same structures, and inlet/outlet
effects are neglectable. Taking the porous structure in Fig. 1 as an example, it is composed of
numerous unit cells with a size 2H × H of each cell. Different lengths of the geometry, L = 2H ,
6 H , 12 H , 16 H , and 20 H , are tested, corresponding to the unit numbers of 1, 3, 6, 8, and 10
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TABLE III. Effect of the length of the geometry on the present results.

No. of units Pin (MPa) Pout (MPa) D (m) L (m) Vx,out (m/s) Vx,out (m/s) Ka/D
2 Deviation

1 1.6 × 10−6 229.18 114.59 0.03419 51.68%
3 4.8 × 10−6 154.84 77.42 0.06929 2.06%
6 0.25 0.05 4 × 10−7 9.6 × 10−6 79.10 39.55 0.07079 0.06%
8 1.28 × 10−5 59.33 29.66 0.07080 0.07%
10 1.6 × 10−5 47.43 23.72 0.07075 –

in the X direction. The results for D = 400 nm,ε = 0.75,Pin = 0.25 MPa and Pout = 0.05 MPa are
presented in Table III. Vx,out is the averaged velocity Vx in the fluid regions at the outlet, and Vx,out

is the macroscopic averaged Vx at the outlet of the whole porous medium. It can be observed that
the dimensionless apparent permeability has a relative difference of 2.06% for L = 6H , compared
to that of L = 20H . When the length of the computational domain is further increased to L � 12H ,
it is found to have a neglectable effect on the permeability (<0.07%). Therefore, L = 12H (6 units
in the X direction) is sufficient for the investigation of the permeability and is used in the present
study.

APPENDIX B: EFFECTS OF THE COMPRESSIBILITY AND THE INERTIAL FORCE

The Mach number is calculated to check the effect of the compressibility of the fluid on the present
results. The inertial effects (Forchheimer term) are also evaluated by calculating the Reynolds number
at the inlet. Figure 10 shows the parameter map for all the numerical cases in the present study. For
each case at a fixed Knp, the local Mach number in the flow domain varies from 0 to Mamax, where
the Mamax always locates at the centerline of the outlet (can be inferred from the velocity profiles in
Figs. 2 and 4). It is seen from Fig. 10 that the average Mach numbers in all cases are below 0.15.
For the maximum Mach number, only four sets of data in Knp < 0.1 have Mamax above 0.3 (Flows
are usually treated as being incompressible when Ma < 0.3 [42]). However, as it can be seen from
Figs. 7 and 9 that the variation of apparent permeability with Knudsen number is not obvious for
such small Knudsen numbers. Therefore, the compressibility of the flow can be considered to have
a negligible effect on the conclusions of the present study. Similarly, the Reynolds numbers at the
inlets for all the cases are less than 1, except for only three cases also at Knp < 0.1. The same

FIG. 10. Parameter map of the present study.
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FIG. 11. Streamwise variation of the gas pressure for various Mach numbers.

conclusions can be drawn even if these data were excluded. Therefore, the inertial force also proves
to have no obvious effect on the present conclusions.

The streamwise variation of cross-section averaged gas pressure from inlet to outlet is rechecked
and presented in Fig. 11. As the Mach number increases (also the Reynolds number is increased),
the nonlinear behavior of the pressure increases. For Maavg = 0.045, the average pressure in the
flow domain is 0.155 MPa, which is only 3.3% higher than (Pin + Pout)/2. As can be seen from
Fig. 10, only four cases in Knp < 0.1 have average Mach numbers higher than 0.045 (those of
Mamax > 0.3). On the other hand, even for the rare case of high Mach number of Maavg = 0.095,
the average pressure in the flow domain is 13% higher than (Pin + Pout)/2, based on Eq. (20), that
makes an error of Ka/K∞ less than 5% in the region of Knp < 0.1. Therefore, the usage of gas
properties at the pressure (Pin + Pout)/2 to define the average Knudsen number in the present study
can be considered reasonable.
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