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Response function of a moving contact line
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The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface
is largely impacted by the presence of defects at the smaller scales. Such defects introduce
morphological disturbances on the contact line and ultimately determine the force exerted on
the wedge of liquid in contact with the surface. From the mathematical point of view, defects
introduce perturbation modes, whose space-time evolution is governed by the interfacial
hydrodynamic equations of the contact line. In this paper we derive the response function
of the contact line to such generic perturbations. The contact line response may be used to
design simplified one-dimensional time-dependent models accounting for the complexity
of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical
framework to explore contact line motion through a disordered energy landscape.
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I. INTRODUCTION

The dynamics of a liquid-gas-solid interface (contact line) on heterogeneous substrates is a
complex problem at the crossroads between physics, chemistry, and engineering. The physical
description of the problem in the ideal situation of a flat homogeneous solid is well understood at
macroscales [1,2]; however, understanding the influence of roughness and/or of chemical defects at
smaller scales remains a challenging task, largely open despite recent progress [3–7]. Such a problem
is of both fundamental and practical importance, with a variety of examples ranging across scales.
One may cite problems involving microscale roughness, such as dynamic spreading [8,9], cooling
applications [10], ink-jet printing of electronic circuits [11–14], droplet control [15–18], patterning
of substrates [19], deposition [20], and adhesion of reticulated polymers [21]. At even smaller
scales, one may mention contact line morphology and pinning on colloids [22–28], nanodroplets
on structured surfaces [29–31], spreading [32,33] and drainage [34,35] at nanoscales, hysteresis
caused by nanodefects [36], and metastability of wetting states [37,38].

A paradigmatic setup for dynamic contact line flows is the deposition of a thin liquid layer on
a solid surface withdrawn from a liquid reservoir [39–42]. The force balance exerted on a wedge
of liquid along the contact line under the influence of the solid is macroscopically parametrized by
the surface tensions of the liquid-vapor (γ ), solid-liquid (γsl), and solid-vapor interfaces (γsv): as a
direct consequence of the intermolecular forces, they provide excess free energies associated with
the interfaces and combine at equilibrium to provide the contact angle θY made by the liquid-vapor
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interface with respect to the solid, i.e., the celebrated Young’s law [2]

γ cos θY = γsv − γsl.

Substrate heterogeneities are therefore naturally described in terms of a frozen, disordered surface
energy landscape. This frozen energy landscape constitutes the first difficulty of the problem: the force
of solid origin exerted on the fluid depends on the location of the contact line. As weak interactions
quickly decay with the distance between molecules, the contact angle locally made by the liquid is
selected at a molecular scale [43,44], and Young’s law therefore acts as a boundary condition for the
mesoscopic interface, which encodes possible finite thickness effects as those standardly described
by a disjoining pressure [45,46]. Notice that we use the term “mesoscopic” to refer to the intermediate
range of scales between molecular scales (where processes explicitly depend on molecular size) and
macroscopic, where gravity or an outer boundary condition matters.

The flow resulting from the contact line motion must be described by interfacial hydrodynamics,
which immediately reveals the second difficulty of the problem: as a contact line is a geometrical
singularity, the corner flow [47] presents a viscous stress that tends to diverge at the contact line
but remains finite due to some molecular scale regularization process. Viscous dissipation of energy
takes place at all length scales between the molecular scale and the size of the meniscus [47]. This
yields a total dissipation that is integrable neither at the singularity nor at infinity, and the problem
requires a cutoff at both the small and large scales. Typically, these cutoffs appear at a molecular
scale (∼10−9 m), and at the scale of the capillary length �γ (∼10−3 m). Each of the decades between
the microscopic scale and the macroscopic scale contributes to the viscous dissipation, revealing
the intrinsic multiscale character of wetting flows. These features of moving contact lines were first
appreciated by Hue and Scriven [47], who analytically solved the flow in a perfect wedge using
similarity solutions. The equations considerably simplify in the limit of small interfacial slopes and
curvatures, i.e., in the lubrication limit [48]. In such a limit, the relevant dynamical quantities reduce
to the thickness h of liquid from the solid to the interface and the average velocity �U parallel to the
solid (plate).

The importance of physico-chemical heterogeneities at small scales together with the necessity
to include a regularization mechanism for the contact line problem also sets a compelling case for
the understanding of the role of thermal fluctuations. Indeed, at nanoscales, the strength of thermal
fluctuations becomes comparable to that of surface tension, hence fluctuations may trigger activated
dynamics across defects [49]. From the point of view of macroscopic interfacial hydrodynamics,
thermal fluctuations may be embedded in a continuum description of the contact line flows based on
fluctuating hydrodynamics [50–52], i.e., the equations of hydrodynamics where the viscous stress
tensor is supplemented with a stochastic contribution accounting for the random motion of molecules
at small scales. Different studies have been proposed in the literature, based on the lubrication
approximation [32,33,53–55]. In this framework, boundary conditions are typically needed to account
for the impenetrable nature of the boundaries [33,56]; capillary waves, in turn, may be affected by the
restrictions imposed by the boundaries [57–59], resulting in morphological changes of the average
profile on the scale of the thermal length. A semiphenomenological (coarse-grained) parameter
may be introduced [54] to account for the affinity of the contact line with the substrate, and exact
calculations may be performed to predict the shape of the profiles close to the wall. However, the
microscopic derivation of this parameter requires a suitable matching with an inner description,
possibly including the details of the heterogeneities. This leaves us with a third difficulty, i.e.,
rationalizing a framework for a fluctuating contact line problem coupled to a precise realization
of nanoscale defects. Placing the effects of thermal fluctuations on the full (time-dependent) contact
line problem with an heterogeneous realization of defects on a surface looks an hard task. This is not
even required if we are not interested in all the details of the contact line profile [60] but rather want
to predict and control the activated hopping of its average position. A first step towards this approach
consists in the systematic derivation of the response function, i.e., the (linear) relation between the
displacement and the force exerted along the contact line profile in the presence of heterogeneities.
This is precisely the purpose of this article. Once the response function is known, one can write a
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FIG. 1. (a) The response function of the dynamic contact line is determined in the dip-coating geometry. A
vertical plate is plunged (Up > 0) or withdrawn (Up < 0, as in the figure) from a bath at the velocity �Up = Up�ex .
The contact line profile is denoted by ξ . The bath, far from the plate, is at equilibrium. Its asymptotic profile
when approaching the plate resembles that of a static bath and would join the plate, if prolonged, at an angle
θM called the macroscopic contact angle [see Eq. (12)]. (b) Relation between the apparent contact angle θM and
the capillary number Ca = ηUp/γ determined using a slip length �s = 2.5× 10−6 �γ and a microscopic contact
angle θ0 = 0.5 rad, corresponding to about 28.6◦. Here Cac is the threshold capillary number below which a
liquid film is entrained on the plate and corresponds to θM = 0. The thin red line is the approximation by the
Cox-Voinov formula (13).

Langevin equation and possibly introduce a thermal noise term in a more tractable way [61]. To
obtain the response function, we will assume that disturbances introduced by defects are small and
can still be described in the hydrodynamic framework as elastic perturbations [1,2,60,62]. We will
then concentrate on the evolution equations of such perturbations in the lubrication limit for the
well-known dip-coating setup [39–42], consisting of a plate withdrawal from a bath at a constant
velocity. The response function will be fully characterized at changing wave numbers and frequency
of the boundary perturbations.

The paper is organized as follows: Sec. II deals with the theoretical framework utilized in the
present paper; the properties of the dynamical base state are reviewed in Sec. III, and the dynamical
equations for the perturbations are the subject of Sec, IV; the characterization of the response function
is found in Sec. V. Some concluding remarks and perspectives are offered in Sec. VI.

II. THEORETICAL FRAMEWORK

Our aim here is to describe the contact line motion on a heterogeneous substrate. We consider the
seminal dip-coating geometry in which a plate is plunged (Up > 0) or withdrawn (Up < 0) from a
bath at a constant velocity �Up [39–42] [see Fig. 1(a)]. The liquid has a mass density ρ, a viscosity η,
and a surface tension γ . The coordinates are x and y along the plate, with x going from the contact
line to the bath, and z normal to the plate, while t is the instant of time. The plate velocity Up can be
rescaled by the typical velocity γ /η for which viscous stress and capillarity are of the same order of
magnitude:

Ca = ηUp

γ
.

Gravity, whose acceleration is g, fixes the outer length scale of the problem, the capillary length

�γ =
√

γ

ρg
.
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To determine the response function of a dynamic contact line, we adopt a continuous description
valid from just above the molecular scale—the typical range of intermolecular interactions and of
slip effects—up to the outer length scale fixed by �γ . Consistently with this description, surface
heterogeneities can be encoded, whatever their nature and length scale, into a single field TY (x,y)
which gives the contact angle when the contact line is at the location (x,y). We emphasize that this
does not constitute a limit of the model, which can be used to describe nanometer scale defects
provided a clear definition of TY (x,y). The density functional theory (DFT) is the proper way to
model capillarity at the nanometer scale [63]. A convenient, controlled approximation of DFT is to
push this theory in the limit of a sharp interface [43,64–67]. The disjoining pressure approach can
be thought of as a further approximation valid in the limit of almost flat interfaces [66]. They all in
common lead to the selection of a constant angle at a scale slightly larger than the molecular scale,
which must be equal to Young’s angle when the substrate is homogeneous. TY (x,y) characterizes
the angle of the outer solution, seen from the molecular scale. It therefore includes possible nonlocal
effects taking place at the molecular scale in an effective way. DFT and its approximations must
therefore be considered as ways to compute TY (x,y) from a map giving the atomistic composition
of the surface. It is important to note, though, that TY (x,y) is the most accessible quantity from an
experimental perspective. Alternative formulations have been proposed to include correction terms
to the macroscopic free energy, in order to include molecular scale effects: curvature-dependent
surface tension [68–72] and line tension [73–75]. As they critically rely on the definition of the
interface location, both effects lead to conflicting results on their magnitude and even their sign
[76–78]. The literature has reached a consensual agreement that they can fairly be ignored above few
molecular scales [66,72]. The only true limit of our calculation therefore results from the linearization
of a dynamical equation around a flat contact line, which, in addition, implies that line tension can
be ignored. In summary, from the macroscopic perspective, the boundary condition is the contact
angle θY (y,t) along the contact line profile that we decompose as x = ξ0 + ξ (y,t). ξ0 is the average
position over space and time (or over realizations), and ξ the fluctuating part in space and time. On
the one hand, the angle of the liquid interface along the contact line θY (y,t) results from a frozen
landscape TY (x,y) such that it corresponds to the value of the frozen landscape at the location of
the contact line: θY (y,t) = TY (ξ0 + ξ (y,t),y). The contact angle profile is determined by the contact
line position, which itself depends on the contact angle distribution. On the other hand, the flow and
therefore the evolution of the contact line position is entirely driven by θY (y,t), as being the boundary
condition of the dynamic liquid interface. We can therefore solve for the hydrodynamics problem,
assuming that θY (y,t) is known in advance, and determine the evolution of ξ (y,t). The two parts of
the problem, namely, the selection of θY (y,t) by the value of the frozen landscape at the location of the
contact line and the hydrodynamics driven by θY (y,t), can therefore be treated separately and coupled
afterward.

We use the lubrication approximation of Navier-Stokes [48] and linearize the solution with respect
to the perturbation:

F (y,t) = γ [cos θY (y,t) − cos θ0], (1)

where cos θ0 is the average over space and time (or over realizations in an unsteady statistical process)
of cos θY , which is evaluated from the frozen field TY (x,y) along the contact line. The value of cos θ0

therefore results from the dynamics but the hydrodynamic problem can be treated, parametrized by
θ0, ignoring its actual value. We wish to find the position, knowing the boundary condition θY (y,t).
For this, we perform the double Fourier transform of the contact line profile ξ (y,t) over space and
over time:

ξ̂ (q,ω) =
∫ +∞

−∞
dt

∫
dy e−jωt−jqyξ (y,t).
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The integral in y extends over the whole space or over the periodicity domain. ξ̂ (q,ω) is linearly
related to the force disturbance Fourier transform:

γ C(q,ω)ξ̂ (q,ω) = F̂ (q,ω), (2)

where the response function C(q,ω), which is homogeneous to the inverse of a length, is calculated
from hydrodynamics for any mode q. For a small variation θ1 of the contact angle to its space and
time average one can linearize the force disturbance as cos(θ0 + θ1) − cos θ0 � − sin θ0 θ1; hence
from (1) and (2) we can write

C(q,ω)ξ̂ (q,ω) � − sin θ0 θ̂1(q,ω), (3)

which relates the contact angle variation and the contact line disturbance through the response
function. The average position of the contact line ξ0 over space and time has been singled out, which
is actually a function of θ0 and of the capillary number Ca. Note that the problem does not need to
be in a statistically steady state: θ0 and Ca may vary as a function of time, in which case ξ0 adapts
consequently (more details are given in Sec. V C). Further note that θ0 is ultimately a function of
Ca and of the statistical properties of the frozen disorder TY , due to the fact that it results from an
average along the contact line. The sampling of the energy landscape is therefore biased. Similarly,
Eq. (2) is the dynamical equation for the contact line fluctuations, as F is a function of ξ through
the reading of the energy landscape. When computing the response function, the angular frequency
ω is rescaled by γ /η�γ and will be noted as

	 ≡ η�γ

γ
ω.

III. DYNAMICAL BASE STATE

The lubrication equations with a Navier slip boundary condition read as [48]

∂th + �∇ · (h �U ) = 0, (4)

γ �∇κ + ρg�ex + 3η(Up�ex − �U )

h(h + 3�s)
= �0, (5)

where �s is the slip length. They constitute a controlled approximation of the Stokes equations under
the condition of small slope and small product of the curvature κ by the thickness h. Here the surface
is located at z = h(x,y,t), while �∇ = �ex∂x + �ey∂y is the gradient operator along the plate, �ei being
the unit vector of the ith coordinate, �U (x,y,t) = �exUx(x,y,t) + �eyUy(x,y,t) is the velocity along
the plate averaged over z:

�U = 1

h

∫ h

0
�u dz,

�u(x,y,z,t) being the true hydrodynamic velocity along the plate. The continuity equation (4)
expresses the conservation of mass for the problem at hand, and the quantity h �U is the flux vector
along the plate. The curvature κ(x,y,t) of the surface, appearing in the force balance Eq. (5), is given
by

κ = (1 + ∂yh
2)∂xxh + (1 + ∂xh

2)∂yyh − 2∂xh ∂yh ∂xyh

(1 + ∂xh2 + ∂yh2)3/2
(6)

and is related to the pressure P (x,y,t) by the Laplace formula P = −γ κ . We introduce γ /η as a unit
velocity and �γ as a unit length for spatial coordinates x and y and for the thickness h. Dimensionless
variables will be noted in the same way as the variables themselves, except Up, which becomes Ca.
When needed, we will give back expressions with their dimensions, mentioning it explicitly. The
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lubrication equations read

∂th + �∇ · (h �U ) = 0, (7)

�∇κ + �ex + 3(Ca �ex − �U )

h(h + 3�s)
= �0. (8)

The formulation of the boundary conditions for the dynamical problem requires a further
discussion, and we postpone it to Sec. IV. Let h(x,y,t) = h0(x) be the steady transversely invariant
surface profile, for which the curvature κ(x,y,t) = κ0(x) reduces to [use of a prime (′) means
derivation with respect to x]

κ0 = h′′
0(

1 + h′2
0

)3/2 .

This steady and transversely invariant liquid interface profile constitutes the base state, noted with
the subscript 0. From the continuity equation and condition of zero flux at the contact line we get
�U (x,y,t) = �U0(x) = �0. The lubrication equations reduce to

κ ′
0 + 1 + 3Ca

h0(h0 + 3�s)
= 0.

Regardless of the convention for ξ0, it is convenient to choose the location of the contact line for the
steady transversely invariant case as x = 0. The boundary conditions at the plate are then

h0(0) = 0,

h′
0(0) = tan θ0.

By starting from the boundary conditions for h0 and h′
0 at x = 0, one can find the asymptotics of

the base state at the plate by solving recursively the system

h′′
0 = (

1 + h′2
0

)3/2
κ0,

κ ′
0 = −1 − 3Ca

h0(h0 + 3�s)
.

We get the following asymptotics of the base state at the plate, for x → 0:

h0(x) = t0x − Ca
(
1 + t2

0

)3/2

2�st0
x2 ln

(
x

�

)
+ 3Ca

(
1 + t2

0

)3/2

4�st0
x2 + O(x3 ln2 x), (9)

h′
0(x) = t0 − Ca

(
1 + t2

0

)3/2

�st0
x ln

(
x

�

)
+ Ca

(
1 + t2

0

)3/2

�st0
x + O(x2 ln2 x), (10)

κ0(x) = − Ca

�st0
ln

(
x

�

)
− Ca2

(
1 + t2

0

)3/2

2�2
s t

3
0

x ln

(
x

�

)

−
[

1 − Ca

3�2
s

− 5Ca2
(
1 + t2

0

)3/2

4�2
s t

3
0

]
x + O(x2 ln2 x), (11)

where t0 = tan θ0, for shortness, while � is a free parameter, adjusted by shooting to match the bath.
Note that, in practice, it is convenient to introduce the quantity Ca ln � rather than � itself.

The concept of macroscopic contact angle has long been a source of confusion in the literature. The
proper way of defining it is to start from the asymptotics at the bath, which is exactly that of a static
bath at equilibrium. The constant M (see below), though, which describes the exponential departure
from the flat bath (considering x vs h0) depends on the dynamic solution between the scale of the slip
length and that of the capillary length. The static-like asymptotics at the bath can be prolonged and
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would join the plate at an angle, which is by definition the macroscopic angle θM . The macroscopic
contact angle is therefore not a true interface angle but is defined by asymptotic matching of the
solution coming from the dynamical range of scales with an outer, static bath solution. The position
at which the static bath interface would join the plate is almost the same as the true contact line
position. In practice, the macroscopic angle θM can therefore be defined from the altitude δ of the
contact line using the following static relation [50]:

δ =
√

2(1 − sin θM ) �γ . (12)

The difference between the capillary forces γ cos θM and γ cos θ0 at macroscopic and microscopic
scales results from the viscous force integrated along the plate, between the inner and outer scales.
A useful approximation is that provided by the Cox-Voinov derivation [79], which is a particular
solution of the lubrication equations matched macroscopically to a vanishing curvature interface. It
is derived at the linear order in angle but turns out to provide an excellent nonlinear fit of the actual
solution [see Fig. 1(b)], for uncontrolled reasons:

θ3
M ∼ θ3

0 + 9Ca ln

(
α�γ

3�s

)
, (13)

where α � 0.02 is independent, in first approximation, of the contact angle. The interested reader
may find the correct asymptotic expansion in Refs. [39–42]. Equation (12) is an exact result for the
static bath, as the static profile decays exponentially as δ − x ∼ e−h at large heights h. We therefore
look for the following asymptotics at the bath for x → δ:

h0(x) ∼ − ln

(
δ − x

M

)
, (14)

h′
0(x) ∼ 1

δ − x
, (15)

κ0(x) ∼ δ − x, (16)

where M is a free parameter, adjusted by shooting to match the contact line. Note that δ is the distance
between the average contact line and the bath.

IV. LINEARIZED EQUATIONS

We linearize Eqs. (6)–(8) about the basic profile h0(x), writing the profile as a combination of
the base state and a small disturbance, noted with subscript 1, oscillating in time at frequency 	 and
modulated spatially at wave number q:

h(x,y,t) = h0(x) + h1(x) ej	t+jqy, (17)

κ(x,y,t) = κ0(x) + κ1(x) ej	t+jqy, (18)

Ux(x,y,t) = u1(x) ej	t+jqy, (19)

Uy(x,y,t) = v1(x) ej	t+jqy . (20)

The curvature linearizes into

κ1 = − q2h1(
1 + h′

0
2)1/2 + h′′

1(
1 + h′

0
2)3/2 − 3κ0h

′
0h

′
1

1 + h′
0

2 .

From the y component of Eq. (8), one can eliminate v1 in terms of κ1, as

v1 = 1
3jqh0(h0 + 3�s) κ1.
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It is convenient to introduce the variable

F1(x) = h0(x)u1(x),

which represents the flux in the x direction at first order (the zeroth order flux being zero). We get,
from the linearized lubrication equations about the base state, the differential equations obeyed by
the disturbed liquid interface [80]:

h′′
1 = (

1 + h′
0

2)
q2h1 + 3

(
1 + h′

0
2)1/2

κ0h
′
0h

′
1 + (

1 + h′
0

2)3/2
κ1, (21)

κ ′
1 = 3Ca(2h0 + 3�s)

h2
0(h0 + 3�s)2

h1 + 3

h2
0(h0 + 3�s)

F1, (22)

F ′
1 = −j	h1 + h2

0(h0 + 3�s)q2

3
κ1. (23)

Defining the quadrivector X as

X =

⎛
⎜⎝

h1

h′
1

κ1

F1

⎞
⎟⎠,

one can rewrite the linearized equations (21)–(23) as [80]

dX
dx

= MX , (24)

where

M =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0(
1 + h′

0
2)

q2 3
(
1 + h′

0
2)1/2

κ0h
′
0

(
1 + h′

0
2)3/2

0

3Ca(2h0+3�s )
h2

0(h0+3�s )2 0 0 3
h2

0(h0+3�s )

−j	 0 h2
0(h0+3�s )q2

3 0

⎞
⎟⎟⎟⎟⎟⎠.

There are many formulations that are equivalent at the linear order but that are differently accurate
at the nonlinear order. In particular the exact solution of the problem exactly reduce to the solution
of the linear problem at the linear order. In the present case we get (see the Appendix)

h1(0) = − tan θ0, (25)

lim
x→0

[h′
1(x) + h′′

0(x)] = −1 + tan2 θ0

sin θ0
C, (26)

F1(0) = 0. (27)

Note that h′′
0(x) diverges logarithmically as h′′

0(x) ∼ −Ca(1+tan2 θ0)3/2

�s tan θ0
ln ( x

�
) at x = 0, which explains

the formulation of (26) with the limit. Here C is the response function, expressing the ratio between
the disturbance of the forcing cos θY − cos θ0 and the disturbance on contact line position.

We now wish to derive the general asymptotics at the plate, to determine which of them are
consistent with the boundary conditions in order to perform a numerical integration. We use for the
base state the approximations (9)–(11). We then find the asymptotics of the perturbations for x → 0
by solving recursively the resulting approximated system (24). As explained in the Appendix, we
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get the following three physically acceptable independent asymptotics:

Xh ∼

⎛
⎜⎜⎜⎜⎝

1

− Ca
�s sin2 θ0 cos θ0

ln
(

x
�

)
− Ca

�s tan2 θ0
x−1

− q2Ca
2 x2

⎞
⎟⎟⎟⎟⎠ − j	

⎛
⎜⎜⎜⎜⎜⎝

1
2�s sin2 θ0 cos θ0

x2 ln
(

x
�

)
1

�s sin2 θ0 cos θ0
x ln

(
x
�

)
1

�s tan2 θ0
ln

(
x
�

)
x

⎞
⎟⎟⎟⎟⎟⎠,

Xθ ∼

⎛
⎜⎜⎜⎜⎝

x

1
Ca

�s tan2 θ0
ln

(
x
�

)
q2Ca

3 x3 ln
(

x
�

)

⎞
⎟⎟⎟⎟⎠ − j	

⎛
⎜⎜⎝

0
0
0

1
2x2

⎞
⎟⎟⎠, Xκ ∼

⎛
⎜⎜⎜⎜⎝

1
2 cos3 θ0

x2

1
cos3 θ0

x

1
q2�s tan2 θ0

3 x3

⎞
⎟⎟⎟⎟⎠ − j	

⎛
⎜⎜⎝

0
0
0

1
6 cos3 θ0

x3

⎞
⎟⎟⎠.

So we must start the numerical integration with1

X = − tan θ0Xh − (1 + tan2 θ0)3/2

tan θ0
CXθ + KXκ , (28)

which satisfies the boundary conditions at the plate. The response function C appears in the
asymptotics (28), together with another constant K . Both C and K must be chosen with a proper
matching with the asymptotics at the bath.

The system (24) with the base state approximated by (14)–(16) reads

F ′
1 = −j	h1 − q2

3 ln3
(

δ−x
M

) κ1, (29)

κ ′
1 = − 6Ca

ln3
(

δ−x
M

)h1 − 3

ln3
(

δ−x
M

)F1, (30)

h′′
1 = q2

(δ − x)2
h1 + 3

δ − x
h′

1 + 1

(δ − x)3
κ1. (31)

These equations admit four asymptotics, among which two lead to a divergence of h1 as (δ − x)−1

and (δ − x)−2, respectively. The two admissible asymptotics lead to a finite value of h1 (convergence
as 1/ ln2[(δ − x)/M] to zero and to a nonvanishing constant). As a simple criterion, we retain
that (δ − x)h′

1 tends to 0 for the two admissible solutions, as 1/ ln3[(δ − x)/M], but diverges for
the two asymptotics that must be rejected, as (δ − x)−1 and (δ − x)−2, respectively. Furthermore,
the curvature κ1 of the two admissible solutions tends to 0 as (δ − x)/ ln3[(δ − x)/M] while one
asymptotics that must be rejected tends to a constant and the other diverges as (δ − x)−1/ ln3[(δ −
x)/M]. The specific feature of the acceptable asymptotics is the vanishing value of both (δ − x)h′

1
and κ1. We therefore use this property in the numerics to solve the superposition principle, without
using explicitly the asymptotics.

To summarize, let us briefly recall the main steps of our analysis up to this point. After linearizing
the interfacial equations of hydrodynamics, we have considered the evolution equations for the
perturbation modes [cf. Eq. (17)]. These enabled us to determine the asymptotics at the plate [cf.
Eq. (28)] as well as the asymptotics at the bath [cf. Eq. (29)]. In the asymptotics at the plate we have
identified the response function C: this must be computed in order that the asymptotics at the bath
confirm the boundary conditions. This selection is carried out numerically [80]. In the next section

1When combined, all the asymptotics should be computed at the same order in x component per component;
see the Appendix for details.

044001-9



PERRIN, BELARDINELLI, SBRAGAGLIA, AND ANDREOTTI

(a) (b) (c) (d)

FIG. 2. (a) Schematic of the geometrical model relating the response function to the penetration length L.
The length L is set by the smallest of three lengths: (b) the wavelength λ = 2π/q, (c) the dynamic length γ /ηω,
and (d) the capillary length �γ .

we will illustrate the main results pertaining the behavior of the response function in terms of q, 	,
Ca, and θ0.

V. RESPONSE FUNCTION

We have integrated numerically the equations derived in the previous section. To discuss the
results, we wish first to propose a simple interpretation framework that will provide the scaling
laws obeyed by the response function C. Let us assume that a perturbation induced at the contact
line, in time and/or in space, disturbs the interface over a penetration length L along the plate. For
simplicity, we consider a wedge of effective angle θ . From the simple geometrical construction
shown in Fig. 2(a), we get for the real part of C, at the linear order in ξ̂ ,

Re(C)ξ̂ ≡ cos(θ + θ1) − cos θ � sin2 θ cos θ
ξ̂

L
.

The viscous force results from the integral over the horizontal direction of the viscous stress.
Considering that the fluid moves at the same velocity as the contact line over the wedge region,
we obtain the imaginary part of C:

Im(C)ξ̂ ∝ 3ωξ̂η

γ tan θ
ln

(
1 + L tan θ

3�s

)
.

We therefore predict a relation of the form

Re(C) � sin2 θ cos θ
1

L
and Im(C) ∼ 3ωη

γ tan θ
ln

(
1 + L tan θ

3�s

)
,

Using the capillary length �γ to rescale C, we get

�γ Re(C) � sin2 θ cos θ
�γ

L
and �γ Im(C) ∼ 3	

tan θ
ln

(
1 + L tan θ

3�s

)
.

In these scaling laws, θ can be considered as the average angle at the scale L, which must scale
according to Cox-Voinov law [79]:

θ3 ∼ θ3
0 + 9Ca ln

(
1 + L tan θ0

3�s

)
.
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RESPONSE FUNCTION OF A MOVING CONTACT LINE

10-2 10-1 100 101 102 103 104 105 106 10-2 10-1

10-1

100

100

101

101

102

102

10-1

100

101

102

103

104

105

103 104 105 106

(a) (b)

FIG. 3. Response function as a function of the rescaled wave number q, for different values of 	: 	 = 0
(solid line), 	 = 0.22 (long dashed line), 	 = 1 (dashed line), 	 = 4.5 (dotted dashed line), 	 = 20 (dotted
line). The other parameters are fixed at tan θ0 = 0.55, �s = 2.5×10−6�γ , and Ca = 10−5. The thin red lines are
the predictions for the large q asymptotics given by Eq. (32), in which a corrective factor 0.87 was applied in
front of the imaginary part.

The logarithmic factor involves the inner cutoff associated with the slip length, which explains that
it involves the contact angle θ0 and not the large-scale angle θ .

The penetration length L depends on three lengths that determine three asymptotic regimes,
detailed in the next sections: the perturbation wavelength λ = 2π/q [Fig. 2(b)], the dynamical length
γ /ηω = �γ /	 set by the balance between capillary and viscous effects [Fig. 2(c)], and the capillary
length �γ , which is the outer length of the problem [Fig. 2(d)].

A. Dependence on q

Consider a flat interface which makes an angle θ with the substrate, whose contact line is disturbed
with a mode of wave number q. In static conditions, the curvature vanishes so that the interface
elevation profile decays as ∼e−|q|x/ cos θ . The disturbance decays exponentially over a penetration
length L = |q|−1 cos θ along the normal x to the contact line. For the real part of the response
function (restoring force) we find

γRe(C)ξ̂ = γ sin2 θ |q|ξ̂ .

Hence, we obtain

�γ Re(C) = sin2 θ |q|�γ and �γ Im(C) ∼ 3	

tan θ
ln

(
1 + cos θ tan θ0

3|q|�s

)
. (32)

Figure 3 shows the dependence of C with respect to q for different values of 	. One observes that
the large q regime is independent of 	 (provided 	 is small enough) and nicely coincides with the
prediction of a quasistatic disturbance at vanishing curvature. The prediction for Re(C) is quantitative,
but that for Im(C) is overestimated by �13%. A multiplicative factor 0.87 was accordingly applied
when plotting the predictions. As expected, C strongly depends on the (true) contact angle θ0 in
this large q regime (Fig. 4). This dependence is quantitatively predicted by Eq. (32). Finally, Fig. 5
shows that there is a small dependence on the capillary number Ca in this regime, that we interpret
as resulting from the change of the interface slope with the scale q−1. As predicted by Eq. (32), the
dependence is weak for Im(C) as the dependence on L is logarithmic, and larger for Re(C), which
linearly depends on L−1. Given the crude assumptions made in the geometrical model, the excellent
agreement validates this interpretation.
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FIG. 4. Response function as a function of the rescaled wave number q, in the limit of vanishing 	, for
different angles tan θ0: tan θ0 = 0.1 (solid line), tan θ0 = 0.3 (dashed line), tan θ0 = 0.6 (dotted dashed line),
and tan θ0 = 1.1 (dotted line). The other parameters are fixed at �s = 2.5×10−6�γ , and Ca = 10−5. The thin
red lines are the predictions for the large q asymptotics given by Eq. (32), in which a corrective factor 0.87 was
applied in front of the imaginary part.

B. Dependence on �

Figure 3 shows that there is a crossover at small q between the large q regime discussed above
and a regime which depends on the frequency 	 but not on q. Figure 6 shows the dependence on
	 in this small q limit, which presents three asymptotics. In the limit of vanishing 	, one observes
a plateau of Re(C) while Im(C) is linear in 	. This quasisteady asymptotics is discussed in the next
section. In the large 	 limit, one observes a power law asymptotics Re(C) = Im(C) ∝ 	1/2. Finally,
in the intermediate asymptotics in 	, Re(C) appears to be linear in 	 while Im(C) is sublinear. This
corresponds to the dynamical regime that we now describe, based on the geometrical argument
schematized in Fig. 2(c). In the limit of intermediate 	, the modes penetrate on the interface over a
length smaller than the capillary length �γ but larger than �s . In order to determine the penetration
length L in this case, we can therefore replace the shape of the interface by a wedge at angle θ writing

10-2 10-1 100 101 102 103 104 105 106
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FIG. 5. Response function as a function of the rescaled wave number q, in the limit of vanishing 	, for
different values of Ca: Ca = −10−3 (dotted line), Ca = 0 (solid line), and Ca = 10−3 (dashed line). The other
parameters are fixed at tan θ0 = 0.55, �s = 2.5×10−6�γ . The thin red lines are the predictions for the large q

asymptotics given by Eq. (32), in which a corrective factor 0.87 was applied in front of the imaginary part.
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FIG. 6. Left: response function as a function of the rescaled frequency 	, in the limit of vanishing q, for
different values of Ca: Ca = −10−3 (dotted line), Ca = 0 (solid line), and Ca = 10−3 (dashed line). The other
parameters are fixed at tan θ0 = 0.55, �s = 2.5×10−6�γ . The three curves almost collapse for the imaginary part
of C (blue curves) but are split for its real part (green curves), at small 	. The thin red lines are the predictions
of the intermediate asymptotics limited by the dynamical length (small q limit and intermediate range of 	),
as given by Eq. (33). Right: response function in the limit of vanishing 	 and vanishing q, as a function of
Ca. The thin red lines are the predictions of the quasisteady asymptotics (small q limit and small 	), as given
by Eq. (34).

h′
0 = tan θ , which leads to the equation:

(x3h′′′
1 )′ = −j

3	

�γ sin3 θ
h1.

The above equation presents two independent solutions that converge at infinity (far from the contact
line), based on the MeijerG special function [81]. Here we just identify the length L, in its dimensional
form, as

L ∼ sin3 θ�γ

3	
.

A refined asymptotic treatment gives the multiplicative constants involved in front of L:

Re(C) � 3πωη

2γ tan θ
and Im(C) ∼ 3ωη

γ tan θ
ln

[
1 + tan θ0 sin3 θ0�γ

3 exp
(
4γEuler − 1

2

)
	�s

]
,

where the slip length �s here has the dimension of a length, andγEuler � 0.577 is the Euler-Mascheroni
constant. Rescaling C by the capillary length, we get

�γ Re(C) � 3π	

2 tan θ
and �γ Im(C) ∼ 3	

tan θ
ln

[
1 + tan θ0 sin3 θ0�γ

3 exp
(
4γEuler − 1

2

)
	�s

]
. (33)

The left panel of Fig. 6 shows that the agreement of this model equation with the exact response
function is, again, very good in the intermediate range of 	. The failure appears at large 	, when the
penetration length L reaches the slip length �s . The large 	 asymptotics is therefore a bit artificial,
as the penetration length becomes comparable to the molecular size. This asymptotics is therefore
sensitive to the details of the modeling. In order to keep the clarity of the paper, we will not discuss it
here. Note that the observed asymptotics Re(C) = Im(C) ∝ 	1/2 is solution of the Kramers-Kronig
relation. At small 	, the crossover appears when the dynamical length L reaches the outer length
�γ , which sets the size of the meniscus. We discuss this asymptotic in the next section.
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C. Dependence on Ca

In the double limit of vanishing 	 and vanishing q, the time evolution is slow and the wavelength
much larger than the capillary length. In first approximation, moving the contact line with respect
to the plate is the same as moving the plate with respect to the contact line. The main difference
lies in the dissipation around the bath. We therefore assume that the dependence of the equilibrium
altitude δ with respect to Ca and θ0 holds during transients, provided one replaces δ by δ + ξ and Ca
by Ca + dξ/dt in these laws:

δ =
√

2(1 − sin θM ) �γ ,

θ3
M = θ3

0 + 9Ca ln

(
α�γ

3�s

)
.

Differentiating these expressions with respect to θ0, δ, and Ca, one obtains

θ2
0

sin θ0
�γ C = θ2

M

√
2(1 − sin θM )

cos θM

+ 3j	 ln

(
α�γ

3�s

)
. (34)

Note that in this expression, we ignored the small dependencies of α with θ0. The right panel of
Fig. 6 shows that the agreement is perfect for the real part of C, as the quasisteady limit is an exact,
controlled approximation of the problem for the restoring force. The agreement of the imaginary
part of C, which is linear in 	, is good but not perfect. The approximation used assumes that it
is equivalent to impose a displacement of the contact line with respect to the solid plate (the bath
remaining fixed) and to impose a displacement of the solid plate with respect to the contact line and
the bath. If the small scales of the problem are indeed equivalent and are entirely determined by the
relative displacement of the contact line with respect to the plate, the large scales differ if the contact
line or the plate move with respect to the bath. The small difference between the prediction and the
exact C results from the small dissipation at the scale of the meniscus.

VI. CONCLUDING REMARKS

The motion of a contact line on a random heterogeneous landscape is one of the most important
problems remaining partly open in the field of dynamical wetting [4,7,10–14,17–21,82–84]. Most
applications may require only the knowledge of elementary information, e.g., the time evolution
of the average contact line position, rather than the complete details of the full problem. In this
framework, working in the widely used setup of a plate withdrawal from a bath at a constant velocity
[39–42], we have derived the response function of the contact line, relating its displacement to the
forces set by heterogeneities [cf. Eq. (2)]. To this aim, we have first treated the problem at the
hydrodynamic scales, based on the lubrication approximation [48]. Then the space-time evolution
of defects’ perturbations has been deduced by linearizing the lubrication equations around a base
state [80], followed by double Fourier transform in space and time. The dependence of the response
function with frequency and wave numbers has then been discussed.

With the response function at hand, several applications can be envisaged. Primarily, one could
design a stochastic model accounting for thermal fluctuations, which allows one to study numerically
the activated motion of the contact line through the frozen energy landscape provided by defects.
Concretely, by using the decomposition

C(q,ω) = 1

�γ φ̂q(ω)

[
ψ̂q(ω) + j

η�γ

γ
ω

]
,

one could write the following generalized Langevin equation [85]:

η
dξq

dt
+ γ

�γ

∫ t

−∞
ψq(t − t ′)ξq(t ′) dt ′ =

∫ t

−∞
φq(t − t ′)Fq(t ′) dt ′ + Wq(t), (35)
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where the subscript q denotes Fourier projection on the qth wave number of the corresponding
quantity in real space. Notice that since the system is causal, both ψ̂q(ω) and φ̂q(ω) must obey
Kramers-Kronig relations (see Ref. [86] and references therein). The term Wq(t) is a stochastic
term to be quantified, whose amplitude can be related to the statistical properties of the contact line
displacement [61,85]

〈Wq(t)Wq(t ′)∗〉 = η〈|ξq |2〉 γ

�γ

ψq(t − t ′) (t > t ′), (36)

where 〈|ξq |2〉 needs to be determined to close the problem. On the one hand, 〈|ξq |2〉 may be
computed by assuming that it results from thermal fluctuations with respect to a static equilibrium
(	 → 0 and Ca → 0): this would mean to consider the effects of thermally excited capillary
waves damped by gravity at large scale [87]. The problem, however, involves memory kernels
and a more complete treatment seems to require the characterization of a “generalized” harmonic
energy whose spring constants depend on the response function that we computed in the paper. The
equilibration of such energy would then be necessary to obtain 〈|ξq |2〉. Work is in progress along this
route.

We would remark that this is not the first time that Langevin-type equations have been proposed
to quantify the effects of thermal fluctuations on wetting problems at nanoscales. Recent examples
include the works in Refs. [25,88], where simplified Langevin dynamics have been used to
investigate colloidal dynamics at nonideal interfaces, also with comparisons with molecular dynamics
simulations [25]; in Ref. [35] a Langevin-type equation has been used to study the effects of thermal
fluctuations on capillary imbibition at nanoscales. A Langevin-type approach has also been used
by some of the authors in Ref. [89] to study thermal activation across defects and compare it
with experiments. Equation (36) justifies the Langevin approach used in Ref. [89] and further
extends it. Indeed, Eqs. (35) involve memory terms, which were not considered in Ref. [89]. Due
to these memory terms numerical simulations would require the storage of the contact line profile
as a function of time, limiting the possibility for current computers to three or four decades in
space.

For instance, the lubrication equations reduce the problem to two dimensions in space and
one in time, while the further reduction proposed here leads to one dimension in space and two
in time, due to the memory term. The space resolution is fixed by the slip length and the time
resolution by visco-capillary velocity γ /η and the slip length. Typical numerical experiments may
be performed with 4096 grid points over an integral time (based on the outer length) of order
unity. This is not sufficient for direct comparisons with standard laboratory experiments. To reduce
the number of decades in actual experiments, one would need to use nanometer-scale-resolved
microscopy or to use colloids. An interesting alternative is to test the theory against molecular
dynamic simulations, which have very similar constraints in terms of space and timescales. With the
precise determination of the noise in hand, the natural follow-up would be to perform side-by-side
comparisons between the outcome of experiments and the prediction of the stochastic model. This
requires the experimental determination of the energy landscape of a well-controlled heterogeneous
substrate and experimental visualization of the contact line at the nanoscales. As the model is derived
in the linear response regime, this opens the question, beside technical difficulties, of possible
nonlinear effects. Another interesting follow-up would be the study of (35) in the presence of
an external driving mechanism periodically oscillating in time. This can be used to analyze the
phenomenon of stochastic resonance [90,91], by studying the interplay between the characteristic
hopping timescale set by thermal activation and the external timescale set by the periodic
driving.

Finally, we wish to remark that the framework derived in this paper opens the promising perspective
of treating the mechanical behavior of a contact line, its “rheology,” using low-dimensional models
[92–98]. It directly connects to current progresses in soft-glassy materials [99], which shares strong
similarities with the contact line problem: the multiscale character, the presence of a dynamic critical
point, and a self-built energy landscape. Controlled reductions to low-dimensional models may help to
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overcome the intrinsic limit of the formulation derived here (linear response, a well-known large-scale
asymptotics). A potential application is to solve the inverse problem and to determine mechanical
and chemical properties of an interface using a contact line. Such a contact line nano-rheometer
would be particularly interesting in the case of soft solids, with direct applications on bio-medical
tissues.
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APPENDIX: BOUNDARY CONDITIONS AND ASYMPTOTICS AT THE PLATE

Let us introduce the following formulation:

h(x,y,t) = h0(x − ξ ) + h̃1(x − ξ )ej	t+jqy,

where (the real part of) ξ = ξ̂ ej	t+jqy parametrizes the disturbance to the contact line position for
given frequency 	 and wave number q. The boundary conditions are

h(ξ,y,t) = 0,

∂xh(ξ,y,t) = tan θY (y,t) � tan θ0 + d tan θ

dθ

∣∣∣∣
θ=θ0

θ1(y,t),

F(ξ,y,t) = 0.

Note that the contact angle is normally taken along the normal to the contact line. However, as
the base state is invariant along the y direction, the normal is along x within negligible quadratic
disturbances, hence the above expressions. We see that the description in terms of the displaced
variable x − ξ is perfectly well behaved. The linear equations giving h̃1 are entirely equivalent to
those giving h1. h̃1 is totally equivalent to h1, at the linear order (but not at the nonlinear order).
We shall therefore use h1, which leads to simpler equations, but keep in mind that we will actually
represent the solution by h̃1. The equivalence is given by the following equations:

h0(x) + h1(x)ej	t+jqy = h(x,t) � h0(x) − ξh′
0(x) + h̃1(x)ej	t+jqy,

from which we get

h̃1(x) = h1(x) + ξ̂h′
0(x).

Therefore, based on (3), we get the boundary conditions (25)–(27). Note that, as the system is linear,
the solution is independent of the amplitude of the disturbance, so that ξ̂ has been set to unity without
loss of generality.

As explained in the main text, we then derive the general asymptotics at the plate. Let us introduce
the following shorthand notations:

t0 = tan θ0, s0 = sin θ0, c0 = cos θ0 = (
1 + t2

0

)−1/2
.
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By keeping vanishing the zeroth order (in x) of the asymptotic solutionX except for its h1 component,
we get

Xh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Ca
�s s

2
0 c0

x ln
(

x
�

) + Ca
�ss

2
0 c0

x + 3Ca2

2�2
s s

2
0 c2

0
x2 ln2

(
x
�

) −
(

3 + 1
4s2

0

)
Ca2

�2
s s

2
0 c2

0
x2 ln

(
x
�

)
+

[
q2

2c2
0
+

(
1 + 1

4s2
0

)
3Ca2

2�2
s s

2
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0

]
x2 + O(x3 ln3 x)
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ln
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x
�
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(
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4
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0
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.

By keeping vanishing the zeroth order of X except for its h′
1 component, we get

Xθ =

⎛
⎜⎜⎜⎜⎜⎜⎝
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(
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By keeping vanishing the zeroth order of X except for its κ1 component, we get

Xκ =
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We do not report the analogous asymptotic having the zeroth order of the F1 component of X
nonvanishing as it is unphysical (the flux must vanish at the contact line).
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