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Adsorption onto and lowering of surface tension σ of fluid interfaces by surfactants is
exploited in drop formation (e.g., inkjet printing) where a thinning liquid thread (radius h)
connects an about-to-form drop to the liquid that remains hanging from the nozzle when the
former falls from it. Surfactants can affect thread pinch-off in two ways: first, by lowering
σ , they lower capillary pressure (σ/h), and second, as surfactant concentration along the
interface can be nonuniform, they cause the interface to be subjected to a surface tension
gradient or Marangoni stress. Recent studies show that the location where the thread breaks
is devoid of surfactant, and others assert that the influence of Marangoni stress on pinch-off
is negligible. We demonstrate by simulations and experiments that surfactants play a major
role in drop formation and that Marangoni stresses acting near but not at the pinch point
give rise to reduced rates of thread thinning and formation of multiple microthreads that
distinguish pinch-off of surfactant-covered threads from surfactant-free ones. Thinning at
finite Reynolds and Peclet numbers, Re and Pe, is shown to exhibit intermediate scaling
regimes that have heretofore only been observed during pinch-off of threads undergoing
creeping flow (Re = 0) while convection of surfactant is weak compared to its diffusion
(Pe < 1).

DOI: 10.1103/PhysRevFluids.3.043602

I. INTRODUCTION

In drop formation, liquid flows out of a nozzle and feeds a growing pendant drop that hangs
from it [Fig. 1(a)]. The growing pendant drop consists of an about-to-form primary drop, a thinning
liquid thread, and a hemispherical mass of liquid attached to the nozzle [Fig. 1(b)]. Thinning of
the thread and its eventual pinch-off, both salient features of drop formation processes involving
dripping and jetting [1,2], are driven by capillary pressure (≈surface tension/thread radius). The
thread’s shape near the space-time singularity where the interface will pinch off—and result in a
primary drop falling from the nozzle—is self-similar and its evolution in time is governed by scaling
laws [3,4]. For Newtonian fluids, in the absence of external noise [5], the interface shape near the
pinch point consists of a main thread that is connected to the primary drop by a much thinner but
shorter microthread [Fig. 1(c)]. Once the thread breaks and the primary drop detaches, the thread may
also pinch off at its top and undergo multiple breakups to give birth to satellite droplets [6]. Controlled
drop formation—production of identical primary drops in succession while minimizing satellites—is
used in myriad applications [1,4,7,8]. Because of the central role it plays in drop formation, studying
the breakup of liquid threads and jets has been a problem at the forefront of science for nearly two
centuries [2,4].

Surfactants are used widely in drop formation applications. Figure 1(d) depicts experiments where
a surfactant, sodium dodecyl sulfate (SDS), is present at the air-liquid interface and shows that the
dynamics of drop formation is altered radically compared to situations when surfactants are absent: a
cascade of microthreads, each thinner than the one preceding it and which had heretofore only been
seen in simulations [9], arises between the main thread and the primary drop. The startling difference
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FIG. 1. Pinch-off and microthread cascades. (a)–(d) Drop formation from a tube: (a) A glycerol-water (GW)
drop showing the pinching zone and a thread of minimum radius Rmin and (b) the same drop later in time showing
the about-to-form primary drop and main thread. Zoomed-in views of the pinching zone depicting the main thread
and either (c) a single microthread when the surfactant-free drop of (a), (b) is about to pinch off or (d) a cascade
of four microthreads when a surfactant-laden GW drop is about to break. (a)–(c), Oh = 0.2, and (d) Oh = 0.158
and the concentration of surfactant (SDS) is 2 cmc (critical micelle concentration). (e) Time evolution of the
pinching zone for a GW drop of Oh = 0.07 loaded with SDS (concentration = 1.5 cmc). (f) Breakup shapes of
GW drops loaded with SDS (concentration = 1.5 cmc) as a function of Oh. (g) Definition sketch for simulations.
(h) Jet profiles at pinch-off from simulations when Oh = 0.12 and k = 0.4. A surfactant-free jet: profile over
half a wavelength (left) and zoomed-in view of pinching zone (middle). A surfactant-covered jet of β = 0.4:
zoomed-in view of pinching zone showing four microthreads (right). (Green scale bars in (e) and (f) equal 76.5
μm.)

in interface shapes of surfactant-free and surfactant-laden threads is surprising as theoretical [10–12]
studies have shown that strong flows evacuating the pinching neck between the main thread and
primary drop convect surfactant away from it and cause it to be devoid of surfactant at pinch-off.
Furthermore, it is well known that surfactants slow the rate of thread thinning, increase drop lengths
at breakup, and alter sizes of primary drops [9,10,12–16]. How do surfactants affect breakup so
drastically in absentia?

Surfactants can affect surface-tension-driven flows such as thread breakup in two ways. First,
because they lower surface tension when they adsorb onto air-water interfaces, surfactants reduce
capillary pressure compared to situations when the interface is surfactant free [17]. Second, because
their concentration along the interface can be nonuniform, they can cause the interface to be
subjected to a surface-tension-gradient-induced or Marangoni stress [18], which plays a central
role in well-known phenomena such as tears of wine and Benard cells in thin films [19]. Despite
two decades of research on breakup of surfactant-laden threads, there is disagreement as to which of
the two mechanisms is responsible for the observed differences between pinch-off of surfactant-free
and surfactant-covered threads. Thus, while several studies attribute the observed effects to the
action of Marangoni stresses [9,10,12,13], more recent works [14–16] attribute them to lowering
of surface tension, and hence capillary pressure. In this paper, we use numerical simulations
supported by experiments to demonstrate how surfactants induce formation of microthread cascades
and reduce rates of thread thinning. Because it is challenging to separate competing effects of
surface tension lowering and surface tension gradients in experiments, we perform simulations
in which Marangoni stresses are turned off—a feat that would not be possible to accomplish
experimentally—to demonstrate conclusively that Marangoni stress is the dominant mechanism
by which surfactants affect pinch-off.
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TABLE I. Key experimental parameters: combinations of tube radii R and glycerol concentrations in water
by weight percent (Gly wt%) used to achieve the range of Ohnesorge numbers (Oh) used in the experiments.

R (mm) Gly wt% Oh

1.57 70 0.07
2.4 77.5 0.1
1.57 77.5 0.135
1.16 77.5 0.158
0.82 77.5 0.188

The paper is organized as follows. As the formation of microthread cascades during the pinch-off
of surfactant-covered threads had heretofore only been seen in simulations [9], we first carried out
experiments on dripping of surfactant-laden liquids from a tube, which are described in Sec. II, to
demonstrate their occurrence in the laboratory. The next section, Sec. III, provides the mathematical
formulation of the problem of thinning and breakup of surfactant-covered threads and summarizes
the numerical method used to simulate thread thinning and pinch-off. The results of the simulations
are then presented in Sec. IV. Section V concludes the article with an extensive discussion on how the
theoretical and simulation approaches used in this paper can be applied to analyze a number of other
physical problems in fluid mechanics as well as in other fields of science in which surfactant-covered
interfaces are present and Marangoni stress may play a dominant role.

II. EXPERIMENTS

In the experiments, aqueous solutions of different concentrations of glycerol in water were
prepared. These solutions had density, viscosity, and surface tension of ρ, μ, and σp. In some
experiments, SDS was added to these solutions at concentrations exceeding the cmc. At the
concentrations used, the density and viscosity of the solutions were unchanged by addition of
surfactant. The surfactant-free and surfactant-laden solutions were then dripped at low flow rate
Q from a tube of radius R in air. In addition to surfactant concentration expressed as a multiple of
the cmc, the dynamics of drop formation is governed by Weber number We ≡ ρ(Q/πR2)2R/σp

(here We � 1), gravitational Bond number G ≡ ρgR2/σp ≈ O(0.1) (G varied slightly in the
experiments given the slight variation of ρ and σp with glycerol concentration), and Ohnesorge
number Oh ≡ μ/

√
ρRσp. In the experiments, a range of Oh values were obtained by varying the

nozzle radius between 0.82 and 2.4 mm and the concentration of glycerol between 70 and 77.5 wt %
in water (see Table I).

Figure 1(e) shows a zoomed-in view of the pinching zone when a surfactant-laden drop of a
GW solution of Oh = 0.07 is forming from a nozzle. This figure depicts the evolution in time of
the interface shapes as the main thread thins, a first microthread forms and thins, and a second
microthread forms just prior to rupture. Figure 1(f) shows the variation of microthread cascades with
Oh when surfactant-laden drops are formed from a nozzle. Plainly, microthread cascades composed
of two to as many as seven microthreads can arise during the dripping of surfactant-laden liquids.

III. MATHEMATICAL FORMULATION AND NUMERICAL METHOD

A. Mathematical formulation

To gain insights into the formation of microthread cascades, we turn to numerical simulations
and adopt the simplest configuration possible: an infinite liquid column or jet of unperturbed
radius R surrounded by a dynamically passive gas (air) that when subjected to axisymmetric shape
perturbations of infinitesimal amplitude δ̃ (δ̃/R � 1), having axial wavelength λ̃ (or wave number
k̃ = 2π/λ̃), undergoes capillary or Rayleigh-Plateau instability if λ̃ > 2πR [20,21] [Fig. 1(g)]. As
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in the experiments, the liquid is incompressible, isothermal, and Newtonian. In the simulations, the
jet’s free surface or the interface S(t̃), where t̃ is time, is taken to be initially coated uniformly with
a monolayer of an insoluble surfactant at concentration �̃0. Surface tension is taken to vary with
surfactant concentration �̃ according to the Szyszkowski equation [19]:

σ̃ = σp + �mRgT ln(1 − �̃/�m), (1)

where �m is the maximum packing value of �̃, Rg is the gas constant, and T is the temperature.
The dynamics of surfactant-laden jets is governed by the following dimensionless groups: Ohnesorge
number Oh ≡ μ/(ρRσp)1/2, strength of surfactant parameterβ ≡ �mRgT /σp, surface Péclet number
Pe ≡ (1/Ds)

√
σpR/ρ [relative importance of convection of surfactant to its diffusion on S(t̃)], where

Ds is the surface diffusivity of the surfactant, dimensionless wavelength λ ≡ λ̃/R or wave number
k ≡ k̃R, dimensionless amplitude of the initial perturbation δ ≡ δ̃/R, and dimensionless initial
surfactant concentration �0 ≡ �̃0/�m. Here, we use Pe = 1×103 and β = 0.2–0.4 as Pe � 1 in
practice and the range of β values is typical for strong surfactants [9,22].

Whereas the surfactant in the experiments is soluble, that in the simulations is insoluble and hence
confined to the gas-liquid interface. However, the solubility of SDS in GW mixtures does not affect
the surface tension or its gradient along the interface in studying pinch-off as the surface-adsorption
dynamics of SDS is at least two orders of magnitude slower than the flow dynamics [14], which takes
place over the inertial-capillary time scale tc = (ρR3/σp)1/2 when Oh � 1, the viscocapillary time
scale tv = μR/σp = Ohtc when Oh � 1, and the viscous time scale tμ = μ3/ρσ 2

p = Oh3tc when
Oh ∼ 1.

The dynamics of jet breakup is analyzed by solving the transient free boundary problem consisting
of the Navier-Stokes and continuity equations for fluid velocity ṽ and pressure p̃ in cylindrical
coordinates (r̃ ,z̃), where r̃ and z̃ are the radial and axial coordinates, over the domain of axial extent
equal to one-half of the wavelength of the imposed perturbation simultaneously with the surface
convection-diffusion equation for surfactant concentration �̃ along the liquid-gas interface [22].
These equations are solved subject to the traction and kinematic boundary conditions at the liquid-gas
interface and symmetry boundary conditions at both z̃ = 0 and z̃ = λ̃/2. The initial condition is such
that the thinning of the jet is initiated by subjecting the surface of a jet that is uniformly coated with
a surfactant to a shape perturbation as described in the opening paragraph of this section. Hereafter,
the results are presented in terms of dimensionless variables such that the dimensionless velocity,
pressure, surfactant concentration, surface tension, radial and axial coordinates, and time are given
by v = ṽ/(R/tc), p = p̃/(σp/R), � = �̃/�m, σ = σ̃ /σp, r = r̃/R, z = z̃/R, and t = t̃/tc.

B. Numerical method

The aforementioned transient system of governing equations is solved numerically by means
of a fully implicit, arbitrary Lagrangian-Eulerian (ALE) method-of-lines algorithm in which the
Galerkin finite element method (GFEM) is used for spatial discretization [23,24] and an adaptive,
implicit finite difference method is employed for time integration [25,26]. In order to capture the
large deformations that the jet’s free surface and hence the domain enclosed beneath the jet’s free
surface can undergo, the elliptic mesh generation method developed by Christodoulou and Scriven
[27] for analyzing thin-film coating flows, and which was later extended to simulate free-surface
flows of Newtonian and complex fluids undergoing breakup or coalescence [6,22,28–32], was used
to discretize the spatial domain 	(t) and determine the radial and axial coordinates of each grid
point in the moving, adaptive mesh simultaneously with the velocity and pressure unknowns in
the jet as well as the free-surface profile and surfactant concentration along the interface. Here,
the velocity and pressure unknowns were solved in the mixed interpolation sense using biquadratic
basis functions to represent the velocity unknowns and bilinear basis functions to represent the
pressure unknowns [33,34]. The locations of the mesh coordinates were also represented using
biquadratic basis functions. The surfactant concentration at the interface was determined using a set
of one-dimensional quadratic basis functions [35].
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FIG. 2. Stagnation zone recoil and microthread cascade formation. Simulation results shown are for Oh =
0.07 and k = π/4. For the surfactant-covered jet, �0 = 0.55 and β = 0.3. (a)–(c) Jet profiles, streamlines, and
(colored) pressure contours. Profiles of surfactant-covered jet when (a) Rmin = 3.5×10−1 and the neck is located
at z = 0, (b) Rmin = 1.2×10−1 and the neck has moved away from z = 0, and (c) Rmin = 4.1×10−2 and the
stagnation zone has approached the neck (inset: zoomed-in view of stagnation zone and neck). (d) Variation of
Rstag/Rmin with Rmin for the surfactant-free (green) and surfactant-covered (blue) jet. Insets: Zoomed-in views
of the neck regions to highlight microthread formation. (e), (f) Variation with Rmin of (e) |Zstag − Zmin| and (f)
Relocal for the surfactant-free (green) and surfactant-covered (blue) jet. (g), (h) Variation of thread aspect ratio
ε = Z∗/Rmin with Rmin for (g) surfactant-free and (h) surfactant-covered jet.

The numerical scheme reduces the problem to a system of nonlinear algebraic equations that can
be solved iteratively via a multidimensional Newton method. The resulting system of linear equations
is then solved with a frontal algorithm which takes advantage of the sparsity of the Jacobian matrix
that arises in Newton’s method. This frontal algorithm was inspired by the frontal method introduced
by Hood [36]. For a more complete description of the numerical method that has been employed,
the reader is referred to Refs. [6,22].

IV. RESULTS AND DISCUSSION

Figures 2(a)–2(c) show at three instants profiles of a thinning jet, and the instantaneous streamlines
and pressure contours within it. On account of the initial conditions, at t = 0 the jet’s neck and bulge
lie at the two symmetry planes z = 0 and z = λ/2. Thus, given the initial perturbation of the jet’s
surface, capillary pressure pc is a maximum at the neck and a minimum at the bulge. Figure 2(a)
shows that at early times, the neck, with radius and axial location Rmin and Zmin, remains at z = 0,
and that the radius of the neck falls as that of the bulge grows as fluid is driven from the neck to the
bulge because of the capillary pressure gradient [21]. For all times, because of the axially periodic
nature of the problem, the axial velocity equals zero at both z = 0 and z = λ/2 and both locations
are therefore stagnation zones. Henceforth, we denote by (Rstag,Zstag) the location of the point along
the free surface where the stagnation point that is closest to the neck is located. At early times, both
the minimum radius and the aforementioned stagnation point lie at the neck.

As fluid evacuates the neck, it accelerates in the direction of motion, before decelerating again in
the bulge. When Oh � 1, viscous resistance is too weak to oppose the fluid’s acceleration. Therefore,
the jet tends to thin fastest where fluid acceleration is highest, thereby causing the neck to migrate
from its initial location toward the bulge. This inertial movement of the neck is well known in
low-Oh systems [37–39] and is what causes satellite droplets to form in dripping and jetting [40].
Figure 2(b) shows the jet at the instant when the neck has already moved away from z = 0 and is
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now located at z = Zmin = 1.4. Since the capillary pressure is nearly inversely proportional to the
thread radius, the pressure maximum always lies at the neck. As a consequence of neck migration, a
pressure gradient arises between where the neck is currently located and the symmetry plane z = 0,
and which now opposes fluid flowing from the vicinity of the symmetry plane toward the neck. As
the neck continues to thin and the magnitude of the capillary force opposing the inertia of the fluid
grows, the flow on the thread side of the neck decelerates and ultimately reverses direction, giving
birth to a stagnation zone [Fig. 2(c)] at a location z = Zstag, where 0 � Zstag < Zmin. The newly
formed stagnation zone continues to travel toward the neck as the thinning continues. Governed by
the inertia of the fluid, the dynamics that has just been described constitutes the requisite first step
in the formation of microthread cascades.

The relative motion between the stagnation zone and the neck can be appreciated by plotting the
variation with the minimum jet radius Rmin of (a) the ratio of jet radius at the stagnation zone and
that at the neck, Rstag/Rmin, and (b) the absolute value of the axial location of the stagnation zone
relative to that of the neck, |Zstag − Zmin|, as in Figs. 2(d) and 2(e). As the stagnation zone begins
its journey toward the neck, Rstag/Rmin → 1 and |Zstag − Zmin| → 0. In the surfactant-free case, the
stagnation zone approaches the neck monotonically such that it moves faster in the axial direction
than the neck until pinch-off. By contrast, Figs. 2(d) and 2(e) show that when surfactants are present,
this motion is hindered: relative to the neck, the stagnation zone appears to recoil backward before
resuming its motion toward the neck.

During the period when the neck migrates from its initial location (z = 0), the dynamics is
governed by an inertial-capillary balance and the thread appears conical [37,38] as it joins the
bulge. In the absence of viscosity, this state of affairs persists until pinch-off. For finite viscosity,
however, the universal solution of Eggers [3] dictates that the shape of the thread joining the bulge
should be slender and nearly cylindrical as opposed to conical. Indeed, it is known and shown by
a shape inset in Fig. 2(d) that in the absence of surfactants, the thread possesses a conical structure
but terminates in a nearly cylindrical microthread to satisfy Eggers’s solution. Recent work [41]
(see also Ref. [42]) indicates that this transition to Eggers’s solution occurs as the stagnation zone
approaches the neck and causes the dynamics to transition momentarily from inertial-capillary flow
to viscous flow, thereby heralding the birth of a single microthread. This transition can be observed
by plotting the variation with Rmin of the local Reynolds number Relocal = Z∗V ∗/Oh [41], a measure
of the relative importance of inertial to viscous forces near the neck, where Z∗ and V ∗ are the axial
length and velocity scales [Z∗ is evaluated using the value of the in-plane or axial curvature of S(t)
at the neck which scales as Rmin/(Z∗)2 and V ∗ is evaluated on S(t) where the thread radius equals
1.05Rmin]. In the surfactant-free case, Relocal is seen to drop from a value that is initially much larger
than unity as the stagnation zone migrates from z = 0 to a value that is much smaller than unity as
the stagnation zone approaches the neck [Fig. 2(f)]. In the viscous regime, the slenderness of the
just-formed microthread grows rapidly as the jet continues to thin [Fig. 2(g)]. As time advances,
fluid velocity near the neck starts to rise and Relocal [Fig. 2(f)] becomes order unity as the dynamics
transitions to an inertial-viscous regime and the jet tends toward pinch-off.

For surfactant-covered jets, the early time response is similar to that for surfactant-free jets.
Relocal again falls from a large to a small value as the stagnation zone approaches the neck as a
viscouslike (see below) regime is attained [Fig. 2(f)]. The jet profile [Fig. 2(d)] shows that a single
microthread has already formed. Shortly thereafter, however, the stagnation zone recoils, dynamics
is thrown off the viscouslike regime, and Relocal starts to increase. The stagnation zone then starts to
approach the neck once again, the flow slows, and a new microthread begins to form. The second
microthread too elongates, the flow speeds up, and Relocal → O(1) as the jet tends toward breakup.
In the two viscouslike and the final regimes, the microthreads undergo rapid stretching [Fig. 2(h)]
similar to surfactant-free jets [Fig. 2(g)], a point returned to below. Computations reveal that when
surfactants are present, the number of times the stagnation zone approaches the neck equals the
number of microthreads formed. Clearly, the key to understanding repeated microthread formation
lies in investigating how surfactant transport along the interface interacts with fluid flow within the
jet to cause stagnation zone recoil.
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FIG. 3. Competition between pressure and Marangoni stress. (a) Jet profile, surfactant concentration, and
surface tension as a function of z − Zmin when Rmin = 1.12×10−2. Pressure p (dashed red curve) and Marangoni
stress Tnt (solid blue curve) as a function of z − Zmin at three instants: (b) just before stagnation zone recoil, (c)
just after recoil, and (d) during late stages. The vertical dotted black line indicates the instantaneous location of
the neck. Here, the dimensionless groups are the same as those in Fig. 2.

As the thread thins, the steep pressure drop from the neck to the bulge and the concomitant
convection of surfactant from the thread to the bulge leads to depletion of surfactant in the thread
and accumulation of surfactant in the bulge and, therefore, lower surface tension in the bulge
compared to the relatively surfactant-lean thread. Figure 3(a) shows the interface shape and surfactant
concentration and surface tension profiles just before stagnation zone recoil takes place. The resulting
surface tension gradient gives rise to a large Marangoni stress, Tnt = t · ∇sσ , where t is the unit
tangent to S(t) (directed toward the bulge) and ∇s is the surface gradient operator, just downstream
of the neck [Fig. 3(b)]. Thus, the negative spike in Tnt represents a Marangoni stress pointing away
from the bulge toward the main thread, directly opposing the driving pressure drop. Figure 3(c) shows
the pressure and Marangoni stress profiles in the vicinity of the neck (z = Zmin) just after recoil. It
is noteworthy that Marangoni stress always runs counter to the driving pressure drop, and that the
balance takes place away from the neck, i.e., nonlocally. During the early stages of thinning and up to
the point when the stagnation zone is about to recoil [Figs. 3(a) and 3(b)], Marangoni stress rises to a
value that is comparable in magnitude to pressure. Beyond that point in time, however, the maximum
value of |Tnt | no longer increases [Figs. 3(c) and 3(d)] as it is limited by the amount of surfactant
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FIG. 4. Scaling results, experimental confirmation, and rate of thinning. (a)–(d) Scaling results for the
surfactant-covered jet of Fig. 2: variation with τ of (a) minimum neck radius Rmin, (b) axial length scale Z∗, (c)
surfactant concentration at the neck �∗, and (d) Relocal and Pelocal. Experimental confirmation of scaling results:
(e) Rmin versus τ obtained from dripping experiments performed with a fluid of Oh = 0.07 loaded with SDS
at 2 cmc showing transition from I to VWM scaling (inset: same data plotted on a linear scale to highlight the
large duration of the I regime.) and (f) Rmin versus τ obtained from simulations of a breaking jet of Oh = 0.07,
k = π/4, �0 = 0.6, and β = 0.4. (g) Rate of thinning (− d

dt
Rmin) as a function of τ for the jet from Fig. 2 (blue

curve) and for the same jet without surfactants (green curve).

that is available. On the other hand, the maximum value of pressure grows by several orders of
magnitude during this period [Figs. 3(c) and 3(d)]. Therefore, prior to recoil, fluid being evacuated
from the stagnation zone suddenly encounters Marangoni opposition before entering the bulge, the
negative reaction of which causes the source of the flow—the stagnation zone—to recoil. Is it possible
to validate this hypothesis that such a nonlocal Marangoni stress-capillary pressure competition is
responsible for stagnation zone recoil and, therefore, occurrence of multiple microthreads?

To determine the dominant balance of forces, the variation with time of the minimum neck radius
Rmin, the axial length scale Z∗, the axial velocity scale V ∗, and the local surfactant concentration
at the neck, �∗ [43], along with the local Reynolds number Relocal and the local Péclet number
Pelocal = Z∗V ∗Pe, a measure of the effectiveness of convection in the vicinity of the neck, are
monitored. Figures 4(a)–4(d) show the evolution of these scales, obtained from the simulations of
the same jet as in Figs. 2 and 3, with the dimensionless time from breakup, τ = (tbreak − t)/tc, on
log-log plots.

Since Oh in this case is less than 1 (Oh = 0.07), and the early stages of thinning, when the neck
migrates from z = 0, entail a competition between fluid inertia and the opposing pressure gradient,
the dynamics are expected to reflect the underlying inertial-capillary balance. Studies of thinning
of surfactant-free threads under such conditions have shown that the dynamics follow the inertial
scaling law (or I scaling) [37,38], where Rmin ∼ τ 2/3 and Z∗ ∼ τ 2/3. Reassuringly, simulation results
of Figs. 4(a) and 4(b) show that the computed values of both Rmin and Z∗ vary as τ 2/3 as expected and
Fig. 4(c) shows that �∗, and hence surface tension, varies only slightly with τ . Moreover, Fig. 4(d)
shows that Relocal,Pelocal > 1 at early times, as is appropriate since inertia dominates viscous force.
However, once a stagnation zone forms at z 
= 0 and travels toward the neck, the flow in the vicinity of
the neck slows and Relocal � 1. For surfactant-free threads, it has been shown [41] that this happens
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once and gives rise to a viscocapillary balance that follows the viscous scaling law (or V scaling)
[44], where Rmin ∼ τ and Z∗ ∼ τ 0.175. When surfactants are present, the stagnation zone approaches
the neck several times between recoils, causing Relocal to become much smaller than 1 during each
approach. For the surfactant-laden thread of Figs. 2–4, this occurs twice.

Xu et al. [43] analyzed theoretically thinning of surfactant-covered jets in the absence of inertia
(Re = 0) for small Pe. These authors thereby demonstrated that two different scaling regimes are
possible, each of which involves either a weak or a strong coupling between Marangoni force on the
one hand and viscous and capillary forces on the other hand. In the weak type of interaction, i.e.,
viscous-weak Marangoni or VWM scaling, they showed that Rmin ∼ τ , Z∗ ∼ τ 0.175, and �∗ ∼ τ .
Figures 4(a)–4(d) show that the simulation results predict that when both Relocal and Pelocal attain
values much less than 1, Rmin, Z∗, and surfactant concentration at the neck all vary with τ in
accordance with VWM scaling. Hence, the observed response when Relocal,Pelocal � 1 validates
our hypothesis of viscocapillary interactions being responsible for stagnation zone recoil while
demonstrating that the nature of this interaction is VWM scaling where a non-negligible but weak
Marangoni stress acts in the presence of dominant (normal) viscous stress and capillary pressure.
During this period, viscous and capillary forces scale as τ−1.175, whereas Marangoni stress scales
as τ−0.175. In discussing Fig. 3, it was reported that in the late stages of breakup as Rmin → 0, the
capillary pressure at the neck grows without bound as 1/Rmin and dwarfs the opposing Marangoni
stress whose magnitude saturates as surfactant has virtually completely convected out of the neck.
Therefore, as shown in Fig. 4, after proceeding through the multiple VWM regimes, the dynamics
transitions into Eggers’s inertial-viscous (IV) scaling regime [3], where Rmin = (0.0304/Oh)τ and
Z∗ ∼ τ 1/2, as has already been shown by others [10–12,22]. Thus, surfactant-laden jets, after thinning
in an early I-stage scaling regime, exhibit multiple transitory VWM regimes before settling into a final
IV regime as they tend to pinch-off. Moreover, each VWM regime is associated with the stagnation
zone approaching the neck and, therefore, the formation of one more microthread. Microthread aspect
ratios ε = Z∗/Rmin of Figs. 2(g) and 2(h) can also finally be rationalized given the scalings for Z∗
and Rmin reported in this and the previous paragraph.

In Figs. 4(e) and 4(f), a comparison is provided between experimental measurement and
computational prediction of the variation of Rmin with τ for a system with properties that are slightly
different than those of Figs. 4(a)–4(d) (also, see the discussion below of Fig. 6 and the Appendix).
In each case, after the decay of initial transients, the dynamics starts in an initial I regime and then
transitions to a VWM regime. In the experiments, it is not possible to image the drops beyond this
point as Rmin becomes of the order of microns. However, the simulations are readily continued
beyond this point and reveal the occurrence of a second VWM regime which eventually gives way
to a final IV regime as Rmin → 0.

Equally noteworthy are the rates at which the necks of threads thin. Simulation results of Fig. 4(g)
show that surfactant-free threads exhibit much higher thinning rates than surfactant-covered ones.
During thinning, a surfactant-free thread attains a thinning rate as high as 0.0709/Oh while in
the intermediate viscous (V) regime [44] before eventually converging onto the single value of
0.0304/Oh appropriate for the final Eggers regime [3] as the thread tends to pinch off. By contrast,
the surfactant-covered thread exhibits two periods when the thread thins at a constant rate and during
both of which the dynamics lies in the VWM regime.

To prove the hypothesis that Marangoni stress is primarily responsible for both reduced thinning
rates and occurrence of multiple microthreads, simulations are carried out in which Marangoni stress
or the surface tension gradient is turned off, ∇sσ = 0, while capillary pressure, which depends on
surface tension, is left turned on. Figure 5 shows profiles of microthreads at breakup and thinning
rates for a surfactant-covered thread, a surfactant-free thread, and a surfactant-covered thread with
Marangoni stress turned off. Plainly, the Marangoni-free case resembles the surfactant-free case
in all respects, including a single, short microthread and high thinning rates. On the other hand,
three microthreads and lower thinning rates are produced in the presence of Marangoni stress, thus
settling the long-standing debate that Marangoni stress is primarily responsible for both reduced
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FIG. 5. Jets with and without Marangoni stress. Zoomed-in views of microthreads of (a) surfactant-covered
jets, (b) surfactant-free jets, and (c) surfactant-covered jets but with Marangoni stress turned off. Because vertical
distances are to scale, the drastic difference in microthread lengths is noteworthy. (d) Thinning rate versus Rmin

for surfactant-covered jet (full surfactant model), surfactant-free jet (surfactant-free), and surfactant-covered
jet but with Marangoni stress turned off (Marangoni-free). Here, Oh = 0.10 and k = 0.4. For the cases with
surfactants, �0 = 0.55 and β = 0.3.

rates of thinning and formation of microthread cascades during capillary thinning and breakup of
surfactant-covered threads.

Furthermore, Roché et al. [14], who performed careful experiments on SDS-water-glycerol
systems similar to those carried out here, assert that local surface tension at the neck alone determines
the thinning rate. In order to critically evaluate their claim, we provide a side-by-side comparison
in Fig. 6 of the scaling results for Rmin that they have obtained experimentally [in Fig. 6(a), where
we have replotted their Fig. 4(b)] and the scaling predictions from our simulations [Fig. 6(b)].
Also presented in the two figures is the evolution of the local surface tension at the neck σneck

with time from breakup, as surmised by Roché et al. (γ ≡ σneck) in Fig. 6(a) and obtained directly
from our simulations in Fig. 6(b). First, these figures make plain that the slopes of the curves
that depict how Rmin scales with negative time from breakup obtained from experiments are in
excellent agreement with those obtained from simulations, a finding that is a testimony to the high
quality of the high-speed imaging experiments reported in Ref. [14]. By contrast, the values of
σneck surmised by Roché et al. [14] deviate significantly from the actual values predicted from the
simulations, thereby casting doubt on their assumption that σneck alone governs the thinning rate.
The results presented in Fig. 6 therefore provide further proof that Marangoni stress contributions
cannot be neglected in the pinch-off of surfactant-laden liquid threads, and that any theories
or predictions in the literature that claim otherwise are hence inherently unphysical and likely
incorrect.

V. CONCLUDING REMARKS AND OUTLOOK

In this paper, we have resolved the controversy as to whether surface tension lowering or surface
tension gradients (Marangoni stresses) is responsible for reduced rates of thinning and microthread
cascades during breakup of surfactant-covered drops and/or jets. Surfactant adsorption onto interfaces
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FIG. 6. Direct comparisons of simulations with experimental results and local surface tension predictions
from Roché et al. [14]. (a) Figure 4(b) from Roché et al. [14] showing scaling of the minimum neck radius
(hmin ≡ Rmin) with negative time from breakup (t ≡ −τ ) along with predictions of the local surface tension at
the neck (γ ≡ σneck). The values of the slopes of the radial scaling result in three distinct regimes, reported
as V1 through V3. (b) Simulation results for the same values of the dimensionless parameters as in (a).
Here, Oh = 0.667, �0 = 0.56, β = 0.4, and Pe = 1 000 (see the Appendix). Excellent agreement between
experiments and simulations is observed in the Rmin versus −τ scaling results. The σneck values that are directly
extracted from the simulations, however, deviate significantly from the estimates from the experiments. In the
simulations, the surface tension at the neck rises steadily and tends toward its value at the interface between a
pure fluid and air, as would be expected due to continuous evacuation of surfactants from the neck as pinch-off is
approached.

and the accompanying surface tension lowering and gradients arise in myriad free-surface flows
involving drop breakup and coalescence and thin films, among others (see below). In many situations,
it would be inordinately difficult to ascertain experimentally which of these two mechanisms
dominates. We show that in simulations, however, Marangoni stresses can be turned off while
retaining surfactant-induced lowering of surface tension, thereby unequivocally determining as to
which of the two effects is the dominant mechanism by which surfactants affect any free-surface
flow.

Although it was demonstrated by computation alone in Ref. [9] that microthread cascades can
occur in the presence of surfactants, a definitive explanation as to the cause of these cascades and
a number of other significant insights into the pinch-off of surfactant-covered threads were lacking
in Ref. [9] but are presented in this paper. Specifically, the following list summarizes the significant
accomplishments of the present work over Ref. [9] and makes clear that the present paper is much
broader in scope and hence tantamount to a major advance over Ref. [9] rather than being simply an
extension of it.

(a) In contrast to Ref. [9], it is demonstrated here that the Marangoni stress is the dominant
mechanism by which surfactants affect pinch-off of liquid threads. This is a significant finding
because, as stated in the Introduction, a number of recent works on the subject had made the
assumption that is contrary to this fact.

(b) Whereas Ref. [9] presents purely computational results, we show the occurrence of
microthread cascades in pinch-off of surfactant-laden liquid threads in laboratory experiments.

(c) Also in contrast to Ref. [9], we elucidate the mechanism by which Marangoni and
viscocapillary stresses conspire to give rise to the cascades.

(d) Here, we show a direct comparison between scaling results obtained from experiments and
simulations that verifies the existence of the heretofore unknown intermediate VWM scaling regime.
At the time Ref. [9] was published, this regime was unknown [43] and, furthermore, the existence of
such intermediate scaling regimes during pinch-off of even surfactant-free threads had not yet been
discovered [41,42].
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(e) In this paper, it has also been shown how numerical simulations can be used as investigative
tools to selectively observe the effects of a physical mechanism (Marangoni stress) in isolation of
others, a feat that would be virtually impossible to accomplish experimentally.

Our approach can be applied to other surfactant-laden free-surface flows where the role of
Marangoni stresses have heretofore remained unclear. One example is tip streaming from drops
subjected to extensional flows [45], a process that is greatly enhanced by surfactants [46] and
is key to the dispersant action of surfactants in emulsification [47] and enhanced oil recovery
[48]. Theoretical treatments on this subject [49,50] have not clarified whether local surface tension
lowering or Marangoni stress primarily drives these processes. A similar debate exists in dip coating
of surfactant solutions—the classical Landau-Levich problem—where surfactants lead to thicker
films [51,52] and stagnation zone motion is important [53]. Similarly, our approach can be used to
shed light on observations that have arisen in studies of sessile drop evaporation [54], where drops
of whiskey are known to preclude coffee rings and instead to yield uniform stains—a feature that is
desired in the coatings industry. While surfactants are known to alter drop evaporation stains [55]
and the presence of naturally occurring phospholipid surfactants in whiskey is being considered as
the probable cause of unusual stains, whether the observed phenomena can be attributed primarily
to the action of Marangoni stresses in the whiskey stain example and many other free-surface flows
remain open problems in science.

When studying experimentally the effects of surfactants on dynamics of pinch-off, researchers
have found it convenient typically to rely on either the breakup of stretching liquid bridges [13,16,22]
or dripping or jetting from nozzles [14,15,56]. Recently, Sharma and collaborators [57] developed
a new technique of dripping onto a substrate to study the thinning dynamics of polymeric liquid
bridges. Adoption of this setup to examine the dynamics of surfactant-laden liquids can provide an
exciting new approach for studying the dynamics of thread pinch-off in the presence of surfactants.

Another important area where the results of, and the approach used, in this paper can make an
impact is in studying breakup of free-surface flows where surface rheological effects play a role. It
has recently been shown how accurate measurement of surface viscosities is not only challenging but
made virtually impossible by the complex interactions between stresses due to surface viscosities and
Marangoni stresses when a mixed flow is generated by a probe [58]. Thus, unreliable and inconsistent
values of surface viscosities persist in the literature and have hindered the clarification of the true
role of surface rheology in many free-surface flows including ones exhibiting breakup and finite-time
singularities. Therefore, the approach adopted in this paper may be utilized to advantage to filter out
the effects of Marangoni stress from experimental data so that the effects of surface viscosities can
be inferred with greater precision than before. Indeed, it has recently been suggested that surface
rheology could affect capillary thinning and pinch-off at small scales [59,60]. Accurate and realistic
measurements of surface viscosities would be essential in order to verify the claims made in these
aforementioned publications and to extend their implications to other free-surface flows involving
breakup.
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APPENDIX: COMPARING SIMULATIONS AND EXPERIMENTS

In order to compare scaling results obtained from simulations, in which the surfactant is insoluble
in the bulk liquid and confined to the interface, and those from experiments, in which the surfactant
is soluble in the bulk liquid, as shown in Figs. 4(e) and 4(f) and Fig. 6, it is essential to match the
values of the dimensionless groups used in the simulations with ones extracted from the reported or
measured experimental parameters. Since the process used in both figures is identical, we provide
here the details of the process for the comparison study carried out with the experiments of Roché
et al. [14] shown in Fig. 6.
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Roché et al. use a nozzle of diameter of 2 mm, i.e., R = 1 mm, report that the glycerol-water
mixture used as the drop liquid had a viscosity of μ = 150 mPa s and density of ρ = 815.21 kg m−3,
and further report that the surface tension of the interface between the pure liquid and air obtained
from tensiometry was σ̃p = 62 mN m−1. From these values of the experimental parameters, the
Ohnesorge number to be used in the simulations is then given by

Oh = μ√
ρRσp

= 0.667. (A1)

The next important piece of information is the maximum packing concentration �m of SDS at the
air-water interface, which is reported by Chang and Franses [61] to be about 1×10−5 mol m−2.
One can then calculate the dimensionless surfactant strength parameter β at room temperature
(T = 298 K) to be

β = �mRgT

σp

≈ 0.4. (A2)

The liquid in Roché et al.’s experiments is loaded with SDS at a bulk concentration of 2 cmc.
The initial condition of surfactant concentration in the simulations, on the other hand, is described
by the initial (dimensionless) surface concentration �0 which equals �̃0/�m. In the experiments,
while the total surfactant loading exceeds the cmc, the monomer concentration remains equal to
the value at the cmc value as the excess surfactant molecules aggregate in micellar forms [19].
Therefore, the appropriate value of the surface concentration of SDS at the start of the experiment,
�̃0, equals the surface concentration at equilibrium with the 1 cmc bulk concentration. This value
can be obtained directly from the surface tension measurements. Roché et al. [14] report the surface
tension of the SDS-loaded system at a bulk concentration of 2 cmc is σ̃0 = 40 mN m−1. The
dimensionless initial surface tension is therefore σ0 = σ̃0/σp = 0.67. Armed with this information,
the initial dimensionless surface concentration can be extracted by using the Szyszkowski equation
of state as

�0 = 1 − exp

(
σ0 − 1

β

)
= 0.56. (A3)

Thus, the initial value of the surface concentration is well below the maximum packing concentration,
thereby justifying that the equation of state can be safely used even when the bulk concentration of
surfactant is above the cmc.

The last dimensionless group to be extracted from the experimental parameters is the surface
Péclet number Pe. The value of this dimensionless group is not readily available from the reported
experimental data. However, it is well known that when Pe � 1, the relative importance of diffusive
transport is negligible compared to convective transport and the dynamical response during capillary
thinning asymptotes to that of a thread exhibiting purely convective transport when Pe � O(10)
[10]. As typical values of Pe for aqueous surfactant systems lie in the range 102–106 [22], we take
the value of Pe = 1 000 in all of our simulations. Reassuringly, simulations carried out by varying
Pe between 102 and 104, with all other dimensionless parameters kept the same, yielded identical
results.

Repeating this procedure for a 70 wt % glycerol-water mixture that is loaded once again with
SDS at a bulk concentration of 2 cmc and that is dripping from a tube of radius of R = 1.57 mm, it
can be easily shown that Oh = 0.07, β ≈ 0.4, and �0 = 0.6, as in Figs. 4(e) and 4(f).

The ultimate validation of the choice of values of the dimensionless parameters used in the
simulations is provided by the excellent reproduction of the radial scaling results obtained from the
experiments as shown in both Figs. 4(e) and 4(f) and Fig. 6. It should be emphasized that as explained
in Sec. III, the solubility of SDS does not influence the surface concentration and its gradients along
the interface because the surface adsorption of SDS, which has a time scale of the order of 100 ms, is
significantly slower than the flow dynamics in the experiments which occur over the inertial-capillary,
inertial-viscous, or viscous time scales which are all of the order of a few milliseconds.
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