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Turbulent thermal superstructures in Rayleigh-Bénard convection
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We report the observation of superstructures, i.e., very large-scale and long living coherent
structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra = 109. We
perform direct numerical simulations in horizontally periodic domains with aspect ratios
up to � = 128. In the considered Ra number regime the thermal superstructures have a
horizontal extend of six to seven times the height of the domain and their size is independent
of Ra. Many laboratory experiments and numerical simulations have focused on small aspect
ratio cells in order to achieve the highest possible Ra. However, here we show that for very
high Ra integral quantities such as the Nusselt number and volume averaged Reynolds
number only converge to the large aspect ratio limit around � ≈ 4, while horizontally
averaged statistics such as standard deviation and kurtosis converge around � ≈ 8, the
integral scale converges around � ≈ 32, and the peak position of the temperature variance
and turbulent kinetic energy spectra only converge around � ≈ 64.
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Turbulence is characterized by chaotic, vigorous fluctuations. Therefore it is surprising to observe
very large-scale coherent structures in turbulent flows such as channel [1,2], pipe [3], or turbulent
boundary layer flows [4–6]. To observe these superstructures (Fig. 1), very large experimental or
numerical domains are necessary. So far, superstructures have been observed in pressure and shear
driven turbulent flows. However, up to now they have not been reported in highly turbulent thermally
driven turbulence, where a preferred flow direction is absent, reflected in the community’s focus
on experiments and simulations in small aspect ratio cells. Here we study thermal superstructures,
defined as the largest horizontal flow scales that develop, such that their flow characteristics, size,
and shape are independent of the system geometry, in highly turbulent thermal convection. So, even
though the large-scale circulation (LSC) observed at very high Ra in � ∼ 0.5–1.0 cells is a fascinating
feature of flow organization [7–11], such a LSC in a confined cell is not a thermal superstructure
according to our definition since the geometrical and dynamical features depend on the system
geometry.

The most popular model of thermal convection is Rayleigh-Bénard (RB) flow [10–14], where the
dimensionless control parameters are the Rayleigh (Ra) and Prandtl (Pr) numbers, parametrizing the
dimensionless temperature difference and the fluid properties. Major advances have been achieved in
the last few decades in theoretically understanding the global transfer properties of the flow. Namely,
the unifying theory of Refs. [15–17] describes the Nusselt (Nu; dimensionless heat transport) and
Reynolds (Re; dimensionless flow strength) number dependence on Ra and Pr well. In addition,
experiments and simulations agree excellently up to Ra ∼ 1011 due to major developments in
experimental and numerical techniques [10,11,13,14].
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FIG. 1. Snapshots at different magnifications for the simulation at Ra = 108 and � = 64. The first and
second row show snapshots of the temperature and vertical velocity at midheight and the third and fourth row
show the corresponding snapshots at BL height. The columns from left to right show successive zooms of the
area indicated in the black box.

However, the effect of the third dimensionless quantity, the aspect ratio � = W/L, where W is
the cell’s width and L its height, is much less understood. According to the classical view, strong
turbulence fluctuations at high Ra should ensure that the effect of the geometry is minimal as the
entire phase space is explored statistically by the flow [18,19]. This view would justify the use of
small aspect ratio domains, which massively reduces the experimental or numerical cost to reach
the high Ra number regime relevant for industrial applications and astrophysical and geophysical
phenomena, while maintaining the essential physics. Therefore, in a quest to study RB convection
at ever increasing Ra, most experiments and simulations have focused on relatively small aspect
ratio and have been performed for � � 2, while very high Ra number cases are even limited to
� ∼ 0.2–0.5. This approach allowed the discovery of the ultimate regime of thermal convection
[20], already predicted by Kraichnan in 1962 [21] and later by Grossmann and Lohse [22].
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However, while heat transfer in industrial applications takes place in confined systems, the aspect
ratio in many natural instances of convection is extremely large [10,11,13,14]. Very large flow
patterns have, for example, been observed in moist convection simulations [23–25], high Ra number
nonpenetrative convection [26], and in plane Couette [27,28] at low Re. For RB convection just above
the onset of convection, experiments [29–35] and simulations in large periodic [36–39] and in very
large aspect cylindrical [40–46] domains have revealed beautiful flow patterns [47–49]. Correlations
between single point measurements [31,35] and particle image velocimetry measurements at high
Ra [32] have shown a transition between a single and a multiroll structure when � exceeds roughly
4, while simulations at � = 6.3 and Ra = 9.6 × 107 [46] show that large regions of warm rising and
cold sinking fluid are still present. Previously, Hartlep et al. [36,38] showed with simulations from
the onset up to Ra = 107 and for aspect ratios up to 20 that the size of the largest flow structures
increases with increasing Ra. These simulation results agree well with the classical experiments
performed by Fitzjarrald [29] in rectangular containers. In addition, Hartlep et al. [36,38] showed
that at Ra = 105 and 106 the size of thermal superstructures peaks at intermediate Pr. Also Parodi
et al. [37] showed the emergence of large-scale flow patterns up to Ra = 107 and � = 2π . Later,
von Hardenberg et al. [39] showed in simulations with aspect ratios up to 12π that, after an initial
growth period, the size of thermal superstructures becomes constant as a function of time.

However, there is no clear insight into the development of thermal superstructures at higher Ra.
In this regime the behavior could be quite different as only for these high Ra the flow becomes so
turbulent that the coherence length becomes considerably smaller than 0.1L [50]. In this previously
“unexplored” highly turbulent regime classical theories would predict that turbulent superstructures
disappear. Here we will show (i) that thermal superstructures survive at high Ra, (ii) that the thermal
superstructures have pronouncedly different flow characteristics than the LSC in smaller domains,
and (iii) that the domain size to obtain convergence to the large aspect ratio limit depends on the
quantity of interest.

We performed direct numerical simulations of periodic RB convection in very large computational
domains and at high Ra using AFID. AFID uses a second-order, energy conserving, finite difference
method. Here, we use no-slip conditions, constant temperature boundary conditions at the bottom
and top plates, and periodic boundary conditions in the horizontal directions. Details can be found in
Refs. [51–54]. The control parameters are Ra = αg�L3/(νκ) and Pr = ν/κ , where α is the thermal
expansion coefficient, g the gravitational acceleration, � the temperature difference between the top
and bottom plates, L the height of the fluid domain, ν the kinematic viscosity, and κ the thermal
diffusivity of the fluid. We performed 33 simulations at Ra = [2 × 107,108,109] in the aspect ratio
range � = [1–128] and Pr = 1. We took great care to perform all simulations consistently and
followed the resolution criteria set in [55,56]. The simulation at Ra = 109 for � = 32 is performed
on a 12288 × 12288 × 384 grid. The statistical convergence of integral flow quantities such as Nu
and Re is within a fraction of a percent. The convergence of higher order statistics is, unavoidably,
less due to the slow dynamics of the thermal superstructures, whose existence will be revealed.

We first look at a visualization of the flow at Ra = 108 in a � = 64 cell in Fig. 1. The first
row displays the temperature field at midheight. The different subfigures in this row present the
flow structures more clearly by successive zoom-ins. One can easily discern the significance of a
sufficiently large aspect ratio. The second row, which shows the midheight vertical velocity field,
displays a remarkable disparity with the temperature field. We find that in large aspect ratio cells
the correlation coefficient between temperature and vertical velocity is only about 0.5 at midheight,
while this correlation is about 0.7 at boundary layer (BL) height. The third and fourth row show the
temperature and vertical velocity at BL height. It is impressive to see that the large-scale thermal
structures at midheight leave a visible imprint in the BL, i.e., the warm (red) areas at midheight (top
row) correspond to warm areas in the BL (third row). This imprint is quantified by the correlation
of the temperature field at midheight and BL height, which is about 0.3, i.e., small but statistically
relevant.

To determine the horizontal extent of the thermal superstructures, we calculated the turbulent
kinetic energy (TKE) Eu(k) and the thermal variance Eθ (k) spectra at BL height and midheight.
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FIG. 2. The temperature variance Eθ (k) and TKE Eu(k) spectra at (a),(b) midheight and (c),(d) BL height
at Ra = 108 and (e),(f) at midheight at Ra = 2 × 107 for different �. Here k is the circular wave number
k = (k2

x + k2
y)1/2. The zoom in panel (a) shows the peaks of � = 16,32,64 with error bars displaying the

distance to the next captured wave number.

The spectra represent the time average obtained in the statistical stationary state. Figure 2 shows
that the wave number of maximal energy (respectively, thermal variance) decreases with increasing
aspect ratio until it slowly saturates, but for Ra = 108 we cannot conclude whether the peak position
of the spectra is fully converged. Figures 2(e) and 2(f) show that the results for Ra = 2 × 107 do
reveal a clear convergence of the peak location of the spectra around � ≈ 64. The slow convergence
of the peak location of the spectra shows that extremely large domains are necessary to accurately
capture thermal superstructures, i.e., the domain size must be much larger than the average size of the
superstructures. The temperature variance spectra at midheight and BL height show that the spectrum
peak is located around k ≈ 1, which corresponds to a structure size of about six to seven times the
domain height. This size is similar as obtained in the classical works [36–39] for Ra up to 107. Also the
peak of the TKE spectrum at BL height is located around k ≈ 1. This reflects the large-scale pattern
visible in the horizontal velocity components as the spectrum of the vertical velocity component at BL
height peaks around k ≈ 30 (≈0.21L), which corresponds to the plume size at BL height shown in
Fig. 1 (see also Ref. [37]). For Ra = 108 and � = 32 we verified that the shown spectra are converged
up to k ≈ 700 by performing separate simulations on a 6144 × 6144 × 192 and a 8192 × 8192 × 256
grid. For the TKE spectrum at midheight the main peak is located close to k = 2, which indicates
that the velocity structures at midheight are smaller than the temperature structures. This further
emphasizes that the correlation between the vertical velocity and temperature at midheight is less
than naively expected.

As the location of the peak of the spectrum is difficult to converge we look at the so-called integral
length scale [37]. Here we calculate the integral length scale based on the temperature variance 	θ =
2π

∫
[Eθ (k)/k]dk/

∫
Eθ (k)dk and TKE 	u = 2π

∫
[Eu(k)/k]dk/

∫
Eu(k)dk spectra. We emphasize

that the integral length scales do not correspond to the spectral peaks discussed in the previous section.
Figure 4(a) reveals that 	θ and 	u converge to a large aspect ratio limit around � ≈ 32. For � � 8,
when there is only one convection roll in the domain, 	θ and 	u increase roughly linearly with the
domain size. For � = 16 and low Ra 	θ is similar to the value found for � = 8, while for higher
Ra it is close to the large aspect ratio limit. We speculate that this phenomenon could be due to
the existence of multiple turbulent states at � = 16, similarly to what is observed in, for example,
Taylor-Couette [57] and two-dimensional (2D) RB flow [58,59].
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(a)

(b)

FIG. 3. Height profile of (a) the standard deviation and (b) the kurtosis at Ra = 108.

To investigate how the flow structures influence horizontally averaged higher order statistics, we
show the standard deviation and kurtosis of the temperature as function of height in Fig. 3. The
curves show a clear separation between the flow characteristics in small and in large aspect ratio
cells. In contrast to the spectra and integral length scales we find that horizontally averaged higher
order statistics already converge to the large aspect ratio limit around � ≈ 8, while Fig. 4 reveals
that integral quantities such as Nu and Re are already converged around � ≈ 4. Figure 4(b) shows
that Nu as a function of � reaches a maximum around � ≈ 0.75 for all Ra considered here, while it
decreases sharply for � � 0.5. The figure also reveals that in smaller domains the horizontal motion
is suppressed, while the vertical motion and heat transfer in the system are much less sensitive to
the aspect ratio. Consequently, the vertical velocity is much stronger than the horizontal velocity in
small domains, while the horizontal and vertical velocity components are nearly equal in large aspect
ratio domains [see Fig. 4(e)]. Thus in large aspect ratio cells the horizontal mixing in the interior
domain is stronger than in smaller aspect ratio cells, which results in the lower correlation of the
temperature and vertical velocity observed in large aspect ratio cells. We find that the correlation
between temperature and vertical velocity converges to the large aspect ratio limit around � = 8.

(a) (b)

(c) (d)

(e)

FIG. 4. (a) Integral scale at midheight based on the temperature variance 	θ and the TKE spectra 	u,
(b) Nusselt number, (c) vertical Reynolds number Rev , and (d) horizontal Reynolds number Reh as functions
of � normalized with the value at � = 1. (e) Rev/Reh as a function of �.

041501-5



STEVENS, BLASS, ZHU, VERZICCO, AND LOHSE

In summary, we highlighted the existence of thermal superstructures in highly turbulent RB
flow. The observed structure sizes are significantly bigger than the structures found near onset of
convection [47] or the structures found in 2D RB [58,59], but similar in size as obtained in the
classical works [36–39], which studied thermal superstructures up to Ra = 107 in simulations with
aspect ratio up to about 40. Surprisingly, while classical theory would predict that these flow structures
should be washed out at high Ra when the flow becomes turbulent, we do not find any sign that the
superstructures get weaker when Ra is increased. Our simulations show that the peak location of the
temperature variance and TKE spectra converge around � ≈ 64, which shows that the characteristics
of the thermal superstructures become truly independent of the domain size. Here we also show that
the horizontal velocity increases rapidly when the domain size is enlarged until it converges to its
large aspect ratio limit around � ≈ 4. This leads to more vigorous mixing in large domains, which is
reflected in the lower correlation between temperature and vertical velocity in large domains when
compared to small domains. While the vertical velocity and heat transfer are much less sensitive to
the domain size, we find that the large-scale motions have a visible effect on the heat transfer.

Thermal superstructures have a profound influence on flow statistics. Interestingly, we find that
integral quantities such as Nu and Re reach the large aspect ratio limit already around � ≈ 4, while this
limit is only reached around � ≈ 8 for horizontally averaged higher order statistics, around � ≈ 32
for the integral length scales, and around � ≈ 64 for the peak location of the temperature variance
and TKE spectra. Thus the minimal domain size required to reach the large aspect ratio limit result
depends on the quantity of interest. The observation that simple statistics are accurately captured in a
smaller domain than necessary to converge spectra is similar to the situation in channel [1,2], pipe [3],
and turbulent boundary layer flow [4–6]. However, we note that the thermal superstructures are very
different than large-scale structures discovered in pipe, channel, and boundary layer flow. First of all,
the absence of a mean flow direction means that the thermal superstructures have a similar extend
in all horizontal directions, whereas in channel, pipe, and boundary layer flows the large-scale flow
features are very long and elongated [4–6]. In addition, the thermal superstructures have a size that is
independent of the distance to the wall, while superstructures appear to be limited to the logarithmic
region in turbulent boundary layer flow [60] or the outer layer for pipe and channel flow [61].

Further research is required to investigate how the Pr number influences the formation of
thermal superstructures at high Ra. In addition, the observations that the kurtosis of the temperature
distribution convergence to the Gaussian value, and the weak correlation between the temperature
and vertical velocity in the bulk are very intriguing phenomena and need further investigation in order
to determine how these observations are related to the coherency of the large-scale flow patterns.
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