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Energy transfer in turbulence under rotation
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It is known that rapidly rotating turbulent flows are characterized by the emergence
of simultaneous upscale and downscale energy transfer. Indeed, both numerics and
experiments show the formation of large-scale anisotropic vortices together with the
development of small-scale dissipative structures. However the organization of interactions
leading to this complex dynamics remains unclear. Two different mechanisms are known
to be able to transfer energy upscale in a turbulent flow. The first is characterized by
two-dimensional interactions among triads lying on the two-dimensional, three-component
(2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The
second mechanism is three-dimensional and consists of interactions between triads with the
same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating
flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within
different parameter regimes to analyze both upscale and downscale cascade ranges. We
find that the upscale cascade at wave numbers close to the forcing scale is generated by
increasingly dominant homochiral interactions which couple the three-dimensional bulk and
the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which
then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism.
In the forward cascade range, we find that the energy transfer is dominated by heterochiral
triads and is dominated primarily by interaction within the fast manifold where kz �= 0.
We further analyze the energy transfer in different regions in the real-space domain. In
particular, we distinguish high-strain from high-vorticity regions and we uncover that while
the mean transfer is produced inside regions of strain, the rare but extreme events of energy
transfer occur primarily inside the large-scale column vortices.
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I. INTRODUCTION

Understanding the role of rotation on the dynamics of turbulent flows is a challenging theoretical
problem with a high relevance in several practical contexts, from natural (i.e., astrophysical and
geophysical [1,2]) to industrial flows [3]. When a fluid is under rotation, the Coriolis force in the
momentum equation competes with the nonlinear inertial term. The strength of rotation is quantified
by the Rossby number, Ro, defined as the ratio of the fluid time scale to the rotation time scale. In
particular, for any fixed Reynolds number, Re, smaller Rossby numbers are correlated with more
important rotation in the flow’s evolution [4,5]. One of the most prominent effects of strong rotation
is the formation of large-scale coherent axisymmetric vortical structures parallel to the rotation axis.
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This phenomenon is associated with a two-dimensionalization of the flow with almost no fluctuations
in the direction of the rotation axis [6]. In the limit of Ro → 0, the nonlinear advection term in the
Navier-Stokes equations (NSE) can be neglected over short time scales t = O(Ro) (e.g., Ref. [7]).
From the resulting linear vorticity equation, it is then possible to explain the existence of the columnar
two-dimensional structures (Taylor-Proudman theorem; see Ref. [8]). However, for any small Ro,
the secular nonlinear dynamics becomes significant over long time scales t = O(1), which requires
a multiple-scale analysis [4,9] to account for resonant interactions. The description of the flow over
yet longer times t = O(1/Ro) requires higher order asymptotic theories that can be unwieldy [7].
This limits our understanding of high-Re rotating flows, especially in the small-Ro limit over long
time scales or in the moderate-Ro regime. In particular, a thorough characterization of interactions
between the quasi-2D turbulence and the 3D background is still lacking, which motivates our
work here.

In addition to its theoretical appeal, the moderate-Ro regime is particularly important in many
natural and industrial flows. For example, the Rossby number for the synoptic scales at midlatitude
of atmospheric and oceanic flows affected by the rotation of the Earth or for the plasma dynamics in
convective zone of the Sun is Ro ≈ 0.1 ÷ 1 [10,11]. At the same time, the Reynolds number in these
systems is very large, and the flows are in a fully developed turbulent state. High-Re turbulent flows
with Rossby O(1) have been extensively investigated in recent years using modern experimental
[12–15] and numerical [6,16] techniques. Empirically, it is clear that eddy formation is greatly
influenced by bulk rotation, with a tendency toward two dimensionalization and an increasing
anisotropy in the flow (see Refs. [17,18] for a review), although many fundamental questions are
still open. The nonlinear mechanism leading to such a state is still not well understood and we lack
a theoretical prediction for the scaling law of anisotropic spectra [19,20]. Note that the theoretical
complexity of the problem is enhanced by the fact that the Coriolis force has an indirect influence
on the energy transfer, since it does not even enter in the kinetic energy budget.

Rotation gives rise to inertial waves with a frequency, ω, between zero and two times the rotation
rate, 2�. In the rotating frame of reference, inertial waves appear as solutions to the momentum
equation in the linearized regime. Therefore, one can think to model rapidly rotating turbulence as
superposition of inertial waves with a short period perturbed by the nonlinear interactions. According
to this idea, the fluid velocity on a long-time evolution is given by high-frequency inertial waves
modulated by the coupling with the slow frequencies of the large-scale eddies. Although separating
waves from eddies in a turbulent flow has been considered impossible in the past [21], significant
progress has been made by applying resonant wave theory [9,22]. It has been shown that the equations
for the slow eddies contain as a subset the two-dimensional Navier-Stokes equations for the vertically
averaged velocity fields [23,24]. Recently, it has been proved rigorously that the two-dimensional,
three-component (2D3C) (vertically averaged and possibly turbulent) solutions are stable to vertically
dependent perturbations [25]. Using the “instability hypothesis” [26], it has been argued that resonant
triadic interactions should drive the flow to become quasi-two-dimensional [9,19,27,28]. Moreover,
the development of experimental techniques such as particle image velocimetry (PIV, [29]) allowed
a spacetime sampling of the velocity field, giving the possibility of quantifying anisotropy and
identifying inertial waves present in rotating turbulent flows [30]. However, resonant wave theories
are only valid when the rotation period is much shorter than the eddy turnover time at all scales;
hence, their approximations break down at small scales for sufficiently large Reynolds number. The
regime of validity of the resonant wave theory under varying Reynolds and Rossby numbers has
been investigated in Ref. [7]. One concludes that by decreasing Rossby number, at any fixed Re, the
decoupling of the 2D3C modes from the fast-3D manifold becomes more and more efficient.

Another open question about 3D turbulence under rotation is concerned with the direction of the
energy cascade. In this context, evidence of a dual cascade of energy has been found in both numerical
simulations [19,31] and experiments [32]. Namely, 3D turbulent flows under rotation develop a
nonzero energy flux going simultaneously upward and downward from the forcing scale. In 2D
turbulence, due to the existence of two quadratic invariants, energy and enstrophy (integrated squared
vorticity), the presence of an upscale energy cascade has been demonstrated [33] and anticipated [34]
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for many years. In the 3D case, due to the absence of the second quadratic invariant (enstrophy), we
do not have a theoretical prediction on the direction of the energy flux, which in principle can be
directed toward the small scales, as confirmed by the results of two-point closure [35,36] and direct
numerical simulations [37,38]. Recently, however, there seems to be growing evidence that an upscale
transfer mechanism in 3D does indeed exist. Indeed, an upscale energy flux has been observed at
high Reynolds numbers in several flows, such as in geophysical flows subject to rotation [39,40],
in shallow fluid layers [41,42], in realistic circulation in the North Atlantic Ocean [43], and in
conducting fluids and plasmas [44,45]. Furthermore, it has been recently shown that in all 3D flows
there is always a subset of nonlinear interaction coupling modes with the same chirality which transfer
energy systematically toward the large scales [46,47].

The goal of this work is to gain a better understanding of the mechanisms leading the energy
transfer in homogeneous-isotropic-incompressible turbulence subject to a uniform background
rotation. We aim to asses whether the upscale flux is produced by purely two-dimensional interactions
or by three-dimensional channels with definite chirality. To this end, we perform a Fourier-space
analysis of the spectra and fluxes using both the slow-fast [9,19] and helical [26,46] decompositions
to measure their relative weight on the total transfer. In the second part of this work, we extend
the analysis to physical space. In particular, we quantify how much of the mean energy transfer
(as measured in Fourier space) comes from regions dominated by vorticity (i.e., inside the Taylor
columns) or by strain. Note that while the mean value of the physical-space flux (averaged over the
whole domain) is analytically equivalent to the Fourier-space flux, the spatially local values are not
trivially related to the spectral flux in Fourier space.

In this paper, we analyze data from high-resolution direct numerical simulations on up to 20483

collocation points. The data set is composed of three different sets of simulations: In the first set
we used a small-scale forcing peaked at kf = 40 and a rotation rate � = 50, in the second set we
used a large-scale forcing at kf = 4 and a rotation rate � = 10, and in the third set we force again
at small scale kf = 40 but increasing the rotation rate at � = 100. In the first set of simulations we
have the development of a backward energy transfer directed from the forcing to the largest scale of
the system, while in the second configuration we have a dual cascade of energy, which goes from
the forcing scales toward both the smallest and largest scales of the system. The third set is used to
benchmark the property of the backward energy transfer observed in the first set at changing of the
Rossby number. In the first two cases the Rossby number is of the order Ro ∼ 0.1, while in the third
case the Rossby number is of the order of Ro ∼ 0.05.

II. NUMERICAL SIMULATIONS

We perform direct numerical simulations (DNS) of Eqs. (1) governing an incompressible rotating
fluid in a triply periodic domain of size L = 2π using a fully dealiased parallel 3D pseudospectral
code using grids of up to N3 = 20483 collocation points. The time integration has been performed
with the second-order Adams-Bashforth scheme with viscous term integrated implicitly. The
governing equations for a fluid in the rotating frame can be written as

∂t u + u · ∇u + 2� × u = −∇p + ν�u + α�−1u + f

∇ · u = 0, (1)

where ν is the kinematic viscosity, the term 2� × u is the Coriolis force produced by rotation,
and � = �ẑ is the angular velocity with frequency � around the rotation axis ẑ. The fluid density
is constant and absorbed into the definition of pressure p. The linear friction term α�−1u, with
hypoviscosity coefficient α, is used only to prevent the formation of a condensate at the lowest Fourier
modes and it is projected onto the subset of wave numbers where |k| � 2. The external forcing, f ,
is a time-correlated forcing given by a second-order Ornstein-Uhlenbeck process; see Ref. [48]. The
centrifugal force, −� × � × (r − r0) = ∇{ 1

2 [�(r − r0)]2}, is absorbed into the pressure p which
enforces the incompressibility condition ∇ · u = 0.
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Rotation breaks the statistical isotropy of the flow above but not its statistical homogeneity.
Rotating flows give rise to inertial waves which can be seen by considering the inviscid (ν = 0) and
linear [(u · ∇u) → 0] limits of eq. (1) written for the vorticity,

∂t (∇ × u) = 2(� · ∇)u. (2)

This equation has a general solution given by the superposition of inertial waves, of the form

u(x,t) =
∑

k

h±(k)ei[k·x−ω±(k)t], (3)

where h±(k) are the orthogonal eigenmodes of the curl operator [4], and the wave frequencies, ω±,
are given by the dispersion relation

ω±(k) = ±2�
kz

|k| , (4)

where kz is the direction parallel to the rotation axis. There are two waves per wave vector with
opposite sign of helicity, the right-handed waves propagating in the direction of k and the left-
handed waves propagating in the −k direction. In rotating flows, the dynamics is regulated by two
nondimensional control parameters, the Reynolds and the Rossby numbers, which can be written as

Re = ULf

ν
, Ro =

(
εf k2

f

)1/3

�
,

where Lf ∼ 1/kf is the forcing scale, U is the velocity at the forcing scale, and εf is the rate of
energy input. The Rossby number represents the ratio between the rotation time scale τ� = 1/� and
the flow time scale at the forcing scale, (εf k2

f )−1/3. In the limit of large Rossby numbers, Ro � 1,
the flow can evolve freely under its own internal dynamics without being influenced by rotation. In
the Ro � 1 regime, we can expect to observe effects of rotation on the dynamics at wave numbers
satisfying (εk2)−1/3 � τ�, where ε is the dissipation rate. The largest wave number satisfying this
condition is called the Zeman scale, k� = (�3/ε)1/2. Phenomenologically, it is known that when the
Zeman wave number is larger than that of forcing, kf , the flow develops an upscale energy cascade
toward k < kf and a simultaneous forward cascade toward small scales k > kf [6,40]. Comparing
the definition of the Rossby number and the Zeman scale, we can see that the condition k� > kf

requires Ro < 1. Our numerical simulations are set in this regime and exhibit simultaneous energy
transfer toward k > kf and k < kf . We shall now discuss in more detail our numerical simulations
and the parameter regimes they are in.

A. Dataset description

We consider two sets of simulations, which we call A and B (see Table I). In both cases, the
ratio between the Zeman scale and the forcing scale is k�/kf ∼ 10 and Ro ≈ 0.1. The difference
between the two cases is the scale at which the flow is forced, which affects the cascade range
(upscale or downscale) being captured in our simulation. Set A is forced at kf = 40 and exhibits an
upscale energy transfer from kf to the smallest Fourier modes, while the forward cascade is quickly
dissipated by viscosity due to the limited wave-number range beyond kf . Set B, on the other hand,
is forced at kf = 4 and exhibits a clear simultaneous upscale and downscale energy transfer. The
reason of having two sets of simulations with the forcing at different scales comes from the difficulty
of performing a simulation able to resolve simultaneously both inverse and direct energy cascade
with a well-extended range of scales. In the following, we use set A to analyze the properties of
the energy transfer in the inverse cascade regime while set B is used to assess the properties of the
forward cascade regime. Moreover, in this work we have used a third set of simulations, set C, to
validate the property of the backward cascade at changing of the Rossby number; in this last case
the ratio between the Zeman scale and the forcing scale is k�/kf ∼ 50 and Ro ≈ 0.05.
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TABLE I. Eulerian dynamics parameters. N , number of collocation points per spatial direction; �, rotation
rate; kf , forced wave numbers; ν, kinematic viscosity; ε = ν

∫
d3x

∑
ij (∇iuj )2, viscous energy dissipation;

εf = ∫
d3x

∑
i fiui , energy injection; f0, intensity of the Ornstein-Uhlenbeck forcing; τf , decorrelation time

of the forcing; η = (ν3/ε)1/4, Kolmogorov dissipative scale; dx = L0/N , numerical grid spacing; L0 = 2π , box
size; τη = (ν/ε)1/2, Kolmogorov dissipative time; dt , integration time step; Reλ = (u0λ)/ν, Reynolds number
based on the Taylor microscale; λ = (15νu2

0/ε)1/2, Taylor microscale; Ro = (εf k2
f )1/3/�, Rossby number

defined in terms of the energy injection properties; T0 = u0/L0, Eulerian large-scale eddy turn over time; α,
coefficient of the damping term α�−1u.

Set N � kf ν ε εf f0 τf η/dx τη/dt Reλ λ Ro T0 α

(A: Inverse) 1024 50 [40:42] 4 × 10−4 0.25 0.275 8.8 × 10−4 0.023 0.65 265 550 0.15 0.1 6.9 0.025
(B: Split) 2048 10 [4:6] 1.5 × 10−4 0.45 0.6 0.02 0.023 0.7 360 1500 0.13 0.1 3.0 0.1
(C: Inverse) 1024 100 [40:42] 4 × 10−4 0.135 0.15 8.8 × 10−4 0.023 0.55 730 700 0.2 0.05 5.4 0.025

The energy spectra,

E(k) = 1

2

∑
k�|k|<k+1

|û(k)|2 , (5)

averaged in time after reaching a statistically steady state, are presented in Fig. 1. In the upscale
transfer regime of set A, the spectrum’s slope seems to be closer to ∼k−3 than to ∼k−5/3. This
suggests that the dynamics over these scales cannot be described merely by 2D inverse cascade
dynamics and that there are important contributions from the energy injected into the 3D bulk (see
Refs. [19,31]). In contrast, the energy spectrum from dataset B in the downscale transfer regime has
a slope close to k−5/3, suggesting that the system is recovering isotropy at small scales. In the insets
of the same figure, Fig. 1, we also plot the energy fluxes,


(k) = −
∑
|k|�k

ikj û
∗
i (k)

∑
p,q

ûi( p)ûj (q)δ( p + q − k) , (6)

for both datasets, averaged over the same time period as the spectra. The δ function constrains the
nonlinear interactions to triads of wave vectors that can form the sides of a triangle, p + q − k = 0.
The negative values of 
(k) measured at scales k < kf indicate that in both sets A and B, there is
an inverse energy cascade to large physical scales. In set B (split cascade), in addition to the upscale
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FIG. 1. Energy spectrum averaged in time in the stationary state for both simulations A (inverse cascade)
and B (split cascade). In the insets, the energy fluxes averaged on the same time range are presented. The gray
areas indicate the forced wave numbers, while the dashed vertical lines represent the cutoff scale, kc, used in
the analysis of the sub-grid-scales (SGS) energy transfer in both simulations (see Sec. VI).
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transfer, we also observe a constant positive flux which indicates a forward cascade. This positive
flux is quickly dissipated over k > kf in set A.

III. SLOW-FAST DECOMPOSITION

The velocity field in a rotating turbulent flow can be analyzed as a multiple time scale problem [4].
A fast time scale is associated with inertial waves while a slow time scale can be associated with the
turbulent eddies which modulate the waves’ amplitude. Motivated by this analysis framework, we
decompose the velocity as [4,9]

u(x,t) =
∑

k

b±(k,t)h±(k)ei[k·x−ω±(k)t]. (7)

Note that the inertial waves’ time scale is bounded from below by τω � 1/(2�), while the time scale
of turbulent eddies is expected to scale as τeddy ∼ (εk2)−1/3. For this reason, the large-physical-scale
evolution is dominated by the inertial waves while the influence of the nonlinear dynamics becomes
larger at smaller physical scales. From the dispersion relation in Eq. (4), it is clear that all wave
numbers lying in the Fourier space plane, k⊥ = (kx,ky,kz = 0), perpendicular to the rotation axis,
do not give rise to inertial waves. This two-dimensional submanifold, where ω±(k⊥) = 0, is generally
called the “slow” manifold, while the rest of the 3D domain, where ω±(k) �= 0, is called the “fast”
manifold [19,49,50]. In the following, we refer to the slow modes as k

S
= k⊥ and to the fast modes

as k
F

= (kx,ky,kz �= 0). Energy in a turbulent flow under rotation tends to be transferred from the
fast toward the slow manifold (kz = 0) [40]; this behavior was predicted in the context of the wave
resonance theory by the Eddy Damped Quasi-Normal Markovian (EDQNM) model of Cambon and
Jacquin [51] and using the instability assumption by Waleffe [9]. However, the problem with the wave
turbulence theories is that they can only predict a net transfer toward small value of kz but not strictly
zero. Those theories predict that energy transfer toward modes with kz = 0 vanishes and the resulting
dynamics for the slow modes is completely decoupled, hence purely two-dimensional [9,27,28]. In
this work, using the slow-fast decomposition, we numerically assess the relative transfer inside the
two manifolds as well as the importance of their mutual interactions. Following Ref. [52], we divide
the total Fourier-space volume into two disjoint subsets V and W :

V = {k | kx,ky and kz = 0}, (8)

W = {k | kx,ky and kz �= 0},
which correspond to the slow and the fast manifolds, respectively. Applying the same decomposition
to the three-dimensional velocity û(k), we can separate the field into the slow û

S
and the fast û

F

components, in the following way:

û(k) =
{

û
F
(k) if k = k

F
∈ W,

û
S
(k) if k = k

S
∈ V .

(9)

The slow manifold consist of a two-dimensional, three-component (2D3C) field which evolves on
the k⊥ plane perpendicular to the rotation axis. The 2D3C field can be further decomposed into a
pure 2D part and in its third passive component,

û
S
(k

S
) = û2D(k

S
) + θ (k

S
), (10)

where

û2D
(k

S
) =

⎛
⎝ûx(k

S
)

ûy(k
S
)

0

⎞
⎠, θ (k

S
) =

⎛
⎝ 0

0
ûz(kS

)

⎞
⎠ . (11)
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Assuming a complete decoupling between slow and fast dynamics, the physical-space 2D3C-Navier-
Stokes equations for the slow incompressible flow read

∂t u2D
= −(u2D

· ∇)u2D
− ∇p + ν�u2D

,

∂t θ = −(u2D
· ∇)θ + ν�θ , (12)

where u2D
, θ are respectively the inverse Fourier transform of the fields in Eq. (11) and ∇ · u2D

= 0.
However, a complete decoupling is only attained asymptotically in the limit of Ro → 0 [7]. In
the setup of simulations A and B, we need to consider the nonlinear interactions between the two
submanifolds, which can be written explicitly by projecting the full nonlinear term of the Navier-
Stokes equations on the two different manifolds:

∂t uS
+ P

S
(∇p) = −u

S
· ∇u

S
− P

S
(u

F
· ∇u

F
), (13)

∂t uF
+ P

F
(∇p) = −u

F
· ∇u

S
− u

S
· ∇u

F
− P

F
(u

F
· ∇u

F
), (14)

where u(x) = u
S
(x) + u

F
(x), P

S
and P

F
are respectively the projectors on the Fourier subsets V

and W defined in Eq. (8). Note that the two fields, u
S
(x) and u

F
(x), are separately divergence free.

Multiplying Eq. (13) by u
S

and Eq. (14) by u
F
, we end up with an explicit formulation for the

pointwise energy transfer in the physical space volume:

∂t
1
2 u2

S
+ u

S
P

S
(∇p) = −u

S
· (u

S
· ∇u

S
) − u

S
· (P

S
[u

F
· ∇u

F
]), (15)

∂t
1
2 u2

F
+ u

F
P

F
(∇p) = −u

F
· (u

F
· ∇u

S
) − u

F
· (u

S
· ∇u

F
) − u

F
· (P

F
[u

F
· ∇u

F
]), (16)

note that on average 〈u
S
· u

F
〉 = 0, and hence the total energy is given by the sum of the energy

contained in the sets V and W separately. It is important to stress that the three terms coupling u
S

and u
F

dynamically in Eqs. (15) and (16) are the only possible combinations between slow and fast
modes, considering that the coupling can happen only among wave vectors satisfying the triadic
condition (we cannot have a closed triad composed of two slow modes and a fast mode). Moreover,
among the three coupling terms, only u

F
· (u

S
· ∇u

F
) is a real flux which conserves total energy

when averaged over the total volume, while only the sum of the remaining two terms can be written
as a total gradient and conserves energy over the entire volume:

〈u
F

· (u
F

· ∇u
S
)〉 + 〈u

S
· (u

F
· ∇u

F
)〉 = 〈∇ · (u

S
· (u

F
⊗ u

F
))〉 = 0. (17)

Going back to the Fourier-space definition of the slow-fast modes, it is straightforward to notice
that the two projected velocity fields are orthogonal: û

S
(k) · û

F
(k) = 0. From this property, we can

rewrite the energy spectrum as the sum of three different components,

E(k) = E
F
(k) + E

S
(k) = E

F
(k) + E2D(k) + Eθ (k) (18)

where in the first step we used the decomposition in slow-fast modes,

E
F
(k) = 1

2

∑
k∈W

k�|k|<k+1

|û
F
(k)|2 , E

S
(k) = 1

2

∑
k∈V

k�|k|<k+1

|û
S
(k)|2 , (19)
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while in the second step we further decomposed the slow manifold in the purely 2D field and its z

component; see eq. (11):

E2D(k) = 1

2

∑
k∈V

k�|k|<k+1

|û2D(k)|2 , Eθ (k) = 1

2

∑
k∈V

k�|k|<k+1

|θ (k)|2 . (20)

Fourier transforming all nonlinear terms in Eqs. (15) and (16), we end up with the different energy
fluxes due to the different kind of interactions:

k∑
k′=1

∂tE(k′,t) = 

S�S

(k,t) + 

F�F

(k,t) + 

F�S

(k,t) , (21)

where

S�S

,

F�F

are energy fluxes which transfer energy only among modes which live respectively
in the slow or in the fast manifold, while the term 


F�S
represents the energy flux due to the coupling

between slow and fast modes.
It is worth noticing that while 


S�S
and 


F�F
contain a single term, hence a single class of triadic

interactions, namely,



S�S

(k) = −
∑
k∈V

|k|�k

ikj û
∗
i (k)

∑
p,q∈V

ûi( p)ûj (q)δ( p + q − k) (22)

and



F�F

(k) = −
∑
k∈W

|k|�k

ikj û
∗
i (k)

∑
p,q∈W

ûi( p)ûj (q)δ( p + q − k), (23)

the coupling interactions can be decomposed into three different contributions coming from the three
different coupling terms:



F�S

(k) = −
∑
k∈W

|k|�k

ikj û
∗
i (k)

∑
p∈W

q∈V

ûi( p)ûj (q)δ( p + q − k)

−
∑
k∈W

|k|�k

ikj û
∗
i (k)

∑
p∈V

q∈W

ûi( p)ûj (q)δ( p + q − k)

−
∑
k∈V

|k|�k

ikj û
∗
i (k)

∑
p∈W

q ∈ W

ûi( p)ûj (q)δ( p + q − k) . (24)

In Figs. 2 and 3, a visualization of a real-space velocity field decomposed on the slow and fast
manifolds is presented for both datasets. It is interesting to notice that in the split cascade simulation
(dataset A, Fig. 3) we observe both the formation of 3D structures in the fast manifold inside the
cores of the rotating vortices as well as the big Taylor columns. In the backward cascade regime
(dataset B, Fig. 2) we observe only the formation of large-scale vortices, meaning that the energy
cascading forward is quickly dissipated, preventing the formation of smaller scale structures. The
vorticity along the direction of the rotation axis, ωz(x), is shown in Fig. 4. From the latter, we can
distinguish cyclonic and anticyclonic vortices for both simulations A and B. In particular, we can
notice the presence of both cyclonic and anticyclonic structures in set A, while set B is dominated
by big cyclonic vortices.
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FIG. 2. Snapshot of module squared, u2(x) = |u(x)|2, of a total velocity field (left) and velocity decomposed
on the slow (center) and fast (right) manifolds. Data correspond to simulation A.

IV. HELICAL DECOMPOSITION

In this section, we exploit the decomposition of any incompressible 3D flow into helical modes
proposed in Refs. [26,53]. This further decomposition allows us to clarify the analysis of the
mechanism responsible for the energy transfer in a fluid under rotation. Decomposing the inverse flux
in terms of the homochiral and heterochiral components is important to highlight the existence of a
purely 3D mechanism contributing to the inverse cascade. It is indeed known that homochiral triads
are always responsible for opening a channel with inverse energy cascade, even in homogeneous
and isotropic turbulence [54,55]. In the following, we show that the same mechanism is at work also
in rotating turbulence, at least in a range of scales not too far from the forcing scale. On the other

FIG. 3. Snapshot of module squared, u2(x) = |u(x)|2, of a total velocity field (left) and velocity decomposed
on the slow (center) and fast (right) manifolds. Data correspond to simulation B.

034802-9



BUZZICOTTI, ALUIE, BIFERALE, AND LINKMANN

FIG. 4. Snapshot the vorticity along the direction of the rotation axis z, ωz, for the two sets of simulations,
A (inverse) and B (split). The large-scale columnar structures are parallel to the direction of the external angular
velocity � = �ẑ. In particular, the cyclonic structures, columns with positive (red) vorticity, rotate in the
direction of �, while the negative (blue) columns observed in dataset A (Inverse) are the anticyclonic vortices
rotating in the inverse direction of �. The two vorticity fields are filtered using a sharp cutoff in Fourier space
at scales kc = 12 and kc = 20 respectively for the inverse and the split cascade (see Sec. VI).

hand, when the inverse cascade is dominated by a two-dimensional mechanism, it is not sensitive to
the sign of helicity [56] and we measure the same contribution coming from hetero- and homochiral
interactions. Since u(x) is a solenoidal vector field, its Fourier modes û(k) have only two degrees of
freedom, and we have

ûk(t) = û+
k (t) + û−

k (t) = û+
k (t)h+(k) + û−

k (t)h−(k) , (25)

where h±(k) are the normalized eigenvectors of the curl operator in Fourier space introduced in Eq. (3)
(see Ref. [26]). The helical decomposition thus decomposes the Fourier modes of the velocity field
into two components, each of which satisfies

ik × ûsk

k = skkûsk

k , (26)

with sk = ±. The corresponding homo- and heterochiral energy fluxes are


HO(k) = −
∑
|k|�k

∑
s∈{+,−}

ûs∗
k

∑
q=k− p

(
ik · ûs

p

)
ûs

q , (27)


HE(k) = 
(k) − 
HO(k) , (28)

respectively, where 
(k) is the total energy flux defined in Eq. (6).

V. RESULTS: FOURIER SPACE ANALYSIS

In this section, we present the analysis of the Fourier space energy fluxes and spectra for both
datasets following the slow-fast and the helical decomposition introduced in the previous sections.
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FIG. 5. Spectrum decomposition into fast and slow manifolds for set A (left panel) and set B (right panel).
The gray areas represent the forced wave numbers, and the dashed vertical lines represent the cutoff scale, kc,
used in the analysis of the SGS energy transfer in both simulations (see Sec. VI). In the insets, there are the
slow spectra further decomposed into their parallel E2D(k) and passive, Eθ (k), components.

A. Slow-fast mode analysis

In Fig. 5, the total energy spectrum is split into the five different contributions coming from the
slow-fast decomposition; see Eq. (18). The left and right panels of Fig. 5 are respectively obtained
from the data of simulation sets A and B; in both of them, it is clear that the large-scale energy, i.e.,
E(k) at k < kf , is accumulated in the slow manifold, namely E

S
(k), as predicted by Refs. [9,51]

and observed in Ref. [40]. Instead, the energy in the forward cascade, hence E(k) at k > kf , is
accumulated in the fast modes, E

F
(k).

The slow modes dominate the system at small wave numbers in the both the inverse and the
split cascade regimes, while the fast interactions lead the forward cascade and contain most of the
energy at large wave numbers, that is, at small physical scales. In the insets of both panels in Fig. 5,
the decomposition of the slow modes into the pure 2D and passive component is shown. From this
further decomposition, we can see that the energy on the plane perpendicular to the rotation axis k⊥
is distributed at small wave numbers on the two-dimensional components of the velocity field lying
on the plane [i.e., û2D(k

S
)], while the passive third component, θ (k

S
), is involved only in the forward

dynamics showing a 2D equipartition spectrum, ∼k, at small wave numbers. This analysis of the slow
manifold shows a behavior very similar to the one observed in the 2D3C Navier-Stokes system [56].
However, as we can see from the inset of Fig. 5 (left), the spectrum E

S
(k) in the backward regime

deviates from the k−5/3 of the pure 2D3C system showing a k−3 slope (see Refs. [19,56]), meaning
that the contribution of the 3D interactions is important for the dynamics of the backward cascade.

In Fig. 6, the analysis of the decomposed energy fluxes is presented. Here we compare the total flux,

(k), with the different contributions coming from the slow-fast decomposition, namely interactions
defined inside the slow manifold Eq. (22), inside the fast manifold Eq. (23), and the coupling ones
Eq. (24). From the flux decomposition, we can see that the energy transfer from the forcing to the
small wave numbers is achieved thanks to two different processes: First, the energy is transferred via
coupling interactions between fast and slow modes, 
b

F�S
(k), and only at very small wave numbers

is transferred by interactions on the slow manifold, 

S�S

(k). These results suggest that in a turbulent
flow under rotation, Re � 1 and Ro = O(0.1), the backward cascade cannot be seen as a simple
2D process but is due to nontrivial three-dimensional coupling, resulting in an accumulation of the
energy not only toward the slow manifold k

S
but also toward the small wave numbers k < kf .

The backward cascade regime is extended in set A, comparing the spectra and the fluxes in this
simulation [Figs. 5 (left) and 6 (left) respectively], we can see that the three-dimensional coupling
interaction measured in the fluxes are more important in the range k � kf , corresponding to the
range where the energy spectrum has a scaling slope close to k−3, far from the k−5/3 typical of the
2D inverse cascade. On the other hand, the forward cascade, developed in set B for k > kf , is clearly
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FIG. 6. Total energy flux 
(k) (solid line) and fluxes decomposed on the different slow-fast interactions,
namely slow-slow interactions, 


S�S
(k) (empty squares), fast-fast interactions 


F�F
(k) (empty triangles), and

coupling slow-fast interactions 

F�S

(k) (empty circles). (Left panel) Data from simulation A; (right panel)
data from simulation B. The dashed vertical lines represent the cutoff scale, kc, used in the analysis of the
SGS energy transfer (see Sec. VI), which are respectively in the inverse and in the direct cascade regimes for
simulation sets A and B.

carried by 3D interactions, as observed also in Ref. [40], with 

S�S

(k) going quickly to zero at
k > kf . The forward flux is led by 


F�F
(k), hence by the interactions inside the fast manifold plus

a subleading contribution coming from the coupling between slow and fast manifolds, which in any
case is a 3D effect.

Recalling the discussion in Sec. III, the energy flux coupling slow and fast modes is composed
of three different classes of triads [see Eq. (24)]. Furthermore, one of them is a well-defined energy
flux [first term in the right-hand side of Eq. (24)] while the remaining two are not conserving energy
separately; only their sum can be seen as a conservative energy flux on the total volume. In this
work, we have analyzed the importance of these three different subsets separately. The first results
we found are that the flux term [first term in Eq. (24)] is very small, i.e., almost always zero, and
hence 


F�S
(k) in Eq. (24) can be rewritten as



F�S

(k) ≈ −
∑
k∈W

|k|�k

ikj û
∗
i (k)

∑
p∈V

q∈W

ûi( p)ûj (q)δ( p + q − k)

︸ ︷︷ ︸

a

F�S
(k)

−
∑
k∈V

|k|�k

ikj û
∗
i (k)

∑
p∈W

q∈W

ûi( p)ûj (q)δ( p + q − k)

︸ ︷︷ ︸

b

F�S
(k)

.

where
a
F�S

(k) comes from the Fourier transform of the mixed nonlinear term for the energy evolution

equation inside the slow field in Eq. (15), while 
b
F�S

(k) comes from the evolution equation for the
energy contained in the fast field; see Eq. (16).

In Fig. 7, we show separately 
a
F�S

(k) and 
b
F�S

(k) compared with the total coupling term shown
in Fig. 6. As already said, the two terms are not separately conserving energy and they do not go
to zero for |k| → ∞. However, it is interesting to study their signs. The backward regime of both
simulations gives 
a

F�S
(k) < 0 and 
b

F�S
(k) ≈ 0, meaning that the energy is going backward into

the slow manifold. On the other hand, in the forward cascade k > kf , 
b
F�S

(k) becomes positive,
meaning that there is net transfer of energy from the forcing to the small wave numbers inside the
fast modes due to coupling interactions.
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FIG. 7. Energy flux due to coupling slow-fast interactions, 

F�S

(k) (empty circles) decomposed on its two
different contributions, the one coming from the evolution equations of the slow modes (upward triangles) and
the one from the evolution equation of the fast modes (downward triangles). (Left panel) Data from simulation
A; (right panel) data from simulation B. The dashed vertical lines represent the cutoff scale, kc, used in the
analysis of the SGS energy transfer (see Sec. VI).

B. Helical mode analysis

To conclude the analysis of the energy flux in Fig. 8, we analyze the decomposition into homo- and
heterochiral contributions. For set A, left panel, we see that the backward energy transfer, i.e., that
at k < kf , is mainly given by homochiral interactions in the range where the dynamics is dominated
by three-dimensional coupling terms. This result is expected because in a three-dimensional domain
only homochiral triads are known to produce an inverse cascade [46,47]. At smaller wave numbers
instead, where we enter in the regime dominated by the interactions in the 2D slow plane, we have the
same contribution coming from the homo- and heterochiral triads. This result is again in agreement
with the previous results in Ref. [56], where it was shown that helicity cannot play a role in 2D
dynamics because it always vanishes in that case. In the right panel of the same figure, Fig. 8, we
can see that the forward cascade is generated by heterochiral triads.

We summarize the results coming from the Fourier space analysis of the energy flux in Table II.
Here we report the values of the mean flux decomposed on the different helical or slow-fast
interactions normalized to the total energy flux at a scale k = k∗ in both directions of the energy
cascade. For the inverse cascade, we found that the homochiral interactions coupling the two slow-fast
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FIG. 8. Total energy flux 
(k) (solid line) and fluxes decomposed into the homochiral, 
HO (k) (upward
triangles) and heterochiral 
HE(k) (downward triangles) bases. (Left panel) Data from simulation A; (right
panel) data from simulation B. The dashed vertical lines represent the cutoff scale, kc, used in the analysis of
the SGS energy transfer (see Sec. VI).
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TABLE II. The mean values of the energy flux decomposed on both the helical channels and the different
slow-fast interactions normalized by the total flux are reported at k = k∗. The scales k∗ = 30 and k∗ = 3
respectively for the sets of simulations A, C, and B are chosen to estimate the fluxes in the backward regime,
while the scale k∗ = 20 on set B is focused on the forward cascade regime.

Set Ro kf k∗ 
HO/
 
HE/
 

F�F

/
 

F�S

/
 

S�S

/


(A: Inverse) 0.1 [40:42] 30 0.73 0.27 0.005 0.98 0.015
(C: Inverse) 0.05 [40:42] 30 0.60 0.40 0.01 0.95 0.04
(B: Split) 0.1 [4:6] 3 1.0 0.0 0.06 0.82 0.12
(B: Split) 0.1 [4:6] 20 −0.09 1.09 0.70 0.27 0.03

manifolds are dominant at scales close to the forcing. This means that in the parameter regimes used
in all our simulations, realistic for geophysical flows, the energy relies on the homochiral interactions
to be channeled up from the forcing scales to the slow manifold where it can then undergo an inverse
cascade by 2D dynamics. However, it is interesting to notice that at decreasing Rossby number (see
Table II simulation set C) the importance of the homochiral interactions is reduced, suggesting that
in the limit of Ro → 0 the dynamics may become purely 2D up to the forcing scales. Instead, in
the forward cascade regime the total flux is found to be mainly produced inside the fast manifold
through heterochiral interactions (see Table II set B at k∗ = 20).

VI. SUBGRID-SCALE ENERGY TRANSFER

To define a physical-space energy transfer, we use a filtering approach common in large-eddy
simulations (LES) [57–59]. We need to introduce a filtered velocity field and a filtered set of governing
equations. In this way, we can define the scale separation in physical space and we can write the
nonlinear structure of the coupling term among scales below and above the filter threshold. In this
work, we use the “sharp spectral cutoff” filter in Fourier space [57] with a cutoff wave number
kc. The choice of a sharp spectral cutoff filter is convenient for two reasons. First, it is a projector
which produces a clear scale separation. Second, there is an analytical equivalence between the mean
energy transfer across the filter cutoff scale � = π/kc, and the Fourier-space flux across the wave
number |k| = kc. The measure of the energy transfer in real space can then be achieved, following
the coarse-graining procedure discussed in Ref. [60] and outlined briefly here.

For a filter kernel G�(x), it is possible to obtain the filtered velocity field u(x,t) by a convolution
in real space between the filter kernel and the total velocity field u(x,t),

u(x,t) ≡
∫

�

d y G�(|x − y|) u( y,t) =
∑
k∈Z3

Ĝ�(|k|) û(k,t)eikx , (29)

with Ĝ� being the Fourier transform of G�; see Refs. [57,59]. To have access to the dynamical
interaction existing between the coarse-grained and the subgrid-scale (SGS) velocity fields, we need
to apply the same filtering operation to the Navier-Stokes equations,

∂t u + ∇ · (u ⊗ u) + 2� × u = −∇p − ∇ · τ�(u,u) + ν�u , (30)

where τ�(u,u) is the SGS stress tensor, defined as

τ�
ij (u,u) = uiuj − uiuj , (31)

and it contains the interactions between the scales above and below the filter threshold, �. Multiplying
each term of Eq. (30) by the velocity field, we get an explicit formulation of the SGS energy transfer



�

, the real contribution to the energy transfer across the filter scale. Hence, the kinetic energy
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balance in terms of 

�

becomes
1
2∂t (uiui) + ∂jAij = −


� − 

�

L , (32)

where ∂jAj = ∂jui(uiuj + pδij + τ�
ij − 1

2uiuj ) and 

�

L = −∂jui(uiuj − uiuj ). It is important to

distinguish 

�

L from the SGS energy transfer 

�

because the former depends only on resolved-scale
quantities and does not contribute to the mean energy flux between subgrid and resolved scales (RS).
In contrast,



� = −∂jvi τ�

ij (v,v) = −∂jvi(vivj − vivj ) (33)

is the only flux which depends on both the SGS and the RS. Following the slow-fast decomposition
introduced in Sec. III, we can introduce with the same procedure a real-space SGS energy transfer
for each velocity component. In the following, we will consider separately the contribution coming
from the slow and fast manifolds and their coupling interactions. The three different contributions
are defined as [60,61]



�

S�S
= − ∂ju

S

i

(
uS

i u
S

j − uS

i u
S

j

)
, (34)



�

F�F
= − ∂ju

F

i

(
P

F

[
uF

i uF

j − uF

i uF

j

])
, (35)



�

F�S
≈ −∂ju

F

i

(
uS

i u
F

j − uS

i u
F

j

) − ∂ju
S

i

(
P

S

[
uF

i uF

j − uF

i uF

j

] )
. (36)

Note that in Eq. (36) we have used the approximation assuming 〈∂ju
F

i ( uF

i uS

j − uF

i uS

j )〉 ≈ 0, as
discussed in Sec. V.

VII. RESULTS: PHYSICAL-SPACE ANALYSIS

In this section, we present the physical-space analyses on the statistics of the SGS energy
transfer after decomposing the interaction of the slow and fast manifolds. We present the probability

distribution functions (PDFs) of 

�

compared with its separate contributions, namely 

�

S�S
, 


�

F�F
,

and 

�

F�S
; see Eqs. (34), (35), and (36). In the following, we use a sharp projector filter to separate

the resolved from the subgrid scales. In particular, for the analysis of the inverse cascade, we consider
set A with a cutoff at kc = 12, while in the forward case using data from simulation set B, we apply
a cutoff at kc = 20.

In Fig. 9, the PDF and the PDF normalized to their standard deviation measured on the dataset
A are presented. We can see that fluctuations in the backward regime are dominated by slow-slow
interactions. This result may appear obvious considering that the energy contained in the slow
manifold at wave numbers |k| = 12 is an order of magnitude larger than the energy contained in the

fast field [see spectra in Fig. 5 (left panel)] and considering that 

�

S�S
is the only term defined as the

product of three slow fields [see Eq. (34)], while all the other interactions couple at least two fast
fields [see Eqs. (35) and (36)]. However, comparing the normalized PDFs, Fig. 9 (right panel), we
find that the different terms are all characterized by large and symmetric fluctuations up to 10–15
times the standard deviation, which are able to locally mask the information about the mean energy
transfer obtained after an integration over the volume.

In Fig. 10, the visualizations of 

�

and its different components at a fixed time are shown to
give an idea of the local distribution of extreme events of energy transfer measured in the PDF.
From this figure, it is worth noticing that the coupling term is mostly covered by the light blue color,
indicating a backward energy transfer with an intensity of the order of 0.075 comparable with the
mean energy transfer at k = 12 shown in Fig. 6, left panel. This observation would suggest that in
this configuration the coupling term is the best representative of the mean properties of the energy
transfer.
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FIG. 9. (Left panel) PDFs of SGS energy transfer for the inverse cascade simulation, decomposed on the

different slow-fast interactions: total interactions 

�

(solid line), slow-slow interactions 

�

S�S
(empty squares),

fast-fast interactions 

�

F�F
(empty triangles), and coupling slow-fast interactions 


�

F�S
(empty circles). (Right

panel) Standardized PDF to zero mean and σ = 1 for the same data. All the SGS energy transfer are measured
with the cutoff at kc = 12, in the inverse cascade regime of simulation A. The values for the skewness (S) and the

flatness (F ) for the PDF of the total interactions (

�

) are S = 〈x3〉/〈x2〉3/2 � −0.42 and F = 〈x4〉/〈x2〉2 � 14.

In Fig. 11, the same type of PDFs are presented for the forward cascade regime using dataset B
with a cutoff at k = 20. In this regime, we observe fewer Gaussian PDFs with fatter tails compared
to the backward case, suggesting that the forward regime has a better energy flux which is visible
not only on average but also on the local fluctuations. Looking at the tails, however, we see again
fluctuations 103 times larger than the mean value [which is O(0.1); see Fig. 7]. Here, in contrast, the
less energetic modes are the slow ones, and hence the fluctuations due to slow-slow interactions are

completely subleading compared to 

�

F�F
. The standard PDFs show even larger tails in the forward

case, where values around 100 times larger than the standard deviation have been measured. The

skewness toward the right tail in the PDF of 

�

tells us that extreme events are more probable to
happen toward the direction of the mean energy transfer, which is on average positive at the cutoff
scale kc = 20 of dataset B.

FIG. 10. Visualization of the total SGS energy transfer 

�

, across the filter scale corresponding to kc = 12,

and its three terms coming from the slow-fast decomposition, namely slow 

�

S�S
, fast 


�

F�F
, and coupling



�

F�S
. The data correspond to simulation A with the inverse cascade.
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FIG. 11. (Left panel) PDFs of SGS energy transfer for the split cascade simulation, decomposed on the

slow-fast different interactions: total interactions 

�

(solid line), slow-slow interactions 

�

S�S
(empty squares),

fast-fast interactions 

�

F�F
(empty triangles), and coupling slow-fast interactions 


�

F�S
(empty circles). (Right

panel) Standardized PDF to zero mean and σ = 1 for the same data. All the SGS energy transfer are measured
with the cutoff at kc = 20, in the direct cascade regime of simulation B. The values for the skewness (S) and the

flatness (F ) for the PDF of the total interactions (

�

) are S = 〈x3〉/〈x2〉3/2 � 1.5 and F = 〈x4〉/〈x2〉2 � 68.

In Fig. 12, the visualizations at fixed time for the different SGS energy transfers are presented,
note that the extreme fluctuations are produced inside the Taylor columns for all types of interactions.

A. Q criterion

In the following, we measure the role and the relative importance of the regions dominated by
strain compared to the regions dominated by vorticity (i.e., the regions in physical space occupied by
the big columnar vortices) on the local and mean energy transfer across scales. In order to distinguish
these areas in the physical domain, we use the Q criterion first introduced in Ref. [62] and which
has been used extensively since then (e.g., Ref. [63]). The criterion is based on the scalar field

Q(x) = 1
8 [|∇ × u|2 − |∇u + (∇u)T |2], (37)

FIG. 12. Visualization of the total SGS energy transfer 

�

, across the filter scale corresponding to kc = 20,

and its three contributions coming from the slow-fast decomposition, namely: slow 

�

S�S
, fast 


�

F�F
, and

coupling 

�

F�S
. The data correspond to simulation B with a split energy cascade.
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FIG. 13. Mean value of SGS energy transfer, 〈
�〉, conditioned on the volume’s regions where Q � Q̂

(solid line). The same analysis is done considering only slow-slow interactions 〈
�

S�S
〉 (empty squares), fast-fast

interactions 〈
�

F�F
〉 (empty triangles), and coupling slow-fast interactions 〈
�

F�S
〉 (empty circles). (Left panel)

Data from dataset A with a cutoff at kc = 12, and (right panel) data from dataset B with a cutoff at kc = 20. In
both cases, the field Q is measured from a filtered velocity field with energy up to k = 7.

which is the velocity gradient’s second invariant. It allows the identification of regions dominated
by vorticity where Q > 0, while regions dominated by strain are characterized by a negative value
of Q.

To have a clearer identification of the large-scale vortices without contamination from small-scale
structures, we calculate Q using the low-pass filtered velocity field. To filter out the small scales, we
use a sharp filter with a cutoff at k = 7. Using the resultant Q(x) field, we can measure its spatial

correlation with SGS flux. In particular, we measure the mean 〈
�〉 conditioned on different levels
of Q(x):

〈
�
(x|Q � Q̂)〉 = 1

V

∫
V



�

(x|Q � Q̂)dx. (38)

When Q̂ is equal to the maximum Q, we recover the mean value over the entire domain, which
equals the Fourier space energy flux across the filter wave number k = π/�. The measurements of

〈
�
(x|Q � Q̂)〉 obtained from the two datasets are presented in Fig. 13. From Fig. 13, we can see

that both in the inverse and in the split cascade regimes, the mean energy properties are given by
the strain regions with Q(x) < 0. In Fig. 14, we further decompose the PDF of SGS energy transfer
for the two regimes (inverse or forward) conditioning on being in a strain Q < 0 or rotating region
(Q > 0). Remarkably enough, we observe that the fluctuations of the SGS energy transfer for the
forward regime (Fig. 14, right panel) show a different trend, with larger fluctuations when inside
the strong vortical regions (Q > 0). Concerning the inverse cascade regime (Fig. 14, left panel), we
do not measure any difference inside rotating or strain regions. Both results support the indication
that the intense fluctuations of the SGS energy transfer are not locally correlated with the same
topological structures that contribute to the mean component.

VIII. CONCLUSIONS

In this work, we assessed the scale-by-scale energy transfer in a fully developed rotating turbulent
flow by means of state-of-the-art numerical simulations. We conducted two sets of simulations with
different forcing scales and angular rotation rates such that in one case the energy flux is upscale
while in the other case there is a split cascade going simultaneously upscale and downscale from that
of the forcing. We measured the Fourier space fluxes in order to quantify the effects of rotation on its
mean properties. We performed a physical-space investigations in order to distinguish the dynamical
role of regions dominated by columnar vortices from regions dominated by strain.
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FIG. 14. PDFs of SGS energy transfer 

�

(solid line) and the same PDF measured only on regions of space
dominated by vorticity, Q > 0, (downward triangles) and on regions dominated by strain, Q < 0, (upward
triangles). (Left panel) Data from dataset A with a cutoff at kc = 12, and (right panel) data from dataset B with
a cutoff at kc = 20. In both cases, the field Q is measured from a filtered velocity field with energy up to k = 7.

From the Fourier space analysis, we identified the structure and the geometry of interactions
leading to the mean inverse energy transfer. Two possible scenarios are known to provide such
behavior; the dynamics follows either (i) two-dimensional channels given by the triads constrained
to live on the plane perpendicular to the rotation axis, k = (kx,ky,kz = 0) (“slow manifold”), or (ii)
fully three-dimensional interactions coupling triads with definite chirality (“homochiral triads”). To
evaluate the relative weight of the different contributions to the total flux, we projected the flow field
on (i) the slow-fast manifolds and on (ii) the homo- and the heterochiral subsets.

We found that the accumulation of energy on the 2D slow manifold is produced by a
three-dimensional mechanism involving triads connecting the slow with the fast manifolds. In
particular, this behavior is more pronounced close to the forcing scales, where it is supported by an
imbalance between homo- and heterochiral interactions. Moving toward the smallest wave numbers,
where the energy is almost fully contained in the slow manifold, the two-dimensional interactions
become the only ones responsible for the backward transfer. This observation is supported by the
fact that the contributions on the inverse flux coming from homo- and heterochiral triads become
indistinguishable at those wave numbers, as expected in the 2D dynamics. In contrast, we found
that the direct cascade is always driven by triadic heterochiral interactions living inside the 3D fast
manifold.

From the physical-space analysis of the energy transfer, we quantified the relative influence of
intense regions dominated by strong coherent vortices or by high values of the strain. In the definition
of the physical-space energy transfer, we followed the approach used in LES based on the introduction
of a filtered velocity field. For the spatially local SGS transfer, we distinguished the strain regions
from the vortical ones using the Q criterion (see Refs. [62,63]). We observed that the fluctuations
overwhelm the mean value of the transfer by several orders of magnitude.

Upon performing the spatial decomposition and a conditional average of the SGS energy transfer
on regions dominated by strain or by vorticity, we observed that the mean transfer can be completely
reconstructed by the strain regions only. The situation changes for the conditioned PDF of the SGS
energy transfer, where we find that the extreme events are dominated by the more energetic vortical
regions. The latter was more evident in the forward cascade regime where the PDF appears to
be skewed toward the right tail in accordance with the cascade direction. On the other hand, in the
inverse cascade, the intensity of the fluctuations measured inside or outside the vortices is comparable,
suggesting that the inverse energy flux is less efficient and closer to equilibrium compared to the
forward cascade. This observation is in a qualitative agreement with the absence of intermittency in
the inverse cascade regime. In conclusion, we have found that the inverse energy transfer in rotating
turbulent flows is the result of combined 3D (homochiral) and 2D effects and that the exact decoupling
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among slow and fast manifolds expected in the limit of very small Rossby number is not observed
at the rotation rates investigated here. A possible extension of this work consists in the assessment
of the energy transfer sensitivity on the chirality of the external forcing. A similar analysis in this
direction has been performed in the case of a 2D3C flow, where the inverse energy cascade has shown
to be strongly dependent on the level of helicity injected by the forcing [64]. The analysis of the role
of the forcing chirality in the context of turbulence under rotation is left for future work.
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