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The Derviche Tourneur sodium experiment, a spherical Couette magnetohydrodynamics
experiment with liquid sodium as the medium and a dipole magnetic field imposed from
the inner sphere, recently underwent upgrades to its diagnostics to better characterize the
flow and induced magnetic fields with global rotation. In tandem with the upgrades, a
set of direct numerical simulations were run to give a more complete view of the fluid and
magnetic dynamics at various rotation rates of the inner and outer spheres. These simulations
reveal several dynamic regimes, determined by the Rossby number. At positive differential
rotation there is a regime of quasigeostrophic flow, with low levels of fluctuations near the
outer sphere. Negative differential rotation shows a regime of what appear to be saturated
hydrodynamic instabilities at low negative differential rotation, followed by a regime where
filamentary structures develop at low latitudes and persist over five to ten differential rotation
periods as they drift poleward. We emphasize that all these coherent structures emerge from
turbulent flows. At least some of them seem to be related to linear instabilities of the mean
flow. The simulated flows can produce the same measurements as those that the physical
experiment can take, with signatures akin to those found in the experiment. This paper
discusses the relation between the internal velocity structures of the flow and their magnetic
signatures at the surface.
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I. INTRODUCTION

Spherical Couette flow, a fluid medium sandwiched between two spheres rotating about a common
axis, has a long history in the fluid dynamics community. Transitions to chaos were investigated in
spherical Couette flow with a stationary outer sphere, with many groups reporting axisymmetric
instabilities, akin to Taylor Görtler vortices, that sometimes broke the equatorial symmetry of the
system [1–5]. Planetlike and starlike systems were studied by rapidly rotating the outer sphere. At
low differential rotation these flows are organized quasigeostrophically [6,7] with a large shear across
the tangent cylinder, the immaterial cylinder aligned with the rotation axis and touching the inner
sphere’s equator. The first instability of this Stewartson shear layer is nonaxisymmetric [8,9].

At moderate counterrotation, experiments in Maryland reported inertial modes [10,11] excited
by an over-critical shear across the Stewartson layer. Wicht [12] provides a thorough bestiary of the
different regimes in numerical realizations of spherical Couette flow.

Magnetized spherical Couette (MSC) flow, where the fluid is electrically conducting and a
magnetic field is applied from outside the fluid domain, introduces new dynamics. With an applied
dipole field and a conductive inner sphere, magnetic entrainment yields a fluid domain rotating faster
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FIG. 1. Time evolution of the induced magnetic field measured along a meridian at the surface of the DTS-�
experiment spinning at 10 rotations per second. The induced magnetic field is expressed as a percentage of Bo,
the intensity of the imposed magnetic field at the outer sphere’s equator. (a) Br component for �f = −10 Hz.
(b) Bφ component for �f = −20 Hz.

than the inner sphere. This linear, theoretical result [13,14] at low differential rotation has been
extended to nonlinear systems in both experiments [15] and simulations [16]. Experiments reveal
that fluctuations show up as a succession of broad peaks in the magnetic frequency spectra [17],
which correspond to increasing azimuthal wave numbers. They have been related to linear modes
of the nonlinear magnetic base flow, but numerical simulations suggest that nonlinear instabilities
could show similar signatures [28].

The experimental model for the MSC flow simulated here is the Derviche Tourneur sodium
experiment (DTS-�), a ri = 74 mm radius inner sphere containing a strong permanent dipole magnet
inside a ro = 210 mm radius outer sphere [15]. As the name implies, the fluid medium is liquid
sodium. The shell of the inner sphere is made of copper (with four times the electrical conductivity
of liquid sodium), while the outer sphere is made of stainless steel (with one-ninth the electrical
conductivity of liquid sodium). The rotation frequencies of the inner and outer sphere are, respectively,
fi and fo, in the laboratory frame. A recent set of upgrades to the diagnostics allows for better
diagnosing (both in terms of quality and quantity) of flows when the outer sphere rotates (fo �= 0).
As an example, Fig. 1 displays the time evolution of the induced magnetic field at the surface along
a given meridian from latitudes −60 to 60 degrees. The outer sphere rotation rate fo is 10 Hz.
Figure 1(a) plots the Br component for �f = −10 Hz, while Fig. 1(b) shows Bθ for �f = −20 Hz,
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FIG. 2. Dynamic regimes of simulations of the DTS device. The heights of the dark (light) markers scale
linearly with the kinetic (magnetic) fluctuation levels. The fluctuation levels are calculated by integrating the
maps, calculated by Eq. (7), in r and θ . The velocities and magnetic fields are both in nondimensional units
(1/Uo for velocity, VA/Uo for magnetic fields). The Em and � of the simulations are chosen to match those
of the machine at the various outer rotation rates (see Table I). The rotation frequency for each �b value is
indicated on the right axis. The Ek of the simulations are set to 10−6.

using the spherical coordinate system (r,θ,φ), and defining �f = fi − fo the differential rotation
rate.

In tandem with these upgrades and new run campaigns, a set of direct numerical simulations
(DNS) have been run to predict and interpret the kinetic and magnetic measurements of the system.
The set of DNS experiments shows three distinct dynamic regimes, though the lines between them are
less than sharp. Figure 2 shows the (scaled) energies in the kinetic and magnetic fluctuations for the
full set of DNSs, with indications of where the dynamics, discussed herein, change from one regime
to another. The Rossby number Ro = �f/fo appears as the prime determinant of which regime the
system is in. For Ro ∈ [−0.5, 1.5] the bulk flows appear quasigeostrophic with weak fluctuations.
For Ro < −1.5 the flow is in a turbulent state, characterized by long-lived filamentary structures.
For Ro = −1.2, − 1.0 fluctuations are dominated by large-scale, persistent modes. The determining
factor for the kinetic fluctuation levels changes between regimes. “Modal” fluctuation levels are
determined by the Ro; “filamentary” fluctuation levels are determined by the fo, which most likely
relates to the diminished influence of the background magnetic field as the outer sphere spins faster.
The magnetic fluctuation levels are determined by both Ro and fo, but this only demonstrates that
the velocity term in the magnetic induction equation [Eq. (1) in Sec. II] has increased. The changes in
both fluctuation levels are small over the range of Ro’s and fo’s shown in “quasigeostrophic” regime,
so the exact relationship between the parameters and the fluctuation levels is out of the scope of
this paper.

This paper will proceed as follows. Section II introduces the numerical code used to model the
DTS-� device. Section III shows the analysis of the computed velocity and magnetic fields when
they are averaged over time and azimuth. Section IV considers the full spatiotemporal data of the
simulations and applies several techniques for analyzing them. The persistent modes are subject to a
principal component analysis (PCA). The filaments are identified with their magnetic signatures at
the surface. Section V examines the linear stability of the mean velocity and magnetic fields. Section
VI is a discussion of magnetic measurements at a single meridian on the outer surface of the sphere.
This is the measurement that is available on the physical DTS-� device. Section VII are conclusions
for this work and perspectives for the future.
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TABLE I. Definitions of useful nondimensional parameters for DTS-� and their values or ranges at various
outer sphere rotation rates. The two values given for Ro are, respectively, the maximum and minimum values
attainable for a given fo. The values given for �o and �b are, respectively, the Elsasser number at the outer
sphere, where the applied field is weakest, and at the middle radius sphere, where the dynamics actually live.

Ek Em Ro �o �b

fo
ν

r2
o |�|

η

r2
o |�|

��

�

B2(r=ro)
μ0ρη|�|

B2(r=(ri+ro)/2)
μ0ρη|�|

5 Hz 4.69×10−7 6.38×10−2 [−7.0, 5.0] 1.77×10−2 0.187
10 Hz 2.35×10−7 3.19×10−2 [−4.0, 2.0] 8.87×10−3 0.095
15 Hz 1.56×10−7 2.13×10−2 [−3.0, 1.0] 5.92×10−3 0.063
20 Hz 1.17×10−7 1.60×10−2 [−2.5, 0.5] 4.44×10−3 0.047

II. NUMERICAL MODEL

The dynamical system of the DTS-� is described by the magnetic induction and Navier-Stokes
equations for an incompressible fluid. Equations are nondimensionalized by taking as length-scale
the radius of the outer sphere ro and as characteristic time τ ≡ |��|−1, where �� ≡ 2π (fi − fo)
is the angular velocity difference between the inner and outer sphere. Without loss of generality,
�� > 0, while � ≡ 2πfo can be either positive (corotation) or negative (counterrotation). After
choosing characteristic velocity Uo ≡ ro|��|, the nondimensionalized magnetic induction equation
reads

∂tb = ∇ × (u × b) + Em

|Ro|�b, (1)

where u is the incompressible velocity field, b is the magnetic field, Ro is the (signed) Rossby number
(�−1��), and Em is the magnetic Ekman number (η/r2

o |�|, with η the magnetic diffusivity). The
Navier-Stokes equation, in the frame rotating with the outer sphere, is nondimensionalized as

∂tu + 2

Ro
ẑ × u + (∇ × u) × u = ∇p∗ + Ek

|Ro|�u + �oEm

Ro2 (∇ × b) × b, (2)

where Ek is the Ekman number (ν/r2
o |�| with ν the viscosity), �o is the Elsasser number at the outer

sphere (B2
o /μ0ρη|�|, with Bo the intensity of the imposed magnetic field at ro on the equator, μ0 the

magnetic constant, and ρ the density of the liquid), and p∗ a reduced pressure absorbing all potential
forces. The magnetic field is represented in the code as an Alfvén velocity (VA = B/

√
μ0ρ), and

the nondimensional magnetic field is thus VA/U0. The values of these parameters in the DTS-�
are given in Table I. Because �i is always � 1 and �o is always � 1, �b [the Elsasser number at
r = (ri + ro)/2] is used to give the best intuition as to the importance of the magnetic field in a given
simulation. The simulations presented here were designed to match the Ro, Em, and �b,o values of
the machine as closely as possible. The Ek is treated as a nuisance parameter and set to 10−6; how
and why we treat it that way is handled below.

The two dynamical equations are completed by boundary conditions. The no-slip boundary
condition applies to the velocity field, namely u(r = ri) = r sin θφ̂ and u(r = ro) = 0. The magnetic
field matches with potential fields outside the solid shells and the conductivity jumps at the solid-liquid
boundaries are treated within the finite difference framework [18,19]. Everything stays spherically
symmetric to fit in a spectral framework. However, as the goal is to investigate the properties of
a real experiment, the applied magnetic field is chosen to approximate the field of DTS-�’s inner
magnet, rather than a pure dipole, including magnetic harmonics up to degree 11 and order 6 [18].
The inhomogeneous magnetic field is rotated in phase with the inner sphere.
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(a)

(b)

FIG. 3. Colormaps showing kinetic energy in each m > 0 azimuthal wave number as a function of spherical
radius for (a) Ro = −2.0,�b = 0.095 and (b) Ro = −1.0,�b = 0.095. The m ∈ [1,5] are colored, the others
have their opacity set as a function of the largest value in the bulk flow. A zoom of the last 0.01 is shown on the
right.

Because both velocity (u) and magnetic (b) fields are divergence free, our three-dimensional
spherical code xshells represents them as solenoidal vector spherical harmonics

u(ri,θ,φ) =
max∑

=|m|

mmax∑
m=−mmax

∇ × ∇ × s,m(rk)Ym
 (θ,φ)r̂ + ∇ × t,m(rk)Ym

 (θ,φ)r̂ and

b(rk,θ,φ) =
max∑

=|m|

mmax∑
m=−mmax

∇ × ∇ × S,m(rk)Ym
 (θ,φ)r̂ + ∇ × T,m(rk)Ym

 (θ,φ)r̂, (3)

where Ym
 are scalar spherical harmonics. The radial functions are evaluated at every radial grid

point, and their derivatives are taken by second-order finite difference. The forwards and backwards
spherical harmonic transforms are carried out using the efficient SHTns library [19]. xshells
performs the time stepping of Eq. (2) in the fluid spherical shell, and the time stepping of Eq. (1)
in both the conducting walls and the fluid. It uses a semi-implicit Crank-Nicholson scheme for the
diffusive terms, while all other terms are handled by an Adams-Bashforth scheme (second order in
time). The time, space, and spectral resolutions of the simulations vary most strongly with Ek for
numerical stability. The resolutions for the runs presented here are specified in Appendix B.

Preliminary simulations in the range 10−5 > Ek � 10−7 suggested that Ek serves to set the spatial
resolution required for numerical stability but does not drastically affect the dynamics of the large
eddies in the bulk flow, as long as Ek is small enough. The induced magnetic spectra were similarly
agnostic to Ek. Thus, we make two assumptions in the interest of reducing the necessary spectral
resolution. The first is that Ek = 10−6 adequately represents the large-scale component of the flow.
The second is that a hyperviscosity [20] adequately models the turbulent cascade to small scales in
the Ekman layer. To justify this, Fig. 3 shows the energy in each azimuthal harmonic m as a function
of radius. The higher-order harmonics are only really visible in the outermost 0.005 of the sphere.
The underlying assumption of hyperviscosity is that, for a turbulent cascade, there is a net transfer
of energy to smaller and smaller scales through a Kolmogorov cascade, and that this energy transfer
can be modeled as an effective viscosity that increases in value at smaller and smaller scales. Our
simulations use a modified version of the hyperviscosity [21] that only applies to the angular part of
the Laplace operator and to the last 20% of degrees (0 > 0.8max) according to

ν>0 = ν0 × h(−0)/(max−0), (4)
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where ν0 is the base viscosity and h is the ratio between the viscosity at max and ν0, here chosen to
be 1000.

In the majority of cases at �b = 0.19, 0.095, the simulations were initialized from a previous set
of simulations with identical Ro and slightly different � and Em. The simulations at �b = 0.063
were initialized from runs at the same Ro at �b = 0.095. The runs at Ro = −0.50, − 0.75, and
−1.75 were seeded off simulations at Ro = −1.00, − 0.50, and −1.50, respectively. In all cases,
the analyses are carried out after waiting 40 differential rotation periods for the new simulation to
settle. Unless otherwise mentioned, statistics and analyses are reckoned over 60 differential rotation
periods.

III. TIME-AVERAGED SPATIAL DATA

The diagram of Fig. 2 shows the kinetic and magnetic fluctuation levels of the simulations. These
fluctuations are defined in a frame of reference rotating with the inner sphere

b(r,θ,φ) = 1

N

N∑
i=1

b(r,θ,φ,ti) (5)

b̃(r,θ,φ,ti) = b(r,θ,φ,ti) − b(r,θ,φ). (6)

The corotation is necessary for the magnetic fluctuations because the applied field is three
dimensional. A two-dimensional map of the kinetic or magnetic energy densities can be found
by integrating

〈̃b · b̃〉(r,θ ) = 1

N

N∑
i=1

1

2π

2π∫
0

dφb̃ · b̃(r,θ,φ,ti). (7)

These maps, when integrated in r and θ , give the values represented in Fig. 2.
The maps of kinetic and magnetic fluctuation levels for several flows are shown in Fig. 4. The

top row shows the kinetic fluctuation levels with isocontours of the angular velocity overplotted;
the dashed lines indicate the region of superrotation (i.e., where the fluid rotates with an angular
velocity larger than that of the inner sphere [15]). The bottom row shows the magnetic fluctuation
levels with fieldlines of the poloidal magnetic field overplotted. Maps for Ro = 1.5, − 1.0, and
−2.0, all at �b = 0.095, are shown in successive columns. These flows were chosen as exemplar
of the various different dynamic regimes. The flow at Ro = 1.5 is defined by low fluctuation levels
of both the kinetic and magnetic fields. The mean flow is decidedly quasigeostrophic, with only the
barest nub of a superrotary region near the equator of the inner sphere. The Ro = −1.0 flow has a
quasigeostrophic region near the outer edge, but the dominant feature of both the mean flow and the
fluctuations is a large superrotary region extending into bulk flow where the strongest of the kinetic
and magnetic fluctuations live. The Ro = −2.0 flow starts to return to quasigeostrophy, although the
bulk flow has not quite reached a state of z invariance. Here the fluctuations of the kinetic energy live
predominantly toward the outer sphere, while the strongest magnetic fluctuations are concentrated
more toward the inner sphere. This is not particularly surprising, as the applied magnetic field is 27
times stronger at the inner sphere than the outer.

In Sec. IV we will see that the fluctuations at Ro = −1.0 are characterized by persistent structures
with a fairly well-defined spatial location, while the fluctuations at Ro = −2.0 are characterized by
intermittently formed structures that propagate poleward from their point of origin. This means that
the time averages of Fig. 4(b) give a good indication of the shape of the fluctuations being averaged
over, while the time averages of Fig. 4(c) smear the structures out over the region they propagate
through. As the fluctuations in the case of positive differential rotation were significantly smaller
in scale and in amplitude than those for negative differential rotation, they will be ignored in the
following discussion.
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(a) (b) (c)

(d) (e) (f )

FIG. 4. Colormaps showing fluctuation levels of the magnetic and velocity fields. The first row (a, b, and c)
shows the kinetic fluctuations, the second row (d, e, and f) shows the magnetic fluctuations. The numbers on the
lower right indicate the maximum value of the energy density (excluding the Ekman layer). The contour lines in
the first row represent isocontours of angular momentum of the bulk fluid. Inside the dashed line the bulk fluid
is rotating faster than the inner sphere in the reference frame of the outer sphere. The contour lines in the second
row are field lines of the mean poloidal magnetic field. Each column presents a set of parameters firmly in the
quasigeostrophic (a and d), modal (b and e), and filamentary (c and f) regimes. All of the fluctuation levels are
calculated for �b = 0.095.

IV. SPATIOTEMPORAL ANALYSIS

A. Modal flows

The flows at Ro = −1.2, − 1.0 revealed fluctuations living deep in the bulk of the flow.
Figure 5 shows the time and azimuthally averaged kinetic and magnetic fluctuations at Ro = −1.2,

�b = 0.095 (a and c, respectively) and for Ro = −1.0,�b = 0.095 (b and d, respectively). The
streamlines of the mean meridional flow are plotted over each map. Both cases include an outward
streaming jet originating at the equator of the inner sphere and an inward streaming jet originating
at the equator of the outer sphere. The difference is that at Ro = −1.2 the outward jet dominates the
mean flow, extending to a radius of 0.82, while at Ro = −1.0 the inward jet dominates from a radius
of 0.40. In both cases the oppositely directed jet is too weak to be seen in the streamlines.

The kinetic fluctuations at Ro = −1.2 live predominantly near the stagnation point (us = 0);
those at Ro = −1.0 live in the jet itself (|us |max) as shown in Fig. 6. The jets velocities are shown
in Fig. 6(a). The azimuthal flows, shown in Fig. 6(b), and background magnetic fields, shown in
Fig. 6(c), do not seem to determine whether a location is stable or not, but their profiles are noted
for a later use.

These fluctuations proved susceptible to a principle component analysis (PCA, see Appendix C),
where a spatiotemporal signal is decomposed into individual spatial structures that evolve indepen-
dently of each other in time. The first three of these structures for Ro = −1.0,�b = 0.095, averaged
in azimuth and split into equatorially antisymmetric components in the “northern” hemisphere and
equatorially symmetric components in the “southern” hemisphere, are shown in Figs. 7(a)–7(c)
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(a) (b)

(c) (d)

FIG. 5. As described in the caption of Fig. 4, but only for modal flows. The contour lines represent streamlines
of poloidal circulation. Solid lines are counterclockwise circulation; dashed lines are clockwise circulation. All
of the energies are calculated for �b = 0.095.

(a)

(b)

(c)

FIG. 6. Kinetic fluctuation levels at the equator (solid lines) for Ro = −1.2 and Ro = −1.0 and �b = 0.095
in log-scale (on the left) as a function of r . The (a) bulk flows’ cylindrically radial velocity, (b) bulk flows’
angular velocities, and (c) imposed vertical magnetic field in the equatorial plane are plotted as dashed lines
with the vertical scales on the right. The radii of the peak fluctuation levels are noted on the x axis.
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(a)

(d)

(b) (c)

FIG. 7. (a–c) Colormaps showing azimuthally averaged kinetic energy density of the first three singular
modes of the Ro = −1.0,�b = 0.095 flow. The upper hemisphere shows the equatorially antisymmetric
component of the mode; the lower hemisphere shows the equatorially symmetric component. (d) The energy
in each mode (a–c) as a function of time, scaled against the mean energy in the kinetic fluctuations of the raw
signal. Only the region r ∈ [0.425,0.975] is included in the PCA.

with their time series shown in Fig. 7(d). The streamlines of the meridional flow are plotted over
the maps. All three modes are very clearly symmetric about the equator, and the first mode very
clearly dominates the others over the time period analyzed. The same decomposition is shown for
Ro = −1.2,�b = 0.095 in Fig. 8. The dominant mode (a) is antisymmetric about the equator, but it
arises in chaotic bursts for these parameters (see also Supplemental Material movie [22]). This mode
is more clearly dominant at �b = 0.19; see Fig. 16 in Appendix A.

Figure 9 shows 3D renderings of the dominant principal component, both the velocity field
[Figs. 9(a) and 9(b)] and the surface magnetic field associated with it [Figs. 9(c) and 9(d)] for
Ro = −1.2 [Figs. 9(a) and 9(c)] and Ro = −1.0 [Figs. 9(b) and 9(d)]. The dominant mode is
antisymmetric at Ro = −1.2 and has a predominant azimuthal mode number m = 2, while it is
symmetric at Ro = −1.0 with m = 3. It is worth noting that the background magnetic field, shown
in Fig. 6(c) is 3.5× larger at the Ro = −1.0 fluctuation peak than at the Ro = −1.2 peak.

This behavior connects the modes seen here with those found in other simulations of MSC
flow. For MSC flow without global rotation and a vertical, homogeneous applied field, Hollerbach
[24] found equatorially antisymmetric instabilities of the equatorial jet at low applied magnetic
field and equatorially symmetric instabilities of the stagnation point at an applied field about 2.5×
stronger (depending on the rotation of the inner sphere). The magnetic fields in these simulations
were comparable to those performed here (equivalent to 10−3 < � < 5 × 10−2; see Appendix B).
Continuing on this, Gissinger et al. [25] explored a similar system with a dipole magnetic field
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(a)

(d)

(b) (c)

FIG. 8. (a–c) Colormaps showing azimuthally averaged kinetic energy density of the first three singular
modes of the Ro = −1.2,�b = 0.095 flow. The upper hemisphere shows the equatorially antisymmetric
component of the mode; the lower hemisphere shows the equatorially symmetric component. (d) The energy
in each mode (a–c) as a function of time, scaled against the mean energy in the kinetic fluctuations of the
raw signal. Only the region r ∈ [0.425,0.975] is included in the PCA. See also Supplemental Materials [22]
and [23].

and global rotation (equivalent to Ro = 3.5, 0.007 � �o � 2.8 by our definitions [26]) and found
a similar set of instabilities changing from antisymmetric to symmetric about the equator as the
applied magnetic field was increased. The modes found here are novel in that the jet’s instability is
equatorially symmetric and the return flow instability is antisymmetric. This suggests that the actual
stability of the background flows in all of these cases is agnostic to the magnetic field entirely, but
that the symmetry is determined by the strength of the vertical field where the instability arises. It is
worth noting that the other principle components of Ro = −1.2 resemble the principle component
of Ro = −1.0 in shape and symmetry.

B. Filamentary flow

When the differential rotation is increased beyond Ro = −1.2, the fluctuations move out of the
bulk flow and take up residence along the outer sphere. Here they form long, thin filaments, at
predominantly m = 1, that are carried towards the pole by the meridional circulation. At these
higher latitudes, they split up along the azimuthal coordinate. Figure 10(a) shows a 3D rendering of
an isocontour of kinetic energy and Fig. 10(c) the latitudinal magnetic field at the surface and the
magnetic field lines originating on the kinetic isocontours and extending out of the sphere. The same
is shown at a time 16 differential rotation periods later, as the filament is breaking up, in Figs. 10(b)
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FIG. 9. Paraview rendering of the velocity component (a) and the surface magnetic field (c) of the first
principle component at Ro = −1.2,�b = 0.095. Panels (b) and (d) are the same for Ro = −1.0,�b = 0.095.
The surfaces in (a) and (b) are isocontours of |u|, at 0.15U0 and 0.10U0, respectively, with the azimuthal velocity
painted on the surface. The azimuthal magnetic field of the components (scaled against Bo) at the surface of
the outer sphere are shown in (c) and (d). The inner sphere is visible in (a); the green cylinders represent the
rotation axis. See also Supplemental Material movie [22].

and 10(d), though the surface field is azimuthal in Fig. 10(d). The magnetic field lines extending
from the kinetic structures into the vacuum are also shown in Figs. 10(c) and 10(d). These snapshots
were taken from a simulation at Ro = −2.0 and �b = 0.095 (see also Supplemental Material movie
[27]).

The surface magnetic field seems to be a good indicator of the flow underneath. Figure 11(a)
shows the cylindrically integrated kinetic energy,

Ekin(z,t) =
2π∫

0

dφ

√
1−z2∫
0

ds ũ · ũ(s,z,φ,t), (8)

where s is the cylindrical radius s = r sin θ and z is the cylindrical height z = r cos θ . The latitudinal
field at the surface, averaged in φ, is shown in Fig. 11(b). The times Fig. 10 are taken from are
indicated. The latitudinal field component corresponds well with the kinetic fluctuations near the
equator (below ∼40◦). The azimuthal field (not shown) has a stronger correspondence towards the
poles. As seen in Fig. 10, the kinetic fluctuations are elongated more in φ towards the equator and
more in θ towards the pole; the induced magnetic field seems strongest in the direction perpendicular
to the elongation. This will be shown more in Sec. VI.

Previous simulations of the experiment with a stationary outer sphere also turned up two classes of
fluctuations: a centripetal jet instability near the equator and a Bödewalt type instability originating
in the upper latitudes (above ∼40◦), both propagating poleward [28]. The Bödewalt type instability
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FIG. 10. Paraview [29] rendering of two individual snapshots of the flow at Ro = −2.0 and �b = 0.095.
The renderings show (a) an isosurface of |̃v| corresponding to 0.025 U0 and (b) the same contour 16�f −1

later. The isosurfaces are painted with the azimuthal velocity. The surface magnetic fields, scaled against Bo

of these snapshots are shown in (c) and (d), respectively, along with the magnetic field lines originating at the
isocontours. The latitudinal field is shown in (c), the azimuthal field in (d). The green cylinders represent the
rotation axis. See also Supplemental Material movie [27].

is likely not present here, as the angular velocity profile at the outer sphere’s pole ([28] Fig. 3)
is replaced by an Ekman type boundary layer when the outer sphere rotates. The centripetal jet
instabilities demonstrated some similar behavior to the filaments seen here. Specifically, structures
generated near the outer sphere’s equator are swept poleward by the meridional flow.

V. LINEAR INSTABILITIES OF THE MEAN FIELDS

What is the origin of the modes observed in the various regimes? We use the time- and φ-averaged
fields from the nonlinear simulations as base flow Ū and magnetic field B̄ for linear stability tests.
Note that for these base fields, we keep only the dominant symmetry: Ū is symmetric while B̄ is
antisymmetric with respect to the equatorial plane. We time-step the linearized MHD equations for the
velocity and magnetic field perturbations u and b using the linearized xshells code [30], waiting for
the growth rate to stabilize. We distinguish hydrodynamic stability (B̄ = 0, hence no Lorentz force),
purely magnetic stability (Ū = 0, but ∇ × B̄ �= 0) from magnetohydrodynamic (MHD) stability
(using both B̄ and Ū). By comparing these three cases, we can determine if the MHD instability is
merely a hydrodynamic instability or if the magnetic field plays a more fundamental role. Results
are summarized in Table II. First, the mean magnetic configurations alone (Ū = 0) are found always
stable at the field strengths of this study. Then, we find that the growth rate of the MHD perturbation is
always smaller than the hydrodynamic one. These two observations suggest that the mean magnetic
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(a)

(b)

FIG. 11. (a) Cylindrically Integrated kinetic energy vs. latitude and time. (b) Azimuthally integrated b̃θ

2
at

the surface (scaled against Bo) vs. latitude. Filamentary regime at Ro = −2.0 and �b = 0.095. The vertical
lines indicate the snapshots the renderings of Fig. 10 are taken from. See also Supplemental Material movie [27].

field and associated electric current have no driving effect but rather a damping effect on instabilities
driven by the mean velocity field.

Looking at individual cases, we see that for Ro = −2.0, the mean flow is subject to a strong
hydrodynamic instability of the outer boundary layer, where the magnetic field is weaker. This
happens for the two base flows obtained with different field strength (as measured by �b). For Ro =
−1.0 and Ro = −1.2, the intensity of the perturbations have been reported in Fig. 12. For Ro = −1.2,
depending on the field strength�b, the mean flow may be subject to a similar hydrodynamic instability
of the outer boundary layer (but for a lower wave number) or to an instability localized at the equator
of the inner sphere [Fig. 12(d)]. In both cases, this hydrodynamic instability does not survive the
additional damping due to the magnetic field, which favors a bulk instability of low wave number

TABLE II. Instability of the mean flow of several runs (see Table III for the corresponding nonlinear runs).
m is the unstable azimuthal wave number, σ is the nondimensional growth rate, and “localization” indicates the
localization of the instability in the meridional plane.

Hydrodynamic instability MHD instability

Ro �b m σ Localization m σ Localization

−2.00 0.190 22 1.59 Outer boundary layer 22 1.55 Outer boundary layer
0.095 22 1.30 Outer boundary layer 22 1.29 Outer boundary layer

−1.20 0.190 5 0.264 Outer boundary 4 0.198 Like Figs. 12(e), 12(f)
0.095 18 0.2961 See Fig. 12(d) 4 0.2235 See Figs. 12(e), 12(f)

−1.00 0.190 3 0.1931 Like Fig. 12(a) 2 0.0483 Like Figs. 12(b), 12(c)
0.095 3 0.1828 See Fig. 12(a) 2 0.0569 See Figs. 12(b), 12(c)
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FIG. 12. Colormaps of the intensity of the most unstable mode (white is zero). Top row (a, b, c): Ro = −1.00
and �b = 0.095. Bottom row (d, e, f): Ro = −1.20 and �b = 0.095. Left (a, d) shows the hydrodynamic
instability while middle (b, e) and right (c, f) represent, respectively, the velocity and magnetic intensity of the
magnetohydrodynamic instability. The contours in (a, b, d, e) are isolines of the angular velocity of the mean
flow Ūφ/s with magenta for super-rotation. The contours in (c, f) are isolines of the the toroidal mean magnetic
field B̄φ (dashed for negative). All velocity eigenmodes are equatorially symmetric while the magnetic ones are
antisymmetric.

[m = 4, Figs. 12(e) and 12(f)]. For Ro = −1.0, both hydrodynamic and MHD instabilities occur away
from the boundary layers. They are similar, but the MHD instability seems to be slightly pushed away
from the strong field inner-core to a region were the magnetic field is lower [compare Figs. 12(a) and
12(b)]. Note that for all cases investigated, the MHD perturbations show little dependence upon �b.

We can now compare these instabilities with the fully nonlinear simulations. First, at Ro = −1.0
and �b = 0.095 the PCA analysis shows a mode dominated by an m = 3 symmetry [Figs. 7 and 9(b)],
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while the most linearly unstable mode has m = 2. The detailed structure differ (not shown), but the
same equatorial symmetry is recovered.

We now turn to Ro = −1.2 and �b = 0.095 for which the PCA analysis shows a mode dominated
by m = 2 and antisymmetric with respect to the equator [Figs. 8 and 9(a)]. Instead, the linearly
unstable mode has m = 4 and is symmetric (not shown). Comparing Fig. 8 with Fig. 12(e), we see
that the most unstable MHD mode resembles the second and third PCA (labeled b and c, respectively)
but not the first one which has opposite symmetry. The PCA analysis thus suggests an interplay
between two MHD instabilities, the most unstable (symmetric) and probably the second most unstable
(antisymmetric).

Finally, for Ro = −2, the most unstable mode is located at the outer boundary (not shown) and
we expect it to continuously generate turbulent flow that fills the bulk and leads to the filamentary
regime.

All these observations support that instabilities are triggered by the mean flow, while the applied
magnetic field selects, damps and reshapes them, keeping in mind that the mean flow itself is strongly
affected by the presence of the applied magnetic field. Interestingly, large-scale coherent structures
emerging from hydrodynamical turbulence have also been linked to linear stability of their base flow
[31,32], while exhibiting bursts as seen in Fig. 8. It is thus likely that in our system, linear instabilities
growing on the mean flow lead to the persistent or intermittent structures observed in the various
turbulent flow regimes described here.

VI. SIMULATED PROBES

The trade-off between experimental and numerical physics is that it is easy to get time series
of experimental data, but difficult to extend that data outside a small domain that is amenable to
direct measurement, while it is easy to see all of the structures within a simulation at the cost of
large amounts of computing time. The longest simulations presented here correspond to 10–20 s of
runtime on DTS-�. Given the full spatial data included in the simulation outputs, it is easy to produce
simulated probes and associate these signals to specific structures. In this section we calculate the
magnetic field at the outer surface on a single meridian over from snapshots taken at a rate of 50 per
differential rotation period. All reported values for magnetic measurements are scaled against the
intensity of the magnetic field at the outer sphere’s equator Bo for ease of comparison between the
simulations and the experiment (where Bo is 7.4 mT). All of these simulations were carried out at
�b = 0.095, equivalent to an outer sphere rotation frequency of 10 Hz. The results can directly be
compared to the experimental examples of Fig. 1.

A. Modal flows

The kinetic structures of Fig. 9 have specific azimuthal orders (m) and equatorial symmetries and
are rotating relative to the outer sphere. Thus, the magnetic field at the surface of the sphere should
behave entirely as a function of the shape and rotation of the underlying structure. Figure 13 shows
the magnetic field at the surface for (a) Ro = −1.2 and (b) Ro = −1.0, as well as the measurable
field associated with the dominant principle component for each [Figs. 13(c) and 13(d), respectively].
As in Fig. 9, the magnetic structures at Ro = −1.2 are vertical, and sweep past the probe with a
frequency of 1.7�f (rather, an m = 2 structure rotating with a frequency of 0.85�f ). The magnetic
structures at Ro = −1.0 are helical and sweep past the probe with a frequency of 2.9�f (rather
an m = 3 structure rotating at 0.96�f ). In both cases, the full signal strongly resembles that of the
dominant mode with additional signals on top. This is not preordained, as the PCA was computed
over the entire volumetric dataset, and emphasizes again that the surface measurements are strongly
connected to the global dynamics. The rotation rates are related to the mean flow of the background
at the location of the structure; Fig. 6 indicates the locations where the bulk flow in the equator rotates
at the rate of the structure (r = 0.53 for Ro = −1.0, and r = 0.77 for Ro = −1.2).
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(a) (b)

(c) (d)

FIG. 13. Radial component of the surface magnetic field (as a percentage of Bo at a single meridian on the
outer sphere vs time at (a) Ro = −1.2 and (b) Ro = −1.0 at �b = 0.095. The signal from the dominant principle
component is shown below in (c) and (d), respectively.

B. Filamentary flows

The filaments of Sec. IV B have broader azimuthal extent than the modes of the previous
discussion. They are not easily divided into single azimuthal modes numbers, but the volume
renderings of Fig. 10 show an apparent combination of m = 1 and m = 2, depending on the latitude.
The latitudinal and azimuthal surface fields of Figs. 14(a) and 14(b), respectively, and their spectra
in Figs. 14(c) and 14(d) provided some corroboration. The latitudinal field has the strongest spectral
energy near the equator at a frequency of 0.75�f , and noticeable peaks near 1.5 and 2.25 �f (that
is 2 or 3 times the fundamental) at higher latitudes. The azimuthal field at the surface is much
stronger at higher latitudes and at the higher frequencies. Note also the low frequency modulation
at frequency 0.1�f , visible on the Bθ probes and their spectra, especially around the equator and
20 to 30◦ degrees of latitude, most certainly related to the poleward sweeping of the filaments (see
Sec. IV B).

034608-16



DYNAMIC DOMAINS OF THE DERVICHE TOURNEUR …

FIG. 14. The surface magnetic field, as a percentage of Bo at a single meridian on the outer sphere vs. time
at Ro = −2.0 and �b = 0.095, broken up into (a) latitudinal and (b) longitudinal components. The second row
(c and d, respectively) shows the power spectral density of the magnetic signal at each latitude on that meridian.
The color scale is truncated at one half the maximum spectral level to help highlight the higher harmonics.

VII. CONCLUSIONS

We have carried out a set of magnetized spherical Couette (MSC) flow simulations at nondimen-
sional parameters relevant to the DTS-� machine. These simulations have found a set of different
dynamic regimes. For positive (and weakly negative, Ro � −0.5) differential rotation the flows
were characterized by low fluctuation levels on top of quasigeostrophic base flows. At stronger,
negative differential rotation, the flow consists of large scale internal structures, associated with
magnetic signatures at the surface. At moderate, negative differential rotation, Ro = −1.0 and −1.2,
these structures are persistent, with a specific azimuthal order, rotating with the bulk flow. At stronger
differential rotation, Ro = −2.0, these structures are intermittent (with lifespan around 10 differential
rotation periods), with large azimuthal extent, that propagate poleward from their point of origin.

Given that simulations of MSC flow contain the full structures of the kinetic and magnetic fields,
it is easy to draw relations between the one and the other. What is more difficult is taking the surface
magnetic fields alone, i.e., the diagnostic which is most readily available to the physical DTS-�
device, and inferring the structure of the velocity field that induces it. Nevertheless, some broad
inferences can be made from the surface fields and their spectra. The shift from persistent structures
to intermittent filaments corresponds to a shift from a single dominant frequency in magnetic field
measurements to multiple bands depending on latitude and direction of the magnetic field.

The persistent structures have precedence in other simulations of MSCF, including those carried
out with no global rotation [24] and those carried out with positive differential rotation [25]. (That
our modes occur at different values of |Ro| is not so surprising. Positive and negative differential
rotation are not the same, but they can demonstrate similar dynamics with offset |Ro| [33]). In all
cases these structures arise from hydrodynamic instabilities of the meridional circulation (either
in the equatorial jets or near the stagnation points). What is novel about the structures here is
that the equatorial symmetry of these instabilities is reversed from those of [24,25]. We attribute
this to the strength of the background magnetic field. We have shown that, although the magnetic
field determines the shape of the mean flow in all cases, these two-dimensional flows are stable
or unstable to three dimensional hydrodynamic instabilities independent of the magnetic field. The
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(a)

(d)

(b) (c)

FIG. 15. (a–c) Colormaps showing azimuthally averaged kinetic energy density of the first three singular
modes of the Ro = −1.0,�b = 0.190 flow. The upper hemisphere shows the equatorially antisymmetric
component of the mode; the lower hemisphere shows the equatorially symmetric component. (d) The energy
in each mode (a–c) as a function of time, scaled against the mean energy in the kinetic fluctuations of the raw
signal. Only the region r ∈ [0.425,0.975] is included in the PCA.

effect of the magnetic field is then to select and reshape the instability. By doing this, an instability
with symmetry opposite to the expected hydrodynamic instability can be observed, depending on the
magnetic field strength. The symmetric instability at the stagnation point (Ro = −1.2) is compatible
with an oscillation of that point within the plane of the equator as the strength of the colliding jets
oscillate. In contrast, the antisymmetric instability of the inward jet (Ro = −1.0) is reminiscent of
the instability that deflects the jet up or down [1,12,34].

The intermittent filaments seen here in the most turbulent cases share some features with the
inward jets emerging from the outer sphere and drifting poleward in simulations of the DTS device
without outer rotation [28]. However, the filaments evidenced in this work appear to last significantly
longer.

We emphasize that all the coherent structures seen in our simulations appear on top of a fully
turbulent state. Such a phenomenon has also been documented in hydrodynamical turbulence [31,32],
where the instabilities of the mean flow play an important role too.

Our simulations have also shown that the surface measurements of the magnetic fields are
significantly affected by flow dynamics deep in the shell. This means that the many measurements
that will be available on the DTS-� machine will likely help to evidence the flow regimes identified
here, and beyond.
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(a)

(d)

(b) (c)

FIG. 16. (a–c) Colormaps showing azimuthally averaged kinetic energy density of the first three singular
modes of the Ro = −1.2,�b = 0.190 flow. The upper hemisphere shows the equatorially antisymmetric
component of the mode; the lower hemisphere shows the equatorially symmetric component. (d) The energy
in each mode (a–c) as a function of time, scaled against the mean energy in the kinetic fluctuations of the raw
signal. Only the region r ∈ [0.425,0.975] is included in the PCA.

ACKNOWLEDGMENTS

The XSHELLS code used for the numerical simulations is freely available at
https://bitbucket.org/nschaeff/xshells. We thank two anonymous reviewers for fruitful suggestions.
This work was funded by the French Agence Nationale de la Recherche under Grant No.
ANR-13-BS06-0010 (TuDy). We acknowledge GENCI for awarding us access to resource Occigen
(CINES) under Grants No. x2015047382 and No. x2016047382. Part of the computations were also
performed on the Froggy platform of CIMENT (https://ciment.ujf-grenoble.fr), supported
by the Rhône-Alpes region (CPER07_13 CIRA), OSUG@2020 LabEx (ANR10 LABX56), and
Equip@Meso (ANR10 EQPX-29-01). ISTerre is part of Labex OSUG@2020 (ANR10 LABX56).

APPENDIX A: MODAL FLOWS AT �b = 0.190

As shown in Fig. 2, simulations were carried out at three values of �b. Those discussed in the main
text come primarily from the case where �b = 0.095, mostly to make comparison easier between the
modal and filamentary flows. The modal structures and dominance of a single mode over the others
is much more clear in the case where �b = 0.190. The decompositions of Ro = −1.0,�b = 0.190
and Ro = −1.2,�b = 0.190 are shown in Figs. 15 and 16, respectively. Note that the profiles of the
various modes are very similar to those of Figs. 7 and 8. The time series show the primary difference
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TABLE III. Resolutions and nondimensional parameters of the simulations presented here. For all
simulations the Ekman number Ek = 10−6, the time resolution is 10−4�f −1, and the radial grid has 384 points.
This table includes the magnetic Reynolds (Rm ≡ r2

o��/η) for comparison with other MHD simulations. The
corresponding outer sphere rotation frequency fo in Hz of the DTS-� machine is also indicated.

Ro fo (Hz) �o �b Em Rm max

−2.00 4.98 0.018 0.190 0.064 31.2 200
9.97 0.009 0.095 0.032 62.5 200
15.19 0.006 0.063 0.021 95.2 200

−1.75 4.98 0.018 0.190 0.064 27.3 200
9.97 0.009 0.095 0.032 54.7 200
15.19 0.006 0.063 0.021 83.3 200

−1.50 4.98 0.018 0.190 0.064 23.4 200
9.97 0.009 0.095 0.032 46.9 200
15.19 0.006 0.063 0.021 71.4 200

−1.20 4.98 0.018 0.190 0.064 18.8 200
9.97 0.009 0.095 0.032 37.5 200
15.19 0.006 0.063 0.021 57.1 200

−1.00 4.98 0.018 0.190 0.064 15.6 200
9.97 0.009 0.095 0.032 31.2 200

−0.75 4.98 0.018 0.190 0.064 11.7 100
−0.50 4.98 0.018 0.190 0.064 7.8 100

9.97 0.009 0.095 0.032 15.6 100
1.00 4.98 0.018 0.190 0.064 15.6 150

9.97 0.009 0.095 0.032 31.2 150
1.50 4.98 0.018 0.190 0.064 23.4 150

9.97 0.009 0.095 0.032 46.9 150

between �b = 0.190 and �b = 0.095, in Fig. 16, the antisymmetric mode (a) is unambiguously the
dominant mode (excepting a few bursts of mode (b) where they reach equal energies).

APPENDIX B: SIMULATION PARAMETERS

The full simulations presented here were carried out using the nondimensional parameters and res-
olutions shown in Table III. This table includes the magnetic Reynolds (Rm ≡ r2

o��/η = Ro/Em)
for comparison with other MHD simulations. Other works on MSC flow [24] were characterized
by the Hartmann number (Hao,i = ro,iBo,i/

√
μρνη) and Reynolds number (Re = r2

o��/ν), specifi-
cally because these numbers do not require that the outer sphere be rotating. Conveniently, the Ekman
number is all that is required to convert into our nondimensionalization the rotation independent one
(Ha = �/

√
Ek, and Re = |Ro|/Ek). This gives 105 < Re < 2 × 106. The Hartmann number varies

between 6 < Hao < 18 at the outer sphere and 162 < Hai < 486 at the inner sphere. In the physical
experiment these values take the ranges 106 < Re < 2 × 107, Hao = 195, and Hai = 4430.

APPENDIX C: PRINCIPAL COMPONENT ANALYSIS OF STABLE MODES

Because the flows discussed in Sec. IV A seem to primarily be saturated instabilities, they are
amenable to a principal component analysis (PCA), wherein the flow is decomposed into individual
spatial modes, each with its own time series [35]. The modes are chosen to maximize the cross
correlation in time between different measurements (here the kinetic and magnetic spectra at each
radial gridpoint [i.e., the s,m(rk),t,m(rk),S,m(rk), and T,m(rk) of Eq. (3)]. The analysis is carried in
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the frame of the inner sphere according to

A = L�RH . (C1)

Here, A is a matrix representing spatiotemporal data; R is a matrix of so-called right eigenvectors,
each representing a single spatial configuration that evolves together (RH is the complex conjugate
and transpose of the matrix R); L is a matrix of so-called left eigenvectors, each representing the
collective time evolution of its corresponding right eigenvector; and � is a diagonal matrix of singular
values, each representing the relative strengths of the modes. The matrix A is computed by removing
the means of the magnetic and velocity fluctuations (̃b(r,θ,φ,tj ) and ũ(r,θ,φ,tj ), respectively), and
the singular value decomposition (SVD) is carried out using numpy’s linear algebra module [36].

The time series of Figs. 13(c) and 13(d) are generated by converting individual principle
components n back into a collection of snapshots un(tj ) by

un(tj ) = lj,n σn rn, (C2)

where rn is an individual column of R, lj,n is an individual entry in L, and σn is the singular value
of n.
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