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Technique for forcing high Reynolds number isotropic turbulence
in physical space
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Many common engineering problems involve the study of turbulence interaction with
other physical processes. For many such physical processes, solutions are expressed most
naturally in physical space, necessitating the use of physical space solutions. For simulating
isotropic turbulence in physical space, linear forcing is a commonly used strategy because
it produces realistic turbulence in an easy-to-implement formulation. However, the method
resolves a smaller range of scales on the same mesh than spectral forcing. We propose an
alternative approach for turbulence forcing in physical space that uses the low-pass filtered
velocity field as the basis of the forcing term. This method is shown to double the range of
scales captured by linear forcing while maintaining the flexibility and low computational
cost of the original method. This translates to a 60% increase of the Taylor microscale
Reynolds number on the same mesh. An extension is made to scalar mixing wherein a
scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing
of the scalar field allows for control over the length scale of scalar injection, which could
be important when simulating scalar mixing.
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I. INTRODUCTION

Turbulent flows are ubiquitous to scientific and engineering applications. Often the applications
are concerned with the dynamics of turbulence interaction with other processes such as combustion
[1–3], particle-laden flow [4,5], and bubbly flow [6]. These types of flows naturally involve density
and velocity fields that are rapidly varying or even discontinuous. Accordingly, simulations of these
flows are often performed using physical space solvers, where it is easier to represent rapidly varying
fields without the introduction of spurious numerical oscillations to the flow (e.g., Gibbs phenomena).
As such, it is desirable to have a viable technique for forcing turbulence in physical space, which is
the focus of this work.

The simplest and most often studied turbulent flow is homogeneous isotropic turbulence (HIT),
which can be studied using direct numerical simulation (DNS). Statistics from these simulations can
be used to create and validate mathematical models of turbulence; however, direct solution of the
Navier-Stokes equations will not yield statistically stationary turbulence, as there is no mean shear.
In order to achieve stationary statistics, an external force must be applied to sustain the flow.

For an incompressible fluid with constant density, ρ, and constant kinematic viscosity, ν, the
dynamics of HIT are governed by the Navier-Stokes equations,

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + F. (1)
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In Eq. (1), u is the velocity, p is the pressure, t is time, and F is the forcing term. Equation (1) is
coupled with the condition that the velocity field must be solenoidal, ∇ · u = 0. The time evolution
of the mean turbulent kinetic energy, k = 1

2 〈u · u〉, is described by

∂k

∂t
= −ε + 〈u · F〉, (2)

where angled brackets represent the Reynolds averaging operator, and ε = ν〈∇u : ∇u〉 represents
the viscous dissipation.

Since the seminal work of Orszag and Patterson [7], HIT simulations have typically been
performed using spectral solvers on periodic domains under the assumption of zero-mean velocity.
Under this regime, a number of studies were done on forcing isotropic turbulence, including those by
Siggia [8], Kerr [9], Eswaran and Pope [10], Chen et al. [11], Sullivan et al. [12], Overholt and Pope
[13], Alvelius [14], and many others. The specific nature of the forcing used in these studies varied,
but all of these studies used forcing limited to a band of low-wave-number modes. The current work
proposes to study a similar forcing strategy applied using a physical space solver.

II. LINEAR FORCING

Lundgren [15] proposed using the local velocity multiplied by a constant as the forcing term in
physical space:

F = Au. (3)

The physical meaning of A is apparent upon substituting the assumed statistical stationarity into the
energy equation, Eq. (2), revealing A = (2τ )−1, where τ = k/ε is the eddy turnover time.

Lundgren demonstrated that the method was capable of producing realistic turbulence. Rosales
and Meneveau [16] performed a more detailed study using Lundgren’s method, finding that the
characteristic large eddy size of the flow, l = U 3/ε, was consistently 0.2L, where U is the root mean
square (RMS) velocity and L is the box size used in the simulation. For spectral simulations they
found l ≈ 0.4L. Given that the smallest resolvable scale is fixed by the grid size, linear forcing will
require twice the grid resolution to recover the same range of scales as a spectrally forced simulation.
This corresponds to an eightfold increase in necessary computational resources in three dimensions.

The technique was further studied by Carroll and Blanquart [17], who noted that the steady state
turbulent kinetic energy and dissipation, k0 and ε0, could be predicted a priori. They used a forcing
of the form

F = k0

k
Au, (4)

which causes a faster convergence to a statistically stationary state. The reason for this advantage is
clear upon writing the equation for the energy production,

P = 〈u · F〉 = k0

k
A〈u · u〉 = k0

k
A2k = ε0. (5)

The prefactor k0/k dynamically adjusts the forcing such that a constant dissipation rate is achieved.
A similar technique was used by Rosales and Meneveau [16]; however, they did not study the
convergence properties of the scheme. From Eq. (2), it follows that the only stationary solution
possible is ε = ε0. Bassenne et al. [18] further improved the statistical convergence by modifying A

to depend explicitly on both the current k and ε values.
Despite its limitations, linear forcing is the most used method to force turbulence in physical space,

and has inspired a number of extensions. Various modifications have been developed to work for flows
including homogeneous shear flows [19], anisotropic wall bounded flows [20], and compressible
flows [21]. The success of linear forcing is owed largely to the simplicity of its implementation. The
goal of this work is to demonstrate an extension to linear forcing that maintains its flexibility of use
while recovering the turbulence scale resolution of low-wave-number, spectral forcing.
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The most direct manner to approach this goal would be to apply a sharp spectral filter to the
velocity field in order to restrict the forcing to low wave numbers. In practice, however, this form is
not practical for several reasons. Physical space solvers are most often used to study problems where
the use of the spectral transforms is unsuitable, so the use of a spectral filter may lead to nonphysical
results. In this work, we demonstrate a low-pass filter which approximates the sharp spectral filter
but only requires the use of a tridiagonal matrix solver. The study focuses on the characteristics of
the flow fields generated using this approach and compares directly to linear forcing, which is the de
facto standard for physical space HIT simulations. There is also a brief discussion of the effects of
the filter sharpness on the resulting flow field. The modified forcing takes the form

F = c

k
Aũ, (6)

where ũ indicates a filtering operator has been applied to u. The choice of value for the constant c is
arbitrary. In this work, c is taken to be the predicted kinetic energy of the linearly forced simulation
[17], which results in

P = 〈u · F〉 = k0

k
A〈u · ũ〉 = ε0

〈u · ũ〉
2k

. (7)

The appropriateness of this choice is discussed in Sec. III C.

III. FILTERED LINEAR FORCING STRATEGY

A. Filtering approach

The identification of an appropriate filter is of the utmost importance to this work. It should be
a sharp, low-pass filter that is defined on a compact domain. Raymond and Garder’s [22] implicitly
defined sine filter possesses these characteristics. On a discrete, one-dimensional data set, they define
this filter using

(I + β2pD2p )̃u = u, (8)

where D2p represents the second-order-accurate, central, finite difference approximation of the 2pth
derivative operator, and β2p is a parameter related to the filter cutoff wave number. This filter is said
to be of order 2p. It is important to distinguish between the filter order, 2p, and the order of accuracy
of the numerical scheme used to compute Eq. (8), which is always second order in this work.
Although it could be interesting to use more accurate discretizations of D2p, we have chosen to use
a discretization consistent with our second-order-accurate flow solver. The filter order, 2p, does not
relate to the accuracy of the representation on the computational grid, but rather to the sharpness of
the filter, as discussed below.

Analysis of the filtering operation, Eq. (8), is most naturally performed in spectral space for easy
comparison to spectral filtering. For any field φ, we denote its Fourier transform as φ̂. The function
varies with the wave number vector, κ , which has magnitude κ . The effects of the filtering operation
can be understood by looking at the filter’s transfer function, Ĝ = ̂̃φ/φ̂. For their work, Raymond
and Garder chose β2p as

β2p = 
2p

(−4)p sin2p
(

κc


2

) . (9)

Equation (9) uses 
 for the grid spacing, and κc for the filter cutoff wave number. For the filtering
operation to be meaningful, κc must be less than the largest resolvable wave number on the grid,
κ
 = π/
. Substituting this definition of β2p into Eq. (8) yields the transfer function

Ĝ =
(

1 + sin2p(κ
/2)

sin2p(κc
/2)

)−1

, (10)
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FIG. 1. Magnitude of the filter’s transfer function, Ĝ, at various filter orders, 2p, with κc = 3: 2p = 2
( ), 2p = 4 ( ), 2p = 8 ( ), and 2p = 16 ( ). (a) Full range of κ/κ
. (b) κ/κ
 < 0.05. Note the
intersection of the curves at the cutoff frequency, κc/κ
 = 0.0117.

i.e., a sine filter. In general, Ĝ will be a complex-valued function; however, on a one-dimensional
periodic domain with constant grid spacing, the operators generated using Eq. (8) always yield
real-valued transfer functions.

This filter converges to the sharp spectral filter as 2p approaches infinity. Hence, the filter order,
2p, represents the sharpness of the filter. Figure 1 demonstrates the transfer function of the filter at
various orders for a typical value of κc.

The most obvious higher dimensional analog of Eq. (8) is

(I + β2pL2p) ũ = u, (11)

where L2p represents the second-order discretization of the pth iterated Laplacian operator.
Unfortunately, this does not result in a simple discretization. When discretized in wave-number
space, the discrete Laplacian operator becomes

3∑
i=1

sin2(κi
/2), (12)
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FIG. 2. RMS error of the 2p = 2 order filter on a 5123 grid, κc = 3.

where the summation occurs over the x, y, and z directions. Accordingly, the wave-number space
representation of the pth iterated Laplacian is[

3∑
i=1

sin2(κi
/2)

]p

, (13)

yielding a transfer function of the form

Ĝ′ =
(

1 + β2p

[
3∑

i=1

sin2(κi
/2)

]p)−1

. (14)

This result poses two problems. First, for the filter to be isotropic, Eq. (14) should be a function of κ =√
κi

2 only; however, Eq. (14) is a function of an effective wave number κ ′ =
√∑3

i=1 sin2(κi
/2).
Second, if κ ′ is used to define a relation for β2p then the physical meaning of the cutoff wave number
is lost, because there is no obvious relation between κ ′ and any relevant length scale.

In this work, the three-dimensional (3D) filter is taken as successive one-dimensional (1D) filters
in the x, y, and z directions. The resulting filter is not isotropic for the same reason as the filter
resulting from Eq. (11); however, the problem of defining β2p is eliminated because a relation for
β2p is known in one dimension, viz., Eq. (9). If the κc are chosen to be the same for all three directions,
this construction guarantees the elimination of waves with κ >

√
3κc. It is seen in Sec. III B that this

formulation lends itself to a computationally inexpensive implementation.
It is worth noting that work by Bickley [23] indicates the possibility of composing an isotropic

Laplacian stencil. The isotropicity comes with the trade-off of using a wider computational stencil,
increasing the computational cost of the operation. Given its increased cost, the isotropic Laplacian
was deemed inappropriate for this study, but it is mentioned here as it could be useful for other
applications. That being said, we note that the filter given by successive 1D applications of Eq. (9)
demonstrates small levels of anisotropy in practice. For this case, the anisotropy of the filter can be
calculated analytically since the three-dimensional transfer function, Ĝ3D , is known. Figure 2 shows
contours of the RMS error between Ĝ3D(κ) and the one-dimensional filter Ĝ(κ) for a typical value
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of κc. To compare the two functions, the spherical coordinate system,

κx = κ sin θ cos φ, (15)

κy = κ sin θ sin φ, (16)

κz = κ cos θ, (17)

is used, and the error is computed as

E(θ,φ) =
√∫ κ


0
[Ĝ(κx,κy,κz) − Ĝ(κ,0,0)]2dκ

/∫ κ


0
dκ. (18)

The RMS error is less than 2.02% everywhere and, unsurprisingly, it takes its maximum value along
the diagonal κx = κy = κz.

B. Implementation

Implementation of Eq. (8) in a general setting can be tedious because the expansion ofD2p must be
known beforehand. Guédot et al. [24] used the Raymond and Garder filter to perform postprocessing
of large eddy simulation and direct numerical simulation data. In their work, they noted that the
algebraically equivalent problem of p second-order operators could be used instead of Eq. (8) by
writing

(I + β2pD2p )̃u =
p∏

i=1

(I − αiD2)̃u. (19)

Here the αi are the pth roots of −β2p. The p second-order operators in Eq. (19) are not explicitly
multiplied, and instead each of the operators in the product is inverted in sequence. To use Eq. (19),
only the form of D2 need be known a priori, which makes implementation straightforward for
arbitrarily high 2p. Inversion of this system, in general, requires a linear solver capable of dealing
with the inversion of banded matrices with complex coefficients. In the work of Guédot at al., they
solved Eq. (19) using a preconditioned conjugate gradient solver wherein the real and imaginary
components of the operator are solved separately [24]. They note that the high computational cost of
their implementation is acceptable because of their usage of the filter as a postprocessing tool. In our
work, we take advantage of the fact that DNS is often performed on Cartesian grids with uniform grid
spacing. On such a grid, the second-order operators become tridiagonal matrices, which allow for
quick and exact inversion in parallel using the Thomas algorithm. The computational cost associated
with this operation is typically much lower than the overall cost of a time step of the flow solver.
This fact is what allows our implementation of Eq. (19) to be sufficiently inexpensive for the filtering
operation to be performed in line with simulations. For the remainder of this work, any mention of
filtering refers to the solution of Eq. (19) using successive complex, tridiagonal matrix solvers.

C. Production

As pointed out in Sec. II, the filtered linear forcing results in a production that looks as

P = 〈u · F〉 = k0

k
A〈u · ũ〉 = ε0

〈u · ũ〉
2k

. (20)

The impact of the filtering operation on the production is best studied by reexpressing Eq. (20) in
terms of the discrete Fourier modes of u. Let K denote the set of all mesh resolved wave numbers,
i.e., K = {κ : |κ | < κ
}. Then the production can be written as

P = ε0

2k

∑
K

Ĝ(κ )̂u∗(κ,t) · û(κ,t) = ε0

k

∑
K

Ĝ(κ )̂k(κ,t). (21)
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The notation φ̂∗ denotes the complex conjugate of the value φ̂. Here k̂(κ) is the kinetic energy
contained by the wave-number vector κ , and k = ∑

K k̂. Since the transfer function is independent
of time, this can be further simplified to the form

P = α(t)ε0. (22)

For the case studied here, the transfer function is always a non-negative, real-valued function of the
wave-number vector, and is upper bounded by 1. This leads naturally to a few observations:

(1) The coefficient is limited to the range 0 < α < 1. This implies that the production from
filtered linear forcing is always non-negative, and that the energy injected into the system is less than
what would be injected by linear forcing.

(2) In the limit of large κc (i.e., Ĝ ≈ 1), the production for linear forcing is recovered, as α ≈ 1.
(3) As the flow approaches statistical stationarity, k̂(κ,t) becomes nearly constant in time. It

follows that α approaches a constant value that depends on the form of Ĝ, and the production
approaches a constant value, P = αε0.

IV. COMPUTATIONAL RESULTS

A. Numerical framework

The computational framework used in this study is NGA, a structured, conservative code for use
in low-Mach flow simulations [25]. The code solves the Navier-Stokes equation on a staggered
(marker-and-cell) grid using a mix of finite volume and finite difference discretizations. In this
work, the equations of motion are evolved using a Crank-Nicolson time integrator, and second-
order-accurate finite volume spatial operators are used as in Ref. [17]. The grid is constructed using
equal grid spacing and the same number of cells, N , in each of the three directions. Simulations are
performed on a (2π )3 periodic domain, so 
 = 2π/N , with the restriction κ
η > 1.5, where η is
the Kolmogorov length scale. The filter given by Eq. (19) is used for the forcing. The velocity field
is initialized as in Ref. [16], which used the energy spectrum

E = 16√
π/2

U 2κ4

κ0
5

exp

(
−2

κ2

κ2
0

)
, (23)

where κ0 = 2π/l0. The phase of each component of the velocity field is chosen randomly, and a
correction is performed to ensure the velocity field is solenoidal. The value l0 = 0.2L is used for all
simulations; however, it is known that the initialization plays little role in the long-term flow behavior
[16].

B. Simulation parameters

The numerical study is organized in four parts: Cases 1–3 test the effects of filter cutoff by varying
κc; Cases 2, 4, and 5 study the effects of filter sharpness by varying 2p; the scaling of l is verified by
running Cases 6 and 7 on half the number of grid cells and Case 8 on twice the number of grid cells
compared to Case 1; and finally, a direct comparison is performed of fields obtained using linear
forcing and filtered linear forcing at approximately the same Taylor microscale Reynolds number,

Reλ =
√

15
U 2

(εν)1/2 . (24)

Cases 1 and 6 use linear forcing; all other cases use filtered linear forcing.
A summary of the data from all simulations is given in Table I. The reported values are averaged in

space and time for a period after the flow has reached statistical stationarity. The cases are organized
based upon their number of grid cells in each direction, N , and cutoff wave number, κc. The table
includes an expected Reynolds number, Re(∗)

λ , which is elaborated upon in Sec. IV E.
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TABLE I. Summary of key values. Note that A = 1.4 s−1 for all simulations.

Case N ν (m/s2) κc (1/m) 2p Re(∗)
λ Reλ l/L κ
η ε (m2/s3) U (m/s)

1 512 0.005 N/A N/A 139 145 0.22 1.5 105 5.3
2 512 0.005 3 4 220 203 0.41 1.72 62 5.4
3 512 0.005 2 4 220 215 0.47 1.79 52 5.3
4 512 0.005 3 2 220 197 0.41 1.79 52 5.09
5 512 0.005 3 16 220 193 0.38 1.72 62 5.27
6 256 0.01275 N/A N/A 87 88 0.20 1.52 105 5.12
7 256 0.01275 3 2 139 126 0.41 1.78 55 5.22
8 1024 0.00205 3 2 350 320 0.43 1.83 53 5.23

C. Effect of filtering

Cases 1–3 test the effects of filter cutoff wave number. A 5123 linearly forced field is compared
to filtered linearly forced fields using the same parameters with cutoff wave numbers κc = 3 and
κc = 2. The filtered linearly forced simulations are performed using the fourth-order (2p = 4) filter.
The parameters A = 1.4 and ν = 0.005 are chosen to match those used by Carroll and Blanquart
[17], who achieved Reλ = 140.

As expected, the linearly forced field, Case 1, matches the Taylor microscale Reynolds number,
Reλ, of Carroll and Blanquart [17]. The Reynolds number is higher for the filtered linearly forced
fields, obtaining a Reynolds number comparable to that of Chen [11], who achieved Reλ = 202 using
spectral forcing. Figure 3 shows the time evolution of the Reynolds number for all cases. Figures 4(a)
and 5 show the spectra of energy and dissipation, respectively, normalized by the average dissipation
rate and viscosity. They show almost identical spectra over a large range of wave numbers. The filtered
linearly forced simulations have slightly higher energy at the lowest wave numbers compared to the
linearly forced simulation, which is a result of the forcing technique directly amplifying those modes.
Because a higher Reλ is achieved, the energy spectra from the filtered linearly forced simulations is
closer to the Kolmogorov −5/3 power decay. Noticeably, the time deviations of Reλ from its mean
are larger with the filtered linear forcing, suggesting a more unsteady process. This can be explained
by noting that the larger l values of filtered linear forcing imply that there are fewer eddies of size
l in the simulation domain. This, in turn, leads to poorer statistical sampling of the energy at these
length scales and, accordingly, more fluctuating behavior.

0 5 10 15
0

100

200

300

400

t/τ

R
e λ

FIG. 3. Taylor microscale Reynolds number, Reλ, as a function of nondimensional time: Case 1 ( ),
Case 2 ( ), Case 3 ( ), Case 4 ( ), Case 5 ( ), Case 6 ( ), Case 7 ( ), and Case 8 ( ).
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FIG. 4. Energy spectra normalized by dissipation and viscosity: (a) Case 1 ( ), Case 2 ( ), and
Case 3 ( ); (b) Case 4 ( ), Case 7 ( ), and Case 8 ( ).

D. Effect of filter order

The effects of the filter order are tested in Cases 2, 4, and 5. These simulations use the same fluid
parameters as Cases 1–3, and filtered linear forcing with κc = 3 and 2p = 4, 2, and 16, respectively.
There is no significant difference between the achieved Reynolds numbers. In Table I, it can be
observed that the second-order (2p = 2) filter has a lower RMS velocity than either the 2p = 4 or
the 2p = 16 case. This effect is compensated by the fact that the dissipation in this case is also lower.
The result is a Reλ that is approximately equal for all three cases. This seems to justify the use of
filtered linear forcing with 2p = 2, which can be inverted using a single, real-valued tridiagonal
solver.

10−3 10−2 10−1 100 101
10−3

10−2

10−1

100

101

κη

2ν
κ

2
E

/(
εν

)3
/
4

FIG. 5. Dissipation spectra normalized by dissipation and viscosity: Case 1 ( ), Case 2 ( ), and Case
3 ( ).
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FIG. 6. Normalized characteristic eddy size, l/L, as a function of nondimensional time: Case 1 ( ),
Case 2 ( ), Case 3 ( ), Case 4 ( ), Case 5 ( ), Case 6 ( ), Case 7 ( ), and Case 8 ( ).
Horizontal lines are shown for l/L = 0.2 and l/L = 0.4.

E. Scaling

A parameter of particular interest for this simulation is the ratio l/L, which measures the effective
resolution of the simulation. Figure 6 shows that the scaling l/L ≈ 0.4 is achieved for all cases that
use the filtered linear forcing approach, which is equivalent to spectral methods as demonstrated
by Rosales and Meneveau [16]. Using this approximation, one can predict the simulation Reynolds
number a priori. Recalling the definition of Reλ, Eq. (24), the viscosity can be removed with the
relation ν = (εη4)1/3, and the velocity can be removed with U = (εl)1/3. Finally we note that L =
N
 = Nπ/κ
. These substitutions yield

Re(∗)
λ =

√
15

(
π

κ
η

l

L
N

)2/3

. (25)

Observing that the parameter l/L is fixed by the simulation technique, and requiring κ
η > 1.5, the
maximum resolvable Reλ becomes a function of N only. Eq. (25) suggests that, for a fixed mesh,
increasing the value of l/L is equivalent to increasing the Reynolds number. Accordingly, filtered
linearly forced simulations with l/L = 0.4 yield a Reynolds number that is 22/3 ≈ 1.6 times as large
as linearly forced simulations, if all other parameters are left unchanged.

The scaling of Eq. (25) for linear forcing and filtered linear forcing was tested by performing
simulations on 2563 and 10243 grids (Cases 6–8). In all of these simulations, A = 1.4. The ν values
for these cases were 0.01275 (Cases 6 and 7) and 0.00205 (Case 8). The agreement between predicted
Reynolds number and the simulation is good, as results are within 13% of the expected values. Cases
4, 7, and 8 are filtered linearly forced fields of size 5123, 2563, and 10243, respectively. Each of
these simulations was performed using 2p = 2 and κc = 3, yielding Reλ values of 197, 126, and
320, respectively. Figure 4(b) shows the normalized energy spectra for these cases. The spectra of all
three cases show a similar shape. As Reλ increases, the spectra demonstrate both larger large scales
and smaller small scales. Case 8, the 10243 filtered linearly forced simulation, may be compared
directly to the spectral simulation of Gotoh et al. [26], who achieved Reλ = 381 or only 16% greater.
(It is important to note that Gotoh et al.’s simulation reports κ
η = 1.3, and, accordingly, Eq. (25)
predicts a larger Reλ.)

F. Direct comparison at Reλ ≈ 140

Finally, Eq. (25) suggests that a filtered linearly forced simulation will achieve the same maximum
Reλ as a linearly forced simulation with twice the number of grid cells in each direction. This is
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TABLE II. Summary of key values. Note that A = 1.4 s−1 for all simulations.

Case N ν (m/s2) κc (1/m) 2p Re(∗)
λ Reλ l/L κ
η ε (m2/s3) U (m/s)

1 512 0.005 N/A N/A 139 145 0.22 1.5 105 5.3
7 256 0.01275 3 2 139 126 0.41 1.78 55 5.22
9 256 0.01275 3 16 139 117 0.37 1.72 64 5.2
10 256 0.01275 3 ∞ 139 122 0.38 1.74 62 5.29

seen to be approximately true by comparing Cases 1 and 7, which represent a 5123 linearly forced
simulation and a 2563 filtered linearly forced simulation, respectively. As a further comparison, two
new simulations were added using the same grid and fluid parameters of Case 7. Case 9 uses filtered
linear forcing with 2p = 16; Case 10 uses a spectral forcing technique similar to that used by Sullivan
et al. [12]. The forcing is defined as the inverse Fourier transform of

f̂ (κ) =
{

k0
k
Aû(κ) if |κ | < κc

0 otherwise,
(26)

which is the limiting case for filtered linear forcing as 2p → ∞. Table II shows that the time-averaged
Reλ for Cases 1, 7, 9, and 10 are 145, 126, 117, and 122, respectively. Over a wide range of wave
numbers the spectra of the simulations are indistinguishable in Figs. 7 and 8. The dissipation spectra,
shown in Fig. 8, demonstrate strong agreement in their shapes for the inertial and dissipative ranges
even though there are noticeable differences between the large scale behaviors of Case 1 and Cases
7, 9, and 10. The differences in the fields can be better seen by looking at the structure function
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FIG. 7. Energy spectra normalized by dissipation and viscosity: Case 1 ( ), Case 7 ( ), Case 9
( ), and Case 10 ( ).
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FIG. 8. Dissipation spectra normalized by dissipation and viscosity: Case 1 ( ), Case 7 ( ), Case 9
( ), and Case 10 ( ).

defined,

DLL(r) = 1

3

∑
i

〈(ui(x + rei) − ui(x))2〉, (27)

where summation occurs over each of the x, y, and z directions, and ei represents the unit vector
in the i direction. Figure 9 shows that the structure functions do not demonstrate Kolmogorov
scaling [27], i.e., DLL ∝ (εr)2/3; however, Cases 7 and 9, the filtered linearly forced simulations,
shows qualitative agreement with Case 10, as well as the Reλ = 120 case from Gotoh et al. [26].
This concretely demonstrates the value of this method; Cases 7 and 9 are able to achieve the same
turbulence resolution as Case 1 while using only 1/8 of the number of grid cells.

G. Computational expense

Some discussion of the computational expense of the numerical methods is warranted. Compared
to linear forcing, filtered linear forcing requires the solution of multiple tridiagonal matrix solvers
for each filtering operation. Equation (19) decomposes the 2p order operator into p applications of
the second-order filter. Since the filter is applied separately in each of the x, y, and z directions three
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FIG. 9. Normalized structure function: Case 1 ( ), Case 7 ( ), Case 9 ( ), and Case 10 ( ).
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TABLE III. Cost per time step of several forcing strategies.

Forcing strategy 2p t (s)

Linear forcing N/A 2.95
Filtered linear forcing 2 4.36
Filtered linear forcing 4 10.2
Filtered linear forcing 8 12.5
Filtered linear forcing 16 22.2
Spectral forcing N/A 4.05

applications of this filter are required, totaling 3p tridiagonal matrix solvers for each component of
the velocity field. This can be compared to the cost of doing a spectral solution, such as the one
used in Sec. IV F which requires a Fourier and inverse Fourier transform. The expected cost of a
tridiagonal solver is O(N ), whereas the cost of a fast Fourier transform is O(N log2 N ), suggesting
that the filtering approach is computationally cheaper than the spectral one. However, this fact must
be counterbalanced by the fact that the filtering approach requires the solution of several tridiagonal
solvers in series. To compare the cost of filtered linear forcing at various 2p, simulations were
performed on a 5123 mesh using the parameters of Case 4. The average time per time step was
computed for filtered linearly forced simulations using orders of 2p = 2, 4, 8, and 16 and compared
to a linearly forced simulation. A spectrally forced simulation is also shown. The results are given in
Table III. Unsurprisingly, the cost of filtered linearly forced simulations increases monotonically with
2p. The cost per time step of the 2p = 4 simulation is more than twice that of the 2p = 2 simulation.
This can be attributed to the fact that the filter using 2p = 2 is computed using a real-valued solver,
whereas the 2p > 2 solvers require the use of complex-valued solvers, which are more expensive.
The cost of the 2p = 2 simulation is roughly similar to that of using the spectral technique, although
filtered linear forcing appears to be slightly more expensive. Given that the spectral transform gives
the most sharp representation of the forcing, it is concluded that in those situations where spectral
transforms are appropriate, they should be used. However, the use of the physical space filtered linear
forcing technique provides a framework that works in more general environments, i.e., nonperiodic
conditions. In terms of cost per time step, all of the forcing strategies used here are more expensive
than linear forcing. However, considering the greater range of turbulent scales that these simulation
can compute, they are more computationally efficient to reach a given Reλ.

V. EXTENSION TO PASSIVE SCALAR MIXING

Carroll et al. [28] performed a study of scalar forcing where they were able to force a scalar to
constant variance. To achieve this they added a forcing term FZ to the scalar transport equation,

∂Z

∂t
+ u · ∇Z = D∇2Z + FZ, (28)

where Z is the scalar and D is its molecular diffusivity. By analogy with Lundgren [15], they advocate
for linear forcing, and use

FZ = χ

σ 2
Z (29)

as the source term, where σ 2 = 〈Z2〉 − 〈Z〉2 is the scalar variance, and χ = 〈2D|∇Z|2〉 is the scalar
dissipation. In practice, this term will not be sufficient to reach statistical stationarity due to numerical
dissipation from the scalar transport scheme. To counteract this process they use a modified form of
the forcing,

FZ =
[

1

τr

(√
α

σ 2
− 1

)
+ χ

σ 2

]
Z, (30)
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TABLE IV. Summary of key values. For all simulations A = 0.319 s−1, ν = D = 0.0075 m/s2 on a 2563

grid, which yields Reλ ≈ 50.

Case κc (1/m) α σ 2 λZ (m) r

Z1 N/A 1 0.991 0.141 0.588
Z2 N/A 5.616 5.57 0.140 0.583
Z3 N/A 0.17 0.175 0.140 0.581
Z4 3 1 0.936 0.180 0.960
Z5 3 5.616 5.26 0.180 0.967
Z6 3 0.17 0.166 0.183 0.993

where α is the target value of the variance and τr is an arbitrary constant which acts as the relaxation
time. Equation (30) converges to Eq. (29) as σ 2 approaches α. A simple extension to this would be
to filter the scalar before using it as a source, i.e.,

FZ =
[

1

τr

(√
α

σ 2
− 1

)
+ χ

σ 2

]
Z̃. (31)

Carroll et al. [28] have shown that low-wave-number forcing produces statistics consistent with those
from forcing a scalar field using an imposed mean gradient. The only significant difference they note
is that low-wave-number forcing produces isotropic fields. It is also expected that low-wave-number
filtered linear scalar forcing will generate fields with larger ranges of length scales compared to linear
scalar forcing.

A series of simulations is performed to test the proposed scalar forcing technique. All simulations
are performed on a 2563 grid with ν = D = 0.0075. The scalar field is initialized using the same
initialization of Sec. IV A, replacing the RMS velocity with the RMS scalar value. The velocity
field uses linear forcing with A = 0.319 which yields Reλ ≈ 50. The scalars are transported using
a fifth-order-accurate advection scheme [29] and a second-order-accurate, finite volume treatment
of diffusion. Simulations use either linear scalar forcing [Eq. (30)] or filtered linear scalar forcing
[Eq. (31)] for arbitrarily chosen variances. All simulations use τr = 0.1 as the scalar relaxation time,
and the second-order filter is used. A summary of the results is shown in Table IV. The reported
values are averaged in space and time for a period after the flow has reached statistical stationarity.
Table IV also introduces a Taylor scale based on the scalar field defined as

λZ =
√

3Dσ 2

χ
. (32)

For all cases the variance is near its desired value, α, as can be seen in Fig. 10. The variance
for the filtered linearly forced scalar is somewhat lower because the energy injection rate is lower,
viz., 〈ZZ̃〉 < 〈Z2〉. The filtered linearly forced fields demonstrate greater time variation around their
mean values. This is consistent with what was seen for the velocity field in filtered linear velocity
forcing. Figure 11 shows the normalized scalar variance spectrum. All spectra maintain a similar
shape throughout their range.

Because all simulations Z1–Z6 use the same Batchelor scale, ηB = (D/ν)1/2η, Fig. 11 offers little
information about the difference in mixing length scales between the simulations. Table IV shows
that the low-wave-number filtered linearly forced simulations achieve higher Taylor microscales, λZ ,
which imply a larger range of scales. This effect could also be elucidated using the scalar integral
length scale [30], defined as

lZ =
(

ε1/3σ 2

χ

)3/2

. (33)
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FIG. 10. Scalar variance, σ 2, normalized by the desired variance, α: Case Z1 ( ), Case Z2 ( ), Case
Z3 ( ), Case Z4 ( ), Case Z5 ( ), and Case Z6 ( ).

Noting the definition of λZ and ηB , this can also be expressed in the form

lZ = Sc1/2

33/2

λ3
Z

η2
B

, (34)
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FIG. 11. Normalized scalar variance spectrum. The wave number has been nondimensionalized by the
Batchelor length scale, ηB = (D/ν)1/2η. Case Z1 ( ), Case Z2 ( ), Case Z3 ( ), Case Z4 ( ),
Case Z5 ( ), and Case Z6 ( ).
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where the Schmidt number, Sc = ν/D, has been introduced. Because all simulations in this study
use the same Sc and ηB , it follows that λZ and lZ contain the same information.

For passive scalar mixing problems, the scalar time scale τZ = σ 2/χ is important to characterize
the physics of the mixing process. Since τ is known a priori for a linearly forced velocity field, this
becomes equivalent to characterizing the time scale ratio r = τZ/τ . Experiments by Warhaft and
Lumley [31] show that τZ is a function of the length scale at which the scalar variance is injected,
implying that r is a function of the flow type. Indeed, it can be shown [30] that

r = 2

3

(
lZ

l

)2/3

, (35)

where it can be seen that r depends directly on the length scale of scalar variance injection. (Note that
the coefficient 2

3 is modified from the form given in Ref. [30] due to the use of l = U 3/ε instead of
l = k3/2/ε.) It therefore seems that the filtering technique could be exploited to perform simulations
that better match experimental conditions. In particular, the application of a bandpass filter to the
scalar forcing field would allow arbitrary control over the injection length scale. The development
and study of such a filtering operation is, however, beyond the scope of this project.

VI. CONCLUSIONS

Many computational studies of turbulence look at the interplay between turbulence and multi-
physics problems. In these problems, physical space implementations of flows solvers are often more
natural to use than spectral implementations. This work introduces filtered linear forcing, a technique
for simulating homogeneous isotropic turbulence in physical space. The technique uses a filtered
velocity field as a source term in the Navier-Stokes equations in order to force the velocity field
towards statistical stationarity. It is shown that neither the cutoff frequency nor the sharpness of the
filter chosen are of great importance. Using the least sharp version of the implicitly defined family of
filters [22], the filtering operation takes the form of a computationally inexpensive tridiagonal matrix
solver. The technique is capable of increasing the value of Reλ by 60% compared to linear forcing
[15]. Furthermore, results are compared directly to spectral simulations [11,26] and are shown to
produce similar results.

For scalar mixing, a filtered scalar field is added as a source to the scalar transport equation.
It is shown to produce a statistically stationary scalar field. Interestingly, the time scale ratio τZ/τ

changes depending on whether linear scalar forcing or filtered linear scalar forcing is used. This hints
at a potential advantage of the filtering operation: its ability to control the form of scalar variance
injection. This latter ability could be of interest to create simulations that have the same mixing
dynamics as experiments [31].
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