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We present models for single-particle dispersion in vertical and horizontal directions
of stably stratified flows. The model in the vertical direction is based on the observed
Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction
is a combination of a continuous-time eddy-constrained random walk process with
a contribution to transport from horizontal winds. Transport at times larger than the
Lagrangian turnover time is not universal and dependent on these winds. The models yield
results in good agreement with direct numerical simulations of stratified turbulence, for
which single-particle dispersion differs from the well-studied case of homogeneous and
isotropic turbulence.
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I. INTRODUCTION

Lagrangian statistics in fluid dynamics offer unique insight into particle dispersion (e.g., dispersion
of pollutants and transport of nutrients in the ocean) and turbulent mixing [1–7]. Often such transport
occurs in settings such as the atmosphere and oceans, in which turbulence is either inhomogeneous
or nonisotropic due to stratification or rotation [8,9]. While particle dispersion in homogeneous and
isotropic turbulence (HIT) has received significant attention, particle dispersion in anisotropic flows
such as stably stratified turbulence has been studied only recently both in the presence of rotation
[10,11] and without [12–14]. Under stable stratification vertical dispersion is known to be suppressed
[15], but its effect on horizontal transport is less certain [11,13].

The study of the role of anisotropies in turbulent mixing is of central importance in fluid dynamics,
as well as in many geophysical applications. By now it is clear that the presence of restoring forces
such as gravity or rotation, and of their associated waves, can have a profound impact in the properties
of a turbulent flow, which cannot be treated as small corrections to HIT [16]. In the particular case
of stratified turbulence, which plays a key role in geophysics, linear and nonlinear processes (such
as the zig-zag instability [17] or nonlinear resonant interactions of internal gravity waves [18])
result in a preferential transfer of energy towards vortical modes, associated with the development
of pancakelike structures (i.e., of structures in the flow with typical horizontal scales much larger
than typical vertical scales) and of strong horizontal winds with vertical shear [19,20]. Horizontal
turbulent transport in this case can thus be expected to share similarities with other sheared flows,
such as sheared flows in neutral fluids and in plasmas [21]. Moreover, the understanding of turbulent
transport and mixing in the particular case of stably stratified turbulence is crucial for atmospheric
sciences and oceanography. In the tropopause, three-dimensional mixing is believed to play a crucial
role in the exchange of chemical compounds between the stratosphere and the troposphere [22].
In the oceans, how three-dimensional mixing develops is important for understanding the observed
density of phytoplankton [23], with implications for the management of halieutic resources and the
fishing industry.
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Here we study single-particle statistics in forced stably stratified turbulence using direct numerical
simulations. We show that for frequencies smaller than the buoyancy frequency, the Lagrangian
vertical velocity follows a spectrum similar to others observed in wave-dominated flows in the
ocean [24] and which are often described by an empirical Garrett-Munk (GM) spectrum [25,26].
We then present models for both vertical and horizontal dispersion. The former (transport parallel
to the mean stratification) indicates that the reason for the reduced dispersion in this direction is that
the flow is dominated by a random superposition of internal gravity waves. In the latter (transport
perpendicular to the stratification), dispersion differs from HIT as it is strongly influenced by the large-
scale shearing flow generated by the stratification, which plays an important role in the atmosphere
[18–20]. The model used in this case is then a continuous-time eddy-constrained (CTEC) random
walk (which accounts for particle trapping observed in HIT [27]), with a superposed drift caused by
the vertically sheared horizontal winds (VSHWs) in stably stratified turbulence.

The implications of the models are twofold. On one hand, they provide a tool to understand
fundamental processes affecting turbulent transport in stratified flows. On the other hand, as the
models have no free parameters and their only ingredients are obtained from Lagrangian properties
of the turbulence or from a knowledge of the large-scale flow (which in atmospheric and oceanic
flows can be obtained to a good degree by large-scale models), they provide a statistical way to predict
moments of the probability density function (PDF) of single-particle dispersion without requiring
an ensemble of runs with explicit integration of a large number of tracers. In the next section we
describe the numerical simulations, while in Sec. III we present the numerical results for vertical
and horizontal dispersion and introduce the models. Finally, we present our conclusions in Sec. IV.

II. THE BOUSSINESQ EQUATIONS

For the numerical simulations we solved the Boussinesq equations for the velocity u and as well
as for “temperature” fluctuations θ (written in units of velocity),

∂u
∂t

+ u · ∇u = −∇p + Nθẑ + ν∇2u + f, (1)

∂θ

∂t
+ u · ∇θ = −Nu · ẑ + κ∇2θ, (2)

with the incompressibility condition ∇ · u = 0. Here p is the pressure, ν the kinematic viscosity,
f an external mechanical forcing, N the Brunt-Väisälä frequency (which sets the background
stratification), and κ the thermal diffusivity. The equations were solved in a three-dimensional
periodic domain of dimensionless linear length 2π , using a parallel dealiased pseudospectral method
and a second-order Runge-Kutta scheme for time integration [28]. All runs have a spatial resolution
of 5123 regularly spaced grid points, and ν = κ = 8 × 10−4 in dimensionless units (thus, the Schmidt
number is Sc = ν/κ = 1). In all runs described below, once the systems reached a turbulent steady
state, we injected 105 Lagrangian particles distributed randomly in the box. We used a high order
method to integrate the equations for the Lagrangian particles,

dxi

dt
= u(xi ,t), (3)

where the subindex i corresponds to the particle label, using a second-order Runge-Kutta method in
time, and three-dimensional third-order spline interpolation to estimate the Lagrangian velocity at
points that do not correspond to grid points of the fluid code (see, e.g., Ref. [29]). Particles move in
the periodic domain, and thus we assume homogeneity of the turbulent flow to reenter particles that
escape out of the domain using periodicity.

The flows were forced at k = 1 and 2 with two different mechanical forcings. A set of two
simulations (with different Brunt-Väisälä frequencies, N = 4 or N = 8) was forced with Taylor-
Green (TG) forcing [20], which is a two-component forcing which generates pairs of counter-rotating
von Kármán swirling flows in planes perpendicular to the stratification, and with a shear layer in
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between them. When applied at only one wave number (k = kf , the forcing wave number), TG
forcing is given by

fTG(kf ) = f0(sin(kf x) cos(kf y) cos(kf z), − cos(kf x) sin(kf y) cos(kf z),0). (4)

For kf = 1, this forcing has two shear layers, one at z = π/2 and another one at z = 3π/2 (where
fTG = 0). Our TG forcing, applied at k = 1 and 2, is simply the superposition f = fTG(1) + fTG(2).
In the presence of stratification, this mechanical forcing generates a coherent flow at the large
scales, which develops horizontal winds (i.e., a nonzero mean horizontal velocity) only in the shear
layers between the von Kármán swirling flows, as the large-scale von Kármán structures prevent the
formation of strong horizontal winds in the rest of the domain. Taylor-Green flows, as they excite
directly only horizontal components of the velocity, have been used before to study stratified flows
and geophysical turbulence [30].

Another set of two simulations (also with Brunt-Väisälä frequencies N = 4 or 8) was forced
using isotropic three-dimensional random forcing (RND) with a correlation time of half a large-scale
turnover time. Every �t = 0.5, a forcing with random phases φk for each Fourier mode k in the
shell k ∈ [1,2] was generated as

f1 = f0

∑
|k|∈[1,2]

�[ik × r̂ei(k·r̂+φk)], (5)

where � stands for the real part. The forcing f is obtained by slowly interpolating the forcing from a
previous random state f0 to the new random state f1, in such a way that f = f1 after �t . The process
is then repeated to obtain a slowly evolving random forcing which does not introduce spurious fast
time scales in the evolution of the Lagrangian particles. With this forcing, no large-scale coherent
flows are sustained, and horizontal winds can then grow in the entire domain. Also, as this forcing
is isotropic, a larger amount of injected power will go into excitation of internal gravity waves, as
confirmed below. Thus, the large scales of both sets of simulations have very different behaviors.
In the Appendix we discuss a third forcing function, to further validate the model for horizontal
dispersion discussed in the next section using yet another configuration.

Equations (1) and (2) have two control dimensionless parameters. The Reynolds number

Re = LU

ν
, (6)

where L and U are, respectively, the characteristic Eulerian length scale and velocity of the flow,
and the Froude number

Fr = U

LN
, (7)

which measures the ratio of inertial forces to buoyancy forces in Eq. (1). The characteristic velocity
U is estimated as the root mean square Eulerian velocity. From the Reynolds and Froude numbers,
we can also define the buoyancy Reynolds number,

Reb = Re Fr2, (8)

which gives a measure of the strength of the turbulence in the stratified flow and is associated with
the turbulent mixing as well as with the relevance of viscous effects at all scales in these flows (see,
e.g., Ref. [31]).

Another useful parameter to estimate the turbulent mixing is the local gradient Richardson number
(see, e.g., Ref. [32])

Rig = N (N − ∂zθ )

∂z(u2
⊥)

, (9)
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TABLE I. Parameters and Eulerian and Lagrangian characteristic scales for all runs: TG and RND stand,
respectively, for TG and random isotropic forcing, N is the Brunt-Väisälä frequency, ν is the kinematic viscosity
(κ = ν), Re is the Reynolds number, Fr is the Froude number, Reb is the buoyancy Reynolds number, Te and
Tl are, respectively, the characteristic Eulerian and Lagrangian time scales, L is the isotropic Eulerian integral
length scale, and L/L‖ and L/L⊥ are the ratios of this scale, respectively, to the parallel and to the perpendicular
integral length scales.

Run Forcing N ν Re Fr Reb Te Tl L L/L‖ L/L⊥

TG4 TG 4 8 × 10−4 7000 0.04 11 3.6 7.2 2.2 0.9 0.5
TG8 TG 8 8 × 10−4 7000 0.02 3 2.9 8.0 2.8 1.0 0.5
RND4 RND 4 8 × 10−4 13 000 0.08 83 2.0 25.5 3.5 1.1 0.8
RND8 RND 8 8 × 10−4 13 000 0.04 21 2.5 17.1 3.6 1.1 0.6

where u⊥ = (u2
x + u2

y)1/2. Note that this is a pointwise expression. Values of Rig < 1/4 can be
considered to be an indication of possible local shear instabilities at that point, while for Rig < 0
local overturning can occur.

In the previous expressions and in the following, the characteristic Eulerian length scales (or the
integral scales) for all runs are computed from the Eulerian kinetic energy spectrum E(k) of these
flows as

L = 2π

∫
E(k)k−1 dk∫

E(k) dk
, (10)

L‖ = 2π

∫
E(k‖)k−1

‖ dk‖∫
E(k) dk

, (11)

and

L⊥ = 2π

∫
E(k⊥)k−1

⊥ dk∫
E(k) dk

, (12)

where L is the isotropic Eulerian length scale, L‖ is the parallel or vertical Eulerian length scale, and
L⊥ is the perpendicular or horizontal Eulerian length scale.

Finally, two other relevant parameters for the next section are the Eulerian correlation time (or
the large-scale turnover time), given by Te = L/U , and the Lagrangian turnover time Tl , which is
the mean correlation time of single-particle trajectories. Table I gives the values of the parameters
and characteristic scales introduced in this section for all runs.

III. RESULTS

A. Particle trajectories

Figure 1 shows vertical and horizontal displacements for a few particles in the RND4 simulation
(random forcing with N = 4; in the following we label runs by their forcing followed by the value
of N , following the notation in Table I), and in the TG4 simulation (i.e., TG forcing with N = 4). In
both simulations, while vertical displacements are small and display wavelike motions, horizontal
motions are large (compared with the periodic domain size of 2π ). In the RND4 simulation horizontal
trajectories seem almost ballistic at all times, being dominated by a strong drift. Note also that particles
at different heights (indicated by the different colors) move in different directions, as the horizontal
winds in each layer also point in different directions. In the TG4 simulation, horizontal displacements
show only a fraction of the particles with such a drift (those in the vicinity of the horizontal layers
where TG forcing is zero, and all moving along the same direction), and a significantly stronger
trapping of particles by eddies which can be seen as particle trajectories turn around.
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FIG. 1. (Left) Vertical (top) and horizontal (bottom) displacements for a few particles (indicated by different
colors) in the TG4 run (TG forcing with N = 4). (Right) Same for the RND4 run (random forcing with N = 4).

B. Lagrangian spectra

The Lagrangian spectrum of the vertical velocity is shown in Fig. 2. The spectra of all simulations
are shallow for frequencies ω/N < 1 and show a peak near ω/N = 1, i.e., the parallel kinetic
energy is concentrated near the buoyancy frequency. The shallow spectra for frequencies ω/N < 1
are reminiscent of the GM spectrum, which is an empirical spectrum for internal oceanic waves
[24–26] that reflects the dominance of wave contributions. The spectrum was first derived for the
total energy, but later generalized for vertical velocities [25], and used to compare with Lagrangian

FIG. 2. (Left) Lagrangian power spectrum of the vertical velocity in all simulations. Power laws are indicated
as a reference (see Table II). All spectra display a peak at the Brunt-Väisälä frequency (indicated by the arrow),
and for frequencies ω/N < 1 the shallow spectra are reminiscent of observations of oceanic internal gravity
waves. (Right) Lagrangian power spectrum of the horizontal velocity. In the horizontal case there is no clear
peak near the Brunt-Väisälä frequency.
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TABLE II. Exponents of power laws in the Lagrangian parallel spectrum and in the waiting time distributions
for all runs, with error bars. α± are the exponents of power laws obtained from a best fit to the Lagrangian parallel
spectra in Fig. 2, with α+ corresponding to the exponents for ω/N � 1, and α− to the exponents approximated
for ω/N > 1. β± are the exponents of power laws approximated for the waiting time distributions in Fig. 3,
with β+ corresponding to the exponents for tN < 1, and β− to the exponents for tN > 1.

Run α+ α− β+ β−

TG4 0.8 ± 0.3 −4.1 ± 0.1 0.8 ± 0.1 −2.9 ± 0.1
TG8 0.8 ± 0.2 −5.5 ± 0.1 0.9 ± 0.1 −2.0 ± 0.1
RND4 1.3 ± 0.4 −5.3 ± 0.1 0.9 ± 0.1 −3.3 ± 0.1
RND8 1.0 ± 0.2 −9.0 ± 0.1 1.0 ± 0.1 −3.3 ± 0.1

measurements (see, e.g., Refs. [24,33]). In the absence of rotation, i.e., at oceanic scales much smaller
than the scales at which rotation is relevant, the spectrum reduces to a white spectrum for ω � N .
For frequencies ω/N > 1 the vertical Lagrangian spectra in Fig. 2 decrease rapidly (in some cases
following a power law). Only as a reference, in Fig. 2 (left) we show two power laws, for frequencies
ω/N � 1, and for ω/N > 1.

In this light, we can interpret the observed vertical Lagrangian spectrum as follows. For frequencies
ω/N < 1, the shallow spectrum corresponds to a superposition of internal gravity waves and is
dominated by their contributions. Indeed, as the dispersion relation of internal gravity waves is
ω = Nk⊥/k � N , waves can contribute only to frequencies with ω/N � 1. For ω/N > 1 waves
cannot contribute, and any power at those frequencies must come from fast vortical motions and
turbulence, as also observed in oceanic measurements where power laws were also reported for
frequencies larger than the buoyancy frequency [24]. Moreover, note that the RND simulations have
steeper spectra at frequencies larger than the Brunt-Väisälä frequency, even though they have larger Fr
and Reb numbers. This is compatible with a stronger predominance of waves in those runs, associated
with the direct excitation of waves by the isotropic three-dimensional forcing. The stronger waves and
the weaker turbulence in these runs will be confirmed later when we study the gradient Richardson
number and we show that the TG simulations have larger probabilities of satisfying the conditions
for local shear instabilities or overturning.

In all cases, the predominance of waves in the vertical Lagrangian spectra, which concentrate
most of the power, is compatible with the vertical Lagrangian trajectories observed in Fig. 1: there
is little dispersion in this direction, and particle displacements are dominated by wavelike motions.
In comparison, Lagrangian spectra of the horizontal velocity (see Fig. 2) do not display a peak at the
buoyancy frequency nor a shallow spectrum for frequencies ω/N < 1, although in some simulations
the horizontal spectra display a knee and a change in the spectral slope in the vicinity of this frequency
(especially, again, for RND forcing).

C. Vertical dispersion

To model the small displacements in the vertical direction, we consider the statistics of vertical
displacement waiting times of the Lagrangian particles. To this end, we take the waiting time as
the time interval between two consecutive crossings of each particle trajectory through its mean z

elevation. We plot the waiting time distribution for all runs in Fig. 3. The PDFs are nonexponential,
indicating the system has memory (waves carry information of their initial conditions for a finite
amount of time), and are compatible with a power law for tN � 1. The slope is steeper for the RND
runs, ∼t−3, than for those with TG forcing, ∼t−2 (the best fit to these exponents, β−, corresponding
to the exponents for tN > 1, as well as for exponents β+ corresponding to power laws approximated
for tN < 1, are shown in Table II). Surprisingly, in the TG case, the probability of long waiting
times (i.e., of large excursions of some particles from their mean z position) also increases with
increasing stratification. This reflects the underlying nature of the stratified turbulence, in which
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FIG. 3. PDF of vertical displacement waiting times for the simulations, and waiting times generated by the
model consisting of a superposition of random waves (solid green in all cases). For TG runs the PDFs have
been shifted vertically for better visualization. Power laws are shown as a reference (see Table II), and vertical
arrows indicate t = 1/N .

waves can be nonlinearly amplified [34] (note that long excursions can be generated by strong
low-frequency waves, as observed in Fig. 2 and in the model shown next), which can also result in
a local instability or in overturning. To confirm this, Fig. 4 shows the PDFs of the local gradient
Richardson number Rig for all runs. When Rig < 1/4 local shear instabilities can develop, while for
Rig < 0 overturning is possible as the vertical gradient of temperature fluctuations ∂zθ overcomes
the background gradient associated with N . The TG runs have larger probability of having points
with Rig < 1/4 or Rig < 0 when compared with the RND runs at fixed Brunt-Väisälä frequency.
Also, as stratification (or equivalently, N ) is increased, the PDFs are shifted to the right, resulting in
lower probability of local shear instabilities or overturning. However, note that this effect is stronger
in the RND runs when compared with the TG runs. In particular, for the TG8 run there is still a
considerable (2.8 ± 0.1)% probability of finding points with Rig < 0, while for the RND8 run the
probability is (0.2 ± 0.1)%. This is compatible with the observations made before about the stronger

FIG. 4. PDFs of the local gradient Richardson number Rig for all runs. A vertical solid line at Rig = 0 and
a vertical dashed line at Rig = 1/4 are shown as references; for Rig < 1/4 local shear instabilities can develop,
while for Rig < 0 overturning can occur.
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FIG. 5. Mean vertical quadratic dispersion δz2 for all runs, normalized by the ratio w2/N 2 of the mean
squared vertical Lagrangian velocity to the squared Brunt-Väisälä frequency. Time is normalized by the Brunt-
Väisälä period. All simulations collapse at early times, but the TG runs depart after tN/2π ≈ 1. The thick (red)
curve shows the model for RND4, which is in good agreement with the simulation until at late times molecular
diffusion results in a slow vertical dispersion of the particles.

prevalence of waves in the RND runs (which have larger values of Reb but are forced isotropically)
when studying the Lagrangian spectrum of the vertical velocity.

Based on these observations, we thus propose a simple model for the vertical particle motion,
using a superposition of waves with random phases, and with amplitudes determined by the observed
parallel Lagrangian velocity vL

‖ or by its Lagrangian spectrum EL
‖ (ω) on dimensional grounds as

A(ω) ∼ vL
‖ (ω)/ω ∼

√
ω EL

‖ (ω)
/
ω ∼ ω(α±−1)/2. (13)

Note that EL
‖ (ω) is approximated by two power laws: one for ω � N (with exponent α+ > 0, see

Fig. 2), and one for ω > N (with exponent α− < 0). The values of the exponents α± obtained from a
best fit to the Lagrangian vertical spectra in Fig. 2 are shown in Table II. The waiting times generated
by this random superposition of waves are also shown in Fig. 3. The good agreement between the
model and the data indicates that, at least for the Froude and Reynolds numbers considered here,
the quenching of vertical dispersion results from the dominance of waves, and that the empirical
knowledge of the turbulent vertical Lagrangian spectrum is sufficient to predict the probability of
vertical excursions by the Lagrangian particles (at least for times comparable to several periods of
the waves).

In Ref. [13] a normalization of the mean vertical quadratic displacement of the particles δz2 was
proposed to reobtain (at least for early times) a behavior similar to that found in HIT. In Fig. 5
we show δz2 normalized in this way, namely, by multiplying the vertical quadratic dispersion by
the ratio N2/w2 of the squared Brunt-Väisälä frequency to the mean squared vertical Lagrangian
velocity (with w2 = 〈(vL

‖ )2〉), and by multiplying time by N/2π . The quadratic vertical dispersions
of all runs collapse to a single curve for tN/2π � 1, confirming the scaling proposed in Ref. [13]
up to the period of the slowest internal gravity waves, and for longer times for RND forcing. In
Ref. [35] a kinematic model also based on a random superposition of waves was presented to explain
the observed vertical quadratic displacement, which also results in a fast growth up to the buoyancy
period, and in saturation for later times. As discussed in Ref. [13] (which studied simulations with
random forcing), the slow dispersion at even later times in the RND runs is probably due to molecular
diffusion. In Fig. 5 we also show δz2 constructed from our model using the parameters of run RND4,
which is also in good agreement with the data. The case of TG forcing is different from the RND runs
and from the behavior reported in Refs. [13,35], as vertical dispersion continues to grow with time
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FIG. 6. Isocontours of P (r,t) for the simulations (dashed blue lines) and for the model (dotted red lines),
for (a) TG4, (b) TG8, (c) RND4, and (d) RND8. The inset show the mean horizontal displacement with the
same line labels (power laws are shown as references, see text for details). Vertical lines (from left to right in
all panels) indicate, respectively, the Eulerian Te and Lagrangian Tl turnover times.

after tN/2π = 1. As discussed above, these simulations display larger probabilities of long waiting
times (i.e., of long vertical excursions of the particles), which are associated with the development
of local overturning in the flow. This is, indeed, what the PDFs of Rig show (see Fig. 4) and suggests
that modifications to this model would be required if the turbulence is increased further, or if the
stratification is decreased. A parametric study of vertical dispersion varying Reb for this forcing is
left for a future study. Finally, note that although at early times in all runs the scaling δz2 ∼ t2 could
suggest that for short times the system behaves like HIT, the agreement with our model (as well as
the validity of this scaling only up to the Brunt-Väisälä period) indicates that this behavior, at least
for the range of parameters considered in this study, is caused by the vertical transport of particles
by the random superposition of internal gravity waves.

D. Horizontal dispersion

Dispersion of Lagrangian particles in the horizontal direction can be large (see Fig. 1), and at first
sight (at least for the TG runs) it can appear to be similar to that of HIT (see also Ref. [13]). Since
vertical dispersion is small, particle motions in planes perpendicular to the mean stratification can
be approximated as two-dimensional, and prediction of dispersion in this direction is relevant for
the stably stratified atmosphere and for other geophysical flows. Thus, a model for the probability
distribution P (x,t ; x′,t ′) of finding a particle at (x,t) given a previous location (x′,t ′) has multiple
applications and would allow probabilistic prediction of the concentration of quantities transported
by the flow without resorting to ensembles of deterministic simulations with small differences in the
initial concentrations [27]. In the following we derive a model for this distribution resorting only to
general statistical properties of the turbulent flow.

Figure 6 shows the probability density function P (r,t) of a particle moving a horizontal distance
r after a time interval t , computed using all simulations and all available time increments. The insets
in Fig. 6 show the mean horizontal displacement 〈r〉 as a function of time (i.e., the first order moment
of the PDFs), while Fig. 7 shows the mean horizontal quadratic displacement for all particles as a
function of time, 〈r2〉/(u2

⊥T 2
l ) (i.e., the second order moment of the PDFs in Fig. 6), normalized by

the mean squared perpendicular velocity and the Lagrangian turnover time using the scaling proposed
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FIG. 7. Left: Mean horizontal quadratic dispersion for all runs (thick black curves), normalized by the
product of the mean squared horizontal velocity u2

⊥ and the squared Lagrangian turnover time T 2
l , as a function

of time normalized by Tl . The same quantity obtained from the model is shown by the thin (red) curves, using
the same line labels as their corresponding simulation. The mean quadratic dispersion obtained from the model
is in good agreement with all simulations. Right: Mean horizontal displacements normalized by the time for
all runs (thick black curves), such that curves are flat when 〈r〉 ∼ t . Again, 〈r〉/t obtained from the model is
shown in thin (red) curves.

in Ref. [13]. The PDFs and the displacements are different depending on the forcing and on the time
scale considered. At early times all simulations display 〈r〉 ∼ t and 〈r2〉/(u2

⊥T 2
l ) ∼ (t/Tl)2, with

all curves in Fig. 7 collapsing in agreement with the scaling observed in Ref. [13]. This indicates
ballistic behavior at early times as in HIT [27]. However, at late times (t/Tl > 1) the behavior of the
TG and RND runs is clearly different and differs from the scaling proposed in Ref. [13]. In the TG
runs, 〈r〉 slows down but increases faster than ∼t1/2 (see the insets in Fig. 6 and the mean horizontal
displacements normalized by the time 〈r〉/t in Fig. 7). This behavior at late times is not universal, as
the dependence of 〈r〉 with t clearly varies with the level of stratification and with the forcing. The
case of RND forcing (see Figs. 6 and 7) is even more interesting: 〈r〉 ∼ t and 〈r2〉/(u2

⊥T 2
l ) ∼ (t/Tl)2

even at late times, and the maximum of P (r,t) in r (see the PDFs in Fig. 6) displays a linear drift as
t increases.

In the horizontal case, the main difference between TG and RND runs is in the strength of the
VSHWs. In stratified flows, the anisotropic energy transfer towards modes with k⊥ ≈ 0 results in the
formation of strong horizontal winds with vertical shear [18,19]. The flow is then given by weakly
coupled horizontal layers, each with a mean horizontal velocity pointing in some direction. For RND
forcing these winds develop in the entire domain, resulting in the almost ballistic motion of the
particles observed in Fig. 1 (each particle is in a different layer, and thus the mean drift points in a
different direction). However, in the TG case the coherent forcing imposes a large-scale structure that
prevents the formation of mean winds, except in the few horizontal layers where shear is maximum
and the forcing approaches zero. To illustrate this, Fig. 8 shows horizontal cuts of the horizontal
velocity for runs TG4 and RND4 (for the sake of clarity, the velocity at 1% of the grid points in
the horizontal plane is shown). For RND4, on the average the horizontal velocity points towards a
well-defined direction, generating a coherent drift for all particles spending a sufficiently long time
in this plane. For this run (as well as for the RND8 run), the same behavior is observed in other
horizontal cuts at different heights. However, for the TG4 run (as well as for TG8, not shown) no
clear mean wind is observed. As mentioned above, small mean winds can develop only for TG
forcing in a few horizontal layers. This is further confirmed in Fig. 9, which shows the PDFs of
the x̂ component of the velocity ux (similar results are obtained for uy), and of the r.m.s. horizontal
velocity u⊥, averaged over horizontal planes before computing the PDFs (the PDFs are also averaged
in time). These PDFs thus quantify the probability of finding horizontal layers with mean horizontal
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FIG. 8. Horizontal cuts (in the x-y plane, and at z = 0) of the horizontal velocity at time t = 20 for (left)
the TG4 run, and (right) the RND4 run. Note the clear mean wind in the latter case, pointing approximately in
the x̂ direction. Other layers (i.e., for other values of z) have mean horizontal winds pointing in other directions.

winds, in particular, for runs TG4 and RND4. Note the RND4 run has stronger mean horizontal
winds when compared with the TG4 run, while the TG4 run has larger probability of having layers
with zero mean velocity, further confirming the observations made in Fig. 8.

Thus, we can conclude that in Fig. 7 there is a competition between transport and trapping by
turbulent eddies (which is responsible for the mixing in the inertial range of HIT and is also visible
in Fig. 1) and the coherent drift (due to the VSHWs in stratified turbulence). In the RND set of
simulations the drift dominates the motion of all particles giving ballistic-like behavior for all times,
while in the TG set, as the drift is smaller and affects only a fraction of the particles, the competition
results in a scaling between ballistic and that observed in HIT. The VSHWs (and their different
strengths depending on the level of stratification and type of forcing) can thus be expected to play

FIG. 9. PDFs of the mean horizontal winds for the TG4 and RND4 runs. (Left) PDF of 〈ux〉xy , i.e., of the
velocity in the x̂ direction, ux , averaged over the x and y coordinates, or equivalently, over planes at constant
height. (Right) Same for the r.m.s. horizontal velocity u⊥ = (u2

x + u2
y)1/2, also averaged over planes at constant

height.
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an important role in the diffusion of particles, as observed in the atmosphere [36,37]. The model we
present next confirms this.

To capture the observed horizontal single-particle dispersion we use a continuous-time random
walk model [27] and extend it to build a model that can capture both trapping of particles by eddies
as well as the drift caused by the VSHWs. The motivation to use a CTEC random walk model is the
following. While in HIT dispersion of particles is ballistic for short times and diffusive (〈r〉 ∼ t1/2)
for late times, it has been observed that the PDFs P (r,t) show deviations from a Rayleigh distribution.
In particular, at early times P (r,t) displays a slightly smaller probability of particles having large
displacements from their origins when compared with a Rayleigh distribution, while at late times a
small excess of large displacements can be observed. This indicates that a simple random walk model
is insufficient to capture the dynamics of the system. Using a point vortex model [38], the early time
behavior was shown to be associated with trapping of particles by the eddies, which then cannot
travel as far as they could in a random walk. Naturally, the trapping time is a continuous random
variable, whose distribution can be obtained, e.g., from comparisons with a point vortex model [27].
It is clear from Fig. 1 that trapping by eddies also plays a role in the horizontal displacement in our
simulations, at least in the runs in which VSHWs are not dominant. Thus, in our random walk model
each particle is trapped in an eddy and displaces

drt = 2rt | sin(θt )| (14)

for a time tt , where rt is the radius of the eddy, and

θt = Ut tr/rt (15)

is the central angle of motion of the particle while trapped, where Ut is the Lagrangian particle
velocity. The particle enters each eddy (i.e., each trap) with random phase. The model has no free
parameters, and the probability distributions of Ut , tt , and rt (with the sequence of random values for
these quantities corresponding to the successive motion of a particle from one eddy to the next) are
obtained from observations or from Kolmogorov theory of turbulence as follows. The probability
density of finding an eddy of radius rt is taken to be Kolmogorovly distributed,

P (rt ) ∼ r
4/3
t , (16)

for rt < L/2, where L is the Eulerian integral length of the flow as defined above. The assumption
that the eddy distribution is Kolmogorovian is based on observations that the perpendicular velocity
in stably stratified turbulence follows Kolmogorov scaling with the perpendicular wave number
[30,39–41]. The probability density of a given trapping time for a particular step tt is uniform between
0 and Te, where Te is the Eulerian turnover time [38]. Finally, the probability density of particle
velocities P (Ut ) is obtained from the PDF of the Lagrangian perpendicular velocity in the simulation
(after subtracting the mean velocity associated with the drift caused by the VSHWs). In each step
of the random walk, a set of these variables is randomly generated, each chosen independently, and
their values are kept constant over the trap duration tt .

To this eddy-constrained random walk, a uniform drift Dt = Wtt is added to each particle, with
the PDF of the wind W (different for each particle) given by a bimodal Gaussian distribution
corresponding to the best fit to the PDF of the VSHWs (see Fig. 9) in each simulation. Note the
VSHWs are different depending on the forcing, with larger values of W in the RND runs, and lower
values (and larger probability of having particles with W ≈ 0) in the TG runs. The random walk is
then constructed as the sum over steps of length drt + Dt .

The modeled P (r,t) are also shown in Fig. 6, which are in good agreement with simulations. Note
also that the model captures differences between TG and RND runs, differences between simulations
with different values of the Brunt-Väisälä frequency N , as well as the anomalous behavior of 〈r〉
and of 〈r2〉 (Fig. 7) at late times in all cases. The PDFs from the model and the simulations at two
fixed times are also compared in Fig. 10. It is clear the PDFs are not Rayleigh, confirming turbulent
transport in stratified flows cannot be modeled simply as a standard random walk. Moreover, two
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FIG. 10. P (r,t) at different times for the simulations (solid lines) and for the model (dashed lines). Thick
lines correspond to flows with N = 4, and thin lines to N = 8. PDFs peaked at small values of r are for TG
forcing, while PDFs peaked at large values of r are for RND forcing (as labeled). (Left) t = 1.5 (t < Te); (right)
t = 35 (t > Tl).

regimes are found for times shorter than the Eulerian turnover time Te and for times larger than the
Lagrangian turnover time Tl . For t < Te trapping is more relevant than the drift, while for t > Tl

the drift dominates the dispersion giving very different PDFs in the TG and RND cases. Note that
unlike HIT, the Lagrangian turnover times in all these simulations are larger than the corresponding
Eulerian times, a result of a long-term correlation in each particle trajectory caused by the drift by
the VSHWs. Indeed, the RND runs (which have stronger VSHWs) have a larger separation between
Tl and Te, and their separation also increases with increasing Brunt-Väisälä frequency N .

IV. CONCLUSIONS

In this paper we studied single-particle dispersion in stably stratified turbulence using different
forcing functions and Brunt-Väisälä frequencies. We showed that vertical dispersion is strongly
reduced by the stratification, with the vertical Lagrangian velocity following a spectrum compatible
with observations from wave-dominated geophysical flows [24–26]. Knowledge of this spectrum
is enough to construct a random superposition of internal gravity waves which gives probability
distribution functions of the waiting times of the Lagrangian particles in good agreement with the
data, and mean vertical displacements in good agreement with the simulations up to the Brunt-Väisälä
period in all simulations and for longer times in the simulations with random forcing. We also showed
that horizontal dispersion differs from HIT and is strongly influenced by the large-scale vertically
sheared horizontal winds generated by the stratification [18–20]. Knowledge of the Eulerian typical
flow velocity, of the Eulerian integral length, of the probability density function of the horizontal
Lagrangian velocity, and of the strength of the horizontal winds is enough to build a continuous-time
eddy-constrained random walk model, which takes into account particle trapping by eddies and drift
by the mean winds, and which correctly reproduces the probability density function of the horizontal
particle displacements in all simulations.

This model assumes that vertical displacements of the Lagrangian particles are negligible, or at
least that they remain small across the time scales associated with the horizontal displacements, in
such a way that each particle can be treated as being transported along a unique horizontal layer with
a given horizontal wind. This is in good agreement with observations in our simulations, as well
as with previous studies of Lagrangian transport and dispersion in stably stratified flows [13,35].
In particular, the observed mean squared vertical displacements confirm there is little mixing after
one Brunt-Väisälä wave period, with saturation in the case of isotropic random forcing, and with a
slow increase in the case of TG forcing. However, it may be the case that for stronger turbulence, or
for weaker stratification (i.e., for larger values of the buoyancy Reynolds number), vertical mixing
can be stronger and cause particles to change layers on faster time scales. Moreover, our results for
two different forcing functions indicate that the local gradient Richardson number may be a better
indicator of such a change in behavior. A detailed parametric study of vertical transport for moderate
values of the Froude number and for larger Reynolds numbers is left for future work.
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For the range of parameters considered in this study, the results show that single-particle dispersion
in stably stratified fluids departs significantly from the behavior observed in HIT, which has strong
implications for the study of transport in geophysical flows. In particular, transport at times larger
than the Lagrangian turnover time is not universal and is strongly dependent on the presence or
not of horizontal winds. Thus, even the mean displacement of the particles cannot be modeled by a
single power law of time and may not be self-similar. As mentioned above, the models we presented
capture this behavior and yield results in good agreement with numerical simulations. For the range of
parameters considered here, the model indicates that while vertical transport is mostly mediated by a
random superposition of internal gravity waves, proper capturing of the horizontal transport requires a
superposition of a random walk with trapping, with a mean drift caused by horizontal winds, which are
dependent on the forcing, on the stratification level, and in geophysical scenarios can also be affected
by topography and other factors. Finally, the model provides a statistical prediction of moments of
the PDF of dispersion without the need of explicit simulation of the turbulent flow and of individual
particle trajectories. Note this is of particular importance for the modeling of geophysical flows.
While in recent years state-of-the art simulations allowed studies with very high spatial resolution of
atmospheric and oceanic flows, forecasts and large-scale modeling require ensembles of runs which
are performed at lower resolutions and which cannot resolve the small-scale turbulence. As a result,
the development of statistical models not only provides a deeper insight into the mechanisms behind
particle dispersion, but can also allows the development of subgrid-scale models of turbulent particle
transport and mixing.
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APPENDIX: HORIZONTAL DISPERSION WITH KOLMOGOROV FORCING

To further test the model for horizontal dispersion we briefly present here a 5123 simulation with
Brunt-Väisälä frequency N = 8, the same parameters as in the other simulations (ν = κ = 8 × 10−4

and Schmidt number Sc = 1), but with Kolmogorov forcing. To force at the same scales as in the
previous simulations, we apply the Kolmogorov forcing at k = 1 and 2 (see, e.g., Ref. [42]) and use

f = f0[sin(y) + sin(2y)]x̂. (A1)

While in RND forcing all three components of the velocity field are forced and the forcing is isotropic,
and in TG forcing both horizontal components of the velocity are forced, in Kolmogorov forcing
only one component of the velocity is forced, resulting in the turbulent steady state in an anisotropic
flow even in the horizontal plane. As an example, in the turbulent steady state the r.m.s. Eulerian
velocity in the x direction is almost three times larger than the r.m.s. value of the Eulerian velocity
in the y direction.

For this simulation, as for the previous simulations, we studied the mean horizontal dispersion and
the probability distribution P (r,t) of finding a particle at a given distance r at time t from its original
location (see Fig. 11). Using the typical value of the horizontal Eulerian velocity (averaged in the x

and y directions), the Eulerian turnover time, the PDF of the Lagrangian velocity of the particles,
and the typical amplitude of the horizontal winds, we also computed the random walk model (see
also Fig. 11). Considering the strong horizontal anisotropy in this flow, which is different from the
other forcing functions studied in this work, the model is in good agreement with the simulations,
especially for the PDF of the displacements P (r,t).

The mean horizontal dispersion in the simulation shows ballistic behaviour at early times (〈r〉 ∼ t),
and slows down at later times, albeit less than in the TG simulations. Again, there is a competition
between diffusion and trapping by the turbulent eddies and the drift by the horizontal winds, which
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FIG. 11. (Left) Mean horizontal dispersion as a function of time for a run with Kolmogorov forcing and
N = 8 (thick black line). Dispersion in the random walk model is shown by the thin (red) line. (Right) Isocontours
of P (r,t) for the simulation (dashed blue curves) and for the model (dotted red curves). Vertical lines (from left
to right) indicate, respectively, the Eulerian Te and Lagrangian Tl turnover times.

in this simulation are weaker than in the RND runs but stronger than in the TG runs. The PDF P (r,t)
has an excess of particles that travel far from their origin at early times (up to t ≈ 30), which can
be seen as a bump in the isocontours. Then horizontal winds give almost linear isocontours in time.
The model, without any modification, can capture for this flow both features and the overall shape
of the PDF.
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