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Two-phase continuum theory for windblown sand
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We outline the derivation of a two-phase continuum theory for grains, jumping above a bed
of sand, while accelerated by a turbulent shearing flow, colliding with the bed, rebounding,
and, perhaps, generating other grains. Relations between the shear and normal stresses
and vertical derivatives of components of the average particle velocity are determined by
averaging the dynamical equations for the particle trajectories. This provides the closure
for the system of differential equations that govern the behavior of the wind and particles
above the bed. Boundary conditions are obtained by averaging the results of experiments
on rebound and ejection of particles from a particle bed. We solve the resulting system of
equations subject to the derived boundary conditions for steady, uniform flows over both
particle and rigid beds, and obtain unsteady, uniform solutions and steady, nonuniform
solutions that provide information regarding saturation times and lengths, respectively.
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I. INTRODUCTION

When a turbulent wind blowing over a bed of sand becomes sufficiently strong, a grain may be
lifted from the bed by a strong, localized turbulent eddy. The drag of the air then accelerates it and
it collides with the bed with increased momentum. Impacting grains rebound and eject other grains
that may also be accelerated by the wind until a sufficient number of grains are participating in the
process to diminish the wind near the bed and create a steady balance in the exchanges of momentum
between the grains and the wind and the grains and the bed. The result is a steady cloud of grains
with diameters between 100 and 500 μm that jump (Latin: saltare) over the bed. This saltation and an
associated creep of particles rolling and sliding along the bed are the primary modes of the initial sand
movement [1–5]. Here, we ignore the creeping grains and sketch the development of a two-phase
continuum theory for saltation that may be unsteady and/or nonuniform.

Most existing transport models for unsteady or nonuniform aeolian flows focus on the relaxation
to equilibrium that results from a temporal or spatial change of the flow strength. The characteristic
time or length scale necessary to recover the equilibrium regime of transport is often referred to as
the saturation time or saturation length, respectively [6]. One important issue is to determine the key
physical mechanisms that drive this process.

It has been suggested [7,8] that the acceleration of the transported particles due to fluid drag is the
limiting relaxation mechanism, resulting in an inertial saturation length that scales linearly with the
product of the fluid-to-particle density ratio and the particle diameter. However, this line of argument
disregards other mechanisms, such as the entrainment of bed particles by the fluid drag and/or
grain-bed collisions [6], and the feedback of the transport layer on the fluid velocity. Later, it was
argued [9] that the negative feedback of the particles on the fluid flow is the limiting mechanism in the
saturation process, also controlled by the inertial length. Measurements in wind-tunnel experiments
[9] provide an estimation of the saturation length compatible with the inertial length.
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Pahtz et al. [10,11] have recently developed an analytical model based on a depth-averaged
continuum approach that takes into account the previously neglected mechanisms. The results of the
model indicate that the relaxation of the particle speed and the particle concentration occur at the
same time scale and the two relaxation mechanisms interact. This is clearly different from that based
on the inertial length, but shares some common features: First, it is also independent of the flow
strength, because the equilibrium speed does not depend on the turbulent shear rate, and second, it
provides a similar order magnitude of about 2000 particle diameters for aeolian sand. The common
features prevent the making of a definite statement concerning the relevant mechanism involved in
the relaxation process.

In this paper, we follow the template established in the continuum modeling of Sauermann et al. [6]
that initiated the renewed interest in the physics of windblown sand and the creation and migration of
sand dunes. They formulated a depth-averaged, two-dimensional phenomenological model to predict
the evolution in space and time of the average particle density and velocity, driven by a turbulent
shearing flow over a horizontal particle bed. The model contained parameters that in the absence
of better information were evaluated in comparisons with experiments and numerical simulations.
The model predicted the dependence of the saturation flux on the strength of the steady, uniform,
turbulent shearing flow and the times and distances necessary to reach saturation after changes in
the strength of the flow or conditions at the bed; these mechanisms included both the drag of the
wind and the collisional flux of particles from the bed. The predictions were in good agreement
with those measured in experiments and simulations. Here, we take advantage of progress made in
characterizing the interactions of particles with the bed and in the development of local continuum
relations for the particle shear and normal stress above the bed to phrase a more detailed continuum
model. It involves a system of partial differential equations and boundary conditions for the values
above the bed of particle concentration, particle velocity parallel and perpendicular to the bed, and
wind velocity. In principle, averaging these equations through the depth of the flow would permit us
to recover the simpler model of Sauermann et al. [6].

In what follows, we first indicate how measurements of particle collisions with a bed of like
particles and simple averaging lead to conditions on the average exchange of particle mass and
momentum at the surface of the bed. This extends calculations in Creyssels et al. [12] to finite particle
fluxes. We then review how local relations between the components of particle stresses and the particle
velocity derivatives may be obtained by averaging the equations that govern the trajectories of single
particles at each height of the trajectory. Here, the calculation of the particle shear stress by Jenkins
et al. [13] is reviewed and extended to include a normal component that is proportional to the vertical
derivative of the vertical particle velocity. Finally, we use these relations, the expression for the particle
pressure, and the usual mixing length model for the turbulent shear flow, modified by the drag of the
particles, in the equations of balance for the mass, horizontal and vertical momentum of the particles,
and horizontal momentum for the wind, and obtain numerical solutions to boundary-value problems
for a variety of flows. The theory may be extended to incorporate turbulent suspension [13,14] and
the particle shear stress and pressure associated with particle collisions above the bed [15,16].

In steady, uniform situations, we calculate profiles of particle concentration and particle and gas ve-
locities for flows that interact with a particle bed over a range of wind strengths and flows that interact
with a rigid bed for a single wind strength and a range of particle holdups. Then, we consider a uniform,
unsteady situation, associated with a change in the strength of the wind over a particle bed, and
determine the change in profiles with time. Next, we calculate the evolution with distance of steady
profiles over a rigid bed and determine that some of these steady solutions are unstable. Finally, taking
as an upstream boundary condition the profiles associated with the flow of maximum particle flux
over a rigid bed at a given wind speed, we determine their evolution with distance over a particle bed.

The structure of the continuum theory differs from those derived in the past in two respects. It
includes expressions for the particle shear and normal stresses [13], calculated from rough averages
of the equations for a particle trajectory, and it employs boundary conditions at the bed [12],
determined from averages of mass and momentum exchanges measured in experiments [17] and
numerical simulations [18,19]. The theory is complementary to recent discrete numerical simulations

034305-2



TWO-PHASE CONTINUUM THEORY FOR WINDBLOWN SAND

of saltation and creep [20–24] that have the capacity to describe both steady and unsteady states.
Consequently, they also can address issues such as the times and distances necessary to equilibrate
after a change in the strength of the wind or the nature of the bed [10,11,24], and have the capacity
to test the modeling assumptions made in deriving the continuum theory. An understanding of
the mechanisms that underlie the times and distances that link steady states is important to an
understanding of the instability of a flat bed [8,22,25–27] and the possible evolution of a sand heap
into a crescent dune with a slip face [8,25,27–32].

The mass density and viscosity of the wind are denoted by ρf and μf , respectively, and, in what
follows, lengths are made dimensionless by the grain diameter d, velocities by (gd)1/2, where g is
the gravitational acceleration, and stresses by ρsgd, where ρs is the mass density of the material of
the grains.

II. BOUNDARY CONDITIONS

We first consider the interaction between grains of the flow and grains of a particle bed. We denote
the velocity of a grain by ξ , its magnitude by ξ , and its vertical component by ξy . Measurements
of collisions of single grains with a bed of like grains [17] show that the averages of the speed and
vertical velocity components after a collision are related to values before a collision by

ξ̄ ′ = e(ξ )ξ = (0.87 − 0.72 sin θ )ξ and ξ̄ ′
y = ey(ξ )|ξy | =

(
0.30

sin θ
− 0.15

)
|ξy |, (1)

where the primes denote upward values, e and ey are coefficients of restitution, and θ is the angle
between the incoming velocity vector and the surface of the bed. The total number N of particles
leaving the bed is seen to be 1 + 13(1 − e2)(ξ/40 − 1), if ξ > 40; 1, if 3.70 < ξ < 40; and 0, if
ξ <

√
2 sin θ = 3.70. In the former, more exactly than Creyssels et al. [12], we employ the vertical

component of the impact velocity, when defining the particles captured by the bed as those that
rebound less than a diameter.

We introduce the simple velocity distribution function

f (ξ ) = n0

2πT
exp

[
−(ξx − u0)2 − ξ 2

y

2T

]
, (2)

in which the n, u, and T are, respectively, the dimensionless number density, average flow velocity,
and mean square of the velocity fluctuations, the subscript 0 indicates a quantity evaluated at the bed,
and T is uniform through the flow. The dimensionless number density is related to the concentration c

by n = 6c/π . We use the distribution function and Eq. (1) to calculate fluxes of mass and momentum
at the bed. It differs from that measured by Ho et al. [33] in that it ignores the creeping particles.

The flux of mass ṁ from the bed is calculated in the Appendix,

ṁ =
∫

ξy�0
(N−1)ξyf (ξ )dξ

= c0
13

40

6

π2

T 3/2

u0

[[(
1 − (0.87)2 + 6800π (0.87)(0.72)e− u2

0
2T − 2(0.72)2 T

u2
0

)

×
{

u0√
T

e− (40−u0)2

2T +
(π

2

)1/2
[

1 − u0(40 − u0)

T

]
erfc

(
40 − u0√

2T

)}

+ 0.64
(π

2

)1/2
(0.72)2 T

u2
0

erfc

(
40 − u0√

2T

)]]
. (3)

This expression improves upon an approximation in Creyssels et al. [12] that is limited to values
of the slip velocity u0 less than 40. The corresponding fluxes of momentum in the horizontal and

034305-3



JAMES T. JENKINS AND ALEXANDRE VALANCE

vertical directions are, respectively [12],

Ṁx = −π

6

∫
ξy�0

(ξ̄
′
x − ξ x)ξyf (ξ )dξ = c0T

(
0.35 + 0.07

u0

T 1/2
− 0.33

T 1/2

u0

)
(4)

and

Ṁy = −π

6

∫
ξy�0

(ξ̄
′
y − ξ y)ξyf (ξ )dξ = c0T

[
0.12

(
u0

T 1/2
+ T 1/2

u0

)
− 0.08

]
+ c0T

2
. (5)

In unsteady flows above a particle bed, Eq. (3) provides a relation between the values at the bed
of the averages of the vertical velocity v0, the concentration c0, and the particle velocity u0. In such
flows, we employ it either in its exact form or as a linearization about the steady value of the slip
velocity u0

0, ṁ = v0c0 = β(u0 − u0
0), where β = 1.7 × 10−3. When the rate of vertical momentum

transfer Ṁy is equated to the pressure at the bed p0 = c0T , Eq. (5) determines the ratio u0
0/T

1/2 to
be 4.6. Then, Eq. (4) relates the shear stress at the bed to the pressure Ṁx = s0 = 0.6p0. In steady
flows, the mass flux vanishes; then, Eq. (3) requires that u0

0 = 23.06 and T = 25.14.
Numerical simulations of collisions of single grains with a bumpy, rigid bed [34] show that the

averages of the speed and vertical velocity components after a collision are related to values before
a collision by

ξ̄ ′ = e(ξ )ξ = (0.90 − 0.25 sin θ )ξ and ξ̄ ′
y = ey(ξ )|ξy | = 0.65

sin θ
|ξy |. (6)

In this case, the mass flux (3) is not relevant, while [12]

Ṁx = c0T

(
0.13 + 0.04

u0

T 1/2
+ 0.36

T 1/2

u0

)
(7)

and

Ṁy = c0T

[
0.26

(
u0

T 1/2
+ T 1/2

u0

)]
+ c0T

2
. (8)

With these, at y = 0, u0 = 4.6T 1/2 and s0 = 0.53c0T . Here, for simplicity, we ignore the detailed
difference between the coefficients of restitution, the momentum fluxes, and the particle shear stress
at rigid and particle beds, and employ the values for a particle bed for both particle and rigid beds.
Finally, in steady flows over a rigid bed, the particle, or slip, velocity is not specified, but is given as
a part of the solution when the dimensionless measure of the total mass over a unit area of the bed,
the particle holdup M∗, is given. This is done by introducing an additional differential equation for
the partial holdup, I (y) = ∫ y

0 c(ς )dς , with boundary conditions I (0) = 0 and I (h) = M∗.

III. PARTICLE STRESS

We next consider the motion of grains above the bed and the transfers of momentum associated
with their trajectories in a turbulent shearing flow, and review how manipulating these equations
and averaging the result leads to continuum relations between components of the particle stress and
derivatives of the components of the particle velocity across the flow [13].

When the vertical drag on a particle is neglected, the x components of the equations of motion
for the upward and downward parts of a particle trajectory may be written

ξ ′
y

dξ ′
x

dy
= D

σ
(U − ξ ′

x) and ξ ′
y

dξx

dy
= −D

σ
(U − ξx), (9)

where y is the upward vertical coordinate, D is the dimensionless drag coefficient, σ ≡ ρs/ρf , and
U is the local average fluid velocity. When we multiply these by cξ ′

y , sum them, and average, we
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obtain

cξ ′2
y

d

dy
(ξ ′

x + ξx) = c(D/σ )ξ ′
y(ξ ′

x − ξx). (10)

In this, we make the identifications of the average particle velocity 2u ≡ (ξ ′
x + ξx), the average

particle pressure p ≡ cξ ′2
y = cT , and the average particle shear stress 2s ≡ cξ ′

y(ξ ′
x − ξx), and

assume that the averages of products are products of averages. The result is a relation between
the particle shear stress and the derivative of the particle velocity that involves the particle pressure
and the drag coefficient [13],

s = σp

αD

du

dy
. (11)

A comparison with discrete numerical simulations [13] indicates that the coefficient α is about 20.
Repeating the argument for the y components of the equations of motion of the upward and

downward trajectories with vertical drag now incorporated results in a similar relation between
the vertical derivative of the vertical velocity v ≡ (ξ ′

y + ξy)/2 and the vertical component of the

normal stress b ≡ −cξ ′
y(ξ ′

y + ξy)/2, where the quantity in parentheses vanishes when the upward
and downward velocities have equal magnitude.

These expressions for the shear and normal stress of the particles permit the phrasing of a
continuum theory for unsteady, uniform flows or steady, inhomogeneous flows that interact with
rigid or particle beds.

IV. GOVERNING EQUATIONS

Here, we write down the continuum equations that govern unsteady, nonuniform flow. We then
employ the MATLAB solver bvp4c to obtain steady, uniform solutions and the solver pdepe to obtain
solutions for both uniform, unsteady flows and steady, developing flows. The uniform, unsteady
solutions are associated with the evolution with time of a uniform flow to a change in the shear
stress of the wind at a large distance above the bed, and the steady, developing solutions apply to the
adjustment with horizontal coordinate x of a flow at constant wind speed to a change from a rigid to
a particle bed. The advantage in writing continuum equations is that these existing solvers can easily
be implemented to generate numerical solutions, and other mechanisms of momentum transfer, such
as turbulent suspension [13,14] and collisions above the bed [15], can be easily incorporated into
the theory. Solutions of the resulting equations can then provide information regarding characteristic
times or distances associated with each mechanism.

A. Unsteady, nonuniform flows

The system of equations that governs an unsteady, uniform, turbulent shearing flow with height
h of sand grains in air subject to a dimensionless turbulent shear stress S∗ at the top of the flow is
the balance of horizontal particle momentum,

c
∂u

∂t
+ cu

∂u

∂x
+ cv

∂u

∂y
= ∂s

∂y
+ c

D

σ
(U − u), (12)

where s is given by Eq. (11) and

D ≡ 0.3[(U − u)2 + v2]1/2 + 18.3/Re, (13)

with Re ≡ d(gd)1/2/(μf /ρf ), in which g = 980 cm/s2 is the gravitational acceleration; the balance
of vertical particle momentum,

c
∂v

∂t
+ cu

∂v

∂x
+ cv

∂v

∂y
= ∂

∂y
(−p + b) − c

D

σ
v − c, (14)
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where b = σp(∂v/∂y)/(αD); the conservation of particle mass,

∂c

∂t
+ c

∂u

∂x
+ u

∂c

∂x
+ c

∂v

∂y
+ v

∂c

∂y
= ε

∂

∂y

(
∂c

∂y
− c

T

)
, (15)

where the last term is included to facilitate the numerical solution with the solver pdepe that requires
a flux term in each equation, here with ε = 0.01 a small parameter and an expression for the flux
that vanishes in a steady, uniform flow; and the balance of horizontal fluid momentum,

∂U

∂t
+ U

∂U

∂x
= σ

∂S

∂y
− cD(U − u), (16)

where, with the assumption that the bed is hydrodynamically rough, S = (1/σ )[κ(y + y0)(∂U/∂y)]2,
in which κ = 0.41 and y0 = 1/30 is the bed roughness. For a hydrodynamically smooth bed,
not considered here, S = (1/σ )[1/Re + 
2(∂U/∂y)]∂U/∂y, where, following van Driest [35],


 = κy{1 − exp[−(
√

ρf S0∗y/μf )
1/2

/19]}.
Because the value of T in these equations is to be a constant, equal to that at the bed, where it

is related to the particle velocity, we employ the diffusion equation ∂T /∂t = δ∂2T/∂y2, with δ a
constant of order one, to propagate the value of T at the bed into the interior. Because pdepe requires
a finite interval, the height of the flow is taken to be 500 particle diameters. A definite flow height
also facilitates comparisons between different flows over a rigid bed and the transition between flows
over rigid and particle beds.

The boundary conditions employed in the MATLAB solver pdepe at y = 0 at a particle bed are
U = 0, s = 0.6cT , v = β(u − u0), and ∂c/∂y = −c/T , where T = (u/4.6)2. At a rigid bed, there
is no vertical velocity and the particle holdup or the value of some other parameter must be provided.
The boundary conditions at y = h are s = 0, S = S∗0 + S∗′, b = 0, and ∂c/∂y = −c/T , where here
the prime denotes a perturbation from a steady solution and, again, the superscript 0 denotes a value
in the steady flow.

B. Steady, uniform flows

In steady, uniform flows, the vanishing of the mass flux at the bed determines that u(0) = 23.06
and, in the system (12), (14), (15), and (16), the vertical particle velocity and derivatives with respect
to t and x vanish. Then, Eq. (12) is

ds

dy
= −c

D

σ
(U − u); (17)

the inversion of Eq. (11) serves to determine the particle velocity,

du

dy
= αD

s

p
, (18)

where α = 20; the particle mass balances reduces to

dc

dy
= − c

T
, (19)

where T = 25.14; and the fluid velocity is determined by

dU

dy
= [(S∗ − s)σ ]1/2

κ(y + y0)
. (20)

The MATLAB solver bvp4c is used to determine steady solutions, only some of which we later
show to be stable. At y = 0, this solver employs the boundary conditions u = 23.06, s = 0.6cT ,
and U = 0 at a particle bed. The last two of these are given at a rigid bed and, while it is natural
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FIG. 1. Logarithm of the concentration vs dimensionless height for d = 0.025 cm. Spherical grains of sand
in air at S∗ = 0.035, 0.059, 0.065, and 0.080. Line weights increase with increasing values of S∗.

to specify the mass holdup at a rigid bed, we find it easier to obtain convergence by specifying the
slip velocity and calculating the associated mass holdup. At y = h, we assume that s = 0. For both
beds, the concentration at the bed is determined as part of the solution.

Because pdepe and bvp4c employ slightly different boundary conditions, a steady solution of
bvp4c may differ slightly from the corresponding long-time stable solution of pdepe.

V. NUMERICAL SOLUTIONS

A. Steady, uniform flows

1. Particle bed

We first obtain a solution of the system of Eqs. (13)–(15) for a steady, uniform flow, in which
u = 23.06, T = 25.14, and s = 0.6 cT at the bed, using the MATLAB solver bvp4c for two-point
boundary-value problems. We take the distant shear stress S∗ to be 0.035, 0.050, 0.065, and 0.080,
and consider sand particles with diameter d = 0.025 cm, specific mass in air σ = 2200, and kinematic
viscosity μf /ρf = 0.15 cm2/s.

The parts of the predicted concentration profiles above a concentration of 10−5 are shown in
Fig. 1. Jenkins et al. [13] indicate the relationship between these and those measured in experiments
by Creyssels et al. [12]; the decay of the predicted concentration profiles is about half as fast as that
measured in the experiments, but it can be increased to a value near that measured by incorporating
suspension by the turbulent velocity fluctuations in the particle vertical momentum balance.

The predicted profiles of particle and gas velocity are shown in Fig. 2. Again, Jenkins et al. [13]
indicate that these profiles are in good agreement with those measured by Creyssels et al. [12], and
the agreement is improved by incorporating suspension by the turbulent velocity fluctuations.

We next test the profile of the stress predicted in such a steady, uniform situation against the
results of a relatively simple numerical simulation [12]. The simulation employs particles ejected
into a turbulent shearing flow with a Gaussian distribution of initial velocities and allows them to
achieve a steady state through repeated interactions with the drag of the gas and collisions with the
bed. The comparison is shown in Fig. 3. The agreement is good and offers additional support to the
modeling in Sec. III that led to continuum expressions for the shear and normal stresses.
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FIG. 2. Average dimensionless particle and gas velocities vs dimensionless height for d = 0.025 cm.
Spherical grains of sand in air at S∗ = 0.035, 0.059, 0.065, and 0.080. Line weights increase with increasing
values of S∗.

2. Rigid bed

We now obtain solutions of the system of Eqs. (13)–(15) for a steady, uniform flow over a rigid
bed. In this case, because the particle velocity at the bed is not specified, in addition to the distant
shear stress, the total particle holdup, M∗ = ∫ h

0 cdy, or the total particle flux, Q = ∫ h

0 cudy, must be
specified. However, we find it easier to obtain convergence if the problem is phrased in terms of the
particle velocity at the bed—the slip velocity—rather than the flux or holdup. We take S∗ = 0.05,
consider a range of slip velocities, and use the one-to-one relationship between the slip velocity and
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Particle Shear Stress
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50
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200

H
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t

FIG. 3. Dimensionless continuum particle shear stress (dashed lines) and measured simulated particle shear
stress (solid lines) vs dimensionless height for d = 0.025 cm. Spherical grains of sand in air for u0 = 23.06,
T = 25.14, S∗ = 0.050, and α = 20.
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FIG. 4. Concentration vs dimensionless height for slip velocities of 15, 33, 48, and 60, with the line weights
increasing with slip velocity. The corresponding values of the particle flux and holdup are 0.7 and 0.04, 1.8 and
0.04, 2.1 and 0.03, and 1.8 and 0.02, respectively.

the holdup to relate the two parametrizations. As before, we consider sand particles with diameter
d = 0.025 cm. specific mass in air σ = 2200, and kinematic viscosity μf /ρf = 0.15 cm2/s.

In Figs. 4 and 5 we show profiles of concentration and velocities for four values of the slip velocity.
The height of the profiles increases with slip velocity, as the flow becomes less concentrated. The
relationship between the total particle flux and the slip velocity is shown in Fig. 6, and Fig. 7 indicates
the relationship between the particle flux and the holdup. Both the particle flux and the particle holdup
are doubled valued over the range of slip velocity. Jenkins and Valance [34] and Berzi et al. [36]

0 50 100 150 200
Velocities

0

100

200

300

400

500

H
ei

gh
t

FIG. 5. Dimensionless particle and gas velocities vs dimensionless height for slip velocities of 20, 39, 59,
and 80, with the line weights increasing with slip velocity. The corresponding values of the particle flux and
holdup are 1.8 and 0.072, 3.5 and 0.065, 4.3 and 0.052, and 3.5 and 0.032, respectively.
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FIG. 6. The relationship between dimensionless particle flux and dimensionless particle slip velocity for
S∗ = 0.05.

obtained a similar but less complete relationship between the flux and holdup when considering
periodic trajectories. They conjectured that the branch on which the flux decreases with increasing
holdup is unstable. We will address this in a later section.

B. Unsteady, uniform flow over a particle bed

We first use the unsteady solver to determine the evolution of the flow over a particle bed after
a perturbation S∗′ = 0.0025 to an initial, steady solution for which S∗ = 0.05, u0

0 = 23.06, and
h = 500. The resulting profiles of particle concentration and the horizontal particle and gas velocities
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FIG. 7. The relationship between dimensionless particle flux and dimensionless particle holdup for
S∗ = 0.05.
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FIG. 8. Evolution of the dimensionless particle vertical velocity in space at three equal intervals between
0 and 12000 in units of dimensionless time with δ = 10, for d = 0.025 cm. Spherical grains of sand in air at
S∗′ = 0.0025,S∗ = 0.05, and u0

0 = 23.06. Line weights increase with dimensionless time.

differ little from those at S∗ = 0.05 and are not shown. The evolution of the profiles of vertical particle
velocity and temperature are shown in Figs. 8 and 9.

The evolution of the profile of the particle vertical velocity is somewhat complicated, while, in
contrast, that of the temperature, with the value of the parameter δ = 10, remains relatively uniform
as it varies in time.
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FIG. 9. Evolution of the dimensionless temperature in space at three equal intervals between 0 and 12000
in units of dimensionless time with δ = 10, for d = 0.025 cm. Spherical grains of sand in air at S∗′ = 0.0025,
S∗

0 = 0.05, and u0
0 = 23.06. Line weights increase with dimensionless time.
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FIG. 10. Dimensionless particle flux vs time in seconds for spherical grains of sand in air showing the
evolution with time on a particle bed for S∗ = 0.05, from initial states that are steady states on a rigid bed with
slip velocities of 19.0, 21.6, 23.1, 24.4, and 26.1, indicated by increasing line weights. Here, d = 0.25 mm,
ε = 0.01, and δ = 5.

If the unsteady versions of Eqs. (12) and (15) are combined and rearranged, an equation of
evolution for the local particle flux cu is obtained,

∂

∂t
(cu) = − ∂

∂y
(vcu) + ∂s

∂y
+ D

σ
(cU − cu) + εu

(
∂c

∂y
− c

T

)
. (21)

If we average this equation through the depth of the flow and neglect the term proportional to ε, we
obtain an expression for the total particle flux,

dQ

dt
= v0c0u0 − s0 + 1

σ

∫ h

0
D(cU − cu)dy, (22)

where we have assumed that the product vcu is negligible at the top of the flow. Assuming that the
depth average of a product is the product of the depth averages and using the boundary condition on
v, this may be written as

dQ

dt
= βc0u0

(
u0 − u0

0

) − s0 + D̄

σ
(hcU − Q), (23)

in which the overbars denote depth averages. Similarly, if the unsteady version of Eq. (15) for the
concentration is averaged through the depth, we obtain an equation for the total particle holdup,

dM∗

dt
= c0v0. (24)

Equations (23) and (24) correspond roughly to the two-equation continuum model of Sauermann
et al. [6], which they express more simply by modeling some terms and closing others by comparison
with experiment.

In Fig. 10, we show the variation of the total particle flux with time in the numerical solutions
that evolve with time over a particle bed from different initial conditions. These show the particle
fluxes evolving toward an equilibrium value from values below and above from initial conditions
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FIG. 11. Dimensionless particle flux vs time in seconds showing the evolution with time on a particle bed
from a very small initial value (Q = 0.005 at S∗ = 0.009) for increases in Shields numbers of 0.002, 0.003,
0.004, 0.006, and 0.008, indicated by increasing line weights. Here, d = 0.25 mm, with ε = 0.01 and δ = 1.

that correspond to steady states over a rigid bed. The slip velocity of the steady state on the particle
bed at S∗ = 0.05 is u0 = 23, so for d = 0.025 cm, 10 s roughly corresponds to 11.5 m. Bagnold
(Fig. 6 in Ref. [1]) shows that uniform flow is attained in about 7 m, and when the initial particle
flux is much smaller than the equilibrium particle flux, there is no overshoot; Andreotti et al. (Fig. 1
in Ref. [9]) see similar behavior over a shorter distance.

In Fig. 11, we show the evolution with time from an initial condition that corresponds to a
steady state with a very small flux on a particle bed with increases in Shields number from 0.002 to
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FIG. 12. Evolution of dimensionless total particle flux with distance over a rigid base for S∗ = 0.05. The
slip velocities of the three stable solutions (solid) are 59, 78, and 83, while those of the unstable solution are 37
(dotted), 40 (dotted dashed), and 45 (dashed).
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FIG. 13. Concentration vs height for four equal intervals of dimensionless distance between 0 and 106, with
S∗ = 0.05,u0 = 59, and δ = 5. Line weights increase with distance.

0.008, corresponding to a range of friction velocities from 0.22 to 0.30 m/s. This figure reproduces
both the overshoot and monotone approaches to equilibrium seen in experiments and simulations
(e.g., Ref. [36]). The simple two-equation model of Sauermann et al. [6] also has the capacity to
reproduce the relaxation seen in Figs. 10 and 11, and Fig. 11 is similar their Fig. 3 generated using the
two-equation model; however, our results exhibit a slightly larger relaxation time. While we believe
that the variation of Q seen in experiments can be described as the behavior of a damped oscillator
and, consequently, a linear two-equation model, we have not been able to write the right-hand sides
of Eqs. (23) and (24) solely in terms of Q and M∗. That is, we have not yet been successful at deriving
a two-equation model from the system of Eqs. (12)–(16).
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FIG. 14. Horizontal velocities vs height for four equal intervals of dimensionless distance between 0 and
106, with S∗ = 0.05,u0 = 59, and δ = 5. Line weights increase with distance.
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FIG. 15. Vertical velocity vs height for four equal intervals of dimensionless distance between 0 and 106,
with S∗ = 0.05,u0 = 59, and δ = 5. Line weights increase with distance.

C. Steady, nonuniform flow over a rigid bed

We next use the MATLAB solver pdepe on the nonuniform version of the system of Eqs. (9)–(12)
over a rigid bed to test the stability of steady solutions by using them as initial conditions. In earlier
work [34,37], we anticipated that solutions over a rigid bed for which the particle flux decreased as
the particle holdup increased were unstable. We test this by determining whether a steady uniform
solution will change when allowed to move along the rigid bed. This change can occur because of
the presence of the terms on the left-hand side of the system, and an unstable solution and its particle
flux can evolve with distance into that of a stable solution.
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FIG. 16. Granular temperature vs height for four equal intervals of dimensionless distance between 0 and
106, with S∗ = 0.05,u0 = 59, and δ = 5. Line weights increase with distance.
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FIG. 17. Total particle flux vs dimensionless downstream distance, with S∗ = 0.05,u0 = 59, and δ = 5.

In Fig. 12, we show the persistence of the particle flux of a stable solution and the migration of the
particle flux from an unstable, steady solution to that of the steady, stable solution with the maximum
particle flux.

Finally, we consider the steady, nonuniform situation in which a steady, uniform flow over an
upstream rigid bed encounters and flows over a particle bed, adjusting with distance along the
particle bed to the new conditions. We solve the nonuniform form of Eqs. (9)–(12) for a Shields
parameter of 0.05, using the steady solution over the rigid bed with the maximum particle flux for
u0 = 47. This is the stable solution over the rigid bed that involves the largest particle flux.
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FIG. 18. Initial variation of the total particle flux vs dimensionless downstream distance, with S∗ =
0.05,u0 = 59, and δ = 5.
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Figure 13 shows the significant change in the profiles of concentration with distance along the
particle bed.

As shown in Fig. 14, the initial velocity profiles approach the final velocity profiles in a
nonmonotonic way and the difference between the initial and final particle profiles is significant,
particularly within 100 particle diameters of the bed.

Figures 15 and 16 show profiles of particle vertical velocity and temperature. These profiles have
nearly returned to zero and uniformity at a steady value for a particle bed after 106 diameters of
evolution.

Figure 17 indicates that the total particle flux has ceased to vary after this distance; while Fig. 18
focuses on the initial variation, which is significant over a distance of 104 diameters. This is the
variation that is accessible in laboratory wind tunnels [1,2,9,12,33,38,39].

VI. CONCLUSIONS

We have outlined the development of a two-phase continuum theory for unsteady or nonuniform
saltation that includes boundary conditions and stress relations for the particle phase. We have
employed the MATLAB solver pdepe to solve the resulting system of equations for the uniform
evolution in time that resulted from a small increase in the shear stress of the wind far from a
particle bed. For these, the predictions of our model are similar to those of Sauermann et al. [6]
who employ a simpler model, but differ from those of the Pahtz model [11,12] in at least one
respect. For an arbitrary small change of the fluid shear stress, we obtain a nonmonotonic relaxation
characterized by damped oscillations that are absent in the Pahtz model. Regarding the characteristic
length scale of the relaxation process, our model suggests that the saturation length is proportional
to T/(βg) = (u0

0)2/(23βg) ≈ 30(u0
0)2/g, where β is the coefficient in the linearized vertical flux.

This result is analogous to those of the Sauermann et al. [6] and Pahtz models. It emphasizes that
the relaxation process is crucially dependent of the splash process through the coefficient β.

We also treated nonuniform flows over a rigid base. We found, in particular, that for a given Shields
number, the steady states for which the particle flux decreases with increasing particle holdup are
unstable when permitted to spatially evolve, and they relax to the solution with the peak value of the
particle flux. During the relaxation process, the particle holdup has to decrease to the value of the
peak. Thus, the characteristic length scale of this process is expected to depend both on the deposition
rate and the saltation hop length over a rigid bed. We find that for S∗ = 0.05, the saturation length
is about 100 times the saltation hop length, or about 107 particle diameters.

Finally, we determined the steady, nonuniform solution for the flow over a particle bed that
develops with distance from a steady solution over a rigid bed. The behavior of the particle flux in this
transition has been successfully described by Sauermann et al. [6] in their two-equation continuum
model. Our treatment involves boundary conditions that can distinguish between a rigid and a particle
bed and a system of partial differential equations that predict profiles of concentration, particle, and
wind velocity over the beds. This provides more information to test against measurements, in the
context of a theory that employs fewer modeling parameters than that of Sauermann et al. [6]. We
hope eventually to find a way to close the depth-averaged version of our equations and to better
understand the relationship between the two models.

In any case, we believe that the development of the continuum theory outlined here
should encourage additional measurements made in developing flows in wind tunnels (e.g.,
Refs. [1,2,9,12,33,38,39]) and tests of the modeling assumptions against the results of discrete
simulations of saltation over rigid and particle beds [20–24]. We look forward to this activity.
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APPENDIX

Here, we calculate the upward velocity

vup = N0

ξ0

6

π2T

∫ ∞

ξ0

∫ π

0
(1 − e2)(ξ − ξ0)ξ 2e− 1

2T
[(ξ cos θ−u0)2+ξ 2sin2θ ] sin θdθdξ, (A1)

in which 1 − e2 = 1 − A2 + 2AB sin θ − B2sin2θ .
The coefficient of 1 − A2 is∫ ∞

ξ0

∫ π

0
(ξ − ξ0)ξ 2e− 1

2T
[(ξ cos θ−u0)2+ξ 2sin2θ ] sin θdθdξ

=
∫ ∞

ξ0

(ξ − ξ0)ξ 2e− ξ2+u2
0

2T

∫ π

0
e

ξu0 cos θ

T sin θdθdξ

= T

u0

∫ ∞

ξ0

(ξ − ξ0)ξe− ξ2+u2
0

2T (e
ξu0
T − e− ξu0

T )dξ

= T

u0

∫ ∞

ξ0

(ξ − ξ0)ξ
[
e− (ξ−u0)2

2T − e− (ξ+u0)2

2T

]
dξ. (A2)

Then,

−
∫ ∞

ξ0

(ξ − ξ0)ξe− (ξ+u0)2

2T dξ = −
√

2T

∫ ∞

ξ0+u0√
2T

[
2T v2

1 −
√

2T (2u0 + ξ0)v1 + u0(u0 + ξ0)
]
e−v2

1 dv1

= −
√

2T

[
ξ0 + u0√

2T
T −

(
T

2

)1/2

(2u0 + ξ0)

]
e− (ξ0+u0)2

2T

−
(

πT

2

)1/2

[T + u0(u0 + ξ0)]erfc

(
ξ0 + u0√

2T

)
(A3)

and∫ ∞

ξ0

(ξ − ξ0)ξe− (ξ−u0)2

2T dξ =
√

2T

∫ ∞

ξ0−u0√
2T

[
2T v2

2 +
√

2T (2u0 − ξ0)v2 + u0(u0 − ξ0)
]
e−v2

2 dv2

=
√

2T

[
ξ0−u0√

2T
T +

(
T

2

)1/2

(2u0 − ξ0)

]
e− (ξ0−u0)2

2T

+
(

πT

2

)1/2

[T + u0(u0 − ξ0)]erfc

(
ξ0 − u0√

2T

)
. (A4)

The coefficient of 2AB is∫ ∞

ξ0

∫ π

0
(ξ−ξ0)ξ 2e− 1

2T
[(ξ cos θ−u0)2+ξ 2sin2θ]sin2θdθdξ=

∫ ∞

ξ0

(ξ−ξ0)ξ 2e− ξ2+u2
0

2T

∫ π

0
e

ξu0 cos θ

T sin2θdθdξ,

(A5)
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with

∫ π

0
e

ξu0 cos θ

T sin2θdθ =
∫ 1

−1
e

ξu0v

T (1 − v2)
1/2

dv = T

ξu0
πI1

(
ξu0

T

)
, (A6)∫ ∞

ξ0

∫ π

0
(ξ − ξ0)ξ 2e− 1

2T
[(ξ cos θ−u0)2+ξ 2sin2θ ]sin2θdθdξ

= π
T

u0

∫ ∞

ξ0

(ξ − ξ0)ξI1

(
ξu0

T

)
e− ξ2+u2

0
2T dξ

= π
T 2

4.6
e− (4.6)2

2

∫ ∞

x0

(x − x0)xI1(4.6x)e− x2

2 dx, (A7)

where x ≡ ξ/
√

T , x0 ≡ ξ0/
√

T , and 4.6 = u0/
√

T .

With the approximation I1(4.6x)e− x2

2
.= 3400e− (x−4.6)2

2 ,

π
T 2

4.6
e− (4.6)2

2

∫ ∞

x0

(x − x0)xI1(4.6x)e− x2

2 dx = 3400π
T 2

4.6
e− (4.6)2

2

∫ ∞

x0

(x − x0)xe− (x−4.6)2

2 dx, (A8)

where∫ ∞

x0

(x − x0)xe− (x−4.6)2

2 dx

=
√

2
∫ ∞

x0−4.6√
2

(
√

2v + 4.6 − x0)(
√

2v + 4.6)e−v2
dv

=
√

2
∫ ∞

x0−4.6√
2

[2v2 +
√

2(9.2 − x0)v + 4.6(4.6 − x0)]e−v2
dv

=
√

2

{[
ξ0 − u0√

2T
+

√
2

2
(9.2 − x0)

]
e− (ξ0−u0)2

2T + 1

2
[1 + 4.6(4.6 − x0)]

√
πerfc

(
ξ0 − u0√

2T

)}
.

(A9)

The coefficient of −B2 is∫ ∞

ξ0

(ξ − ξ0)ξ 2e− ξ2+u2
0

2T

∫ π

0
e

ξu0 cos θ

T sin3θdθdξ, (A10)

with

∫ π

0
e

ξu0 cos θ

T sin3θdθ =
∫ 1

−1
e

ξu0v

T (1 − v2)dv = 4

(
T

ξu0

)3[
ξu0

T
cosh

(
ξu0

T

)
− sinh

(
ξu0

T

)]
,

(A11)∫ ∞

ξ0

(ξ − ξ0)ξ 2e− ξ2+u2
0

2T

∫ π

0
e

ξu0 cos θ

T sin3θdθdξ

= 4

(
T

u0

)3 ∫ ∞

ξ0

(ξ − ξ0)

ξ

[
ξu0

T
cosh

(
ξu0

T

)
− sinh

(
ξu0

T

)]
e− ξ2+u2

0
2T dξ

= 2

(
T

u0

)3 ∫ ∞

ξ0

(ξ − ξ0)

[
u0

T

(
e− (u0−ξ )2

2T + e
− (u0+ξ )2

2T
) − 1

ξ

(
e

− (u0+ξ )2

2T − e
− (u0−ξ )2

2T
)]

dξ. (A12)
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Then, ∫ ∞

ξ0

(ξ − ξ0)

(
u0

T
− 1

ξ

)
e

− (ξ+u0)2

2T
dξ

=
√

2T

∫ ∞

ξ0+u0√
2T

[
√

2T v1 − (ξ0 + u0)]

(
u0

T
− 1√

2T v1 − u0

)
e

−v2
1
dv1

=
√

2T

∫ ∞

ξ0+u0√
2T

[√
2T

u0

T
v1 − 1 − (ξ0 + u0)

u0

T
+ ξ0/

√
2T

v1 − u0/
√

2T

]
e

−v2
1
dv1, (A13)

in which∫ ∞

ξ0+u0√
2T

ξ0/
√

2T

v1 − u0/
√

2T
e

−v2
1
dv1 = ξ0√

2T

∫ ∞

1

1

w
e

− (ξ0w+u0)2

2T
dw

.= ξ0√
2T

∫ ∞

1
e

− (ξ0w+u0)2

2T
dw

= ξ0√
2T

∫ ∞

ξ0+u0√
2T

e
−v2

dv = ξ0√
2T

√
π

2
erfc

(
ξ0 + u0√

2T

)
(A14)

and ∫ ∞

ξ0+u0√
2T

[√
2T

u0

T
v1 + 1 − (ξ0 + u0)

u0

T

]
e

−v2
1
dv1

=
(

T

2

)1/2
u0

T
e

− (ξ0+u0)2

2T +
[
1 − (ξ0 + u0)

u0

T

]√
π

2
erfc

(
ξ0 + u0√

2T

)
. (A15)

Similarly,

∫ ∞

ξ0

(ξ − ξ0)

(
u0

T
− 1

ξ

)
e

− (ξ−u0)2

2T
dξ

=
√

2T

∫ ∞

ξ0−u0√
2T

[
√

2T v2 − (ξ0 − u0)]

(
u0

T
− 1√

2T v2 + u0

)
e

−v2
2
dv2

=
√

2T

∫ ∞

ξ0−u0√
2T

[√
2T

u0

T
v2 + 1 − (ξ0 − u0)

u0

T
− ξ0/

√
2T

v2 + u0/
√

2T

]
e

−v2
2
dv2, (A16)

in which

−
∫ ∞

ξ0−u0√
2T

1

v2 + u0/
√

2T
e

−v2
2
dv2 = −

∫ ∞

ξ0/
√

2T

1

w
e

−(w−u0/
√

2T )2

dw
.= −0.32

∫ ∞

ξ0−u0√
2T

e
−v2

dv

= −0.32

√
π

2
erfc

(
ξ0 − u0√

2T

)
(A17)

and ∫ ∞

ξ0−u0√
2T

[√
2T

u0

T
v2 + 1 − (ξ0 − u0)

u0

T

]
e

−v2
2
dv2

=
(

T

2

)1/2
u0

T
e

− (ξ0−u0)2

2T +
[
1 − (ξ0 − u0)

u0

T

]√
π

2
erfc

(
ξ0 − u0√

2T

)
. (A18)
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Upon collecting only those terms with an argument (ξ0 − u0)/
√

2T ,

vup = N0

ξ0

6

π2T
(1 − A2)

T 5/2

u0

{
u0√
T

e− (ξ0−u0)2

2T +
(π

2

)1/2
[

1 + u0(u0 − ξ0)

T

]
erfc

(
ξ0 − u0√

2T

)}

+ 2AB(3400)π
T 5/2

u0
e− u2

0
2

{
u0√
T

e− (ξ0−u0)2

2T +
(π

2

)1/2
[

1 + u0(u0 − ξ0)

T

]
erfc

(
ξ0 − u0√

2T

)}

−B22
T 5/3

u0

T

u2
0

{
u0√
T

e
− (ξ0−u0)2

2T +
(π

2

)1/2
[

1 + u0(u0 − ξ0)

T
− 0.32

]
erfc

(
ξ0 − u0√

2T

)}
,

(A19)

or

vup = N0

ξ0

6

π2

T 3/2

u0

[[(
1 − A2 + 6800πABe− u2

0
2T − 2B2 T

u2
0

)

×
{

u0√
T

e− (ξ0−u0)2

2T +
(π

2

)1/2
[

1 − u0(ξ0 − u0)

T

]
erfc

(
ξ0 − u0√

2T

)}

+ 2(0.32)B2 T

u2
0

(π

2

)1/2
erfc

(
ξ0 − u0√

2T

)]]
. (A20)

Expressing this as a function of u0, using T = (u0/4.6)2,

vup = N0

ξ0

6

π2

T 3/2

u0

[[(
1 − A2 + 6800πABe− u2

0
2T − 2B2 T

u2
0

)

×
{

u0√
T

e− (ξ0−u0)2

2T +
(π

2

)1/2
[

1 − u0(ξ0 − u0)

T

]
erfc

(
ξ0 − u0√

2T

)}

+ 0.64
(π

2

)1/2
B2 T

u2
0

erfc

(
ξ0 − u0√

2T

)]]
. (A21)

Finally, with A = 0.87 and B = 0.72,

vup = 0.002u2
0

[[
0.53

{
4.6e

− (4.6)2(40−u0)2

2u2
0 +

(π

2

)1/2
[

1 − (4.6)2(40 − u0)

u0

]
erfc

(
4.6

40 − u0√
2u0

)}

+ 0.02 erfc

(
4.6

40 − u0√
2u0

)]]
. (A22)
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