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Time-dependent particle migration and margination in the
pressure-driven channel flow of blood
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We present a theory to describe the time evolution of the red blood cell (RBC) and
platelet concentration distributions in pressure-driven flow through a straight channel. This
model is based on our previous theory for the steady-state distributions [Qi and Shaqfeh,
Phys. Rev. Fluids 2, 093102 (2017)] and captures the flow-induced nonuniformity of the
concentrations of RBCs and platelets in the cross-flow direction. Starting with a uniform
concentration, RBCs migrate away from the channel walls due to a shear-induced lift
force and eventually reach steady state due to shear-induced diffusion, i.e., hydrodynamic
“collisions” with other RBCs. On the other hand, platelets exit the cell-laden region due to
RBC-platelet interactions and enter the cell-free layer, resulting in margination. To validate
the theory, we also perform boundary integral simulations of blood flow in microchannels
and directly compare various measureables between theory and simulation. The timescales
associated with RBC migration and platelet margination are discussed in the context of the
simulation and theory, and their importance in the function of microfluidic devices as well
as the vascular network are elucidated. Due to the varying shear rate in pressure-driven
flow and the wall-induced RBC lift, we report a separation of timescales for the transport in
the near-wall region and in the bulk region. We also relate the transient problem to the axial
variation of migration and margination, and we demonstrate how the relevant timescales
can be used to predict corresponding entrance lengths. Our theory can serve as a fast and
convenient alternative to large-scale simulations of these phenomena.

DOI: 10.1103/PhysRevFluids.3.034302

I. INTRODUCTION

The phenomena of red blood cell (RBC) migration and platelet margination have been studied
extensively using experiments [1–4] and simulations [5–10]. There exists a consensus that in channel
flow, RBCs migrate away from the walls due to their deformability that generates “lift.” The resulting
cell-free layer near the wall therefore is void of RBCs but has an excess concentration of platelets
due to their hydrodynamic collisions with RBCs—i.e., “shear-induced diffusion.” In the vascular
system, migration and margination play a significant role in hemostasis [11] and thrombosis [12]. In
ex vivo environments, these two phenomena have also been utilized in various microfluidic designs
for applications such as cell sorting [13–16].

Despite the abundance of literature discussing particle migration and margination phenomena,
few have investigated the evolution of these two cross-flow motions. The system is often assumed to
be at steady state when measurements are taken. Nevertheless, the dynamics of particle migration and
margination manifest themselves in two ways: the axial variation and the temporal variation. The axial
variation is usually measured experimentally in terms of an entrance length parameter. Fitzgibbon
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et al. [4] measured the distribution of platelet-sized microspheres in the cross-flow direction in a
30-μm channel with 1000 s−1 wall shear rate at distances of 1 to 3 cm downstream from a well-mixed
reservoir. At 10% to 20% hematocrit (RBC volume fraction), these researchers estimated the entrance
length for particle margination to be O(1 cm), i.e., much longer than the length scale for branching
in the vascular network [17]. Another experimental observation was made by Carboni and Ma [18].
Based on tracking rigid particles 0.53 to 2.11 μm in diameter, they estimated the entrance length
to be roughly 2.44 mm for the cell-free layer formation in a 40-μm channel with wall shear rates
under 200 s−1. Most simulation studies, however, consider the time-dependent problem with periodic
boundary conditions at the inlet and outlet of simulation boxes. This transient problem is generally
related to the entrance length problem by multiplying the time to steady state with the average flow
velocity, but the validity of this approximation has yet to be examined. Katanov et al. simulated blood
flow in 10–100 μm (D) tubes with a wide range of flow rates and reported an estimate of 25D for the
cell-free layer entrance length, independent of shear rate [10]. Crowl and Fogelson [19] considered
the time dependence of both platelet margination and RBC migration in their two-dimensional
simulations. They proposed a drift-diffusion model to qualitatively capture these two phenomena.
Effects of the initial concentration profile, hematocrit, and flow rates were investigated. However, as
later pointed out by Zhao and coworkers [5], the value of the platelet diffusivity in two-dimensional
simulations is largely underestimated and therefore the entrance length estimation made by Crowl
and Fogelson may be inaccurate. Note that the entrance length estimate is an important design
parameter for microfluidic applications. Even though the height of microfluidic channels may be
O(10 μm), all estimates suggest that the length of the channel needs to be three orders of magnitude
larger to allow complete migration and margination. If complex channel geometries, e.g., nonstraight
channels, are used [15], additional considerations are necessary for the entrance length estimation
to achieve optimal performance for purposes such as cell separation.

In our previous publication [20], we presented a coarse-grained theory that was used to predict
RBC and platelet concentration distributions in the cross-stream direction at steady state in channel
flow. We verified this theory against various simulations and experiments in terms of both the cell-free
layer thickness and the concentration profile across the channel. Our work produced qualitative to
semiquantitative results for a cellular suspension in pressure-driven flow. Compared to whole blood
simulations, this theory requires much less computational power and is more flexible in handling
rigid microparticles, such as platelets, at given hematocrit levels due to the decoupling of the RBC
transport equation.

In this paper, we extend our theory to consider the time-dependence of RBC migration and
platelet margination. We perform a systematic study of the effects of channel height, hematocrit, and
the capillary number on the time evolution, and we examine the characteristics of the transient
concentration distribution profile. Finally, we present a scaling analysis for the characteristic
timescales in migration and margination. We demonstrate that both migration and margination are
two-step processes with different governing mechanisms in the near-wall region, i.e., the cell-free
layer, and the bulk region, i.e., the cell-laden region. Such a separation of timescales is partially due
to the varying shear rate in a pressure-driven flow and is therefore less evident in a simple shear
flow. Finally, we briefly discuss the axial variation of RBC migration and demonstrate that the actual
entrance lengths are similar in magnitude to those approximated by the time-dependent problem. Our
methodology can be adapted to other multicomponent systems consisting of particles with varying
deformability and concentration and thus may have broader applications.

II. MODEL DESCRIPTION

A. Overview

In our previous work, we discussed in detail the approach to determining the governing fluxes
in the cross-stream direction for both RBCs and platelets [20]. In this section, we briefly revisit
the theory and highlight the differences in solving the time-dependent equations. We consider the
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FIG. 1. A schematic of RBCs (red) and platelets (white) in wall-bound channel flow driven by a pressure
gradient.

pressure-driven flow of blood through rectangular channels as shown in Fig. 1. We denote x as the
flow direction, y as the vorticity direction, and z as the direction of the velocity gradient. We assume
the y dimension is unbounded and thus ignore any variations in this direction. We solve for the
number densities of RBCs nC and platelets nP as functions of both z and t .

We have summarized all the key parameter values in Table I below. RBCs and platelets are
suspended in plasma, which is considered a Newtonian fluid with viscosity μ. We treat RBCs as
deformable particles with a reduced volume ν of 0.65 (ν = 3

√
4πV

S3/2 , V and S are RBC volume

and surface area, respectively) and an equivalent RBC radius a ( 4πa3

3 = V ). They have biconcave
shapes at rest [21,22]. We model RBCs using the Skalak law [23] with shear modulus ES , bending
modulus EB , and dilatational modulus ED . Thus, the RBC membrane is nearly incompressible, has
a characteristic resistance to shear, and a weak bending resistance. The ratio of internal to external
fluid viscosity is kept at unity. Platelets are modeled as rigid oblate spheroids with the long axis being
aP and the shorter dimension being 1/4 aP .

We choose the RBC radius a as our characteristic length scale. The characteristic shear rate γ̇c is
defined as the equivalent wall shear rate in parabolic flow corresponding to the average flow velocity
〈u〉 imposed. The inverse of γ̇c is our characteristic timescale. In the limit of zero hematocrit, γ̇c is
equal to the actual wall shear rate γ̇w. We nondimensionalize all stresses by μγ̇c. The channel height
Lz and the characteristic shear rate γ̇c are chosen to match arteriole flow conditions [24]. Unless
noted otherwise, all equations and results will be presented in dimensionless form.

The Reynolds number is assumed to be zero. Brownian motion is ignored for both RBCs
and platelets due to their micron-size scales. With Re → 0 and Pe → ∞, the most significant

TABLE I. Summary of key parameter values used in theory and simulations.

a Scaled units Physical units

a 1 2.82 μm
aP 0.5 1.41 μm
Lx 32 90.24 μm
Ly 9 25.38 μm
Lz 12, 17.73 33.84 μm, 50 μm
μ 1 1.2 cP
γ̇C 1 1000–2000 s−1

ES 2000 s−1/γ̇C 6.8 μN/m
ED 100 μγ̇Ca

EB 3.3 ∗ 10−3a2ES
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TABLE II. Fitted values of lift velocity parameters from single cell simulations.

Lz Ca ξ α

12 0.25 0.055 1.3
12 0.5 0.057 1.0
12 1 0.069 1.3
12 2 0.087 1.6
17.73 0.25 0.045 1.2
17.73 0.5 0.031 1.3
17.73 1 0.039 1.2
17.73 2 0.048 1.2
Vesicle experiments [25] 0.012 ± 0.002 1 ± 0.1

dimensionless parameter for our problem is the capillary number: Ca = μγ̇ca

Es
. It represents the

ratio of flow viscous effects to the mechanical forces resisting cell deformability. Based on the
characteristics of RBCs, Es denotes the membrane shear modulus. When the capillary number is
unity, the corresponding γ̇c is 2000 s−1. We consider deformability-induced lift and shear-induced
diffusion as governing mechanisms for the cross-flow transport of RBCs. Due to the relative paucity
and rigidity of platelets, the platelet distribution is determined by the shear-induced diffusion created
by RBC-platelet interactions and weak platelet-platelet interactions. Including only the major flux
contributions, we write the governing equations for nC and nP in the form of advection-diffusion
equations as follows:

∂nC

∂t
+ ∂(uliftnC)

∂z
+ ∂FCC

∂z
− ∂

∂z

(
D

∂nC

∂z

)
= 0, (1)

∂nP

∂t
+ ∂FCP

∂z
+ ∂FPP

∂z
= 0. (2)

ulift is the lift velocity of RBCs and was previously determined from boundary integral simulations
[20]. Thus, we previously simulated single RBCs initially placed close to the wall and examined their
motion as they underwent a cross-stream “lift” away from the wall until reaching the equilibrium
position at the centerline of the channel. The calculated ulift is then fit to the correlation: ulift = ξ γ̇0(z)

zα ,
where γ̇0(z) denotes the dimensionless local shear rate. The coefficients ξ and α are tabulated below
in Table II for various capillary numbers and channel heights.

FCC , FCP , and FPP in Eqs. (1) and (2) denote fluxes created by RBC-RBC collisions, RBC-
platelet collisions, and platelet-platelet collisions, respectively. We model these pair-wise collisions
as Markovian processes [26] and the resulting fluxes can be written in a Boltzmann-like form:

FCC =
∫

δz

∫
δy

∫ 	CC

0
nC(z − b)nC(z − b − δz)δu db dδy dδz, (3a)

FPP =
∫

δz

∫
δy

∫ 	PP

0
nP (z − b)nP (z − b − δz)δu db dδy dδz, (3b)

FCP =
∫

δz

∫
δy

∫ 	CP

0
nP (z − b)nC(z − b − δz)δu db dδy dδz. (3c)

In the above expressions, δy and δz are the initial separation distances between two particles in the
y and z directions. We impose a cutoff distance R of 3 cell radii on these interactions as the upper
limit on δy and δz, as discussed in our previous work [20]. Hydrodynamic interactions between
two particles result in asymmetric cross-flow displacement: 	CC , 	PP , and 	CP . We define these
displacements with respect to the second particle and they are functions of z, y, and δz. We reference
	CC , 	PP , and 	CP values from our previous steady-state study [20]. To address the singularity
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TABLE III. Best-fit D values based on the cell-
free layer thickness at steady state.

Lz Ht D

12 10% 0.06
12 20% 0.14
12 30% 0.21
17.73 10% 0.07
17.73 20% 0.18
17.73 30% 0.27

issue at the centerline due to the vanishing shear rate, we add a nonlocal shear rate correction term ε to
the local “center-of-mass shear rate” γ̇0(z): γ̇ (z) = γ̇0(z) + εγ̇c/2, where ε = 2a/Lz. This correction
term takes into account the finite size of RBCs and results in a finite shear rate at the centerline [27].

D is a model parameter, representing the hydrodynamic diffusivity of RBCs due to hydrodynamic
interactions of more than two cells. This effect is relatively weak compared to pair-wise interactions
for hematocrits between 10% and 30% [20]. When compared to simulation results, outputs from
our existing steady-state theory at D = 0 contain 8% relative error in the cell-free layer thickness
estimate. This error is reduced to within the tolerance of discretization if D is set to the best-fit values
as tabulated in Table III. The best-fit D values increase with hematocrit, which is consistent with its
role as a model for higher-order collisions. In the current study of the time-dependent scenario, we set
D to the best-fit values and therefore we expect outputs from our theory and simulations to converge
to our previously reported steady distributions as t → ∞, regardless of the transient behavior.

Equations similar to Eqs. (1) and (2) have been used in various related studies [28–31] in both
simple shear and pressure-driven flows, but our previous work [20] is the only one that explicitly
determines the values of ulift, 	CC , 	PP , and 	CP such that we can accurately calculate the
corresponding flux contributions. Estimating these parameters from small-scale simulations also
vastly reduces the computational work needed as compared to whole blood simulations. The time
evolution of particle migration and margination is very briefly mentioned by Rivera et al. [31] for an
arbitrary magnitude of shear-induced diffusion and lift fluxes. In this study, we solve our governing
equations using the same set of inputs as the steady-state study (ulift, 	CC , 	PP , 	CP , and D) and
interpret the results on a physical basis.

Equations (1) and (2) are solved numerically using a finite volume scheme. We discretize the
channel height domain into 2N + 1 intervals and advance time with a step size of 	t . We will
solve for the values nC(z,t) and nP (z,t) at the center of each interval, denoted ak

i and bk
i for the

concentrations of RBCs and platelets at the center of the ith interval at the kth timestep. The solutions
nC(z,t) and nP (z,t) are then approximated as piecewise linear functions nC(z) = ∑N

j=1 aj ξj (z) and

nP (z) = ∑N
j=1 bj ξj (z). Using Godunov’s method, the finite volume method can be formulated as

follows:

ñk+1
i − ñk

i

	z
= −	t

[
f̃ k

i+1/2 − f̃ k
i−1/2

]
. (4)

ñk
i is the average value of n on the ith interval and can be approximated using the trapezoidal rule

in two subintervals: ñk
i = 1

8nk
i−1 + 3

4nk
i + 1

8nk
i+1. Therefore, vectors ñk

C and ñk
P can also be expressed

in terms of piecewise linear functions using vectors ak and bk: Mak = ñk
C and Mbk = ñk

P . f̃ k
i+1/2

represents the flux at the right boundary of the ith interval and is calculated using the upwind rule:

f̃ k
i+1/2 = f

(
ñk

i

)
f � 0 (5)

= f
(
ñk

i+1

)
f < 0. (6)
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f̃ (nk
i ) is the flux for the ith interval approximated using f̃ (nk

i ) = 1
8f (nk

i−1) + 3
4f (nk

i ) + 1
8f (nk

i+1).
To evaluate the integrals FCC , FCP , and FPP in the flux expression, we further divide each interval
into five subintervals and use the midpoint rule for integration:

Fk
AB,i =

N∑
j=1

N∑
m=1

Ak
i B

k
i

∫
δz

∫
δy

∫ 	AB

0
ξj (zi − b)ξm(zi − b − δz)δu db dδy dδz. (7)

Equation (4) for the finite volume formulation on each interval can thus be written in the matrix
vector form to calculate ak

i and bk
i :

ak+1 = ak − 	t

	z
M−1	 f̃

k

a, (8)

bk+1 = bk − 	t

	z
M−1	 f̃

k

b. (9)

B. Boundary integral simulations

Since few existing simulations have presented the time-dependent migration and margination
profiles quantitatively, we perform our own boundary integral simulations of full blood flow to
compare with our theory. The simulation method is adopted from Zhao et al. [5], and we briefly
review the formulation in this section. Our boundary integral simulation consists of three types of
equations that determine the RBC membrane velocity uC , the wall friction force density distribution
[[fW ]], and a double-layer density on platelet surfaces ψP . The full boundary integral equations for
the RBCs and platelets including walls are:

1 + λ

2
uC − u∞ = 1 − λ

8π
KCCuC − 1

8πμ
NCC[[fC]] − 1

8π
KCP ψP − 1

8πμ
NCW [[fW ]], (10a)

1

2
ψP − u∞ = −

6∑
β=1

(q
′′β,ψP )q

′′β + 1 − λ

8π
KPCuC

− 1

8πμ
NPC[[fC]] − 1

8π
KPP ψP − 1

8πμ
NPW [[fW ]], (10b)

0 = 1 − λ

8π
KWCuC − 1

8πμ
NWC[[fC]] − 1

8πμ
NWW [[fW ]] − 1

8π
KWP ψP , (10c)

where u∞ is the far-field velocity of Poiseuille flow, and q
′′β are the six independent modes of rigid

body motion. The simulation domain spans 0 � x � Lx , 0 � y � Ly , and 0 � z � Lz. We impose
periodic boundary conditions in the x and y directions and no-slip boundary conditions on the walls
in the z direction. Thus, in the far-field we have Poiseuille flow with a parabolic velocity profile
and average flow velocity 〈u〉: u∞ = 6〈u〉 z(Lz−z)

L2
z

. The single- and double-layer kernels N and K are
defined as

(N[[f ]])j (x0) =
∫

[[f ]]i(x)Gij (x,x0)dS(x), (11)

(Ku)j (x0) =
∫

ui(x)Tijk(x,x0)nk(x)dS(x), (12)

and G and T are the fundamental Green’s function solutions for the Stokeslet and stresslet with
periodic boundary conditions [32]. The smooth particle mesh Ewald summation technique [33] is
used to accelerate the simulation.
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FIG. 2. Comparison between simulation (pink) and theoretical (red) results for RBC concentration
distribution Lz = 17.73, 20% hematocrit, Ca = 1. (a) Snapshots at different t , where the local volume fraction
is defined as φC(z) = 4π

3 a3nC(z). (b) Second moment vs. t . The numbered distribution profiles in (a) match the
numbered time periods in (b).

III. RESULTS AND DISCUSSIONS

A. Evolution of margination and migration profile

We first present the time-dependent concentration profiles of RBCs and platelets obtained from
both the theory and simulations. The simulation results are averaged over intervals of 5000 time steps.
Therefore, our theoretical outputs can achieve a relatively higher spatial resolution because of the
fluctuating motion (which is averaged) of the particles in the simulations. As shown in Fig. 2, starting
with a uniform concentration distribution, the near-wall region is quickly depleted of RBCs. The
concentration at the centerline, however, does not increase immediately after the flow starts. During
this short period of time, the concentration profile resembles that of simple shear flow, where the
concentration peak is located close to the boundary of the cell-free layer. The concentration profile
calculated from the time-dependent theory eventually approaches that of the steady-state theory,
which is determined independently by Newton’s iteration using a uniform concentration profile as
an initial guess [20]. Thus, we have also verified the steady-state theory as previously reported [20].
The total time for RBC migration to reach steady state is set by the time for development of the
center peak concentration. The migration behavior we observe is as expected because both the lifting
force and the shear-induced diffusion are strongest near the wall and decay at the center due to
the vanishing shear rate. To quantitatively examine the migration phenomena, we plot the second
moment of the concentration profile defined as: μ2 = ∫ Lz

0 (z − Lz

2 )2 (n̄ − n(z))dz. We demonstrate
good agreement between theory and simulations (within 10% relative error) throughout the time
evolution. The convergence of the steady-state profile as t → ∞ is a prerequisite for the accuracy in
the time-dependent result.

The transient behavior that we observe in pressure-driven flow is, however, not the same as in
the simple shear flow case, primarily because, in the latter instance, the shear-induced diffusion
remains strong away from the wall throughout the channel [20]. At steady state, the cell-free layer
thicknesses differ by up to 20% in simple shear and pressure-driven flow at matching characteristic
shear rate [20]. Therefore, a simple shear approximation underestimates the time to reach steady
state as demonstrated in Fig. 3.

We use a criteria of 95% quantile to calculate the time to form a cell-free layer tCFL and reach
steady state tSS,C . For the case of 20% hematocrit and Lz = 17.73 (50 μm), the dimensionless tCFL

is roughly 290, and agrees with Katanov and coworkers’ [10] empirical estimation of 200 for a
cylindrical tube at matching characteristic shear rate. However, as far as we are aware, no estimates
are presently available for the overall timescale tSS,C .
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FIG. 3. Comparison of the cell-free layer thickness vs. t ; error bar represents discretization error,
Lz = 17.73, 20% hematocrit, Ca = 1.

We next examine the evolution of platelet margination. As shown in Fig. 4, starting with a uniform
distribution, a concentration peak near each wall develops shortly after the onset of flow. These peaks
in platelet concentration are located closer to the wall than the RBC concentration peaks and thus they
are “inside” the cell-free layers. To reach the final steady state, platelets undergo a slow margination,
characterized by the depletion of platelets from the bulk region. In Fig. 4, we plot the second moment
of platelet concentration. As is clearly seen around position “2” in the time trace, a slowing in the
rate of variation of the second moment is observed for a short time period, which coincides with
the cell-free layer formation timescale. To further investigate whether this short period of relative
stagnation in the evolution of platelet concentration is related to RBC migration, we again calculate
the platelet evolution from our theory but this time with the RBC initial configuration set to its

FIG. 4. Comparison between simulation (purple) and theoretical (blue) results for platelet concentration
distribution Lz = 17.73, 20% hematocrit, Ca = 1. (a) Snapshots at different t , where the local volume fraction
is defined as φP (z) = 4π

3 a3
P nP (z). (b) Second moment vs. t . The numbered distribution profiles in (a) match the

numbered time periods in (b).
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FIG. 5. Comparison of margination parameter vs. t . The initial RBC concentration is uniform (blue, purple)
and has formed a cell-free layer (green), Lz = 17.73, 20% hematocrit, Ca = 1.

configuration at t = tCFL, i.e., just after the cell-free layer has formed. The resulting evolution of the
platelet concentration profile no longer has a stagnation period, and reaches steady state significantly
more quickly. The final concentration distribution profile at steady state, however, remains unchanged.
The dependence of platelet margination on the initial RBC distribution proves that the fast initial
margination is closely related to the formation of the cell-free layer and our findings are thus similar
to the prediction by Crowl and coworkers [19]. We denote this timescale as tFM. This timescale can

be further quantified using a margination parameter MP =
∫ zCFL

0 (z−Lz/2)2n(z)dz

(Lz/2)2
∫ zCFL

0 n(z)dz
, which represents the

degree of margination inside the cell-free layer. We plot MP vs. time in Fig. 5. tFM is thus calculated
as the time that the difference between MP(tFM) and the steady-state MP value is within 5%.

The overall timescale to reach a complete steady state platelet distribution, tSS,P , is the longest
timescale among the four timescales we have investigated: tSS,C , tSS,P , tCFL, and tFM. The separation
of the aforementioned two timescales for platelet margination also agrees with the observations of
both Vahidkhah et. al. [8] and Zhao et. al. [5] who noted that platelet margination in the bulk region
due to platelet-RBC interactions is a slow process while the time to cross the cell-free layer is a fast
process due to the sharp concentration gradient. While the two aforementioned groups examined the
trajectories of individual platelets, we use our theory to arrive at the same conclusion by looking at
the overall behavior of the blood suspension.

B. Effects of channel height, hematocrit, and capillary number

To further examine the governing mechanisms for migration and margination, we vary the channel
height Lz, shear rate and hematocrit. The effects of channel height and hematocrit on RBC migration
are shown in Fig. 6. The cell-free layer thickness increases weakly with the channel height [10], and
therefore tCFL increases for wider channels. In the cell-laden region, the lift velocity drops significantly
and therefore it is the RBC-RBC interactions that influence the rate of cross-flow transport. The length
scale for this bulk region increases with channel height, despite the slight increase in cell-free layer
thickness. The overall timescale tSS,C thus also increases with channel height.

The hematocrit is another key parameter influencing the time-dependent behavior. Examining
Fig. 6, we find that the migration profile at steady state changes with hematocrit and this includes
an increase in the second moment of the RBC distribution. The steady distribution is also reached
significantly faster at higher hematocrits. This is as expected since both the lift and the shear-
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FIG. 6. Comparison of RBC migration at different channel heights and hematocrits (Ht). (a) Second moment
of concentration distribution vs. t . (b) Cell-free layer thickness vs. t compared with simulation results by Katanov
et al. [10].

induced diffusional fluxes increase with hematocrit. Therefore, the rate of migration increases with
increasing hematocrit. Our predictions for the cell-free layer thickness also agree nearly quantitatively
with simulation results by Katanov and co-workers [10]. Although their simulations are done in
cylindrical channels, we observe very similar trends with hematocrit and channel height at matching
characteristic shear rates.

Unlike the hematocrit and channel height, the capillary number does not play a significant role in
the rate of RBC migration as shown in Fig. 7. Both μ2 for the overall concentration distribution and
the cell-free layer thickness seem to converge for Ca > 0.5. As Zhao et al. [5] pointed out, Ca = 0.5
represents the onset of RBC tank-treading behavior. Thus, the RBC shape remains unchanged at
higher values of Ca. A further increase in shear rate has therefore similar effects on both the lift and
shear-induced diffusion—i.e., the corresponding fluxes increase proportionally to the shear rate. In
our study, we focus on capillary numbers ranging between 0.25 and 2, which match the physiological
flow regime. A wider range of capillary numbers was examined by Katanov et al. [10]. They observed
that the steady-state cell-free layer thickness first increases with the flow shear rate and saturates at
shear rates greater than 1000 s−1, again in agreement with our comments above.

The effects of channel height and hematocrit on platelet margination are summarized in Fig. 8.
Similar to the cell-free layer thickness, the steady-state value of MP shows a monotonic variation with

FIG. 7. Comparison of RBC migration at different capillary numbers. (a) Second moment of concentration
distribution vs. t . (b) Cell-free layer thickness vs. t , Lz = 17.73, 20% hematocrit.
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FIG. 8. Comparison of platelet margination at different channel heights and hematocrits (Ht). (a) Second
moment of concentration distribution vs. t . (b) Margination parameter vs. t .

respect to increasing hematocrit. At lower hematocrit, platelets are less concentrated near the wall
and are more evenly spread over a wider cell-free layer. Therefore, the μ2 value is smaller. When the
channel height increases, the cell-free layer thickness becomes smaller relative to the channel height.
Therefore, platelets are more marginated and have a higher μ2 value. Both the overall timescale
and the fast margination timescale always decrease with the hematocrit, since the frequency of
RBC-platelet interactions is proportional to the RBC concentration. An increase in channel height
again increases both margination timescales, as in the case of RBC migration, because the initially
evenly-distributed platelets need to travel a longer distance to reach the cell-free layer and fully
marginate.

The effects of the capillary number on platelet margination are shown in Fig. 9. Since RBC
migration essentially controls platelet margination and is nearly independent of the capillary number,
we see a very modest effect of capillary number on the platelet margination parameter.

C. Scaling analysis

So far we have presented a qualitative discussion of the factors that influence RBC migration. We
turn now to a discussion of our results such that these factors can be interpreted in a more quantitative
manner. In this context, we first perform a scaling analysis for the four different timescales using the
following approximate formulas, based on the identified governing mechanisms for each transport

FIG. 9. Comparison of platelet margination at different capillary numbers. (a) Second moment of concen-
tration distribution vs. t . (b) Margination parameter vs. t , Lz = 17.73, 20% hematocrit.
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FIG. 10. Comparison between theory and scaling for the time to form a cell-free layer tCFL.

process:

tCFL =
∫ zCFL

0

dz

ulift
, (13)

tSS,C =
(

Lz−2zCFL

4

)2

Dcell
+ tCFL, (14)

tFM =
∫ zCFL

0

dz

uplatelet
, (15)

tSS,P =
(

Lz−2zCFL

4

)2

Dplatelet
+ tFM. (16)

We obtain the parameters in these equations through various sources. First, the hydrodynamic
diffusivity of RBCs Dcell and platelets Dplatelet are directly obtained from previously published
research [5,18,19,34]. uplatelet is a drift velocity of platelets into the clear fluid layer caused by
the difference in the rates of platelet-RBC collisions, plus platelet-platelet collisions, between the
bulk suspension and the cell-free layer. Therefore, it is difficult for marginated platelets to re-enter
the cell-laden region [35]. Since there are very few literature sources which quantify this effect [19],
we calculate uplatelet indirectly based on the difference in diffusivity Dplatelet inside and outside the
cell-free layer: uplatelet = 	Dplatelet/zCFL [34]. Because the RBCs are characterized by a plethora of
highly deformable shapes in pressure-driven flow, the rheology of blood in this flow is much more
complex than that of a suspension of nearly spherical particles. Therefore, we do not expect the
scaling analysis and our theory to be in quantitative agreement. However, the estimates based on the
scaling analysis should capture the important trends in timescale variation and reveal the fundamental
physics associated with the different controlling transport mechanisms.

As can be seen from Fig. 10, the convective timescale for RBCs based on Eq. (13) agrees reasonably
well with the result as determined from the Boltzmann collision theory in Eq. (1). Therefore, the
increase of tCFL with both hematocrit and channel height can be explained simply by the change in
the cell-free layer thickness. Note that a more significant discrepancy between scaling and theory is
observed for lower hematocrit and wider channels, both of which produce thicker cell-free layers.
In this case, the lift velocity decays significantly near the edge of the cell-free layer and, thus
shear-induced diffusion, i.e., RBC-RBC interactions, which are not included in the scaling analysis
in Eq. (13), may play a bigger role.

Equation (14) approximates the overall migration timescale by simply adding the time associated
with lift inside the cell-free layer plus the time for shear-induced diffusion across the bulk region. As
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FIG. 11. Comparison between theory and scaling for RBC migration tSS,C . Dcell is referenced from Crowl
and Fogelson [19].

shown in Fig. 11, while both the theory and scaling report tSS,C values that decrease with hematocrit
and channel height, the change due to hematocrit is less significant in the scaling analysis. In Crowl
and Fogelson’s estimation of Dcell (which we have used in making this scaling determination),
its value changes only weakly when the hematocrit increases from 20% to 40%, in contrast to
an approximately linear increase if only two-body interactions were important. Therefore, it is no
surprise that the scaling estimate for migration in the bulk region deviates from our Boltzmann theory,
the latter of which determines FCC based on the product of two particle interactions.

The scaling tFM is presented in Fig. 12. The scaling argument overpredicts the value of tFM,
although a similar qualitative trend with increasing hematocrit is demonstrated. Thus, the platelet
drift velocity is likely to be underpredicted by our approximation or even the present literature that we
have referenced [19]. As mentioned previously, the indirect calculation of the drift velocity accounts
for the variation of diffusivity over the length scale of the cell-free layer. Platelet diffusivity is mainly
due to RBC-platelet interactions. However, given the fact that platelet drift results from the sharp
concentration gradient of RBCs at the edge of the cell-free layer, the actual variation of platelet
diffusivity occurs on a very small length scale, e.g., the size of a RBC. Thus, we expect, simply on
this basis, that the actual platelet drift velocity will be somewhat greater than the approximation used
in our scaling analysis.

FIG. 12. Comparison between theory and scaling for platelet fast margination tFM with drift velocity from
direct [19] and indirect estimations [34].
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FIG. 13. Comparison between theory and scaling for platelet full margination tSS,P . Dplatelet is referenced
from Carboni et al. [18] and Zhao et al. [5].

Despite the discrepancy in the estimation of tFM, the scaling analysis and the theory agree well
for the overall margination timescale tSS,P as shown in Fig. 13. As we have discussed previously,
RBC-platelet interactions in the bulk region result in shear-induced diffusion, which is a slow process
as compared to the platelets exiting the bulk region and entering the cell-free layer. tSS,P is thus

dominated by the
( Lz−2zCFL

4 )2

Dplatelet
term in Eq. (15) as evidenced by a comparison between Figs. 11 and 12.

The relatively small size of platelets as compared to RBCs makes it easier to measure their diffusivity.
Thus the abundance of literature values which are in reasonable agreement for Dplatelet makes the
scaling analysis more reliable.

D. Axial variation and entrance lengths

We now briefly consider the entrance length problem by introducing axial variation of the
concentration profile at steady state. For simplicity, we will only study the entrance length of RBC
migration, with the following governing equation:

ux∂nC

∂x
+ ∂(ulif tnC)

∂z
+ ∂FCC

∂z
− ∂

∂z

(
D

∂nC

∂z

)
= 0. (17)

With all other terms unchanged from the time-dependent problem in Eq. (17), we assume a
parabolic flow profile for ux : ux = 6〈u〉 z(Lz−z)

L2
z

, and thus ignore the “pluglike” velocity profile due to
the nonuniform distribution of RBCs [5]. Similar problems have been considered for the migration of
rigid spheres [27], and a marching method was chosen to facilitate the calculation of the steady-state
concentration profile. We adopt this same marching method and the numerical implementation is
briefly summarized in Eqs. (18) and (19), viz:

ux[nC(x) − nC(x − 	x)]

	x
+ 1

2

[
∂(uliftnC)

∂z
+ ∂FCC

∂z
− ∂

∂z

(
D

∂nC

∂z

)]
x−	x

+ 1

2

[
∂(uliftnC)

∂z
+ ∂FCC

∂z
− ∂

∂z

(
D

∂nC

∂z

)]
x

= 0,

(18)

ñk+1
i,j − ñk

i,j

	z
= −	t

[
f̃ k

i+1/2,j − f̃ k
i−1/2,j

]
. (19)

In addition to discretization in z, we discretize the x domain with 	x using an Euler method as
shown in Eq. (18). The finite volume formulation in z domain of Eq. (19) is similar to Eq. (4) for the
ith interval in z and j th interval in x. The right-hand side of Eq. (19) is now modified according to
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FIG. 14. Comparison between the steady-state RBC concentration profile from time-dependent problem
and the axial variation problem.

Eq. (18). Starting from a uniform concentration profile at x = 0, we march one step downstream to
x = 	x, and advance time until nC(	x,z) reaches steady state, i.e., μ2 of the concentration profile
changes by no more than 10−6. This marching process is repeated until no axial variation is observed,
and the computational domain in x is at least 100 times the channel height in z.

The steady-state RBC concentration profiles for the time-dependent problem and the fully-
developed axial variation problem are compared in Fig. 14. Both problems predict similar shapes
of the RBC concentration profile. One noticeable distinction is the reduction of hematocrit for
the axial variation problem, which is due to the varying RBC velocity in the x direction. As one
moves down the channel, RBCs are more concentrated near the center, and therefore have a higher
average velocity than 〈u〉. The hematocrit specified at the inlet is thus lower than the hematocrit
collected at the outlet, leading to a reduction of hematocrit inside the channel. This reduction of
hematocrit is commonly referred to as the Fahraeus effect, and an emprical correlation is given
as: Ht,out

Ht,in = Ht,in + (1 − Ht,in)[1 + 1.7exp(−0.415Lz) − 0.6exp(−0.011Lz)] (Lz in microns) [36].
The reduction of hematocrit is tabulated in Table IV for various channel heights and inlet hematocrits.
We predict a maximum reduction of 4% hematocrit over the conditions studied.

Using a 95% quantile as we did for the time-dependent problem, we calculate entrance lengths
(i.e., lengths to achieve a fully developed profile) for both the cell-free layer formation and complete

TABLE IV. Comparison of inlet and outlet hematocrits for various channel heights. Ca = 1 for the axially
varying problem. Flow conditions for the empirical correlation [36] are unknown.

Lz Ht,in Ht,out Ht,out empirical

12 10% 8.0% 5.9%
12 20% 17.1% 12.6%
12 30% 26.2% 20.3%
17.73 10% 8.6% 6.3%
17.73 20% 17.5% 13.5%
17.73 30% 27% 21.5%
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TABLE V. Comparison of entrance lengths with those estimated from time-dependent problems, in
mm, Ca = 1.

Lz Ht,in CFL entrance length tCFL〈u〉 SS entrance length tSS,C〈u〉
12 10% 2.54 2.54 5.9 3.95
12 20% 1.14 1.25 1.4 1.92
12 30% 0.76 0.90 0.97 1.32
17.73 10% 10.62 4.17 14.37 11.60
17.73 20% 3.75 2.42 6.75 6.80
17.73 30% 1.87 1.83 5.06 4.70

migration. Using the time-dependent problem, the entrance length is typically approximated as the
time to steady state multiplied by the average velocity 〈u〉 [10]. The comparison between the actual
entrance length and this approximation is shown in Table V, and they are clearly of similar magnitude.
Therefore, the time-dependent estimate provides a reasonable estimate of the real entrance length
problem according to our model. In the case of platelet margination, tSS,P 〈u〉 = 3.5 cm for 20%
hematocrit and Lz = 17.73 (50 μm), which agrees with Fitzgibbon et al.’s [4] O(1 cm) experimental
estimation. We expect all entrance lengths will be nearly independent of the capillary number, for
Ca > 0.5, based on our previous work [20].

IV. CONCLUSIONS

We have extended our existing coarse-grained theory for RBC migration and platelet margination
to consider the time dependence in these two phenomena. We discovered two disparate timescales
associated with each type of cross-flow motions. The separation of timescales is associated with
different governing mechanisms inside and outside the cell-free layer. Inside the cell-free layer, i.e.,
in the very near-wall region, RBCs experience a strong lift force away from the wall that results in a
convective motion that ultimately creates the cell-free layer. Outside the cell-free layer, however, the
lifting force decays dramatically and the RBC-RBC interactions (i.e., hydrodynamic “collisions”)
play the primary transport role. Due to the reduction of shear rate (and thus lift) outside the cell-free
layer, a second, longer timescale is necessary for establishing the final steady-state RBC concentration
distribution based on the aforementioned collision processes.

Platelet margination is governed by RBC-platelet interactions overall and complemented by
platelet-platelet interactions inside the cell-free layer. Therefore, the associated transport timescales
are directly associated with RBC dynamics. The edge of the cell-free layer creates a drift force,
which drives the platelets into the cell-free layer from the bulk region. Initially, as the cell-free layer
is being developed, platelets in the vicinity of the receding “edge” of RBCs quickly enter the cell-free
layer and this process results in “fast margination.” On the other hand, platelets that are in the bulk
suspension and hence away from the wall undergo a slow process of marginating to the wall via
shear-induced diffusion due to RBC-platelet interactions.

Our theory provides insights into the time evolution of migration and margination that is rarely
discussed, and is verified against whole blood simulations. We elucidate the connection between
the axially varying “entrance length” problem and the time-dependent problem, and demonstrate
how entrance lengths can be approximated from the relevant timescales associated with the latter
theory. It is possible to apply our theory to other types of rigid particles with varying shapes and
sizes, as long as the input parameters are available based on experimental measurements or results
from small-scale simulations. Furthermore, the scaling analysis indicates that quantities which are
difficult to measure from simulations and experiments, such as the platelet drift velocity, may be
easily obtained from our theory with relatively good accuracy.
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