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Yuan Yao* and Jesse Capecelatro
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA

(Received 8 September 2017; published 6 March 2018)

We present a numerical study on inertial electrically charged particles suspended in
a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-
Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method,
referred to as the particle-particle-particle–mesh (P3M) method, to accurately capture short-
and long-range electrostatic forces in a tractable manner. The EL P3M method is used to
assess the competition between drag and Coulomb forces for a range of Stokes numbers
and charge densities. Simulations of like- and oppositely charged particles suspended
in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic
turbulence are reported. It is found that even in dilute suspensions, the short-range electric
potential plays an important role in flows that admit preferential concentration. Suspensions
of oppositely charged particles are observed to agglomerate in the form of chains and
rings. Comparisons between the particle-mesh method typically employed in fluid-particle
calculations and P3M are reported, in addition to one-point and two-point statistics to
quantify the level of clustering as a function of Reynolds number, Stokes number, and
nondimensional electric settling velocity.
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I. INTRODUCTION

Nontrivial interactions between electrically charged particles and turbulence play an important
role in many engineering and environmental flows, including atmospheric clouds [1], fluidized bed
reactors [2–4], charged hydrocarbon sprays [5–7], dusty plasmas [8,9], and wind-blown dust [9,10].
Throughout the atmosphere, for example, ion pairs are produced by cosmic rays that attach to aerosol
particles and droplets. Ionization of atmospheric air together with the potential difference that exists
between the upper atmosphere and the earth’s surface generates a non-negligible vertical electric field
that can potentially affect the collision rate and coalescence between charged droplets, which dictates
the onset of rainfall [1]. Dilute suspensions of inertial (heavy) particles in isotropic turbulence will
preferentially concentrate in regions of high strain rate and low vorticity [11]. Such coupling between
particles and the underlying carrier phase can lead to significant spatial segregation in charge density
that induces, or amplifies, an electric field. A recent study of the Sahara desert showed that electric
fields contribute to an increase of up to ten times the amount of particles emitted into the atmosphere
[10]. A positive feedback was observed whereby the electric field increases shear-induced dust lifting,
which in turn introduces increased charges to the atmosphere resulting in a stronger electric field
[9]. Meanwhile, the relative importance between fluid forces (i.e., drag) and electrostatic forces in
turbulent flows remains elusive. When fluid-particle coupling is dominant, we expect the particles
to preferentially concentrate in high-strain-rate regions of the flow, with the level of clustering
determined by the Reynolds number and Stokes number [12]. With increasing charge magnitude,
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eventually Coulomb interactions will have an order-one effect on the spatial distribution of particles.
Thus, the primary interest of the current work is to investigate the competition between drag and
Coulomb interactions on the particle distribution and to determine to what extent particles segregate
as a function of the Reynolds number, Stokes number, and charge magnitude.

Numerical simulations can provide the space-time information needed to shed light on the complex
interactions that occur in turbulent suspensions of electrically charged particles. Fluid-particle flows
are commonly solved in either an Euler-Euler or Euler-Lagrange (EL) framework. Euler-Euler
methods solve both the fluid and particle phase on a common Eulerian grid. In the small-Knudsen-
number (highly collisional) limit with an underlying assumption that the flow is nearly at equilibrium,
the particle velocity distribution is close to Maxwellian and a Chapman-Enskog expansion can be
used to derive a two-fluid model (TFM) using ensemble or volume averaging [13–15]. This approach
leads to particle-phase transport equations that closely resemble the Navier-Stokes equations using
moment closures obtained from kinetic theory. While electrostatic models have been coupled with a
TFM in the past [3,4], it is typically only valid in dense granular regimes and are unable to capture
important features of particulate flows when the particle phase is far from equilibrium [16].

Euler-Lagrange methods provide an alternative framework that explicitly captures particle-particle
interactions (e.g., collisions, short- and long-range interactions, etc.). In this approach, each particle
is tracked individually and coupled to the fluid via interphase exchange terms [17,18]. Due to the
long-range nature of electrostatic forces, however, properly accounting for Coulomb interactions in
systems with many particles must be handled carefully for accurate predictions that avoid O(N2)
computations, with N the number of charged particles. The particle-mesh (PM) method is typically
employed in EL simulations (see, e.g., [19]) as it avoids computing direct pairwise sums. Instead,
the charge is projected on the computational grid and the electric potential is solved via a Poisson
equation. This method implicitly assumes that the electrostatic force between neighboring particles
is small compared to the effect of all the particles combined. While computationally efficient, the PM
method fails to capture short-range interactions that are anticipated to be important when particles
cluster. An alternative approach is to apply a screen function, or cutoff radius, such that a limited
range of particle interactions is considered and the far-field influence is ignored (see, e.g., [20]). In
order to limit the computational burden, Lu and Shaw [20] summed the Coulomb contribution of
all particles within the Debye screening radius. Such a truncated method is only valid for relatively
low levels of clustering and small values of charge and is not applicable to particle-laden flows in
general.

Ewald summations methods were developed to handle long-range potentials accurately in periodic
boxes. This approach splits the slowly converging Coulomb potential into long-range and short-range
contributions, each of which converges exponentially fast [21,22]. The short-range potential is
evaluated using direct pairwise sums over the set of nearest neighbors within a cutoff radius
and the long-range contribution is solved in reciprocal space. However, this approach remains
computationally demanding as the long-range contribution requires several Fourier transforms and
the total scheme scales like O(N3/2) with an optimized cutoff radius [23,24]. The particle-particle-
particle–mesh (P3M) method introduced by Hockney and Eastwood [25] is a Fourier-based Ewald
summation approach that makes use of an underlying grid to speed up the evaluation of the long-range
potential. The P3M method requires modifying the long-range potential in Fourier space to avoid
double counting the short-range and long-range contributions and scales with O(N log N ). The P3M
method has been applied to simulations of ionic liquids [26], molecular dynamics [27–29], and
cosmology [30], yet to date has not been applied to particle-laden flows.

Based on these ideas, Kolehmainen et al. [31] recently proposed a method that computes the short-
range force using a direct truncated pairwise summation approach and evaluates the cell-centered
long-range force using a finite-volume method. As with the P3M method, this method scales like
O(N log N ). Unlike Ewald summation methods, this approach (referred to herein as the hybrid
method) is not restricted to periodic domains. However, the double-counting term is not computed
as precisely as the P3M, which impacts the overall accuracy of the scheme.
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In the present study, the P3M method is implemented within an Eulerian-Lagrangian framework
to simulate charged particles in homogeneous turbulence. The governing equations and numerical
implementation are presented in Sec. II. An overview of the PM, P3M, and hybrid methods are
then discussed in Sec. III and the accuracy of each are compared for a simple periodic box. The
proposed EL P3M method is then applied to a Taylor-Green vortex and homogeneous isotropic
turbulence in Sec. IV to assess the competition between particle transport due to fluid coupling and
Coulomb interactions. One-point and two-point statistics obtained using the PM and P3M methods
are compared to assess the effect of added accuracy on collision rate and clustering.

II. FLUID-PARTICLE DESCRIPTION

A. Governing equations

The flow of spherical particles suspended in a turbulent carrier phase is solved in an Eulerian-
Lagrangian framework, where particles are treated as discrete entities of finite size and mass, and
the gas phase is solved on a background Eulerian mesh. Due to the low concentrations considered
in this study, volume fraction effects and two-way coupling between the phases are neglected. The
governing equations for the incompressible carrier phase are given by

∇ · uf = 0 (1)

and

∂uf

∂t
+ uf · ∇uf = − 1

ρf

∇p + ν∇2uf , (2)

where uf = [uf ,vf ,wf ]T is the fluid velocity, ρf is the fluid density, and p and ν are the
hydrodynamic pressure and kinematic viscosity, respectively.

The displacement of an individual particle i is calculated using Newton’s second law of motion

dx(i)
p

dt
= v(i)

p (3)

and

mp

dv(i)
p

dt
= F(i)

drag + F(i)
col + F(i)

Coulomb, (4)

where x(i)
p (t) and v(i)

p (t) are the instantaneous particle position and velocity at time t , respectively,

mp is the particle mass, F(i)
col is the collision force, and F(i)

Coulomb is the electrostatic force. The classic
Schiller-Naumann drag correlation [32] is used on the right-hand side of Eq. (4) to account for
finite-Reynolds-number effects, given by

F(i)
drag

mp

= 1 + 0.15 Re0.687
p

τp

(
uf

[
x(i)

p

] − v(i)
p

)
, (5)

where uf [x(i)
p ] is the fluid velocity at the location of particle i, Rep = ‖uf [x(i)

p ] − v(i)
p ‖dp/ν is

the particle Reynolds number, with dp the particle diameter, and τp = ρpd2
p/18ρf ν is the particle

response time.
Despite the low-volume fractions considered here, particle collisions are needed to prevent

unphysical overlap that may arise due to the attractive electrostatic forces between oppositely charged
particles. In this work, normal and tangential collisions are modeled using a modified soft-sphere
approach [18] originally proposed by Cundall and Strack [33]. When two particles come into contact,
a repulsive force is created as

f col
n,j→i =

{−kδij nij − ηvij,n for rij < 2dp + �

0 otherwise,
(6)
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where rij is the distance between the center of the particles, δij is the overlap between the particles,
and nij = r ij /|r ij | is the unit normal vector from particle i to particle j with r ij = x(j )

p − x(i)
p . The

normal relative velocity between particles i and j is given by

vij,n = [(
v(i)

p − v(j )
p

) · nij

]
nij . (7)

The spring stiffness and damping parameter are given by k and η, respectively. A model for the
damping parameter [33] uses a coefficient of restitution 0 < e < 1 such that

η = −2 ln e

√
kmp/2√

π2 + (ln e)2
. (8)

The spring stiffness is related to the collision time τcol according to

k = mp/2τ 2
col[π

2 + (ln e)2]. (9)

In the present study, we consider inelastic collisions with a coefficient of restitution e = 0.9,
representative of many solid spherical objects in dry air. To properly resolve the collisions without
requiring an excessively small time step, τcol is set to be 15 times the simulation time step for all
simulations presented in this work. In Eq. (6), � is set to a small number that allows for collisions to
initiate before particles are in contact, which is adjusted dynamically such that slow moving particles
make physical contact and high-speed collisions remain robust [18]. To account for friction between
particles and thus particle rotation, the static friction model is employed for the tangential component
of the collision force, given by

f col
t,j→i = −μf

∣∣ f col
n,j→i

∣∣t ij , (10)

where μf = 0.1 is the coefficient of friction and t ij = vij,t /|vij,t | is the tangential unit vector. The
tangential unit vector is defined as vij,t = vij − vij,n, where vij = v

(j )
p − v(i)

p is the relative velocity
between particles i and j . Once each individual collision force is computed, the full collision force
that particle i experiences can be expressed as

F(i)
col =

∑
j �=i

(
f col

n,j→i + f col
t,j→i

)
. (11)

Finally, the angular velocity of particle i, ω(i)
p , is constructed using Eq. (10) by

Ip

dω(i)
p

dt
=

∑
j

dp

2
nij × f col

t,j→i , (12)

where Ip = mpd2
p/10 is the moment of inertia for a sphere.

The last term in Eq. (4) is the electrostatic force governed by Coulomb’s law, given by

F(i)
Coulomb = q(i)

p

4πε0

∑
j �=i

q(j )
p

nij∣∣x(j )
p − x(i)

p

∣∣2 , (13)

where q(i)
p and q

(j )
p are the charges belonging to particles i and j , respectively, and ε0 = 8.854 ×

10−12 F m−1 is the vacuum permittivity. For the simulations considered in this work, the electrical
permittivity is assumed constant and taken to be ε0. The force of interaction between the particles
is attractive if their charges have opposite signs and repulsive if like signed. As shown in Eq. (13),
a direct summation will result in O(N2) computations. The following section will present various
algorithms for computing this term with a focus on accuracy and efficiency. It should be noted that in
real systems, each particle will contain a distribution of charges that evolve as they interact with each
other. For example, tribocharging can generate large amounts of net positive or negative charge in
charge-neutral systems for particles of the same dielectric material [34]. Because the EL framework
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explicitly tracks the charge of each particle in addition to particle-particle contact, it is relatively
straightforward to account for such effects. In the present work, however, these effects are neglected
and particles are assumed to retain their charge throughout the duration of the simulation. Despite this,
as particles agglomerate, the overall charge experienced by distant particles will correctly be neutral
since opposite-signed charges in close proximity will have a cancellation effect when projected to
the grid.

B. Numerical implementation

The equations are implemented in the framework of NGA [35], a fully conservative fluid solver
tailored for turbulent flow computations. The Navier-Stokes equations are solved on a staggered grid
with second-order spatial accuracy for both the convective and viscous terms and the second-order
accurate semi-implicit Crank-Nicolson scheme of Pierce [36] is used for time advancement. The
particles are distributed among the processors based on the underlying domain decomposition of
the gas phase. A second-order Runge-Kutta scheme is used for updating each particle’s position,
velocity, and angular velocity. To avoid O(N2) calculations of the collision force, a nearest-neighbor
detection algorithm is employed such that collisions are only considered between particles in adjacent
grid cells [18]. Due to the long-range influence of FCoulomb (i.e., its influence extends far beyond the
adjacent grid spacing), the same cannot be done for electrostatic interactions. This will be addressed
in the following section.

III. SOLUTION PROCEDURES FOR THE ELECTROSTATIC FORCE

A. Particle-mesh method

To avoid the O(N2) calculation involved with solving Eq. (13) via a direct summation, the PM
method approximates the force according to

F(i)
Coulomb = q(i)

p E
[
x(i)

p

]
, (14)

where E[x(i)
p ] is the electric field interpolated to the position of particle i. The electric field is obtained

by taking the gradient of the electric potential via

E(x,t) = −∇φ(x,t), (15)

where x is the Eulerian coordinate system and the electric potential φ is calculated by solving the
Poisson equation

∇2φ(x,t) = −ρm(x,t)

ε0
. (16)

The charge density ρm is obtained by interpolating the particle charge using the convolution product

ρm(x,t) =
Np∑
i=1

q(i)
p W

(
x − x(i)

p (t)
)
, (17)

where W is a polynomial weighting function that projects the particle charge to the mesh and Np is
the number of particles. In the following sections, different orders of the weighting function will be
considered to assess its effect on the overall order of accuracy.

B. Ewald summation

While the PM approach avoids O(N2) calculation, it requires that the length scale used to resolve
the spatial gradients of electric potential is greater than the spacing between the particles. Due to
nontrivial interactions between the phases in turbulent flows, particles may preferentially concentrate
in certain regions and thus in general this assumption does not hold. Ewald summation separates
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the long-range and short-range forces to efficiently compute the electrostatic force in periodic boxes
with quick convergence. Consider a system of Np particles with charges q(i)

p at positions x(i)
p in a

cubic box of length L with triply periodic boundary conditions. The Ewald summation approach
separates the total force of particle i into three components

F(i)
Coulomb = F(i)

r + F(i)
k + F(i)

d , (18)

where F(i)
r and F(i)

k represent contributions from real space and Fourier space, respectively, and F(i)
d

is the dipole correction term to avoid double counting. These separate contributions are expressed as

F(i)
r = q(i)

p

∑
j

q(j )
p

′∑
m∈Z3

(
2α√
π

exp(−α2|r ij + mL|2) + erfc(α|r ij + mL|)
|r ij + mL|

)
r ij + mL

|r ij + mL|2 , (19)

F(i)
k = q(i)

p

L3

∑
j

q(j )
p

∑
k �=0

4πk
k2

exp

(
− k2

4α2

)
sin(k · r ij ), (20)

and

F(i)
d = − 4πq(i)

p

(1 + 2ε′)L3

∑
j

q(j )
p x(j )

p , (21)

where erfc is the complementary error function, m and k represent the number of iterations over
periodic boxes in real and Fourier space, respectively, which are distinguished using a cutoff radius
rmax, and ε′ is the dielectric constant, which in the case of a vacuum is ε′ = 1. The inverse length α,
referred to as the Ewald parameter, tunes the relative weight of the real-space and the reciprocal-space
contribution. Since long-range interactions converge significantly faster in Fourier space, the Ewald
summation will converge after only a few iterations for both m and k. As a result, the computational
cost scales as O(N3/2) with an optimal choice of α.

C. Particle-particle-particle–mesh method

While Ewald summation can provide an exact solution to electrically charged particles in periodic
boxes, the computational cost is still relatively large as it scales like O(N3/2). The P3M method,
introduced by Hockney and Eastwood [25], provides a faster way of computing the reciprocal-space
contribution by replacing the Fourier transforms with a fast Fourier transform (FFT) [37] on an
underlying mesh. The reciprocal contribution thus scales like O(N log N ). With a well-chosen cutoff
radius, it can be shown that the real-space contribution can be solved in O(N ), resulting in an overall
computational cost of O(N log N ).

Instead of using a point charge, the P3M method reconstructs the charges by using a Gaussian
charge distribution given by

G(r; β) = β3

π3/2
e−β2r2

, (22)

whose Fourier transform can be easily obtained via

Ĝ(k; β) =
∫

d3r G(r; β)e−ik·r = e−k2/(2β)2
. (23)

Here k is the wave number and the constantβ tunes the standard deviation of the Gaussian distribution,
commonly referred to as the P3M constant, and i = √−1. Applying Gauss’s law to Eq. (22), the
resulting electric field located at the center of particle i is

E(i)
s =

∑
j

q
(j )
p nij

2ε0π3/2

[√
π

2r2
ij

erf(rijβ) − β

rij

e−β2r2
ij

]
. (24)
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Since the field from a point particle and the field produced by the Gaussian function are both known
analytically, the corrected short-range force can be expressed exactly as

F(i)
s =

{∑
j q(i)

p q
(j )
p

( nij

4πε0r
2
ij

− nij

2ε0π3/2

[√
π

2r2
ij

erf(rijβ) − β

rij
e−β2r2

ij

])
for rij < rmax

0 otherwise.
(25)

The P3M method handles the long-range force by sending the particle charge to the mesh and
multiplying the resulting charge density by an influence function. This step optimizes the solution by
minimizing the overall discretization error. The particle charges are first weighted to the underlying
mesh to obtain the charge density ρm(x). An FFT is then applied to transform the charge density to
Fourier space ρ̂m(k). The resulting charge density is convolved with the Gaussian screen function
via

ρ̂l(k) = ρ̂m(k)Ĝ(k) (26)

to obtain the screened density field. To minimize the force error introduced by the screen function
Ĝ(k), we use the optimized influence function derived by Hockney and Eastwood [25] that replaces
Ĝ(k) by

Ĝopt(k) = D̂(k) · ∑
m∈Z Û 2

(
k + 2π

�x
m

)
R̂

2(
k + 2π

�x
m

)
| D̂(k)|2[∑

m∈Z Û 2
(
k + 2π

�x
m

)]2 , (27)

where

R̂(k) = −ik
Ĝ(k)

k2
, (28)

Û (k) =
(

sin kx�x

2
kx�x

2

sin ky�x

2
ky�x

2

sin kz�x

2
kz�x

2

)p+1

, (29)

and

D̂j =
{
i

sin kj �x

�x
for finite differences

ik for spectral integration,
(30)

with �x being the mesh spacing that is assumed uniform in all directions. Next the potential field is
calculated by solving the Poisson equation

k2φ̂l(k) = ρ̂l(k)

ε0
(31)

for φ̂l(k). An inverse Fourier transform is then applied to convert φ̂l(k) to real space φ(x). The electric
field is then obtained by

El(x,t) = −∇φ(x,t) (32)

on the mesh and interpolated to the particle position. Once the short-range field is calculated via
Eq. (24), the total electric field can be obtained by

E
[
x(i)

p

] = El

[
x(i)

p

] + E(i)
s , (33)

where El[x(i)
p ] is the long-range electric field interpolated to the position of particle i. The total force

can then be calculated via Eq. (14) and used to update the velocity of each particle.

D. Hybrid method

One drawback of the P3M method is that it relies on Fourier transforms and therefore must be
solved in periodic domains. While the present study is only concerned with periodic systems, many
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applications involving suspensions of charged particles in turbulence are wall bounded. Kolehmainen
et al. [31] recently proposed a hybrid method that combines the truncated pairwise summation
approach for the short-range potential and an injection method for the long-range contribution. The
electric field is given by

E(i)(xp) = E(i)
s (xp) + El

[
x(i)

cell

] + E(i)
c (xp), (34)

where El[x(i)
cell] is the long-range electric force at x(i)

cell, the center of the cell that particle i belongs to.
The short-range contribution is obtained by summing all pairwise electrostatic interactions within
the cutoff radius,

E(i)
s (xp) = 1

4πε0

∑
0<rij <rmax

q(j )
p

(
x(i)

p − x(j )
p

)
∣∣x(i)

p − x(j )
p

∣∣3 , (35)

and the long-range contribution is found by

El

[
x(i)

cell

] = −∇φ
[
x(i)

cell

]
. (36)

Here the electric potential φ is obtained by solving a Poisson equation for the cell-averaged value
via

∇2φ = −ρv

ε
, (37)

with the cell-averaged charge density given by

ρv = 1

Vk

∑
x(j )

p ∈Vk

q(i)
p , (38)

where Vk is the volume of the local cell that particle j belongs to. The final term Ec(x(i)
p ) is the

contribution to be removed to avoid double counting, given by

E(i)
c (xp) = −

∑
0<rij <rmax

⎧⎪⎨
⎪⎩

0 for x(i)
p and x(j )

p in the same cell

1
4πε

q
(j )
p

(
x(i)

cell−x(j )
cell

)∣∣x(i)
cell−x(j )

cell

∣∣3 otherwise.
(39)

While the hybrid method does not rely on the Fourier transform and thus can be applied to complex
geometries, compared to the P3M method, its accuracy is limited by the correction term that is of the
order of the spatial discretization. For the P3M method, however, the truncation error is compensated
using an optimized influence function and thus its accuracy is expected to be significantly greater
than the hybrid method.

IV. RESULTS AND DISCUSSION

A. Comparison of methods

Here we assess the accuracy of the PM, P3M, and hybrid methods. We consider the system given
by Deserno and Holm [24], where Np = 100 oppositely charged particles (50 with positive unit
charge and 50 negative) are randomly placed within a triply periodic box of length L = 10 m in the
absence of a fluid. All cases are solved on a mesh of size N = 32 in each direction, with a cutoff
radius rmax = 4 m. The L2-norm of the force error, given by

L2 =
√√√√ 1

Np

Np∑
i=1

(
F(i)

Coulomb − F(i)
exact

)2
, (40)

is shown in Fig. 1 as a function of the Ewald constant, where Fexact is the Coulomb force obtained
from a well-converged Ewald summation. For comparison, the electric field is computed using both
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FIG. 1. Plot of the L2-norm of the electrostatic force with the electric field computed as a function of the
P3M constant β that appears in Eq. (22) solved using (a) spectral difference and (b) finite difference for the PM
method (−−), the hybrid method (· · · ), and the P3M method (symbols) with interpolation order 0 to 4 from top
to bottom, respectively.

spectral-difference and finite-difference schemes. Results from the PM method were obtained by
projecting the particle charge to the mesh and sending the resulting electric field to the particle
location using second-order interpolation. It was found that changing the order of accuracy for
interpolation when computing the PM had negligible effect on its L2 error.

The P3M method shows accuracy that is approximately five orders of magnitude higher than the
PM and hybrid methods with a set of well-chosen parameters (i.e., in this case β ≈ 0.8 and rmax =
4 m). The hybrid method shows improvement over the PM method, though it does not outperform
the P3M method for the parameters under consideration for both the spectral- and finite-difference
schemes. As shown in Fig. 1(b), when the electric field is evaluated via the finite difference, the
errors associated with the P3M method collapse for different orders of interpolation since the finite
difference introduces truncation errors that cannot be eliminated by increasing the interpolation order.
Since the P3M method directly takes the differentiating scheme into account when constructing the
optimized screen function Ĝ(k) in Eq. (30), increased accuracy is obtained when the spectral scheme
is employed for the P3M method. The PM and hybrid methods, however, do not show improvement
when using spectral differences. In the remainder of this study, only second-order finite-difference
operators will be considered when computing the gradient of the electric potential to be consistent
with the difference operators employed in the EL framework as described in Sec. II B. Throughout
the remainder of this paper, only the P3M and PM methods will be considered to access the added
benefits of capturing the short-range interactions.

B. Charged particles in a Taylor-Green vortex

The Taylor-Green vortex flow is investigated as an example of demonstrating the competition
between particle transport due to fluid coupling and electrostatics and highlight the importance of
computing the short-range interaction correctly. We consider a pseudo-two-dimensional flow field
given by

uf = V0 cos

(
2πx

L

)
sin

(
2πy

L

)
,

vf = −V0 sin

(
2πx

L

)
cos

(
2πy

L

)
,

wf = 0 (41)
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that remains constant throughout the simulation. Here the domain length L and characteristic velocity
V0 are chosen such that the Reynolds number Re = ρf V0L/μ = 40. It should be noted that the
two-dimensional electric Poisson equation yields an electrostatic force that scales like 1/r , which
would require modifying the PM and P3M formulations. To avoid this added complexity, a pseudo-
two-dimensional domain is considered, discretized using N = 32 grid points in the x and y directions
and four grid points in the z direction. Uniform grid spacing of L/N is employed in each direction.
Particles are initially randomly distributed throughout the domain, half assigned with a positive
charge and the other half a negative charge with a mean volume fraction 〈αp〉 = 1.0 × 10−3. Different
inertial regimes are considered by varying the Stokes number St = τp/τf , where τf = L/V0 is the
characteristic fluid time scale. For uncharged flows with a Stokes number below a critical value
Stcr = 1/8π , particles will closely follow fluid streamlines [38]. Above Stcr, particle inertia is high
enough such that they cross fluid streamlines, giving rise to particle-trajectory crossing [16]. For
St = Stcr, particles will collapse between the vortices.

Following Karnik and Shrimpton [19], we introduce a dimensionless number v∗
c to characterize

the relative magnitude of the electric field by first defining the electric settling velocity as

vc = τp

Erms |qp|
mp

, (42)

where Erms is the root-mean-square (rms) magnitude of the electric field and |qp| is the charge
magnitude. The electric settling velocity represents the terminal velocity that a particle would attain
due to the influence of a specified electric field in a quiescent flow. With this, the corresponding
nondimensional electric settling velocity is

v∗
c = vc

u′ , (43)

where u′ is the rms fluid velocity magnitude.
Figures 2–4 show oppositely charged particles in the Taylor-Green vortex using the PM and P3M

as a function of v∗
c and St, with contours showing the vortex streamlines. The grayscale represents

the self-induced electric-field magnitude resulting from fluid-particle coupling. In Fig. 2, the level
of particle clustering can be seen to increase with increasing v∗

c with a more profound effect at low
Stokes numbers. The uncharged case shows that particles are relatively homogeneously distributed for
St = 0.1 Stcr. Even as low as v∗

c = 0.1, Coulomb interactions are able to overcome fluid drag, causing
particles to cross streamlines and organize into clusters. At v∗

c = 1 and St = 0.1 Stcr, the clusters
appear to be larger and chains of particles form and are advected within the Taylor-Green cells. As
St approaches its critical value, increased inertia assists in the clustering process. Charged particles
are found to agglomerate into chains between vortices even as low as v∗

c = 0.1. When St  Stcr,
particles behave ballistically and require sufficient charge to cluster. In this case, clustering does not
occur at St = 10 Stcr until v∗

c = 1.0. A zoomed-in view of the Taylor-Green flow is shown in Fig. 3.
At early times (t/τp = 0.1), long chains and rings form. The collision force plays an important
role in restricting particles from overlapping as they form these complex structures. The attractive
electrostatic force must overcome the rebound effect of colliding particles. Even with a coefficient of
restitution of 0.9, the majority of contact is observed to result in stable structures. By the time the flow
reaches a statistically stationary state, particles can be seen to self-organize into large agglomerates
that accumulate in high-strain regions between vortices.

For comparison, the resulting particle distribution computed using the PM method is shown in
Fig. 4. It can be seen that particle clustering is not able to be captured even at the highest charge density
(v∗

c = 1) for the PM method, while particle agglomeration is present in all the P3M cases. Because the
direct pairwise sum is not accounted for in the PM method, short-range interactions are essentially
averaged out when the charge is projected to the mesh. The complex structures observed in the
P3M calculations are thus unable to be captured. In the following section, a quantitative comparison
between the P3M and PM methods will be made in simulations of homogenous isotropic turbulence.
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FIG. 2. Instantaneous particle position in the Taylor-Green vortex at t/τf = 1000 using the P3M method
with increasing electric settling velocity v∗

c = 0, 0.1, and 1 (increasing from left to right) and St/Stcr = 0.1,
1, and 100 (increasing from top to bottom). Grayscale represents the electric-field magnitude [ranging from 0
(white) to 10 000 V/m (black)]. Particles are colored by their charge: neutral (black), positive (red), and negative
(blue).

C. Charged particles in homogeneous isotropic turbulence

1. System configuration

In this section, we consider 105 particles suspended in homogeneous isotropic turbulence (HIT)
with density ratio ρp/ρf = 1000. The simulation domain is triply periodic with each side of
length L = 2π m. Particles are initially randomly distributed within the domain. We consider
two scenarios: (i) suspensions of like-charged particles (i.e., all particles contain the same charge)
and (ii) suspensions of oppositely charged particles such that half of the particles have each
polarity. The Taylor Reynolds number varies between Reλ = 25.8 and 43.5 with Reλ = u′λ/ν, where
λ = √

15ν/ε u′ is the Taylor microscale. The viscous dissipation rate ε and rms fluctuating velocity
u′ are averaged over the stationary period of the forced HIT. To achieve the desired Reλ, the linear
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FIG. 3. Zoomed-in view of the Taylor-Green vortex computed using the P3M method with v∗
c = 0.1, St =

Stcr, and (a) t/τf = 1 and (b) t/τf = 10. The color scheme is the same as in Fig. 2.

forcing scheme of Eswaran and Pope [39] is added to the right-hand side of Eq. (2). For each case,
the particle diameter dp � η, where η = (ν3/ε)1/4 is the Kolmogorov length scale, and the mean
volume fraction 〈αp〉 � 1 such that particles do not significantly modify the underlying turbulence
and one-way coupling is applicable. In this work, angular brackets denote a volume average. Particle
inertia is characterized by a turbulence Stokes number Stη = τp/τη, where τη = (ν/ε)1/2 is the
Kolmogorov time scale. The cutoff radius used in the P3M method was chosen to be rmax = 4L/N ,
with N the number of grid points in each direction. This was found to be the minimum value that
was insensitive to the results reported herein. A list of relevant two-phase flow parameters used in
each case is provided in Table I. These parameters correspond to 3.3- to 25-mm water droplets in air
with charge 3 × 10−9 < |qp| < 60 × 10−9 C. It should be noted that for cases with like charge, the
Poisson equation used to solve the electric potential [Eq. (16) for the PM method and Eq. (31) for
the P3M method] is ill defined for the triply periodic system considered here. To that end, a uniform
charge density is added to the background flow such that 〈ρm〉 = 0.

2. One-point statistics

To quantify the degree of particle clustering, Eaton and Fessler [11] proposed to measure the
deviation of volume fraction from a randomly distributed field of particles by defining a scalar
parameter D as a measure for clustering, given by

D =
〈
α′2

p

〉1/2 − σp

〈αp〉 , (44)

where σp is the standard deviation of a corresponding flow with a random distribution of particles.
The probability density function of volume fraction for the corresponding randomly distributed field
is given by the discrete Poisson distribution, which is used to compute σp.

The parameter D is computed for each case and compared in Figs. 5 and 6. For the cases with
like-charged particles, D follows the same trend as reported by Karnik and Shrimpton [19], that is,
the level of clustering decreases with v∗

c for both the P3M and PM methods. At low v∗
c , the Stokes

number has a more significant effect on D, which is maximum at Stη = 1.0 and decreases as Stη
deviates from unity. As v∗

c increases, however, Coulomb interactions outcompete the drag force,
causing the values of D to collapse with greater effect at lower Reynolds number. Little difference
can be observed between the P3M and PM methods in Fig. 5, suggesting that for the parameters
under consideration, the repulsive Coulomb force is adequately captured without accounting for the
direct pairwise sum.
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FIG. 4. Instantaneous particle position in the Taylor-Green vortex at t/τf = 1000 using the PM method
with increasing electric settling velocity v∗

c = 0, 0.1, and 1 (increasing from left to right) and St/Stcr = 0.1, 1,
and 100 (increasing from top to bottom). The color scheme is the same as in Fig. 2.

For cases with oppositely charged particles, however, the results of the PM and P3M methods
deviate significantly, as shown in Fig. 6. Particles become highly clustered in the simulations
computed using the P3M method since the short-range attractive force is accurately represented. For
the simulations computed using the PM method, the level of clustering is not affected by the charge
magnitude since the effect of opposite charges are essentially nullified when projecting the charge
on the mesh. This discrepancy demonstrates the importance of correctly capturing the short-range
interactions when particles contain opposite charges. In general, the level of clustering is maximum
when Stη = 1.0 and decreases as Stη increases. In Fig. 6(a), D varies from 0.72 to 2.84 when v∗

c

increases from 0.25 to 0.5 for Reλ = 25.8. At higher Reλ, however, the level of clustering is not as
large due to increased velocity fluctuations causing local drag to overcome the attractive Coulomb
forces. A similar effect is seen with variations in v∗

c . In Fig. 6(a), D increases by a factor of 4 when
v∗

c changes from 0.25 to 0.5 for Reλ = 25.8, but only increases by a factor of 2 for Reλ = 43.5.
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TABLE I. Parameters used in the HIT simulations.

N 3 Reλ Stη 〈αp〉 dp/η

323 25.8 0.48 7.86 × 10−5 0.09
323 25.8 0.96 2.22 × 10−4 0.12
323 25.8 6.16 3.63 × 10−3 0.31
323 25.8 24.65 2.89 × 10−2 0.62
643 43.5 0.44 7.56 × 10−6 0.09
643 43.5 0.89 2.14 × 10−5 0.13
643 43.5 7.02 4.85 × 10−4 0.35
643 43.5 27.87 3.84 × 10−3 0.70

3. Two-point statistics

Another important statistical measure of the spatial distribution of particles is the radial distribution
function (RDF), defined as the number of particle pairs found at a given separation normalized by
the expected number of pairs found in a homogeneous distribution [40]. The RDF g(r) is calculated
by binning particle pairs according to their separation distances within annular shells of thickness

(a) (b)

(c) (d)

FIG. 5. Variation of D with nondimensional Coulomb velocity for Stη = 0.5 (♦), 0.9 (+), 1.0 (+), 6.2 (�),
7.0 (�), 25.0 (©), and 28.0 (©) with like-charged particles for (a) Reλ = 25.8 (P3M method), (b) Reλ = 25.8
(PM method), (c) Reλ = 43.5 (P3M method), and (d) Reλ = 43.5 (PM method).
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(a) (b)

(c) (d)

FIG. 6. Variation of D with nondimensional Coulomb velocity for Stη = 0.5 (♦), 0.9 (+), 1.0 (+),
6.2 (�), 7.0 (�), 25.0 (©), and 28.0 (©) with oppositely charged particles for (a) Reλ = 25.8 (P3M method),
(b) Reλ = 25.8 (PM method), (c) Reλ = 43.5 (P3M method), and (d) Reλ = 43.5 (PM method).

�r , given by

g(r) = Pr/�Vr

P/V
, (45)

where Pr is the number of particle pairs separated by a distance r ± �r/2, �Vr is the volume of the
shell with thickness �r located at separation r , P = Np(Np − 1)/2 is the total number of pairs in
the simulation, and V is the volume of the sphere with radius L/2. With this definition, a value of
unity represents a homogeneous distribution and values greater than unity imply clustering.

The RDFs are shown in Fig. 7 as a function of v∗
c . For the cases with like-charged particles,

the presence of charge is seen to reduce the number of particle pairs up to a pair separation of
10η, which prevents particles from clustering. The result is consistent with what was shown in
Fig. 5. In addition, for r/η < 2, the interparticle electrostatic repulsive force becomes extremely
large and the RDF rapidly approaches zero. As for the case with oppositely charged particles, similar
to what was observed in the like-charged cases, the RDF remains approximately close to unity for
2 < r/η < 10. For r/η < 2, the RDF increases rapidly due to particle agglomeration. It was found
that such short-range behavior of the two-point statistics was not observed when computed using the
PM method.

The RDF can be seen to be greatly influenced by the Stokes number. Similar to what was observed
in Figs. 5 and 6, the RDF is maximum when Stη is close to unity. With increasing v∗

c , the effect of
charge for both like- and oppositely charged particles becomes more profound. Figure 8 shows the
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Radial distribution functions for Reλ = 43.5 and (a) Stη = 0.5, (b) Stη = 0.5, (c) Stη = 1.0, (d)
Stη = 1.0, (e) Stη = 7.0, and (f) Stη = 7.0 with v∗

c = 0 (−), 0.1 (— –), 0.25 (−·), 0.5 (−−), and 1.0 (· · · )
using the P3M method, with (a), (c), and (e) oppositely charged particles and (b), (d), and (f) like-charged
particles.

RDF in close contact as a function of Stη, defined as g∗ = g(1.5dp). For oppositely charged particles,
g∗ is seen to increase with v∗

c , with a peak at Stη = 1. Charges increase the peak of g∗ by over an
order of magnitude. For like-charged particles, an opposite trend is observed, with g∗ decreasing as
v∗

c increases, and the Stokes number is seen to play less of a role. For Stη � 7, g∗ approaches unity,
suggesting that the Coulomb repulsive force has a greater influence than preferential concentration
from drag and successfully homogenizes the suspension.
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(a) (b)

FIG. 8. The RDF near contact with v∗
c = 0 (♦), 0.1 (+), 0.25 (�), 0.5 (�), and 1.0 (©) using the P3M

method, with (a) oppositely charged particles and (b) like-charged particles.

Lu and Shaw [20] recently proposed a model for the influence of charge on the RDF. Their model
is based on the assumption that the particle relative velocity arises from dissipation-scale turbulent
velocity fluctuations. The modeled RDF is a function of Stokes number and charge magnitude,
though it is only valid for sufficiently weak charges such that the influence of Coulomb interactions
is restricted to the dissipation scales of turbulence. Their model is able to capture increases in the RDF
due to opposite charges and reductions in the RDF for like-charged particles, as was shown herein.
However, the flow conditions are restricted to stagnant or low-Stη regimes. The charge density under
consideration in their model was also several orders of magnitude smaller than what was used here
and we found that it provides poor agreement with the RDFs reported here. This is to be expected,
as Stη approaches unity, particle inertia has a stronger influence on the relative velocity between
particles, and the fidelity of the model diminishes. Yet such models are necessary to provide accurate
descriptions of the particle distribution without the burden of long simulation runtimes and the need
for supercomputing resources. The method presented in this work can be used in future studies to
improve upon such models.

V. SUMMARY AND CONCLUSIONS

In the present work, the role of electrostatic charge on particle clustering in turbulent flows
was studied. The objective of this work was twofold: (i) present an accurate and tractable method
for capturing electrically charged particles in turbulent flows and (ii) understand the interplay
between fluid coupling (drag) and Coulomb interactions. Due to the long-range nature of the
Coulomb potential, special attention was paid to treating the electrostatic force. We reviewed several
methods, including the particle mesh, Ewald summation, particle-particle-particle–mesh, and hybrid
approaches. We showed that the P3M method admits several orders of magnitude higher accuracy
for simple configurations of oppositely charged particles in periodic boxes. Both the PM and P3M
methods were implemented in an Euler-Lagrange framework that accounts for fluid-particle coupling
and collisional contact between particles.

Results from simulations of a two-dimensional Taylor-Green vortex flow and three-dimensional
homogeneous isotropic turbulence demonstrated that the Stokes number and electric charge play
an important role in the particle dynamics. Despite the low-volume fractions considered here,
interparticle collisions were found to be necessary to prevent unphysical overlap that arises via
attractive Coulomb interactions. It was found that the PM method was capable of quantitatively
capturing particle segregation for like-charged particles. However, the PM method was unable to
capture particle chain and ring structures observed using the P3M method for systems with oppositely
charged particles.
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The level of particle clustering in HIT was characterized via one- and two-point statistics. These
measures were found to be highly influenced by the turbulence Stokes number Stη, Taylor Reynolds
number Reλ, and Coulomb settling velocity v∗

c . Similar to turbulent suspensions of uncharged
particles, maximum clustering was observed when Stη approaches unity and decreased with values
deviating from unity. In systems with oppositely charged particles, the level of clustering was seen
to increase at larger values of Reλ due to the increased influence of drag over the repulsive nature of
the Coulomb interactions. The charge magnitude was found to play a dominating role in amplifying
or suppressing the level of clustering. In suspensions of like-charged particles, the homogenization
of particle distribution increased with increasing v∗

c for both the PM and P3M methods. However, the
PM method was unable to capture enhanced particle segregation in systems with oppositely charged
particles.

In real systems, neutral particles can acquire charge while highly charged particles may discharge
themselves by capturing ions of the opposite polarity. Such effects were not considered in the present
study. Instead, particles were assumed to retain their original charge throughout the duration of each
simulation. Because the EL framework explicitly tracks the charge of each particle in addition to
particle-particle contact, accounting for such effects can be implemented in a straightforward manner
but might result in computationally restrictive time steps. Jin and Marshall [41] recently introduced
a probabilistic model for contact electrification that presents a tractable approach to capture such
effects.

Extending the EL P3M approach to arbitrary geometries will also require additional work. Ewald
summation methods in general rely on Fourier transforms and are therefore restricted to periodic
systems. Beams et al. [42] recently proposed a finite-element-based P3M method that constructs the
screen potentials using polynomial bases. The long-range component of the potential can then be
solved using standard multigrid methods as opposed to Fourier transforms. However, this leads to a
more involved short-range calculation. An alternative approach would be to consider fast multipole
methods (see, e.g., [43,44]) or treecode algorithms (see, e.g., [45]) to account for the electrostatic
force. Despite the choice of method, we have demonstrated in the present work that treatment of the
Coulomb potential, even in relatively dilute particle suspensions, must be accounted for accurately
to correctly capture clustering and agglomeration in turbulent flows.
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