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Miscible displacement flows within the gap of a nonuniform Hele-Shaw cell are
considered, theoretically and experimentally. The cell is vertical and it can be diverging
or converging. A light fluid displaces a heavy fluid downwards. The displacement imposed
velocity is sufficiently large so that diffusive effects are negligible within our time scale
of interest. For certain flow parameters, the displacement flow is characterized by a
symmetric, two-dimensional penetration of the light fluid into the heavy one, for which
a lubrication approximation approach is developed to simplify the governing equations
and find a semianalytical solution for the flux functions. The solutions reveal how the cell
nonuniformity may affect the propagation of the interface between the two fluids, versus
the other flow parameters, i.e., the viscosity ratio (m) and a buoyancy number (χ ), for
which a detailed flow regime classification is presented. Our results demonstrate that the
presence of nonuniformity adds a unique spatiotemporal nature to these displacements
which is not the case for uniform cell flows. The combination of the model and experiments
reveals the existence of self-spreading, spike, and unstable (viscous fingering) flow regimes,
which may occur at various spatial positions within the cell. A converging cell may allow
a transition from spike to self-spreading or unstable regime, whereas a diverging cell may
offer a transition from self-spreading or unstable to spike regime. Our work demonstrates
that the novel spatiotemporal nature of nonuniform cell flows must be considered through
the numerical solution of the interface propagation equation, to yield accurate predictions
about the flow behaviors at various spatial positions.
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I. INTRODUCTION

The manner by which miscible fluids displace each other in porous media is a key consideration
when conceiving and developing various industrial processes. These flows find current use in various
applications such as oil well cementing and fixed bed regeneration [1], oil and gas extraction [2,3],
and food processing [4] to name a few. An important body of work has searched to understand and
unravel the complexity of these flows which present various stable and unstable behaviors depending
on a multitude of physical characteristics. So far, a majority of the work on these flows has focused
on their behaviors within the confines of uniform geometries, due to their already complex nature.
However, displacement flows are much more prevalent in somewhat nonuniform geometries [5].
In this paper, we aim at developing a model, validated by experiments, which can provide a basic
understanding of how a small geometry nonuniformity may affect density-stable displacement flows
within the gap of a narrow vertical channel.

To this day, the majority of the research into miscible vertical displacements in Hele-Shaw cells has
mainly focused on characterizing and modeling the unstable regime observed above critical density
or viscosity ratios or above a critical velocity (e.g., see [1,6–12]). Lajeunesse et al. [13] studied these
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flows through characterizing the effect of viscosity ratio and flow rate. They determined that there
exists a two-dimensional phenomenon which occurs under a critical viscosity ratio in density-stable
systems. In these conditions, the interface between the fluids progresses from its initially flat state to
that of a two-dimensional tongue, as the lighter fluid displaces the heavier one in a vertical Hele-Shaw
cell. The tongue is symmetrical with respect to the gap and no instability is observed across the width
of the interface. This is in contrast to flows above these critical values which develop into viscous
fingers. The authors developed an analytical expression allowing one to determine the boundary
between these two flow regimes (stable and unstable). This work was expanded upon by Lajeunesse
et al. [14], who uncovered three regimes dependent on the viscosity ratio and a buoyancy number;
these regimes are characterized by the absence of a shock, the presence of an internal shock, and the
presence of a frontal shock. The authors found that each regime had a clearly delineated boundary,
with the frontal shock regime being associated mainly with three-dimensional (3D) or unstable
behaviors. Further clarification on the boundary expression was provided in [15]. These results were
taken into account during later linear stability analyses offered by Goyal et al. [16,17].

Modeling of the flow behavior of miscible displacements in the gap of a channel has been
undertaken by various authors. Previous to the work of Lajeunesse [14], Rakotomalala et al. [18] used
the Bhatnagar-Gross-Krook (BGK) lattice gas method to simulate the displacement between parallel
plates, predicting the self-spreading regime and the development of a tonguelike flow. Yang and
Yortsos [19] concurrently developed an asymptotic formalism to model displacements in between
parallel plates and in cylindrical capillaries, which provided a strong basis for future work. More
recently, modeling of various relevant flows in channels has been provided by [10,11,20–23], to
name but a few. For example, Taghavi et al. [20] used a lubrication approximation to predict the
flow of buoyancy-driven displacements in parallel channels. Following up on this, Mollaabbasi
and Taghavi [23] applied lubrication theory to model these same flows in nonuniform channels.
Their results showed that the nonuniformity of the channel affects the local buoyancy force as the
flow progresses through the channel. This in turn modifies the interface development throughout
the channel. Therefore, it was concluded that, due to the spatiotemporal nature of the interface
development, analyzing nonuniform geometry flows requires models that properly take into account
the geometrical variations.

Due to the importance that displacement flows present, a growing body of research has
searched for methods which would allow one to control them. Thomé et al. [24] experimentally
examined the impact of nonuniform cells on viscous fingering, concluding that nonuniformity can
have considerable impacts on the stability of the flow. Similar results were obtained by [5,25]
experimentally; however, Zhao et al. [25] noted that this behavior was not predicted through
linear stability analysis. An analytical evaluation was later provided by Dias and Miranda [26]
who succeeded to predict the stability of the fingers through a perturbative mode coupling theory.
Research in this vein has found a growing interest in the past few years, albeit with the primary focus
being on viscous fingering of immiscible flows [5,27–36].

To reiterate, the aim of the current work is to theoretically and experimentally explore the impact
of a nonuniform Hele-Shaw cell on the displacement in between the gap for density-stable miscible
systems. More specifically, we aim at determining the impact of a gap gradient on the three domains
identified in the work of Lajeunesse et al. [14], using a simple approach that does not constitute
a stability analysis. In addition, our work provides an understanding on whether a gap gradient
can be used as a tool to control viscous fingering in miscible flows, similarly to immiscible flows.
Furthermore, we offer a model, validated by experiments, which provides reasonable predictions of
the two-dimensional flow characteristics in a nonuniform channel.

The paper will proceed as follows. In Sec. II, the geometry of the problem, the lubrication model,
and the flux function will be discussed. The analytical results are then presented for both uniform
and no-uniform cells. Following this, Sec. III is devoted to experiments, detailing the methodology
and the results in comparison with the model. Section IV provides a brief summary of the key
findings.

034003-2



BUOYANT MISCIBLE DISPLACEMENT FLOWS IN A …

II. ANALYTICAL

In our analytical analysis, we consider the two-dimensional shape of the interface between
two miscible Newtonian fluids flowing between two plates, separated by small distance 2D̂0 +
2 tan(α)x̂ ≈ 2D̂0 + 2αx̂ (assuming |α| � 1). The width and the length of the channel are D̂ and
L̂, which are both very large compared to D̂0. As Fig. 1 illustrates, the two walls of the Hele-Shaw
cell are symmetrically oriented with respect to an imaginary vertical line passing through the middle
of the channel. We take into account two mechanically stable types of displacement flows: a light
fluid displacing a heavy fluid (1) in a slightly converging channel (for negative α) and (2) in a
slightly diverging channel (for positive α). The downstream region between the two plates is initially
filled with the heavier fluid (fluid H ), which is displaced by a lighter fluid (fluid L). The latter is
injected at a distance far away from the initial interface between the two fluids localized to x̂ = 0.
The mean imposed velocity is V̂0 = Q̂/2D̂0D̂, where Q̂ is the imposed flow rate of the light fluid.
Cartesian coordinates (x̂,ŷ,ẑ) and the geometrical parameters are depicted in Fig. 1. We assume that
the displacing fluid interface forms a symmetric tongue across the channel thickness, invariant along
the width D̂ and characterized by its relative thickness ĥ(x̂,t̂). The fluids studied are miscible but we
consider the large Péclet number limit, the consequence of which is that no significant mixing occurs
between the two fluids over the time scales of interest. We have made the Navier-Stokes equations
dimensionless using the channel half-thickness at x̂ = 0 (i.e., D̂0) as length scale, and V̂0 as velocity
scale. We have scaled time with D̂0/V̂0 and pressure and stresses with μ̂H V̂0/D̂0 (with μ̂H being the
heavy fluid’s viscosity). We can therefore write the model equations as

[1∓At]Re[ut + u · ∇u] = −∇p + ∇ · τ∓χ

2
eg, (1)

∇ · u = 0. (2)

In the equations above, u = (u,v,w) denotes the velocity, p the pressure, and τ the deviatoric stress.
Also eg = (1,0,0) is in directions (x,y,z) and the ∓ refers to the light and heavy fluid layers,
respectively, here and elsewhere. Note that we have subtracted the mean static pressure gradient
from the pressure before scaling. There are three dimensionless parameters that appear in Eq. (1): the
Atwood number defined as At = (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L) (which is small in our work), the Reynolds
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FIG. 1. Schematic of the displacement flow geometry considered. Here α is negative so that the light fluid
displaces the heavy fluid in a slightly converging vertical channel. For a positive value of α, the channel would
be slightly diverging. Note that |α| � 1.
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number, Re ≡ V̂0D̂0
ν̂

, where ν̂ = μ̂H /ρ̂ is defined using the mean density ρ̂ = (ρ̂H + ρ̂L)/2, and the
buoyancy number can be defined as

χ = 2AtĝD̂2
0

ν̂V̂0
, (3)

which represents the balance of viscous stresses (due to the imposed flow) and axial buoyancy stresses
(due to the density difference).

Usual assumptions include no-slip conditions and the channel being sufficiently long in direction
x. Thanks to our scaling, we can have in each cross section of the channel

1

D

∫ +D/2

−D/2

∫ 1+αx

0
u dy dz = 1. (4)

The light fluid may be expected to propagate in the middle of the channel, fingering through the
heavier fluid. An interface, denoted by y = h(x,t), separates the two pure fluids (see Fig. 1). We
assume that the interface is single valued.

A. Lubrication model

Assuming that the interface is elongated and inertia is not dominant, a thin-film/lubrication style
model can be developed for our displacement flow using standard procedures. The leading order
equations are the momentum balances:

0 = −∂p

∂x
+ m∓ ∂2u

∂y2
∓ χ

2
, (5)

0 = −∂p

∂y
, (6)

0 = −∂p

∂z
, (7)

where m+ = 1 and the viscosity ratio is defined as m− = m = μL/μH , which is the ratio of the
viscosity of the light fluid to that of the heavy fluid. The above equations imply that p = p(x,t).
Therefore, for each fluid layer we can write

0 = −∂p

∂x
+ m

∂2u

∂y2
− χ

2
, y ∈ (0,h), (8)

0 = −∂p

∂x
+ ∂2u

∂y2
+ χ

2
, y ∈ (h,1 + αx). (9)

The boundary conditions are the flow symmetry, leading to ∂u
∂y

= 0 at y = 0, and no-slip condition
(u = 0) at the channel wall (y = 1 + αx). At the interface between the two fluids (y = h) the
velocities and shear stresses are continuous. These conditions allow for the determination of u for a
given pressure gradient, while the additional constraint (4) is satisfied to determine the pressure
gradient. The interface is advected via a kinematic condition, which in combination with the
incompressibility condition results in

∂h

∂t
+ ∂q

∂x
= 0, (10)

where q is defined through

q = 1

D

∫ D/2

D/2

∫ h

0
u dy dz. (11)
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Regarding boundary conditions, we assume that the channel is full of pure fluid L and fluid H at
its two ends. Concerning initial conditions, we must consider an initial profile compatible with the
far-field conditions, leading to

h(x,0) → 1 + αx − H (x)(1 + αx). (12)

Here H (x) is the usual Heaviside function, used to ensure that the initial variation in h localized to
x = 0 is sharp. Note that, in order to conform to the inlet and exit conditions, we need to always
limit the length of the channel in a way that the channel walls never contact each other. Thus, for
a diverging channel (positive α) we limit the length to x ∈ (−α−1,∞) and for a converging one
(negative α) to x ∈ (−∞, − α−1). Hereafter, for simplicity we may refer to x as distance, providing
a measure of a distance from x = 0, the spatial location of the initial interface.

In order to compute the flux function, a great deal of simplicity is achieved through using
an analogy between uniform and slightly nonuniform channel flows: as the flow advances in
a nonuniform channel, different heights of an imaginary uniform channel are locally achieved.
Therefore, we can adopt appropriate scaling and, for a given αx, use the local channel half-thickness
[D̂0(1 + αx)] and the local mean flow velocity [V̂0/(1 + αx)] to rescale the dimensionless groups:

h∗(αx) = h(1 + αx)−1, (13)

χ∗(αx) = χ (1 + αx)3, (14)

where the rescaled dimensionless groups are denoted by ∗. Note that the values of the local Reynolds
number and viscosity ratio are not affected by the nonuniformity. Therefore, the analytical solution
for the flux function can be easily found as

q = 1

12

h∗2(1 − h∗)3[4h∗ + 3m(1 − h∗)]χ∗

m(h∗3 − 1) − h∗3
− 1

2

h∗[2h∗2 + 3m(1 − h∗2)]

m(h∗3 − 1) − h∗3
. (15)

It is important to note that even though an analogy exists between the uniform and nonuniform
dimensions, a nonuniform channel remains a completely novel situation which must be addressed as
such. Uniform cell flows develop and attain a relatively steady behavior once the flow has progressed,
whereas nonuniform cell flows are time and position dependent due to the nature of their constantly
changing balancing forces throughout the interface.

Using appropriate boundary conditions, we have solved the interface propagation equation (10)
to obtain the interface evolution. We have taken the initial interface as a sharp boundary between
the phases. We have discretized the equation in conservative form, first order explicitly in time and
second order in space, and employed a shock capturing Van Leer flux limiter scheme [37]. Further
details of our numerical approach can be found in our recent displacement flow studies [23,38]. We
have checked the independency of our results on the mesh size, as showcased in Fig. 2(a).

B. Uniform cell results

Let us first review certain basic displacement flow features in a uniform channel, which may help
better understand the effect of geometry on displacements in a nonuniform channel. In addition,
uniform channel results will serve as benchmarks for nonuniform channel counterparts.

Figure 2 depicts displacement flow behaviors for a uniform channel. Due to the symmetry of the
flow, the results for half of the channel are shown throughout the paper. Figure 2(a) corresponds to
a less-viscous more-viscous displacement (m = 0.1) and weak buoyancy (χ = 1). Starting from an
initially sharp interface, the interface quickly adopts a form with two segments: A frontal shock, with
constant front height (hf ) with a speed larger than a corresponding channel center-line velocity in
a Poiseuille flow (i.e., Vc = 1.5) and a stretched region between hf and h = 1, which is seemingly
pinned to the wall. Figure 2(b) shows another flow regime in which the sharp interface (at t = 0)
transitions into a form with three segments, two of which are similar to Fig. 2(a). The third interface
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FIG. 2. Examples of displacements showing interface evolution in time at t = 0,2.5, . . . ,22.5,25, for (a)
m = 0.1, χ = 1; (b) m = 1, χ = 10; (c) m = 10, χ = 1. In (a), the convergence of the results is shown using
two typical mesh sizes: dx = 0.1 (line) and dx = 0.2 (dashed line). The inset for (b) is zoomed at the displacing
tip in the range 25 � x � 40. Also, note that hf , hsp , and �sp denote the front height, the spike height, and the
spike length.

segment is an advancing foot (spike) localized toward the channel center line. The shock moves slower
than the tip of the spike and therefore the spike length (�sp) increases with time. After forming, the
spike height with respect to the channel center line (hsp) seems to be constant. Figure 2(c) illustrates
an example of the last regime, which is a self-spreading interface motion occurring at large viscosity
ratios and weak buoyancy. There is no shock or spike observed in this regime.

The numerical solution of the interface propagation equation delivered the interface evolution
versus time and space. However, for a uniform channel, the flux function can be directly analyzed
to provide a flow regime classification, without the need for a numerical solution. This has been
extensively carried out by Lajeunesse et al. [14], who analytically discovered the three displacement
flow regimes which we briefly reviewed. To define these regimes, let us rely on the following simplistic
terms:

(1) Self-spreading flow: This flow regime is associated to self-spreading interface profiles across
the channel. The tip of the interface moves with the same speed as the channel center-line velocity
in a corresponding Poiseuille flow (Vc).

(2) Spike flow: In this flow regime, interface profiles involve an internal shock, across two interface
values. The shock is preceded by an advancing, self-spreading foot (spike), the tip of which propagates
at the same speed as Vc and the shock travels at a velocity smaller than Vc.

(3) Frontal shock flow: This corresponds to a flow regime with no leading foot (spike) and with a
shock at the front of the displacing fluid, traveling with a speed equal to or larger than Vc.

Through analyzing the flux function, Lajeunesse et al. [14] were also able to quantify the transition
between the regimes discussed above. In addition, they found very good comparisons between
their model results and experimental results for the first two regimes. However, the experimental
flows corresponding to the parameter ranges of the third regime did not match with the theory:
the experimental interface profiles had either a front velocity smaller than the corresponding model
profiles (for a limited range of parameters) or they showed three-dimensional fingering patterns.
Lajeunesse et al. [14] showed that the critical upper limit (in terms of the buoyancy number χ ) for
the onset of the transition toward three-dimensional instabilities is crudely equivalent to the onset of
the transition between spike and frontal shock flows obtained by the model. They argued that a shock
velocity larger than the maximum velocity existing in the displaced fluid ahead of the interface
introduces a vorticity, leading to recirculation at the interface tip, which acts as the origin of the
observed interfacial instability. This will eventually expand to 3D behaviors observed in the channel
transverse direction. Our results will show that the same criterion can be used to crudely delineate the
transition between stable and unstable flows in a nonuniform channel, although there is no shortcut
to analytically obtain the associated critical conditions. Instead, the interface propagation equation
needs to be numerically solved to deliver the transition boundary.
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FIG. 3. Comparison between analytical regime classification for uniform Hele-Shaw cell displacement
flows and simulation results of the spike (�), self-spreading (◦), and frontal shock (�) regimes. The boundaries
between the regimes, marked by different colors, can be obtained by analyzing the analytical form of the flux
function, for which the details can be found in [14]. Throughout the paper, we adopt the convention of denoting
simulation and experimental datapoints by hollow and filled symbols, respectively.

In order to validate our results against those of [14] for a uniform channel, Fig. 3 shows the regime
classification for the three regimes discussed above. The simulation results superposed on the graph
reasonably match the predictions of the regimes and their boundaries using the method proposed by
[14]. This is an important validation step since, in analyzing the nonuniform channel displacements
in the following sections, we will rely on simulation results as analytical treatments are not possible.

Before we proceed, it is useful to quantify certain flow features for the displacement flow regimes
discussed. For example, it can be shown that the overall displacement efficiency is governed by the
shock speed and height in frontal shock and spike flows. In order to approximate these quantities,
the mass conservation of the total volume behind the interface results in

hf

∂q

∂h

∣∣∣∣
h=hf

= q(hf ), (16)

where hf is the front height, with which the front speed can be found as Vf = ∂q

∂h
|
h=hf

. Note that in
deriving relation (16), we have assumed that the area under the spike in the spike regime is relatively
small and therefore negligible. For the frontal shock regime, Eq. (16) involves no approximation.
After some algebra, the shock speed can be found as

Vf = (1 − hf )

4
[
(m − 1)h3

f − m
]2

{
χ

[
(3m2 − 7m + 4)h7

f − (5m2 − 9m + 4)h6
f

+(m − 1)mh5
f + (−5m + 7)mh4

f + (14m − 12)mh3
f + (4 − 10m)h2

f m + 2hf m2]

−6m
(
m + hf m − 2h2

f + 2h2
f m

)}
, (17)

in which the buoyancy number and the shock height are linked through

χ = 6hf

[
h3

f (2 − 5m + 3m2) + 9hf m(1 − m) + 2m(3m − 2)
]
(hf − 1)−2

[
2h5

f (3m2 − 7m + 4) + 2hf

(
2h3

f + 3mh2
f − 4m

)
(1 − m) + 5h2

f m(4 − 3m) − 3m2
] . (18)

For the frontal shock regime and when Vf > Vc, the values of Vf and hf provided by the coupled
equations (17) and (18) are of less importance since they are not physically relevant (i.e., this
regime is not observed in experiments). However, these equations can help provide the transition
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FIG. 4. Results for a uniform channel. (a) Contours of hs versus χ and m. (b) Contours of Vf versus χ

and m.

between the spike and frontal shock regimes, obtained through requiring Vf = Vc, which results in
a critical buoyancy number χc = 3

8 (−2 + 3m)2(4 − 3m), which marks the boundary between these
two regimes in Fig. 3. On the other hand, the boundary between self-spreading and shock flows (also
marked in Fig. 3) can be found by requiring a single inflection point on the flux function.

For spike flows, the coupled equations (17) and (18) approximate the shock height and speed.
Figure 4 depicts contour plots of hf and Vf in the plane of χ and m, for the spike regime. It can be
seen that hf and Vf are strongly affected by χ and that hf is less affected by m, while the effect of
m on Vf is more visible.

C. Nonuniform cell results

A nonuniform channel flow presents a spatiotemporal nature (nonexistent in a uniform channel),
due to the continuous change in local buoyancy affecting the interface along its length. Unlike a
uniform channel with a relatively steady behavior, the nonuniform channel transitory nature implies
that the overall flow behavior is subject to the accumulation of local buoyancy forces acting throughout
the interface. Therefore, the flow behavior prediction requires the solution of the interface propagation
equation, taking into account the spatiotemporal nature of the flow, and cannot simply be obtained
from a conversion of solutions obtained in uniform channels. As further discussed below, we must
therefore proceed by numerical simulation. Figure 5 compares displacement flows in nonuniform
channels (converging and diverging) with the ones in uniform channels, for various viscosity ratios
and a given buoyancy number (fixed at χ = 10) at small α. Interesting behaviors appear when
the channel is nonuniform. For example, Fig. 5(a) shows that the shock height (speed) decreases
(increases) with distance as the front advances, which is expected. In this case, as a less viscous
fluid displaces a more viscous one (m = 0.1), the initially flat interface quickly turns into a shock
at the front. However, before a frontal shock is formed, a short-lived spike appears near the front
at intermediate values of x. Although the spike slightly grows initially, as the local buoyancy stress
decreases with x, it eventually fades away. Figure 5(b) shows a spike regime, wherein the spike’s
longitudinal length grows, and the shock that follows the spike has a constant height (both expected
features). Also, the height of the spike seems to be constant. Figure 5(c) illustrates a displacement
flow in a diverging channel, with flow behaviors that are opposite to those in a converging case. There
is a growing spike formed at the front and there is a succeeding shock, for which the height (speed)
increases (decreases) with x. The middle row in Fig. 5 shows displacements at m = 1. Regarding
Figs. 5(e) and 5(f), the general flow behaviors are more or less similar to the corresponding subfigures
in the top row. However, Fig. 5(d) shows a different pattern, wherein the initial flat front interface
quickly turns into a spike regime with a shock that follows the front. As the spike grows and the
shock height decreases, the interface is extended between a pinned point on the top wall and the
tip at the bottom. The shock becomes weakened and at a certain distance the flow transitions to
self-spreading regime. The bottom row depicts the results for m = 10, where Fig. 5(g) shows an
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FIG. 5. Interface evolution in time, t = 0,3, . . . ,27,30 at χ = 10. In each row m is fixed (m = 0.1,1,10
from top to bottom). In each column, α is fixed (α = −0.01,0, + 0.01 from left to right). The insets show
interface heights close to the tip and cover the same range of x as in the main figures.

even faster transition from spike to self-spreading regime. Figures 5(h) and 5(i) show more or less
the same pattern as the corresponding subfigures in the top and middle rows, although a relatively
faster spike height growth can be noted in Fig. 5(i).

Before we proceed with the presentation of our experimental results in the following section,
let us address a natural question that may arise: To what degree can the results from a uniform
channel analysis be extended to understand the flow in a nonuniform channel? More precisely,
using the transformation introduced as relation (14), can the transition between different regimes
in a nonuniform channel be directly obtained from the analysis of a uniform channel flow? Our
results show that “in general” the answer to these questions is negative, meaning that, due to the
spatiotemporal nature of the flow in a nonuniform channel, the interface propagation equation must
be solved for individual cases to obtain the transition boundaries for nonuniform channel flows. For
clarification, Fig. 6(a) shows the simulation results of the variation of the critical scaled buoyancy
number [i.e., χ∗

cr ≡ χcr(1 + αx)3] versus αx. To obtain this figure, several hundred simulations have
been performed to quantify the critical buoyancy number that delineates the transition between spike
to self-spreading regime or spike to shock regime, for a wide range of m and αx. The datapoints
at αx = 0 represent the uniform channel results. For each viscosity ratio and any αx �= 0, the
values of χ∗

cr deviate from the corresponding values at αx = 0, implying that the uniform channel
results cannot be directly extended to nonuniform channel results. In general, major deviations are
observed for small viscosity ratios with the transition from spike to shock in converging channels.
For large viscosity ratios, for which the transition from spike to self-spreading occurs, increasing m

generally results in decreasing the deviation from uniform channel results; for example, at m = 10,
the simulation datapoints seem to be least deviated from an imaginary horizontal line (for which
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FIG. 6. Simulation datapoints representing χ∗
cr ≡ χcr(1 + αx)3, denoting the critical buoyancy number for

the transition from spike to self-spreading regime (diamonds) and the transition from spike to frontal shock
regime (stars). (a) Critical values in the plane of χ∗ and αx. The symbol size represents the viscosity ratio
magnitude, varying as m = 0.1,0.2, . . . ,1,2, . . . ,9,10, except for m = 0.6 which is undetermined due to it
being the zone in between self-spreading and shock flows. (b) Critical values in the plane of χ∗ and m. The
symbol size represents the growth in αx, varying as αx = −0.8, − 0.6, . . . ,0.6,0.8. The shaded areas mark
the regimes predicted by the analytical results for uniform cells, i.e., the same as presented in Fig. 3. Note
that nonuniform cell results cannot necessarily be extended from uniform ones since the critical values for
nonuniform cells vary with αx in (a) and they do not collapse on uniform cell boundaries in (b).

χ∗
cr would be independent of αx). Figure 6(b) provides the same simulation results as presented

in Fig. 6(a), but in the plane of the scaled buoyancy number versus the viscosity ratio. This figure
is analogous to Fig. 3 in terms of regime classification while it quantifies the critical transition
boundaries for nonuniform channels.

III. EXPERIMENT

A. Method

Experiments in uniform and nonuniform Hele-Shaw cells were carried out to provide comparisons
with our model results. The experiments for the uniform geometry were performed in a Hele-Shaw
cell of 80 cm length, 10 cm width, and a gap of 1.8 mm. The cell was built of two 90 × 15 × 2.4 cm3

clear polyacrylic sheets; a large thickness being necessary to prevent any bowing in the sheets. The
gap between the sheets was achieved by placing a rubber lining around the 80 × 10 cm2 zone through
which the fluids flow. The sheets were compressed using C-clamps at regular intervals to ensure even
compression and an airtight seal. The same process was undertaken for the nonuniform geometry,
the only difference being that multiple acrylic sheets were machined to achieve a groove of varying
depth around the zone of flow to produce a nonuniform cell of 1.8 mm gap on one end and 1 or 0.6
mm gap on the other. The cell was supported by a metal frame which offered lateral and vertical
support.

Distilled water was employed as a base for most of the solutions used in the course of the
experiments. Sodium chloride (NaCl) was favored as a weighting agent to increase the density of
the fluids. A high precision density meter (Anton Paar DMA 35) was used to measure the density
of the solutions before every experiment. Ambient temperature was maintained at 24 ± 1◦ for all
experiments. The viscosity ratio was controlled using water-glycerol solutions, for which the initial
estimations were based on the work of [39], also confirmed using a digital controlled shear stress–
shear rate rheometer (AR-G2 TA Instrument).

For illustration purposes, the displacing fluid was always colored using Fountain Pen India
black ink, whereas the displaced fluid was kept translucent. The experiments were filmed using
a monochromatic camera (Basler acA2040, with 4096 gray-scale levels), capturing images in the
x̂-ẑ plane (see Fig. 1) of the cell backlit by light-emitting diodes. The camera frame rate varied
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TABLE I. Experimental flow parameter ranges. The viscosity ratio varied between 0.05 and 10, but
was mainly at values of 0.1, 1, and 10. The density of the water-glycerol solution was kept constant at around
1160 kg/m3.

αL At × 10−3 V̂0 (mm/s) χ Re

0 1−50 1−130 0.1−86 1−90
−0.5 1−60 1−85 0.1−726 0.1−77

0.8 1−60 1−220 0.01−1512 0.1−90
−0.8 10−51 1−110 0.9−172 0.1−76

2.5 0.008−0.05 2−330 0.06−1 0.07−0.7

typically in the range of 1–10 fps, depending on the flow rate of the experiments. Light absorption
calibrations were performed in usual fashion.

For each experiment, the cell was initially filled with the displaced fluid from the bottom of the
cell through an elevated reservoir using gravity, typically up to 10 cm from the top of the cell. The
displacing fluid was then introduced through the top of the cell from a reservoir. To obtain a flat
and horizontal interface between the fluids and to limit any diffusion and mixing, the injection rate
at this stage was maintained low, usually below 1 ml/s (taking around 10 min). Minimal diffusion
was impossible to avoid (<1 mm), but higher density and viscosity differences allowed one to
minimize the diffusion. Overall, the diffusion seems to have had no bearing on the concentration
profiles obtained. To start the experiment, the displacing fluid was then injected at a constant flow
rate, controlled by needle valves. The flow rate was measured by three methods: a variable area flow
meter was used at the entry (top) of the cell, the volume of the liquid at the exit (bottom) was measured
with respect to time, and the total volume of the exit fluid was weighed. Experimental ranges are
presented in Table I. The experiments occurred at high Péclet number (Pe = 2V̂0D̂0/D̂m 
 1, where
D̂m is the molecular diffusion coefficient), to allow for a well-defined interface between the fluids
and to limit mixing. Particularly, the majority of our experiments were performed at Pe > 104. The
slowest flows, with Pe’s of O(103), were not considered during analysis to avoid any possible error
from mixing or diffusion.

The image processing was carried out using in-house MATLAB codes, which delivered the interface
evolution versus time and position, for stable flows.

B. Uniform cell results

Our model results showed the existence of self-spreading, spike, and frontal shock regimes. While
self-spreading and spike flows appeared in our experiments, the majority of our experiments did not
show any signs of frontal shock characteristics. Instead, unstable flows (typically with the viscous
fingering instability) appeared in our experiments for the flow parameters for which the simulation
results would have predicted a frontal shock regime. Therefore, experiments were classified according
to three domains: self-spreading, spike, and unstable flows, as presented in Fig. 7. We observe a sound
agreement between experimental results and the theoretical boundaries. In general, the regimes also
concord with the findings of [14,15]. In this figure, the insets depict displacement flow snapshots and
the associated interface profiles for the spike and self-spreading domains. In the frontal shock domain,
viscous fingering is observed, which manifests itself as linear fingers at large χ but transitions to less
stable nonlinear fingers as χ decreases.

Figure 8 compares the experimental results with those obtained from the model, for m = 1, in the
spike regime. In general, good agreement between the experimental and model results is observed,
although the model seems to slightly overestimate the front heights at larger χ .
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FIG. 7. Experimental results in uniform channels: spike ( ), self-spreading ( ), and unstable ( ) flows.
The shaded areas mark the regimes predicted by the analytical results, as discussed in the analytical section.
The field of view for all the inset images is 6 × 7.5 cm2. Note that flows in the range of frontal shock (predicted
by the model) are unstable flows in experiments.

C. Nonuniform cell results

Now let us turn to the nonuniform cell results. Let us start with a qualitative comparison of interface
evolutions in experiments and simulations, as depicted in Fig. 9. In the experimental converging cell,
the front height (speed) increases (decreases) while the opposite is true for the diverging cell. The
comparison between the theoretical and experimental results seems reasonable for both cases. It is
interesting to note that, for the converging geometry, the self-spreading profile initially progresses
from spike to self-spreading but eventually evolves into a wedge shape (i.e., a pattern not observed
in uniform cells). This wedgelike flow presents a distinct lack of a front and is very prevalent for low
buoyancy flows.

An important comparison of the experimental and model results consists of evaluating whether
the flow regimes can be properly predicted. To do so, simulations were performed to determine the
boundary between the regimes, in the plane of χ∗ and αx. Experimental results were subsequently
placed on these maps. Figure 10 showcases these results at three viscosity ratios (m = 0.1, 1, and
10), where the simulation predictions agree well with the experimental results. We observe a general
behavior as a function of αx wherein a converging geometry slightly increases the extent of the
spike domain against either self-spreading or unstable flows, whereas the opposite can be said of

(a)

0 1 2
0

0.5

1

1.5

2

 

 

log10 (χ)hf,exp

lo
g 1

0
(χ

) h
f
,m

o
d
e
l

2 
12
21
30
40
49
58
67
77
86 (b)

0 50 100 150 200
0

50

100

150

200

 

 

sp,exp

sp
,m

od
el

6 
15
24
33
42
50
59
68
77
86 (c)

0 0.05 0.1
0

0.05

0.1

 

 

hsp,exp

h
sp

,m
od

el

6 
15
24
33
42
50
59
68
77
86

FIG. 8. Simulated versus experimental results for the front height as well as the spike length and height,
in a uniform channel for m = 1 and measured at x = 650. The color bar represents the buoyancy number (χ ),
here and elsewhere. The axes of some plots are multiplied by log10(χ ) to offer a better distribution of data.

034003-12



BUOYANT MISCIBLE DISPLACEMENT FLOWS IN A …

(a)

0 200 400 600 800
0

0.5

1

1.5 (b)

0 500 1000 1500
0

0.5

1

1.5

FIG. 9. Experimental results (lines) compared to simulation outputs (dashed lines) for m = 1: (a) χ = 11,
αL = −0.8, t ≈ 0,50,100, . . . ,500; note that due to the progressive decrease in buoyancy, the front height
disappears after a certain distance and the self-spreading flow now takes on a shape analogous to a wedge; (b)
χ = 8, αL = 2.5, t ≈ 0,130,230, . . . ,1300.

the diverging geometry. Perhaps, a more interesting finding arrives when comparing the transition
boundaries at different viscosity ratios. First of all, the boundaries for the uniform cell (αx = 0)
only very weakly depend on m. Second, the boundaries for the diverging cell weakly depend on
αx. Finally, the boundaries in the converging cell vary greatly with both m and αx. This is most
obvious when comparing the boundaries for m = 0.1 and m = 10. Compared to higher viscosity
ratio flows, our simulations (in Fig. 6) showed that the flows with low viscosity ratios (m < 0.6) are
more affected by the cell nonuniformity (especially when αx < 0, i.e., a converging cell). Figure 10
provides an experimental confirmation of this behavior, showing that the transition boundary for
m = 1 and 10 only slightly depends on αx, but for m = 0.1 greatly varies with αx. One reason for
this difference in behavior lies in the fact that the boundary for large m is related to the transition
between spike and self-spreading regimes while the boundary for small m concerns the transition
between spike (stable) and shock (unstable) regimes. Our findings imply that the displacement flow
spatiotemporal nature becomes more relevant in the case of the latter.

The variation in the local buoyancy leads to behaviors that are not present in uniform cells: the
flow can now change regime throughout the length of the cell. Figure 10 offers a good overview of
this phenomenon. For example, depending on their buoyancy, some flows can start off self-spreading
(at αx ≈ 0) and end up in a spike regime at αx = −0.8, or vice versa if the cell is diverging.
This phenomenon becomes much more prominent for flows with m < 0.6, for which the transition
between stable and unstable flows takes place. Therefore, in a converging cell the flow can progress
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FIG. 10. Experimental results of spike ( ), self-spreading ( ), and unstable ( ) flows compared to the
transition from spike to frontal shock regime (stars and lines) and the transition from spike to self-spreading
regime (diamonds and lines), predicted by simulations for m = 0.1,1,10 (from left to right). In each graph,
the intersecting line represents the boundary of the uniform geometry. This figure presents the new domain
classification offered for nonuniform flows, analogous to the classification provided in Fig. 7.
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FIG. 11. Experimental results at m = 0.1. Top row: (a) a stable interface in a uniform cell compared to (b) a
destabilized interface in a converging cell (αL = −0.8), both at χ = 7.5. Bottom row: (c) an unstable interface
in a uniform cell compared to (d) a stabilized interface in a diverging cell (αL = 2.5), both at χ = 1. The field
of view is 8.5 × 12.4 cm2 in each image.

from spike to self-spreading (or spike to unstable), due to the progressive decrease in local buoyancy
promoted by the nonuniformity. The manifestation is similar in a diverging cell wherein the local
buoyancy increases and therefore it is possible to transition from unstable or self-spreading to spike
regime. Even though the transition between self-spreading and spike regimes can be of interest when
seeking to control displacement efficiency, the transition between unstable and spike flows may offer
a more alluring consequence: the control of viscous fingering. Our findings show that a converging
cell promotes viscous fingering while a diverging cell inhibits it. For a better understanding, flow
snapshot examples with comparable buoyancy numbers are presented in Fig. 11. It is clear from the
images that, although the mechanisms by which these actions (stabilization or destabilization) occur
are the same, they are expressed somewhat differently in converging or diverging cells.

Based on our discussion above, in the converging cell case, the flow would theoretically transition
from spike to unstable flow regime at a critical longitudinal distance, due to the decreasing buoyancy.
The model predicts a relatively clear transition from one domain to the other. This appears to be more
or less the case experimentally as well, while experiments can also help understand how this transition
takes place. For the diverging cell case, the flow may transition from unstable to spike regime, meaning
that the flow is initially unstable and becomes stabilized at a given αx. The stabilization effect is
due to the increase in buoyancy, which halts the progression of the viscous fingers. Experiments
demonstrate a consistent pattern on this progressive stabilization. Figure 12 illustrates an example
experiment with the images showing this progression and Fig. 13(a) offers further quantification, to
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FIG. 12. Snapshots of displacements in a frame that moves with the front. Initial destabilization of the
interface followed by stabilization of the flow in a diverging channel of αL = 2.5 with χ = 0.6 and m = 0.1
for t̂ = 0,2,7,12,22,32,52,200 s. The field of view is 3 × 4 cm2.

quantify the number, width, and length of fingers. Figure 12 shows a progressive increase in both
the length and width of the individual fingers over time. The number of fingers decreases as the flow
progresses and the fingers merge together until local buoyancy forces the few remaining fingers to
shorten. The flow finally transitions to a spike regime. A displacement flow with the same parameters
in a uniform cell would be very unstable. Figure 13(b) provides the interface evolution corresponding
to the same experiment. The simulation quantifies that the transition from frontal shock (unstable)
to spike regime (stable) for this case occurs at x ≈ 800, which is nearly perfectly in agreement with
the transition from the unstable to stable regime in the experiment.

To further analyze the results present in Fig. 12, we employed an edge detection technique to
provide an outline of the interface (finger) and finally quantify the number, width, and length of
fingers as presented in Fig. 13(a). We initially observe a progressive increase in both the length and
width of the individual fingers over time. After a certain distance, buoyancy forces the fingers to stop
growing in length, while all the remaining fingers keep merging, thus increasing their width. Finally,
the fingers disappear and the interface becomes relatively stable.

In general, the model is found to offer a reasonable representation of the physical behaviors in the
converging and diverging cells. Examples are presented in Figs. 14 and 15, wherein the measurements
are taken at 70% of the way through the cell to ensure that the flow was fully developed and to avoid
any repercussions of end effects on experimental data. The prediction of the spike height and length
in the converging cell is very satisfactory, as can be seen in Fig. 14. The prediction of the spike height
and length, as well as the front height are also reasonable for the diverging cell in Fig. 15. Finally, it
is worth noting that the self-spreading profiles in highly converging cells take on a new, wedgelike
shape due to buoyancy being so drastically reduced [e.g., see the last interface profiles in Fig. 9(a)].
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FIG. 13. Analyzing the stabilization effect for the experiment of Fig. 12. (a) Finger characteristics as time
grows for t = 25,90,155,285,415,545,650,675: number of fingers (NF , +); average finger width (WF , ∗);
average finger length (LF , ×). We remind one that all lengths have been rendered dimensionless using D̂0

throughout the paper. (b) Interface profiles from simulation for t = 0,200,400, . . . ,1800,2000, with the same
parameters as in the experiment. Profiles for which the experimental flow is unstable are marked by thicker
lines.
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FIG. 14. Simulated versus experimental results for the spike length and height, measured at x = 650 in
a converging cell with αL = −0.8. Datapoints for m = 1 are marked by superposed circles and for m = 10
without. Note that, due to the wedgelike nature of the interface profiles [e.g., evident in Fig. 9(a)], comparisons
of front heights were not performed for the converging geometry.

IV. SUMMARY

To summarize, our experimental and simulation results reveal that inducing a depth gradient into
a Hele-Shaw cell results in a change of the transition boundaries between the three flow regimes
that are well understood for a uniform Hele-Shaw cell, i.e., self-spreading, spike, and unstable flow
regimes. Interestingly, the intricacies of our buoyant miscible displacement flows in a nonuniform
cell can be reasonably predicted using a simple lubrication-type model that takes into account the
density and viscosity ratios as well as the local geometrical variations. The results show that a cell
nonuniformity allows for transitions from one regime to another: a converging cell offers a transition
from spike to self-spreading or unstable regime, while a diverging cell results in a transition from
self-spreading or unstable to spike regime, which provides a means to control interfacial instabilities.
The results also demonstrate the importance of approaching nonuniform cell displacements as novel
cases and not as extensions or variations of uniform cell flows. The constant change of balancing
forces throughout the interface, which stems from the nonuniformity, means that the spatiotemporal
nature of these flows must be taken into account (through solving the interface propagation equation)
to achieve accurate predictions. Finally, it is important to note that a detailed stability analysis needs
to be developed to shed further light on the impact of a cell nonuniformity on the stability of our
displacement flows.
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