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We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject
to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative
or positive gravity combined with buoyancy effects in the lubrication approximation.
Using linear theory, we identify the mechanisms of finite-time rupture, independent of
thermocapillarity and direction of gravity, and predict the effective growth rate of an
interfacial perturbation which reveals competition among the mechanisms. A stability
diagram is predicted for the onset of long-wave (LW) evaporative convection. In the
two-dimensional simulation, we observe well-defined capillary ridges on both sides of the
valley under positive gravity and main and secondary droplets under negative gravity, while
a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-
Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution
and rupture time but makes contributions to the evaporation-driven convection and heat
transfer. The average Nusselt number is found to increase with a stronger buoyancy effect.
The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard
convection under positive gravity and the LW Marangoni convection under negative gravity.
In the three-dimensional simulation of moderate evaporation with a random perturbation,
the rupture patterns are characterized by irregular ridge networks with distinct height scales
for positive and negative gravity. A variety of interfacial and internal dynamics are displayed,
depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling.
Reasonable agreement is found between the present results and the reported experiments
and simulations. The concept of dissipative compacton also sheds light on the properties of
interfacial fractalization.
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I. INTRODUCTION

Interfacial instability and self-organized pattern formation of liquid layers have extensively been
observed naturally and experimentally and explained theoretically and numerically over the past
several decades. They still attract immense interest due to the intricate dynamics and significant roles
in applications [1–3]. The physical mechanisms, such as capillarity, thermocapillarity, van der Waals
(vdW) interaction, gravitational forces, and phase change, can be involved in the dynamics. However,
even for the widely studied interfacial and convective instabilities in liquid layers, the role of buoyancy
is not fully understood and debates persist on its interplay with thermocapillarity (see Refs. [4,5], for
example). As is well known, the convection in the nonevaporating thin layers has been considered to
be dominated by surface-tension-driven instability [6–8]. However, from the experiments of Zhang
[9], (i) (0.5–1)-mm R-113 layers presented buoyancy-driven convection characteristics and (ii) high
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volatility was significant for the Rayleigh-Bénard convection. It is suggested that the buoyancy effects
really cannot be neglected even for a thin evaporating layer unless under the microgravitational
conditions. As demonstrated in Ref. [10] with a water-water vapor equilibrium system, the ratio
of their evaporation number to Rayleigh number is of the order of 10−2 for the liquid thickness of
h = 0.1 mm, which characterizes the relative importance of mass loss and buoyancy.

Thermocapillary instability can be coupled with evaporation of pure liquid layers [11,12]. Chauvet
et al. [12] proposed a concise theoretical model on phase-change-induced heat spreading along an
interface with a thermal balance that includes a heat transfer coefficient αI‖q‖ depending on the
wave number ‖q‖ of the fluctuation in surface temperature θI . The mechanism homogenized θI

and hence mitigated Marangoni flows. Then their theory was validated by accurately measuring
the critical conditions of the evaporative Bénard-Marangoni (BM) convection in liquid layers of
hydrofluoroether (HFE) with h � 1 mm [12]. Besides the short-wave (SW) hexagonal (or BM) mode
for a flat interface studied in the absence (e.g., Refs. [6,13,14]) or presence (e.g., Refs. [12,15,16]) of
evaporation, the long-wave (LW) deformational Marangoni instability has been widely investigated
as well, where the surface deformation plays a crucial role. With the linear stability analysis (LSA)
it was first explained by Scriven and Sternling [17] in the absence of gravity (just like the work of
Pearson [6]) and then extended by Smith [18]; the latter found that surface gravity wave was important
for LW, which was later observed quantitatively in the experiments [7,8,19]. Burelbach et al. [19]
demonstrated the thermocapillary flow in a nonuniformly heated silicone-oil layer. They found that
the profiles agreed with the prediction of long-wave theory provided the substrate temperature θw was
not too high and the film was not close to rupture and that thermocapillarity was less effective when
evaporation was present. VanHook et al. [7] performed experiments on the onset and exchange of LW
and SW instabilities in the confined, thin silicone-oil–gas system subject to a vertical temperature
gradient. Later, they observed the LW Marangoni convection and found that the formation of localized
depression or elevation depended on the thickness and thermal conductivity of a gas layer [8]. To
improve the predictions, they developed an evolution equation including a “two-layer” Biot number
to account for the effect of deformation on heat transfer [8]. After the pioneering prediction of Smith
[18] on the possible coexistence or competition between the two modes at threshold, Golovin et al.
[20–22] systematically studied the interaction between the short-scale BM convection and the LW
deformation instability.

Thermocapillary and buoyancy effects can simultaneously affect the evaporative convection in a
thick layer [11] and even in certain thin ones [9,10]. Berg et al. [11] performed the earliest exploratory
experiments on evaporating pure liquids. Using the schlieren technique, they observed various surface
convective patterns dependent mainly on thickness and volatility. Zhang [9] conducted experiments
on volatile layers of ethanol and R-113 (h � 1 mm) and considered evaporation itself as a motivity
of the convective instabilities and defined the generalized Marangoni and Rayleigh numbers as the
onset criteria. The buoyancy mechanism was shown to play an important role in the flow patterns
of a highly volatile liquid (R-113) whether the layers were heated or cooled from below provided
the temperature difference between the bottom and free surface was positive [9]. Therefore, it is
reasonable to incorporate both the thermocapillary and buoyancy effects in a finite-thickness (but
still thin compared with LW disturbances) evaporating layer in the nonlinear regime.

Since buoyancy will be introduced through the Boussinesq approximation, it is essential for the
validity of the approach based on the Boussinesq model equation [Eq. (2)]. As reemphasized in
Ref. [23], in order for this approximation to be valid for the heated layers, ε = β�θ must be small
(�1) and Ra � Ga, where β (>0) is the volume thermal expansion coefficient of the liquid and
�θ is the characteristic temperature difference across the layer; the definitions of the dimensionless
parameters are presented in Table I. With the parameters used in our model, an equivalent requirement
is that |Ga| = |G|Pr = |Ra|/ε � 1, where the absolute-value sign is for the pendent configuration of
Rayleigh-Taylor instability, and thus |Ra| � |G|Pr or |Gr| � |G|. Accordingly, we emphasize that
the parameter set of the system should satisfy the validity conditions to obtain physically acceptable
results, as chosen in this study. This issue will be reiterated after introducing the model in Sec. III A
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TABLE I. Definitions and physical meanings of relevant dimensionless quantities.

Dimensionless group Definition Physical meaning

Galileo number Ga = τviscτth
τ2

grav
= gh3

0
αν

ratio of the product of viscous and thermal diffusive time

scales (τvisc = h2
0
ν

and τth = h2
0
α

) to the square of
gravitational time scale τgrav = √

h0/g, where
α = kth/ρcp is the liquid thermal diffusivity

Rayleigh number Ra = τviscτth
τ2

b
= gh3

0β�θ

αν
ratio of the product of τvisc and τth to the square of

buoyant time scale τb = √
h0/gβ�θ

Prandtl number Pr = τth
τvisc

= ν

α
momentum diffusion rate relative to heat conduction

Grashof number Gr = Ra
Pr = gh3

0β�θ

ν2 measure of buoyancy as Ra, but divided by Pr

gravity number G = τ2
visc

τ2
grav

= gh3
0

ν2 square of ratio of τvisc to τgrav, a measure of gravity

static Bond number Bo = 1
3

|G|

0

= ρ|g|h2
0

σ0
comparison of gravitational force to surface tension

dynamic Bond number Bod = Ra
Ma = 2ρgβh2

0
γ

measure of the relative strength of buoyancy to
thermocapillary forces

surface-tension number 
0 = h0σ0
3ρν2 measure of the surface deformation: large values of 
0

(or σ0) allow a small surface deformation

Marangoni number Ma = τviscτth
τ2

tc
= γ�θh0cp

2νkth
ratio of the product of τvisc and τth to the square of

thermocapillary time scale τtc =
√

ρh3
0/γ�θ

crispation number C = γ�θ

σ0
comparison of thermocapillary force to surface tension

density ratio D = 3
2

ρg

ρ
measure of the ratio of gas to liquid densities

dimensionless latent heat L = 8
9

h2
0L̃

ν2 measure of the latent heat

evaporation number E = τvisc
τev

= kth�θ

νρL̃
ratio of τvisc to evaporative time scale

τev = ρh2
0L̃/kth�θ , a measure of the rate of mass loss

(0 < E � 1 for weak and moderate evaporation),
slightly different from the expression in Ref. [10]

nonvolatile Biot number Bi = h0hth
kth

measure of the sensible heat losses into ambient cooling

nonequilibrium parameter K = K̃kth
h0L̃

measure of nonequilibrium degree at interface

local Nusselt number Nu = h
(l)
th hav

kth
ratio of the total heat flux across the layer to the

conductive flux

and in Sec. VII. In addition, the buoyancy effect along with the Boussinesq approximation can be
left out of the model by setting Ra = 0 as ε → 0.

When a liquid layer is suspended under a substrate, the configuration is potentially unstable to
infinitesimal deformations of the interface, known as the Rayleigh-Taylor problem [24]. A series of
(1 + 1)-dimensional [(1 + 1)D] patterns of LW pendent droplets separated by drained regions was
shown in Ref. [25]. The (1 + 1)D Rayleigh-Taylor patterns have also been investigated for the case
of a viscous layer overlaid by another immiscible fluid with a larger density [26]. Here and in the
following (1 + 1) and (2 + 1) denote the numbers of independent spatial plus temporal variables in a
thin-film equation, which give two and three physical dimensions of the problem studied, respectively.
Fermigier et al. [27] demonstrated the formation and transition of (2 + 1)D patterns in the suspended
silicone-oil layers. However, for Rayleigh-Taylor instability (RTI) in evaporating layers, relevant
analyses on (2 + 1)D pattern formation are still lacking. With localized evaporation and condensation,
Bestehorn and Merkt [28] showed that such a layer could be stabilized and rupture was avoided even
without stabilizing thermocapillarity. However, they neglected vapor recoil, which is an intrinsic
effect of evaporation in favor of interfacial and convective instabilities [29,30]. It has been found that
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the destabilization of vapor recoil has an increasing influence on the dynamics approaching rupture
[31,32], which is also tangibly recognizable for rapid evaporation under reduced pressure [30].
Prosperetti and Plesset [33] revisited the problem without Marangoni effect and viscosity, stating
that the destabilizations of vapor recoil, inertia [30], and a moving boundary were all negligible.
Nevertheless, confirmation of the above theories is prevented due to the absence of a relevant precise
experiment. In this study we investigate the influences of vapor recoil and thermocapillarity arising
from nonequilibrium evaporation on the morphology of Rayleigh-Taylor unstable layers and explain
the differences from the results in Ref. [28].

A nonlinear model for evaporating ultrathin (10–100 nm) film was proposed by Burelbach et al.
[31] with the LW theory. Under a one-sided assumption, they derived and solved numerically a
(1 + 1)D evolution equation with the effects of nonequilibrium, thermocapillarity, vdW attractions,
mass loss, and vapor recoil taken into account. Joo et al. [34] extended the model to an evaporating
layer falling down an inclined plate. Oron [35] considered (2 + 1)D evaporating films with a special
intermolecular potential. Shklyaev and Fried [36] generalized the model with more general interface
conditions. Some works on interfacial instability due to evaporation have considered a bilayer system
[10,37–39]. Most such studies focused on a linear or weakly nonlinear analysis except for that of
Kanatani and Oron [39], who considered a nonlinear evolution of a confined liquid-vapor system
but neglected mass loss or gain and vapor recoil due to the dominant effect of vapor pressure. We
note that the attention to the potential effect of vapor recoil on the rupture dynamics was not paid in
the subsequent studies succeeding Refs. [31,34,36]. Therefore, further discussion of the vapor-recoil
instability and its interaction with the Marangoni and mass-loss effects is within the scope of the
present study. Furthermore, the thinness of evaporating layers causes considerable difficulties in
obtaining reliable experimental results of convection patterns. Most nonlinear studies explained the
interfacial dynamics without internal convection, except Refs. [8,40–42] provided physical insights
into the bulk flow of a liquid layer but without evaporation. Thus, it would be interesting to correlate
surface deformations with convection manifestations of the evaporation dynamics driven by the
aforementioned mechanisms.

The heat flux on the vapor side of an evaporating interface comprises the sensible and latent heat,
which can be included readily in an interfacial energy balance. As noted by Burelbach et al. [19] in
(1–2)-mm silicone-oil layers with a high θw, a nearly 40% underestimate of the minimum thickness
from the one-sided model was due to the neglect of cooling by thermal convection or diffusion
through gas besides the latent heat consumption. Although our study does not directly deal with the
heat and mass transfer in the gas phase, we give qualitative predictions on how the destabilizing
mechanisms and dynamics, e.g., thermocapillarity, rupture time tr , and characteristic scales, are
modified by a phenomenological heat-transfer coefficient to shed light on the discrepancy between
the experiment and the simulation in Ref. [19], which pertains to sensible heat that the liquid must
release. On the other hand, intensive heat losses cause the liquid temperature near the free surface to
be lower than that of the heated interior, thus buoyancy due to adverse density gradient is naturally
expected to play a role [15,25,43]. In the framework of the one-sided model, a well-defined heat
transfer coefficient was related to a wave-number-dependent effective Biot number [16] through
Bieff = αIk in Ref. [12], where the dimensionless wave number k = ‖q‖h. At a large value of αI ,
interfacial temperature homogenization mitigates Marangoni flows in favor of buoyancy instability
[12,43]. This mechanism motivates us to incorporate both the heat transfer coefficient and buoyancy
effect. Physically, convection driven by buoyancy provides an additional perturbation source for
the interface [30], which may influence the local dynamics of the thickened region with a sufficient
temperature gradient. This issue has not been investigated based on LW theory. Relevant experimental
data (far from threshold, k � kc) is also very limited, which renders a direct comparison difficult.
The differences between our simulations and the nonevaporating experiments of VanHook et al. [7,8]
will be explained instead.

It should be noted that there is another important body of work that concerns the self-similar
solutions describing (i) the finite-time singularities near rupture [44–48] and (ii) the hierarchical
structure of stationary profiles created by an infinite series of rupture events [49–51]. The former
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FIG. 1. (a) Schematic of an unstable evaporating liquid layer subject to gravity combined with buoyancy,
covering a heated horizontal substrate with surface wavelength λ̃ � h0. Here g = −gez, ez is the unit vector
in the z direction, an arrow with a solid line shows g > 0, and an arrow with a dashed line shows g < 0. The
smaller dot in the layer denotes a lighter fluid particle. (b) Cases considered and study outline.

focused on the stability and structure of time-developing vdW rupture without gravity and most
under thermal equilibrium (i.e., no evaporation and thermocapillarity). However, the studies of
the latter are relatively few in the film context, among which Shklyaev et al. [49] introduced a
dissipative compacton (DC), which is a stationary analog of the usual compacton [52] with compact
support, emerging from systems with nonlinear dissipation. Physically, a DC can describe a stationary
single-drop solution with zero microscopic contact angle, which is energetically favored on the
basis of a Lyapunov functional [49,50]. By extending the DC to include the vapor-recoil effect, we
quantitatively characterize the properties of an interfacial fractal. Recently, the dynamics of rupture
in a generalized mathematical model of thin films of viscous fluids with the modified evaporative
effects has included the study of self-similar solutions as well [53].

In this study we extend the work of Burelbach et al. [31] by incorporating the effects of gravity
combined with buoyancy and ambient cooling for further understanding and predicting the flow
field and pattern formation of a finite-thickness evaporating layer. Oron [35,54] adopted random
disturbances and indicated that a (2 + 1)D simulation [45] was indispensable to the study of film
dynamics. We also use random perturbations in (2 + 1)D simulations to corroborate the generalized
model. The results are compared with relevant experiments and simulations. Recently, the comparison
of standard asymptotic thin-film models, variational thin-film models, and Stokes calculations
illustrates the power of the gradient-dynamics approach as compared to the standard asymptotics
[55]. Thus, a further aim is to cast the dynamic equations incorporating a mass flux term into a
gradient dynamics form that combines the conserved and nonconserved terms (see Appendix C).

II. MATHEMATICAL FORMULATION

We consider a laterally unbounded, Newtonian, and volatile liquid layer bounded from above
(below) by an interface with a semi-infinite vapor of far-field saturation temperature θs and below
(above) by a rigid, conducting, horizontal substrate maintained at a constant temperature θw (>θs),
in the case of positive (negative) gravity. The physical properties of the liquid are taken as constant at
the reference temperature θs except for surface tension and density. The surface tension is represented
as σ = σ0 − γ (θ − θs), where σ0 = σ (θs) and γ ≡ −(dσ/dθ )|θs

> 0.
The system is formulated with Cartesian coordinates (x,z) with an unperturbed mean thickness

h0, as shown in Fig. 1(a). This model can be extended straightforwardly to a (2 + 1)D case, in which
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x and y coordinates are parallel to the substrate. The gas-liquid interface height z = h(x,t) is a
function of x and time t . The unit vector normal to the interface and directed towards the gas phase
is expressed as n = (−hx,1)/

√
1 + h2

x , while t = (1,hx)/
√

1 + h2
x represents the unit vector tangent

to the interface. The subscripts pertaining to independent variables denote partial differentiation
throughout this paper. Moreover, a reference body force FRB = −∇φ, with a gravitational potential
φ = ρgz per unit volume, is defined to take buoyancy in liquid into account, where ∇ = (∂x,∂z)
is the gradient, ρ the liquid reference density at θs , and g the acceleration due to gravity. Using
the Boussinesq approximation (ruling out compressibility and temperature dependence of the bulk
liquid properties other than density, i.e., non-Boussinesq effects [23]), the momentum, continuity,
and energy equations for the fluid flow read

ρ(ut + v · ∇u) = −px + μ∇2u, (1)

ρ(wt + v · ∇w) = −pz + μ∇2w − ρ[1 − β(θ − θs)]g, (2)

∇ · v = 0, ρcp(θt + v · ∇θ ) = kth∇2θ, (3)

where ∇2 is the Laplacian, v = (u,w) for the velocity, and p is the pressure of liquid relative to
the vapor. The liquid properties μ, cp, and kth are dynamic viscosity, heat capacity, and thermal
conductivity, respectively. Variations in density are assumed to be brought about only by a moderate
temperature difference and are incorporated only in the buoyancy term of Eq. (2).

At the liquid-solid interface z = 0, we apply the Dirichlet conditions u = w = 0 and θ = θw.
At the gas-liquid interface z = h(x,t), the mass balance reads j = ρ(v − vI ) · n = ρg(vg − vI ) · n;
hereafter the subscripts g and I refer to the quantities pertaining to gas phase and interface. That
ρg

ρ
= O(10−3) implies that the normal velocity evaluated on the gas side of the interface is much

larger than that of the liquid side. The interfacial energy balance then takes the form

j
{
L̃ + 1

2 [(vg − vI ) · n]2 − 1
2 [(v − vI ) · n]2} + kth∇θ · n + hth(θ − θs) = 0, (4)

where L̃ denotes the latent heat and viscous heating is omitted. The last term expresses the conductive
or convective heat flux in the gas [9] by a global heat-transfer coefficient hth [56] because our major
concern is the dynamics of liquid instead of a detailed description of the heat and mass transfer per
se. Basically, it provides an additional mechanism of energy transfer neglected in Refs. [31,34,57].
In the presence of phase change, the interfacial stress balance reads

j [(v − vI ) − (vg − vI )] − n · (T − Tg) = −2κσn − ∇sσ, (5)

where T is the stress tensor, ∇s the surface gradient, and κ the mean curvature.
At the fluid across the interface F (x,z,t) = z − h(x,t) = 0, its kinematic condition is

j = ρ(w − ht − uhx)
(
1 + h2

x

)−1/2
. (6)

Then j is related to the local interface temperature by the modified Hertz-Knudsen law [30]

K̃j = θI − θs ≡ �θI .

In quasiequilibrium �θI = 0, the interface is in thermal equilibrium; for a net mass transfer,
a vapor pressure driving force must exist, represented as the nonequilibrium parameter K̃ =
θ

3/2
s (aρgL̃)−1

√
2πRg

Mw
[1,31]. Here Rg is the universal gas constant, Mw is the molecular weight,

and a is the accommodation coefficient (0 < a � 1). Physically, K̃ characterizes the volatility of
a liquid [31], harder to volatilize with increasing K̃ . Intuitively, it can be expected that K̃ has a
stabilizing effect, indeed shown by LSA in Sec. IV, while its unexpected dual role is found in
the nonlinear regime (Sec. V C). In the quasiequilibrium limit K̃ → 0, θI → θs , corresponding to
ωI → 1 in Eq. (5) of Ref. [12], with ωI being the molar fraction of surface vapor (cf. the remark
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in Appendix B). Thus, K̃−1 could potentially account for the effect of evaporation-induced thermal
diffusion along the interface as a function of ωI [12].

We adopt the one-sided approximation ρg � ρ and μg � μ to decouple the dynamics of liquid
from gas, but never apply kth,g � kth [9,56,58]. It generalizes that used in Ref. [31], where a
nonevaporating film would be isothermal due to the absence of conduction and convection heat fluxes
in the gas. Our treatment of the surrounding gas as being inviscid but heat conducting is also justified
by the order-of-magnitude analysis [33]. For a finite-thickness silicone oil, ethanol, or methanol layer
covered with a helium atmosphere, the helium thermal conductivity (0.153 W m−1 K−1) is close
to that of the liquid with the value of 0.133, 0.153, or 0.190 W m−1 K−1. Under this circumstance
the cooling effect of gas on the liquid dynamics should be significant, e.g., the experiments with
h ≈ 0.3 mm silicone oil under the helium gas [8]. In our model, the gas phase thus exerts a force in
the form of vapor thrust and acts as a heat sink. With a similar manipulation in Ref. [31], Eqs. (4)
and (5) are reduced to

j
[
L̃ + 1

2

(
jρ−1

g

)2] + hth(θ − θs) = −kth∇θ · n, (7)

j 2ρ−1
g + n · T · n = 2κσ, n · T · t = ∇sσ · t. (8)

Equation (7) means that the thermal energy conducted to the interface is converted to the latent heat,
the heat losses into surroundings, and the kinetic energy of vapor particles. Finally, the mathematical
formulation consists of the governing equations (1)–(3), the Dirichlet conditions for the wall, and the
free-surface conditions shown in Eqs. (6)–(8) and incorporates additional mechanisms in addition
to those discussed by Burelbach et al. [31], (i) energy flux arising from ambient cooling and (ii)
gravity in combination with buoyancy effects, but the vdW attractions are neglected due to the finite
thickness.

We then introduce the scalings for principal dimensionless variables

(X,Z,H ) = h−1
0 (x,z,h), T = h−2

0 νt, (U,W ) = h0ν
−1(u,w),

(P,�) = h2
0ρ

−1ν−2(p,φ), J = L̃h0(kth�θ )−1j, � = �θ−1(θ − θs), (9)

where ν is kinematic viscosity and �θ = θw − θs . The viscous scales have been justified in a
nonisothermal film subject to capillarity, thermocapillarity, viscosity, and vdW attractions when
evaporation was not very intense [31]; thus they should be appropriate for a layer subject to gravity
as well. The nondimensionalization yields the dimensionless groups, listed in Table I. Substitution
of the scalings in Eq. (9) into Eqs. (1)–(3) yields

UT + UUX + WUZ = −PX + UXX + UZZ, (10)

WT + UWX + WWZ = −(P + �)Z + WXX + WZZ + Gr�, (11)

UX + WZ = 0, Pr(�T + U�X + W�Z) = �XX + �ZZ, (12)

where the reference potential function is � = GZ. At Z = 0, the scaled boundary conditions (BCs)
are U = W = 0 and � = 1. At Z = H (X,T ), the BCs become

J + (E2D−2L−1)J 3 + Bi� = (�XHX − �Z)
(
1 + H 2

X

)−1/2
, (13a)

3
2E2D−1J 2 − P + 2

[
UX

(
H 2

X − 1
) − HX(WX + UZ)

](
1 + H 2

X

)−1

= 3
0HXX(1 − C�)
(
1 + H 2

X

)−3/2
, (13b)

(UZ + WX)
(
1 − H 2

X

) − 4UXHX = −2 Ma Pr−1(�X + �ZHX)
(
1 + H 2

X

)1/2
, (13c)

EJ = (W − HT − UHX)
(
1 + H 2

X

)−1/2
. (13d)
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The vapor thrust, represented by the first term on the left-hand side of Eq. (13b), can be regarded as
an externally imposed normal stress. The scaled constitutive equation is

KJ = �I . (14)

The O(1) basic-state solution to the system (10)–(14) can be straightforwardly obtained and is
given in Appendix A. To put our modification of the thermal boundary condition in the context of
earlier studies, it is helpful to discuss the effects of ambient cooling in the nonvolatile (K → ∞),
quasiequilibrium and nonequilibrium cases (K = 0 and K > 0). Noted that �I depends on local
mass flux under nonequilibrium.

In the nonvolatile limit of J → 0, K → ∞ is suggested by a nonzero value of �I in Eq. (14).
Note that �I = 1 in the framework of Refs. [31,34], while 0 < �I < 1 in our model due to the
convective and conductive heat flux on a free surface. The condition (13a) subsequently reduces to
Bi� = −�n instead of discarding the definition of K and redefining K−1 as a surface Biot number
for the nonvolatile case. On the other hand, with J > 0, K → 0 is implied by Eq. (14) due to
�I → 0 (θI → θs) under the quasiequilibrium limit. Equation (13a) becomes J + E2

D2L
J 3 = −�n,

suggesting that the heat flow by convection and conduction on the gas side of the interface is negligible
in comparison with that arising from quasiequilibrium evaporation. Due to the insignificance of
ambient cooling, one can set Bi → 0 for simplicity and expect that the evaporation effects of mass
loss and vapor recoil together with the other destabilizing mechanisms (e.g., RTI and the Marangoni
effect) would be adequate for the onset of LW instability. This simplification is also supported by
the relatively intense evaporation under quasiequilibrium [32] and a similar case considered by
Palmer [30]. Physically, the sensible heat loss can also play the role of dissipative mechanism for the
nonequilibrium case rather than only for the nonvolatile case where K acts as an inverse Biot number
[34]. Thus, K−1 could be considered as an interfacial heat-transfer coefficient associated with phase
change, which impacts the dynamics together with Bi (cf. Appendix B). Therefore, the ambient
cooling should be examined in the nonequilibrium case of a lower evaporation rate [9,56,58]. The
provision is distinct from, but not inconsistent with, the cases discussed in Ref. [31].

III. EVOLUTION EQUATION AND NUMERICAL IMPLEMENTATION

We now develop a strongly nonlinear model governing the motion of the gas-liquid interface
based on LW asymptotics, reiterate its validity conditions, and present a numerical method to solve
the model for the time evolution of instabilities.

A. Evolution equation based on long-wave theory

We assume that the spatiotemporal variations of the dependent variables of the system (10)–(14)
are slow enough to justify the lubrication approximation [1]. We consider the LW disturbance of
a characteristic length λ̃ in the x direction by introducing a small wave number k = 2πh0/λ̃. The
derivation of the evolution equation mostly follows the approach in Ref. [59] with the lubrication
variables ξ = kX, ζ = Z, and τ = kT , but with modifications relevant to the present work. In
particular, to incorporate the effects of gravity accompanied by buoyancy, we let G,Ra = O(k−1)
to make them comparable to the pressure term along with the additional constraint |Gr| � |G|
for validity of the Boussinesq model equation (see Sec. I). Then we define the asymptotic
transformation

(D,E,G,Ma,Ra,
0) = (D̄k3,Ēk,Ḡk−1,M̄k−1,R̄k−1,
̄0k
−3). (15)

The quantities with overbars are O(1) as k → 0 in order to preserve the effects of vapor
recoil, mass loss, gravity, thermocapillarity [Pr,K = O(1)], buoyancy, and surface tension at
leading order. To make the effects of heat flow between ambient gas and free surface enter the

034001-8



LONG-WAVE-INSTABILITY-INDUCED PATTERN …

analysis, we set Bi = O(1). The dependent variables are expanded for small k, (U,W,J,�,P ) =
(U0,kW0,J0,�0,k

−1P0) + k(U1,kW1,J1,�1,k
−1P1) + · · · , where the subscript 0 denotes O(1)

quantities. We then obtain the O(1) governing equations from (10)–(12),

0 = −∂ξP0 + ∂2
ζ U0, (16)

0 = −∂ζ P0 − (Ḡ − R̄Pr−1�0), (17)

Hτ + ∂ξ

∫ H

0
U0dζ + ĒJ0 = 0, (18)

0 = ∂2
ζ �0, (19)

where H (ξ,τ ) is an undetermined O(1) function. The conservation form of kinematic equation (18)
is obtained by integrating the continuity equation, implying the slaving of the flow field to surface
kinematics under the assumption of a low Reynolds number. The BCs at ζ = 0 read U0 = W0 = 0
and �0 = 1, while at ζ = H ,

ĒJ0 = −Hτ − U0Hξ + W0, (20a)

J0 + Bi�0 = −∂ζ�0, (20b)
3
2 Ē2D̄−1J 2

0 − P0 = 3
̄0Hξξ , (20c)

∂ζ U0 = −2M̄Pr−1(∂ξ�0 + Hξ∂ζ �0), (20d)

KJ0 = �0. (20e)

The procedure to obtain a (1 + 1)D evolution equation is standard [1]. The O(1) solution of Eqs. (16)–
(20) is detailed in Appendix B, which modifies that of Burelbach et al. [31] by the existence of gravity
combined with buoyancy and ambient cooling. Finally, the governing system is collapsed into the
equation for H (X,T ),

HT + EJ0 + 
0(H 3HXXX)X − 1
3G(H 3HX)X + [H 2HXf J0(K Ma Pr−1 + E2D−1HJ0)]X

+ 1
3 Gr

[
H 3HX − 1

2H 3(H 2f )X + 9
40H 5fX

]
X

= 0, (21)

where f (H ) = 1+BiK
K+(1+BiK)H . Within the LW regime Bo = |Ḡ|k−1

3
̄0k−3 = O(k2) � 1 as k → 0, Eq. (21)
will be a valid limit to the governing system in an excluded time interval since the lubrication
assumption breaks down near T = 0 and the basic-state disappearance time Te (cf. Appendix A).
The second and fourth terms account for mass loss and gravity. Capillary force stabilizes the
interface through the dissipation term of the fourth-order derivative. The fifth term is associated with
thermocapillarity and vapor recoil. In contrast, the polynomial in the second set of square brackets
describes the driving forces of convection due to buoyancy with the functions of H multiplied by
Hn, accentuated (attenuated) in the thicker (thinner) region. As K → 0 the Marangoni instability
is absent, according with Refs. [12,16]. When K → ∞ and E = 0, it governs the LW instability
of nonvolatile viscous layers. Further, the buoyancy effect is also eliminated (Gr = 0), a case that
has been studied intensively [7,8,25,40,42,54,60]. With a proper vdW potential and G,Gr,Bi → 0,
one can recover the model for ultrathin films with molecular interactions [31,61]. Assuming that
all forces are isotropic in the horizontal dimensions and that ∂X and ∂Y are comparable since the
perturbation has no preferred direction, it is easy to generalize Eq. (21) as a (2 + 1)D version

HT + EJ0 + 
0∇1 · [
H 3∇1

(∇2
1H

)] + ∇1 · [H 2f J0(K Ma Pr−1 + E2D−1HJ0)∇1H ]

− 1
3G∇1 · (H 3∇1H ) + 1

3 Gr∇1 · [
H 3∇1H − 1

2H 3∇1(H 2f ) + 9
40H 5∇1f

] = 0, (22)

where ∇1 = (∂X,∂Y ) is the component of the spatial gradient parallel to the substrate and ∇2
1 is the

corresponding Laplacian.

034001-9



TAO WEI AND FEI DUAN

To make the presentation of numerical results more concise, we introduce the rescalings

(x̂,ŷ) =
√

|B|/
0(X,Y ) =
√

Bo(X,Y ), t̂ = B2T/
0, (23)

with B ≡ − 1
3G for convenience, to absorb the parameters G and 
0 into the new groups

E = E
0

B2
= 3kth�θσ0ν

h5
0(ρg)2L̃

, M = Ma

BPr
= −3γ�θ

2h2
0ρg

, D = E2

BD
= −2k2

th�θ2

h3
0ρgρgL̃2

,

G = Gr

B
= −3β�θ, (24)

then recast (22) into the canonical form (see Appendix C for relevant variational structures),

Ht̂ + E J0 + ∇̂1 · [
H 3∇̂1

(∇̂2
1H

)] ± ∇̂1 · (H 3∇̂1H ) ± ∇̂1 · [H 2f J0(KM + DHJ0)∇̂1H ]

± 1
3G ∇̂1 · [

H 3∇̂1H − 1
2H 3∇̂1(H 2f ) + 9

40H 5∇̂1f
] = 0, (25)

with ∇̂1 = (∂x̂,∂ŷ), and define a rescaled horizontal liquid velocity ÛI (x̂,ŷ,t̂) ≡ UI0/
√

BoB at the
interface with a straightforward extension of Eq. (B7),

ÛI = 1
2H 2[3Df J 2

0 ∇̂1H ± 3∇̂1
(∇̂2

1H
) + (3 + G )∇̂1H − 1

2G ∇̂1(H 2f )
]

+ 1
8G H 4∇̂1f + 2MH ∇̂1(Hf ), (26)

where + (−) corresponds to G < 0 (G > 0); in the following the circumflex is suppressed for the
rescaled variables. Equation (25) describes the evolution of the interface H (x,y,t) of nonisothermal
evaporating layers. In Eq. (24), the redefined dimensionless numbers have been given in terms of the
original physical parameters to elucidate their physical meanings: The modified evaporation number
E quantifies the extent of mass loss; the vapor-recoil number D characterizes the interfacial pressure
caused by departing vapor; the modified Marangoni and Grashof numbers M and G , respectively,
measure the importance of thermocapillarity and buoyancy relative to hydrostatic effect. All of
them depend on �θ and except for G all include the experimental parameters of h0, ρ, and g.
Moreover, E , M , D , and G independently depend on σ0ν, γ , ρg , and β, respectively, which could
be individually controlled in experiments. Here |M | = 3

2B−1
d , which does not depend on σ and

μ, with Bd being a dynamic Bond number [7]. However, M may not provide a physically exact
representation for thermocapillary effect as for the nonevaporating films [7,8] because the equilibrium
effect of evaporation tends to suppress θI variation and thus the Marangoni effect [12,43] (see also
the discussion of Fig. 11). When discussing the parameter magnitude, we are concerned only with the
absolute values. Note, finally, that the theory just described includes the Boussinesq approximation,
thus |Ra| � |Ga| should never be violated [23]. An equivalent requirement is |Gr| � |G| or 1

3 |G | =
|Gr/G| � 1 in our control parameters. As reflected from the values of G or Gr and G, care has been
taken when choosing the parameters in our calculation.

Figure 1(b) summarizes the cases to be considered along with the organization of this study,
where the signs of relevant dimensionless parameters are also indicated. We first restrict ourselves
to (1 + 1)D cases with a sinusoidal perturbation, which are adequate to validate our numerical
method and demonstrate the crucial dynamic features. Then it is necessary to investigate the (2 + 1)D
nonlinear dynamics with more realistic random disturbances and compare the solutions with the
relevant numerical or experimental results. The capacities of reproducing or anticipating various
rupture patterns with large-scale drained regions, as well as the evaporation-driven LW Marangoni
and LW Marangoni-Rayleigh-Bénard convection (see Sec. V), elevate the significance of the results,
which would be more amenable to a direct comparison with the experiments.

B. Numerical method and validation

The strongly nonlinear partial differential equation is solved as an initial-value problem with
periodic boundary conditions in the horizontal direction, which is typical for examining pattern
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formation. The computational domains are [0,λ) and [0,lx) × [0,ly) for the (1 + 1)D and (2 + 1)D
cases, where λ = λ̃

h0
= 2π

k
. In the latter the diagonal length of the rectangular domain corresponds to

λ and the overall wave number k = ‖k‖ = (k2
x + k2

y)1/2 is the norm of the wave vector k = (kx,ky).
The spatial derivatives are calculated with a pseudospectral method on a uniform mesh of moderate
resolution, which allows simulations with high efficiency and precision, while a temporal derivative
is retained. The resulting set of ordinary differential equations (ODEs) is then integrated with an
adaptive time-step scheme, referred to as the method of lines. The initial condition (IC) is a small-
amplitude sinusoidal or pseudorandom disturbance with |ε0| � 1 and |ε1| � 1,

H (x̂,0) = 1 + ε0 cos(2πx̂/λ) (27a)

or

H (x̂,0) = 1 + m + ε1Rand(x̂), (27b)

where x̂ = (x̂,ŷ); we set ε0 = 0.01 [except Fig. 2(a) and Fig. 18] and ε1 = −0.05; Rand(·)
is a pseudorandom function in (−1,1); m matches the initial average thickness with
unity.

Considering the disjoining pressure term neglected, if the initial thickness h0 of order 1 mm
corresponds to H = 1, the numerical integration should be terminated once the minimum thickness
Hmin is less than a threshold of O(10−4), corresponding to the thickness of order 100 nm. This
is an indication of approaching the upper limit of a range, where the disjoining pressure due to
vdW becomes dominant. Depending on the Hamaker constant A, it leads to an instantaneous rupture
(A > 0) [31] or sets a minimum thickness (A < 0) acting as a lower bound, similar to the phenomena
in Refs. [19,35,53]. This instant is defined as tr . The rupture thus is never affected by the disjoining
pressure and the inertial effects, since the latter is only significant just before rupture by the vdW
forces [31]. Hence, the touchdown is not completely dry but a thin adsorbed layer remains [35].
Due to numerical stiffness close to rupture, the time step is reduced continually to resolve the time
scale until the local solution cannot satisfy the relative spatial error. The convergence at rupture is
achieved with a relative temporal error of tn−tn−1

ti=1
= O(10−8) in the (2 + 1)D cases. Validations of our

numerical method were conducted by comparing the simulation results of a LW equation in Ref. [54]
with those obtained from the Newton-Kantorovich method [54] and by direct numerical simulation
using the finite-element method [60] for the identical set of parameters and ICs. Both simulations for
the nonevaporating layers include the effects of thermocapillarity, gravity, and surface tension. The
validations provide effective tests of the capability and accuracy of reproducing the pattern formation
and the robustness of resolving the rupture singularity.

In a comparison of our (1 + 1)D solution in Fig. 2(a) with that found by Krishnamoorthy et al.
[60] using the full Navier-Stokes and energy equations [see their Fig. 2(c)], the topological structure
and the appearance of fingers show good quantitative agreement, especially in the drained regions.
Figure 2(b) displays the (2 + 1)D rupture pattern with remarkable similarity to that shown by Oron
[54] in his Fig. 2; especially the symmetry and the circular ridges between the primary and secondary
drops are fully reproduced. It is noteworthy that both the tr = 1988.410 and 4737.032 found here
compare quantitatively well with the tr = 2036.20 and 4974.08 obtained in Refs. [54,60]. Finally,
as the modeling strategies of Burelbach et al. [31], the values of dimensionless parameters used
may not be necessarily physically realistic in order to distinguish various physics and highlight
their interactions. However, these values could be satisfied by choosing the appropriate conditions,
such as liquid properties, initial thickness, ambient gas, substrate temperature, and strength of
gravity.

IV. LINEAR STABILITY ANALYSIS

Having derived the evolution equation in Sec. III, we now explore the time-dependent linear
stability of small-amplitude perturbations, which yields an effective growth rate. Then the instabilities
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FIG. 2. Solutions obtained with (1 + 1)D and (2 + 1)D versions of Eq. (1) in Ref. [54] using the parameters
(in the notation therein) Bi = 1, M = 35.1, P = 7.02, G = 1

3 , S = 100, and km = 0.0677. (a) Interface
evolution at an interval of 100τvisc up to tr with the IC H (x,0) = 1 + 0.1 cos( 1

4 kmx) and a mesh of 601 points.
(b) Surface and contour plots at tr on the domain of lx = ly = 185.62 with the IC H (x,y,0) = 1 +
ε1[cos( 1

2 kmx) + sin( 1
2 kmx)] cos( 1

2 kmy) and an 81 × 81 mesh.

are examined in the quasisteady regime, justified by the fact that the basic state thins slowly compared
with the growth of the most unstable perturbation and τev � τvisc and τth (see Table I for the definitions
of the time scales). The LSA includes various mechanisms in nonequilibrium evaporating layers and
elucidates their competitions.

A. Time-dependent LSA with Bi → 0

With Bi → 0, the basic state H̄ (t) = −K + (1 + 2K + K2 − 2E t)1/2 vanishes at te = 1+2K
2E , as

indicated in Eq. (A1a). We examine its time-dependent linear stability by perturbing the (1 + 1)D
version of Eq. (25) with H = H̄ + H ′(x,t) and linearizing in H ′,

H ′
t − E (K + H̄ )−2H ′ ± H̄ 3H ′

xx ± 1
120G (40K2 + 40KH̄ + 11H̄ 2)(K + H̄ )−2H̄ 3H ′

xx

± (K + H̄ )−2H̄ 2[KM + D(K + H̄ )−1H̄ ]H ′
xx + H̄ 3H ′

xxxx = 0. (28)

One substitutes the normal mode H ′(x,t) = H ′
0 exp(st + ikx) with |H ′

0| � 1 into Eq. (28) to obtain
the characteristic equation for growth rate s,

s = AtA
−1 = E (K + H̄ )−2 ± H̄ 3k2 ± 1

120G (40K2 + 40KH̄ + 11H̄ 2)(K + H̄ )−2H̄ 3k2

± (K + H̄ )−2H̄ 2[KM + D(K + H̄ )−1H̄ ]k2 − H̄ 3k4, (29)

where + (−) is for G < 0 (G > 0) and the time-dependent normal-mode amplitude A(t) ≡ H ′
0e

st

has been introduced. By setting K = 0 in Eq. (29), the quasiequilibrium growth rate reads
sK=0 = E H̄−2 ± (H̄ 3 + D + 11

120G H̄ 3)k2 − H̄ 3k4. By comparing the fractions related to various
mechanisms in s and sK=0, it is found that the nonequilibrium effect (K > 0) reduces mass loss and
vapor recoil, while it additionally brings in a destabilizing thermocapillarity. Recalling that G < 0, it
is expected that buoyancy can play a stabilizing (destabilizing) role for G < 0 (G > 0). The general
solution of the ODE (29) governs the full dynamic behavior of the disturbed basic state. Setting
G < 0, for example, its solution reads

A(t) = A0 exp

( ∫ t

0
(·)dt

)
= A1

(K + H̄ )1+α1k2 exp

{
k2(1 − H̄ )

E

[
1

4
K(1 − k2)

3∑
n=0

H̄ n

+ 1

5
(1 − k2)

4∑
n=0

H̄ n − K

(
3D + 2KM + K2D

(K + H̄ )(1 + K)

)
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FIG. 3. Interfacial and convective stabilities of evaporating layers. (a) Plot of seff as a function of t and k

for hanging layers. The dispersion curves present an increase in seff,m and broadening in the band of unstable
modes with t . Here G = −0.023, M = 0.29, and K = 8.7 × 10−5 (upper curves) are obtained from Table II
and D = 1 is for illustration of the vapor recoil effect, feasible for a relatively small ambient pressure. The
lower curves with K = 0.02 are appropriate for a certain experimental situation (e.g., smaller a). (b) Stability
diagram of convective instabilities in sessile layers: BAi , neutral curves without evaporation 1

48 Mc + 1
320 Rc = 1

[62,63]; Obi , neutral curves expressed in Eq. (34b) with a vapor recoil of D = −0.03 (subscripts i = 0,1,2
corresponding to G = 0,−0.1,−0.5, respectively); Omj=1,2,3, Ma = − 1

3 M Ga (with M = −0.01,−1,−5,
respectively); A0D0Ox and A1,2D1,2O, stability; yBD1,2b1,2, Marangoni-dominated instability; BODi=0,1,2,
vapor-recoil-dominated instability; and b1,2D1,2A1,2x, buoyancy-dominated instability. Logarithmic scale is
used for the abscissa for large values of Ga (e.g., ground conditions). All the curves are straight on a linear scale.

+1

2
(1 + 2K + H̄ )[α2(K + H̄ ) + α3]

+ 1

600
G

(
31

4
K − 11H̄

)
(1 − H̄ )(1 + 2K + H̄ )2 + α4

]}
, (30)

where the upper limit of the integral t < te, (·) denotes the right-hand side of Eq. (29), A0

and A1 are integration constants, α1 = (3D + KM − 11
120K3G )K2E −1, α2 = 1

450G (33 + 66K +
8K2), α3 = D + KM − 1

24KG (3 + 6K + K2), and α4 = 1
1800G (33 + 132K + 148K2 + 32K3 +

208K4). The term (K + H̄ )−1−α1k
2
, resulting from mass loss, gives just an algebraic variation and

does not affect the exponential stability. With the exponent in Eq. (30) divided by t to exclude the
algebraic contribution of mass loss, a time-dependent effective growth rate can be defined [31,36],
seff(t) = 2k2[··· ]

1+2K+H̄
, in which E is absent and [· · · ] represents the polynomial in the square brackets of

Eq. (30). A positive value of seff corresponds to linear instability. The maximum value seff,m occurs
at km = kc√

2
. There are two limiting cases,

seff → k2

{
1 − k2 + α2(1 + K) + α3 + α4

1 + K
− K

1 + K

[
3D + 2KM + K2D

(1 + K)2

]}
as t → 0,

seff → k2

1 + 2K

[(
2

5
+ 1

2
K

)
(1 − k2) − 2K

(
3D + 2KM + KD

1 + K

)
+ 31

1200
G K(1 + 2K)2

+ (1 + 2K)(α2K + α3) + 2α4

]
as t → te,

and the cutoff wave number kc(t) corresponds to seff(t) = 0. As shown in Fig. 3(a), both the unstable
interval and seff,m increase with time. This implies that interface instability is enhanced by vapor thrust,
which competes with the stabilization of surface tension to select a wavelength. Its destabilizing
mechanism makes sense physically: A mechanical perturbation at the surface will be reinforced as
temperature gradients at a trough become greater. The local evaporation rate and thus momentum
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flux associated with vapor recoil become stronger since the former is proportional to heat flux at the
interface. With the heat flux increasing, a trough becomes deeper. Therefore, it suggests a physical
possibility of finite-time rupture, independent of thermocapillarity and the direction of gravity [32].
This argument is true in both quasiequilibrium and nonequilibrium cases, as demonstrated by the
subsequent nonlinear simulation. Moreover, the intrinsic stabilization of nonequilibrium can be
identified by comparing the two pairs of curves with increasing K and the fixed M .

The most unstable perturbation is expected to grow much faster than the basic-state vanishing
that one could freeze it at H̄ (0) = 1 [30,36]. Thus Eq. (29) becomes

ss = E (1 + K)−2 ± 1
120G (11 + 40K + 40K2)(1 + K)−2k2

± [1 + KM (1 + K)−2 + D(1 + K)−3]k2 − k4, (31)

with the subscript s for quasisteady theory, which gives a factitious instability due to the nature
of thinning, i.e., ss = E (1 + K)−2 for an undisturbed interface (k = 0). Letting E = 0 exclude the
mass-loss contribution, one finds

k2
c,s = ±[1 + D(1 + K)−3 + KM (1 + K)−2 + 1

120G (11 + 40K + 40K2)(1 + K)−2]. (32)

To compare with quasisteady results under quasiequilibrium, it follows that sK=0,s = ±(1 + D +
11

120G )k2 − k4 and k2
K=0,c,s = ±(1 + D + 11

120G ) with H̄ = 1 and E = 0. The comparison of kc,s and
kK=0,c,s reflects again the fact that nonequilibrium weakens vapor recoil but induces thermocapillarity.
For K = o(1) Eq. (31) can be expanded in a power series at leading order,

ss,0 = E (1 − 2K) ± [1 + KM + D(1 − 3K) + 1
120G (11 + 18K)]k2 − k4. (33)

With E = 0, it recovers the quasiequilibrium growth rate sK=0,s , if M − 3D + 3
20G = 0 is

satisfied. For small K , the quasisteady linear theory thus predicts a critical value for M between
quasiequilibrium and nonequilibrium states,

M ±
c,s = 3

(
D − 1

20G
)

(34a)

or

1
48Mc + 1

320Rc = 1
16 PrE2D−1 = 1

48 Ga(−D) for G > 0, (34b)

with the superscript + (−) for positive (negative) gravity in Eq. (34a). Furthermore, for given K , k, D ,
and G with different M , the quasisteady analysis shows that here seff can be increased or decreased
relative to the quasiequilibrium seff, depending on the relative magnitude of the parameters, such as
K and M . We therefore predict, and indeed will find, that a critical M also exists in the nonlinear
regimes (see Sec. V C).

The equivalent form in Eq. (34b) is reminiscent of the classical relation at threshold of LW
convective instability (k → 0) in a nonevaporating layer heated from below with a weakly deformable
free surface at Bi → 0 [62,63] when 1

16
PrE2

D
= 1, in which the critical Ma, with Ra = 0, M0

c = 48
[6] [Marangoni convection, region yBA0 in Fig. 3(b)] and the critical Ra, with Ma = 0, R0

c = 320
[64] (RB convection, lines A1,2x). In Fig. 3(b), the neutral stability loci are plotted on the (Ga,Ma)
plane. In classical stability diagram [4], for a given M , convection does not start until the intersection
between BAi and Omj [here i = 0,1,2 and j = 1,2,3; see the caption of Fig. 3(b)]. In the presence
of vapor recoil, in contrast, convection can be initiated for small Ma and Ga unless M is so low that
the point ( 1

48 Ma,Ga), corresponding to a certain �θ and h0, falls within the stable zones A1,2D1,2O

(e.g., Om1 through green triangles), where an evaporating layer is motionless. Physically, heating
a given fluid with a fixed h0 means rotating the Omj line, Ma = −1

3 M Ga, counterclockwise as
M ∝ �θ (see Om2 ⇒ Om3), thus a point with a constant value of h0 translates upward and the
layer tends to be destabilized by the Marangoni effect. Furthermore, as �θ increases the intersection
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Di (−48D−1,1 − 1
320 Ra) of BAi and Obi approaches the origin O. It reflects the destabilizing roles

of vapor recoil and buoyancy. For a large value of h0, the instability reduces to the RB convection,
while the vapor recoil and Marangoni effects dominate the instability for small h0. Finally, the
LW deformation, considered as a non-Boussinesq effect, and flow fields will be studied later in the
nonlinear simulation (Secs. V and VI).

B. General LSA with Bi > 0: Frozen-time approach

Similarly, we perform the LSA by superimposing a small perturbation on the basic-state solution
(A1a) H = H̄ (T ) + H ′(X,T ), where H ′ = H ′

0 exp(sT + ikX) = A(T )eikX with the normal-mode
amplitude A(T ) ≡ H ′

0e
sT and |A| � H̄ . Substituting the expression into Eq. (21) and linearizing

in H ′, we obtain an ODE s = AT A−1 = �ev(T ) + �eff(T ), where the two real terms are given by
�ev(T ) = Ef (H̄ )J0(H̄ ) and

�eff(T ) = (
E2D−1(1 + BiK)[H̄J0(H̄ )]3 + K Ma Pr−1(1 + BiK)[H̄J0(H̄ )]2 − 1

3GH̄ 3

+ 1
120 GrH̄ 3

{
11 + K[29K + 18(1 + BiK)H̄ ]J 2

0 (H̄ )
} − k2
0H̄

3)k2.

To avoid a complicated expression for the dynamics of the disturbed interface, e.g., Eq. (30), it
is equivalent to define �eff(T ) as a time-dependent effective growth rate. The definition not only
eliminates a spurious destabilization emerging from mass loss [31], which is associated with �ev(T )
and gives an algebraic variation in A(T ), but also is convenient in interpreting the interactions of
various mechanisms. The stability condition is �eff < 0.

The successive terms in �eff embody the destabilizing effects of vapor thrust and thermocapillarity,
the stabilizing (destabilizing) mechanism of hydrostatic pressure with destabilizing (stabilizing)
buoyancy for G,Gr > 0 (G,Gr < 0) [cf. Fig. 1(b)], and the stabilization due to surface tension. With
�eff = 0 the time-dependent cutoff wave number is found to be

kc(T ) = {

−1

0

[
E2D−1f (H̄ )J 2

0 (H̄ ) + K Ma Pr−1H̄−1f (H̄ )J0(H̄ ) − 1
3G + 11

120 Gr

+ 3
20 GrKH̄f (H̄ )J0(H̄ ) + 29

120 GrK2J 2
0 (H̄ )

]}1/2
. (35)

The interval of unstable modes is 0 < k < kc provided the expression in square brackets in Eq. (35)
is positive. The maximum growth rate �eff,m corresponds to km = kc/

√
2. For the nonvolatile case

(K → ∞ and E = 0) with H̄ = 1 and G > 0, when the buoyancy and capillarity are negligible,
it recovers a stability condition in Ref. [60], characterizing the competition between the stabilizing
gravity and destabilizing thermocapillarity,

G > 3 Ma Bi Pr−1(1 + Bi)−2, (36)

where the Marangoni effect obtains the maximum with Bi = 1.
Figure 4(a) illustrates kc as a function of H̄ for the representative values of Ma in the absence

or presence of positive or negative gravity. These values of parameters are chosen to distinguish the
influences of thermocapillarity and gravity. The unstable spectrum is located below the corresponding
curve. The dotted line displays the behavior of kc for a nonvolatile zero-gravity film subject to the
Marangoni effect and surface tension only, according with that presented in Ref. [41]. For g > 0 and
smaller Ma, above a certain critical thickness the basic state is stable to a LW disturbance with the
stabilizations of hydrostatic pressure and surface tension and the critical thickness decreases with a
decrease in Ma. This property is in agreement with a recent result of Kanatani [65], who took into
account the diffusion and convection of vapor with a concentration boundary layer model. With g � 0
the quasisteady uniform layer is always unstable to infinitesimal perturbations of the normal-mode
form even for Ma = 0, that is, the wave number at onset is zero. A comparison between the four
curves in the case of G = 0, G > 0, or G < 0 in the increasing sequence of Ma demonstrates
its destabilizing effect, which becomes more significant as the layer thins, reflected by the rapid
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FIG. 4. Interactions of thermocapillarity and gravity with 
0 = 100 and K = 0.003. (a) Plot of kc as a
function of H̄ represented by four groups of curves with Ma = 2000,1000,100,0 and Bi = 1. The solid lines
show |G| = 10 and |Gr| = 1, the lower (upper) family for G > 0 (G < 0); the dashed lines show G = 0; and the
dotted line shows the nonvolatile weightless case with K → ∞, E = G = 0, Ma = 1, 
0 = 1/3, and Pr = 2 to
recover the dotted line in Fig. 2 of Ref. [41]. (b) Dispersion curves in the case of RTI for G = −10, Bi = Gr = 0,
and H̄ = 1, 3/4, and 1/2. The other parameters are taken from Table II in Appendix A.

expansion of the unstable spectrum. The (de)stabilization of gravity is obvious in a thicker layer, as
suggested by the merging of the curves in each group as H̄ decreases, while the destabilizing effects
of vapor recoil and thermocapillarity prevail. This point is consistent with the subsequent discussion
of the nonlinear evolution.

Considering a frozen basic state, the quasisteady behaviors of �eff are plotted in Figs. 4(b)
and 5 as a function of k with the fixed values of |G| = 10 and 
0 = 100 for demonstration. In
Fig. 4(b), the dynamic characteristics of thermocapillarity on a Rayleigh-Taylor unstable layer are
revealed by comparing the �eff behaviors with Ma = 0 and 2000 for the three pairs of dispersion
curves in the decreasing sequence of H̄ : decaying �eff,m and slightly increasing km and kc without
thermocapillarity, and rapidly increasing �eff,m, km, and kc in the presence of thermocapillarity.
It demonstrates that thermocapillarity exerts more significant destabilization as the layer thins by
accelerating the disturbance growth and extending the unstable spectrum.

The physical situation considered next is an evaporating layer heated from the substrate subject
to positive gravity as G,Gr > 0 in Fig. 1(b). Figure 5 reveals the influences of ambient cooling and
buoyancy by comparing the differences between solid and dashed curves in each pair. To illustrate
that E exerts a considerable influence on linear stability, Figs. 5(a) and 5(b) plot �eff for E =
0.03,0.06,0.09 with K = 0.003, corresponding to three pairs of dispersion curves with increasing
kc and �eff,m. The results suggest that the stabilization of the cooling effect becomes more evident
with increasing E, while the destabilization of buoyancy remains minor. Based on the Boussinesq
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FIG. 5. Three pairs of dispersion curves with H̄ (0) = 1 and G = 10 for E = 0.03,0.06,0.09 with K =
0.003 or for K = 0.002,0.003,0.004; the other parameters are taken from Table II. Influences of (a) and (c)
ambient cooling and (b) and (d) buoyancy are shown.
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FIG. 6. Stability diagram with K = 0.06, Ra = 0, and E = 0.011 for G > 0: (a) H̄ = 1 and 
0 = 0 with
different Bi, (b) as layer thins with Bi = 1 and 
0 = 0 (Te = 53.636), (c) H̄ = 1 and Bi = 5 with different 
0

and k, and (d) as layer thins with Bi = 5, k = 6, and 
0 = 1/3 (Te = 64.545).

approximation, β�θ � 1, hence Gr � G. The value of Gr is chosen to highlight the buoyancy
effect; nevertheless, it just slightly broadens the unstable spectrum and marginally increases �eff,m,
as can be seen in Fig. 5(b). Another quantity strongly affecting the stability is K . Three pairs of
dispersion curves are plotted for K = 0.002,0.003,0.004 in Figs. 5(c) and 5(d). Figure 5(c) implies
that the cooling effect can exert a significant stabilization when evaporation deviates far enough
from quasiequilibrium. The destabilizing effect of buoyancy is found to be relatively weak again
from Fig. 5(d). We thus expect that buoyancy exerts a weak destabilization on the interfacial stability
with G > 0. Within the parameter range, �eff is quite sensitive to K as the induced thermocapillarity
dominates over its intrinsic stabilization. Figures 5(a) and 5(c) show that the enhancement of ambient
cooling narrows down the range of unstable modes and decreases �eff,m; it thus is expected to
decelerate the rupture, as indeed found later in the nonlinear regime. The stabilization of ambient
cooling makes sense physically because it acts as a dissipative mechanism, competing for energy to
be consumed by evaporation. With larger Bi (smaller thermal resistance in ambient cooling), it is
more difficult for temperature perturbation to be set up and the interface deformation induced by the
Marangoni effect tends to be damped.

Figure 6 displays the interactions among vapor thrust E2

D
, thermocapillarity K Ma

Pr , and gravity
(G > 0) on the quasisteady stability of the evaporating layer for K = 0.06 and R̄ = 0. It is stable
(�eff < 0) within a stability space �s bounded by the coordinate planes and a neutral surface. In
Fig. 6(a), with increasing Bi, �s expands and the projection of the intersection between the neutral
surface and constant-G plane onto the ( E2

D
,K Ma

Pr ) plane yields a segment with increasing slope, which
means that reinforcement of the ambient cooling leads to a more stable interface by weakening
thermocapillarity and vapor recoil. When E2

D
= K Ma

Pr = 0, we are restricted to the G axis where a

nonvolatile layer behaves stably [see Eq. (36)]. With E2

D
> 0 and K Ma

Pr = 0 one moves along a straight
line parallel to the G axis; instability is present with small G originating from vapor recoil and then
stabilized by the hydrostatic pressure. Similarly, with K Ma

Pr > 0 and E2

D
= 0 along a line parallel to

the G axis, �eff > 0 results from thermocapillary instability for small G and then it becomes negative
due to the stabilization of gravity. As illustrated in Fig. 6(b), �s shrinks as the layer thins with T

since vapor thrust and thermocapillarity become dominant. Figure 6(c) shows that �s expands in the
presence of surface tension and further with increasing k because capillarity stabilizes disturbances
of shorter wave. When G = 0 and 
0 �= 0, E2

D
and K Ma

Pr reach the upper limits for instability at the

intersection of the ( E2

D
,K Ma

Pr ) plane and a neutral surface and destabilizations of vapor thrust and

thermocapillarity are inhibited for relatively small k. In Fig. 6(d), the intersection between ( E2

D
,K Ma

Pr )
and neutral planes approaches the origin with time, which means the stabilization of surface tension
becomes less effective. The slope of the intersection between the neutral surface and the plane of
( E2

D
,G) or ( K Ma

Pr ,G) decreases as �s shrinks. That is, the stabilization of gravity weakens and rupture
instability is dominated by vapor recoil and thermocapillarity with time. The predictions coincide
with our nonlinear simulations reported below.
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FIG. 7. Rupture patterns of case I evaporating layers subject to RTI for λ = 2
√

2π , K = 0.1, E = 0.05,
D = 1, G = −0.2, and different Bi with a mesh of 201 points. (a) M = 1. (b) M = 5. (c) Lines represent
numerical solutions of Eq. (25) and circles show the corresponding DCs with Eq. (44). The inset shows a
close-up of the window of (a) illustrating the transition to (b) (see the text in Sec. VI B). Here a large value of Bi
could be suitable with these considerations: (i) It could be achieved in an experiment where a liquid layer of low
kth (e.g., HFE-7300) is surrounded by a thin gas layer with a high kth,g (e.g., helium, similar to the experiment
of VanHook et al. [8]), (ii) evaporation can give an explanation through a thermal dissipation mechanism along
interface as if the gas had a large kth,g [12], and (iii) a large Bi could be taken in the parameter study [6].

V. TIME-DEPENDENT SIMULATIONS: AMBIENT COOLING, FLOW FIELD, AND (2 + 1)D
PATTERN FORMATION

The linear stability analysis in the above discussion, however, is valid for the predictions of initial
and quasisteady growth rates of infinitesimal perturbations. To follow the surface transition from
a small disturbance to rupture in nonlinear regimes, Eq. (25) will be solved numerically in three
cases: case I for weak mass loss of E = O(10−2) and strong vapor thrust of D = O(1), case II for
moderate mass loss of E = 0.1 and strong vapor thrust, and case III for moderate evaporation at
E = |D | = 0.1. In the four sections below for the negative (Sec. V A) and positive (Sec. V B) gravity
cases, we first report simpler solutions of the (1 + 1)D version of Eq. (25) on a small domain [0,λm)
with the IC (27a) for case I to illustrate the stabilizing effect of ambient cooling and the flow-field
evolution with the contribution of buoyancy, where λm = 2

√
2π is the most unstable wavelength for

nonvolatile isothermal layers subject to RTI from the linear theory. Next, representative (2 + 1)D
patterns on an extended domain for case III are presented using the random perturbation shown in
Eq. (27b) in view of the dependence of the (2 + 1)D dynamics on the form of IC [45,54]. In Secs. V C
and V D, the influences of gravity and buoyancy are further demonstrated with a rescaled pressure
and an average Nusselt number, respectively.

A. Evaporating layer subject to negative gravity (RTI)

Figures 7(a) and 7(b) show the rupture patterns for RTI by changing M and Bi. With increasing
Bi, the drained region shrinks, the heights of droplets are reduced, the capillary ridges are suppressed,
and rupture is retarded. This demonstrates the stabilization of ambient cooling in the fully nonlinear
regime that coincides with our linear analysis. A physical explanation for this stabilization has been
ascertained from Figs. 5(a) and 5(c). Also, as can be seen from Eq. (25), as Bi increases the effects
of mass loss, vapor recoil, and thermocapillarity should be reduced since the common multiplicative
term J0 is a decreasing function of Bi. The mitigation for Marangoni effect is in agreement with the
thermal dissipation mechanism presented in [12], which acts as an effective heat conductivity of the
gas. In addition, after the (first) rupture the solutions have compact supports (i.e., droplets with zero
contact angle), as discussed for LW Marangoni flow without evaporation [49,50]. Furthermore, the
transition between Figs. 7(a) and 7(b) can be explained with the properties of a DC [49], in Sec. VI B.

To quantify the flow field with the solution of the canonical equation (25), we define a rescaled
stream function �(x,z,t) ≡ Bo1/2E−1ψ according to Eq. (B6) in the rescaled variables [Eq. (23)
with z = Z] and the redefined dimensionless numbers [Eq. (24)]

� = ±�̂
(

1
6z3 − 1

2Hz2
) ± E −1Hxf J0z

2
[

1
12G (1 + BiK)

(
1

10z3 − H 3
) + MK

]
, (37)
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FIG. 8. Streamlines and isotherms of the case I evaporating layer subject to RTI at three representative
moments, calculated for λ = 2

√
2π , K = 0.1, E = 0.05, D = 1, M = 5, G = −0.2, and Bi = 1 with a mesh

of 201 points. Contours are separated by intervals of �� and �� = 0.076. (a) Initial stage of valley formation
(�� = 0.016) at t = 4.2. (b) Emergence of a secondary droplet (�� = 0.064) at t = 5.6. (c) Formation of
drained regions just before rupture (�� = 0.12) at t = 6.08. The inset shows an enlarged intervening film. The
initial disturbance is shown by the black dashed line. The red dots highlight intersections where streamlines
� = 0 cross the free surface, although some of them seem to be tangential to the interface owing to the influences
of negative gravity on interfacial velocity and its slope under weak mass loss.

where �̂ = Bo1/2E−1� = −E −1[3DHxf J 2
0 ± 3Hxxx + (3 + G )Hx − 1

2G (H 2f )x]. As illustrated
in Fig. 8, the transient interface, streamlines, and isotherms are calculated at three representative
moments. The convective cells are encompassed by the substrate z = 0, the interface z = H , and
the dividing streamlines � = 0 which cross the free surface. The number of cells is double that
of the interfacial minima, e.g., with six minima at t = 6.08, twelve cells are accommodated. The
streamlines also indicate the occurrence of recirculation inside the bulges. As shown in Fig. 8(a), the
liquid descends (note that G < 0) at the center of the interval, where the evaporation rate is larger and
then a part of interfacial fluid crosses the surface due to mass loss and the remainder is drawn toward
the interior by the Marangoni effect and pressure gradient; while rising it loses kinetic energy by
acting against gravity combined with buoyancy (cf. discussion for Fig. 13) and travels quickly to the
center along an isotherm. The isotherms show that temperature increases vertically from the interface
to the bottom, while they vary slowly on a lateral scale, arising from the lubrication approximation
and manifesting the diffusion-dominant heat transfer. Moreover, the temperature gradients of ∇sθI

and ∇θ are larger where the layer is thinner. The thermocapillary convection should be the dominant
energy transport mode near the troughs where the Marangoni stresses and mass loss tend to the
localized maxima. This is true in the positive gravity case as well.

Interesting phenomena can be observed from the flow-field evolution. During the early stage in
Figs. 8(a) and 8(b), a shallow valley and two large vortices are developed, which are squeezed as the
formations of a middle bulge and two secondary vortices. The local velocity increases because of the
Marangoni stresses (∇sσ = −γ∇sθI ) near the lateral sides of the valley, which increase as the valley
deepens, especially nearby the troughs [see the isotherms in Figs. 8(b) and 8(c)]. The deformation
of the secondary vortex is very similar to that of the previous larger one, which allows a self-affine
interface (Sec. VI B). The inset of Fig. 8(c) shows an enlarged part of the film covering a drained
region, where a tertiary and an additional bulge are perceptible. The streamlines are asymmetric there
due to the distinct pressures on either of their sides. The flow in the intervening film is sufficiently
slow since a thinner film has a higher viscous resistance. Finally, ∇sθI and thus the Marangoni
convection vanishes in the film just before rupture.
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FIG. 9. Evolution of the case III evaporating layer subject to RTI for K = 1, E = 0.1, D = 0.1, M = 5,
G = −0.1, and Bi = 1. The side length of the periodic domain is 4π . A uniform 151 × 151 mesh is employed.
The number of semidiscrete ODEs to be integrated at each step is 22 500. Successive snapshots of the interface
contour with the minimum and maximum elevations (Hmin and Hmax) are shown at (a) t = 1.5 (0.9039 and
0.9885), (b) t = 4 (0.4312 and 1.3231), and (c) tr = 5.781 (5.9019 × 10−5 and 2.5040). Red arrows denote
the orientation of the breakup of annular dry patches. (d) Surface plot at tr . Also shown is the evolution of
representative profiles for (e) x = 2.1 and 7.2 and (f) x = 10.

Afterward, Eq. (25) is solved on a square periodic domain [0,l) × [0,l) with the IC (27b) and
l = 4π , whose diagonal fits the disturbance of λ = 2λm. The surface is presented in the form of
grayscale contour, where the bright (dark) shades correspond to thick (thin) regions. Note that
each contour has its own brightness scale, thus different images cannot be compared directly. A
representative case III evolution subject to RTI, shown in Fig. 9, results in an irregular morphology
of a polygonal network of ridges spaced by large-scale drained regions at the moment of rupture. Its
evolution undergoes three stages (movie 1 in the Supplemental Material [66]): (i) self-organization
of random perturbation and emergence of bumps and dimples driven by initial linear instability,
(ii) broadening and/or deepening of the depressions at some regions while elevating the humps at
others [Figs. 9(a), 9(b), 9(e)], and (iii) further development (broadening, deepening, or coalescing)
of drained regions along with the emergence of increasingly small structures until rupture [Figs. 9(c),
9(d), 9(f)]. It is found that in general rupture occurs in the vicinity of higher ridges or drops, where
the cracked annular dry patches emerge [Figs. 9(c) and 9(d)]. It can be ascribed partly to the surface
gradients and thus Marangoni stresses being greater there and partly to the stronger local vapor recoil.
Another phenomenon that appears near rupture is the formation of isolated droplets, corresponding
to a tertiary structure in the (1 + 1)D case and similar to the localized patterns in [67], which are
trapped within the drained regions and lead to the breakup of annular dry patches.

The surface patterns in Figs. 9(c) and 9(d) are analogous to a solution obtained by Bestehorn
and Merkt [28] in their Fig. 6(b) from an extended Cahn-Hilliard (CH) equation, which has similar
dynamics to their Eq. (9). Both patterns appear as a set of roughly parallel striations oriented along the
domain side. A difference is recognizable, but this should not be of surprise because their result was
found according to a simplified model with a generalized functional involving the Ginzburg-Landau
free energy and the potential energy of a point charge (see Appendix C). Our liquid layer cannot
sustain a continuous stationary pattern due mainly to the opposite heating and the inclusion of vapor
recoil and thermocapillarity, which were neglected in Ref. [28].
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FIG. 10. Rupture patterns of the case I evaporating layers lying on substrates for λ = 2
√

2π , K = 0.1,
E = 0.05, D = −1, G = −0.2, and different Bi with a mesh of 201 points. (a) M = −1. (b) M = −5. (c)
M = −5, with lines representing numerical solution of Eq. (25) and circles showing the DC with Eq. (44). The
inset shows a close-up of the window illustrating the next rupture (see the text in Sec. VI B).

B. Evaporating layer subject to positive gravity

Switching to G > 0 for a comparison with the just discussed case of G < 0, we show in Figs. 10(a)
and 10(b) the influences of cooling by overlaying gas on a rupture pattern for two values of M . It is
found that tr is longer and the elevation of the droplet or thick film decreases with Bi just as that found
for the negative gravity cases. In contrast to the cases of M = −5, there is no qualitative change
in topological structure with M = −1 (e.g., ridges and trapped droplet are suppressed with Bi in
the former). Recalling Fig. 7, in both cases of G < 0 and G > 0, an increase in Bi suppresses the
droplets and capillary ridges and it is thus inferred that the ambient cooling plays a stabilizing role, as
indicated intuitively by tr . From a mechanical point of view, weaker surface deflection acts to reduce
the local curvature and thus the Laplace pressure; this stabilization is associated with the dynamic
effect of smoothing corrugations by ambient cooling that produces a lower normal-stress “jump” to
resist the tendency of rupture. This is an explanation for the underestimate of Hmin in Ref. [19], where
a significant surface heat loss due to thermal convection of Bi = 0.11 was neglected. Furthermore,
the influence of gravity on the flow causes an insufficient representation of the DC for the numerical
result, as shown in Fig. 10(c) and discussed later in Sec. VI B.

Figure 11 shows the flow-field evolution of a sessile layer, which is significantly different from that
shown in Fig. 12(a) of Ref. [8], uncovering the peculiarity of the present mechanisms. The convective
cells, again twice the localized trough(s) in number, are demarcated by the dividing streamlines.
The convection is not recirculated because there is no closed streamline, differing obviously from
the G < 0 case. However, their thermal fields are similar and both tend to be more distorted near the
lateral sides of the valley. Under the destabilizations of vapor recoil, thermocapillarity, and buoyancy,
the fluid is transported from the depressions to the bulges, which results in the amplification of
deformation. The formation of a drained region preceded by convective cells was also observed
by Orell and Bankoff in (0.86–1.321)-mm evaporating ethanol layers [68]. In Fig. 11(a), a shallow
valley forms and liquid flows away from the depression near the interface. As the valley deepens and
viscous resistance increases, against which the capillary-pressure gradients must drive fluid outward,
capillary ridges emerge from the bottom and either side of the valley [Fig. 11(b)]. While liquid is
pushed from the drained region to the ridges and thick-film regions, the latter collect fluid from
the adjacent localized depressions as well. The flows cause the growth of the capillary ridges and
the spreading of the drained region. The convection is prevailing in the upper region, while in the
lower part velocity is relatively low (even stagnant), as observed in cooled evaporating layers [9].
In addition, as presented in the insets, the local flow patterns in the middle ridges are similar to the
convection in the early stage shown in Fig. 11(a) but with a higher velocity, which again implies a
self-affinity (Sec. VI B).

With the formation of capillary ridges on the sides of valley, the original large convective cell
in the thick-film region is divided into three small ones in Fig. 11(c). The transition could support
the coexistence of LW and SW modes, analogous to but different from that observed by VanHook
et al. [7,8]. Similar mode interaction in the presence of interfacial mass transfer has been studied
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FIG. 11. Streamlines and isotherms of the case I evaporating layer for G > 0 at three representative

moments, calculated for λ = 2
√

2π , K = 0.1, E = 0.05, D = −1, M = −5, G = −0.2, and Bi = 1 with
a mesh of 201 points. Contours are separated by intervals of �� and ��. (a) Initial stage of valley formation
(�� = 0.1 and �� = 0.064) at t = 10. (b) Emergence of capillary ridges (�� = 0.12 and �� = 0.062) at
t = 11.35. (c) Formation of the drained region just before rupture (�� = 0.096 and �� = 0.062) at t = 11.42.
At the same level liquid is warmer under a convex surface than that under a concave one. The smaller dot
denotes lighter fluid particle, illustrating the destabilizing effect of buoyancy. The hexagon wavelength [24]
λ6 = 3

2 l6 ≈ 3.9 with the side length l6 = 2√
3

× 2.27 ≈ 2.62. The insets show the enlarged middle ridges.

theoretically for solutocapillary instability [20]. Taking a planform, a hexagon can be constituted by
two families of half-torus streamlines of two contiguous periods at, say, x = 0, in which fluid flows
downward along the cell peripheries (x ≈ ±2.27) to the interior where it is heated while traveling
inward and then upward around the center (x = 0) with the help of the buoyancy effect. In particular,
the warm upflow under a convex surface consists of the characteristics of local buoyancy-driven
convection in accordance with the analysis by Jeffreys [69] and the qualitative criterion of Scriven
and Sternling (see [17], Sec. 7). We emphasize that the interfacial deformation originates from the
Marangoni rather than the buoyancy effect (see also Sec. VI A) within the Boussinesq approximation.
Nonetheless, it turns out that the LW deformation is in favor of the buoyancy convection when
considering the slight expansion of buoyant liquid in the gravitational field, as shown in Fig. 11(c)
for a cell. To balance the pressure due to a heavier fluid column in the periphery, the lighter central
particle can be elevated relative to the cooler one on the same level (cf. left panel of Fig. 13).

The relative importance of buoyancy and thermocapillarity could be quantified by Bod =
G

Meff
≈ 0.05. [Remember that Marangoni flow is mitigated by ambient cooling and volatility as

|M | < |M +
c,Bi=0.5| < |M +

c,Bi=1| (see Sec. V C). With a 17.5% magnification in |M +
c | for Bi =

0.5, a conservative estimate Meff ≈ −4.25 from a linear extrapolation.] This suggests that the
thermocapillary effect is the main driving force of the viscous flow. As for the nonevaporating
thin-film experiment of VanHook et al. [7], we recognize that buoyancy is negligible in that case and
the small-scale hexagon is due essentially to thermocapillarity [Bod ≈ 0.01 for Fig. 5(c) therein].
In view of the weakened Marangoni effect, we emphasize that in the thick-film region the buoyancy
can play a significant (but not dominant) role although the thermocapillary and vapor recoil effects
still dominate. The horizontal scale of the hexagon, one order of magnitude larger than its thickness,
is similar to that of the drained region. This could support a tight coupling between buoyancy and
thermocapillary effects during evolution through reinforcing energy generated by the influence of
each on the other [14] [see Eq. (34b)]. Thermocapillary deformation changes locally the depth of the
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FIG. 12. Evolution of the case III evaporating layer lying on a substrate for K = 1, E = 0.1, D = −0.1,
M = −5, G = −0.1, and Bi = 1 with a 171 × 171 mesh. The side length of the periodic domain is 6π . The
amount of coupled ODEs to be solved at each step is 28 900. Successive snapshots of the interface contour
with the minimum and maximum elevations (Hmin and Hmax) are shown at (a) t = 1 (0.9559 and 0.9766), (b)
t = 7 (0.7330 and 0.7586), (c) t = 12.5 (0.4688 and 0.5350), and (d) tr = 18.741 (5.5066 × 10−5 and 0.2526).
(e) Surface plot at tr . (f) Evolution of representative profiles for x = 1.7 and 16.2.

layer and leads to a space-dependent temperature difference, which modifies Ra locally and hence
the intensity of Rayleigh convection. The additional long-scale convection, in turn, generates mean
heat and mass fluxes connected with the deformation. The convection pattern in Fig. 11(c) here is
reminiscent of Fig. 1 of Ref. [70] for a nonevaporating layer subject to buoyancy and thermocapillarity
with an undeformable surface. It is important to note that the deformation plays a crucial role in
the long-scale convection, which makes it different from the classical hexagon [6,70]. Therefore,
the evaporative convection, subject to coupled effects of surface-tension stresses and buoyancy, is
preferably regarded as LW Marangoni-Rayleigh-Bénard convection, where the order of those two
influences suggests their relative importance.

The streamlines are concentrated at the lateral sides of the valley in Figs. 11(b) and 11(c), where
the local velocity is larger. This region can be confined by a dividing streamline [Fig. 11(c)] that
does not perturb the outer domain significantly, consistent with Ref. [8]. With the expansion of the
drained region, the convective cells are squeezed and the local velocities increase further, causing
the well-defined capillary ridges. The drained region expels about 1

4 fluid of the interval, which
compensates for mass loss from the thick-film region. In contrast to the quasiequilibrium case [32],
�� across the layer is not constant along the interface (see Figs. 8 and 11). Actually, the temperature
gradient at the trough is less than that of the quasiequilibrium case with the identical evaporation
parameters E and D ; the local evaporation rate and thus vapor thrust are expected to be smaller
under nonequilibrium. Hence, the smoothing effect of capillarity is adequate to balance the reduced
vapor recoil, which acts as the first reason for the absence of a sharp dryout point (the other given in
Sec. VI A).

Equation (25) is then solved on a square domain of l = 6π with the IC (27b) for G > 0. A typical
case III rupture process is exhibited in Fig. 12 for the identical parameters in Fig. 9 but with a reversal
of the sign of D and M . Again, there are three stages (see movie 2 in the Supplemental Material
[66]): (i) The first stage is similar to that of the G < 0 case; (ii) depressions slowly broaden, deepen,
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FIG. 13. Streamlines and pressure contours of case I at the emergence of a valley, calculated for λ = 2
√

2π ,
K = 0.1, E = 0.05, |D | = 1, |M | = 5, G = −0.2, and Bi = 1 with a mesh of 201 points. The P̂ contours are
dashed with an interval of �P̂ . The parameters on the left are G > 0, �� = 0.1, and �P̂ = 0.2; on the right
G < 0, �� = 0.016, and �P̂ = 0.25. A smaller dot along a streamline denotes a lighter fluid particle due to
buoyancy. The distinct differences when streamlines cross the interfaces can be understood from a mechanical
point of view, as in the insets, which are qualitative sketches illustrating the composition of forces on the
interfacial particles.

and coalesce, driven by instability of the evaporating interface; and (iii) depressions develop at a
faster rate to expel liquid leading to an irregularly polygonal network of ridges separated by drained
regions. As a consequence of the stabilizing gravity and surface tension the dynamics results in
approximately uniform thinning in space and time before t ≈ 12, where the difference in elevation
is about 0.03. In accordance with Fig. 12(f), the level descending contributes to the surface waves
by reducing the stabilizing role of gravity, as observed by Kavehpour et al. [71] in the volatile liquid
films. The relatively low ridges (H ≈ 0.25) at rupture are in contrast to the negative gravity case in
Fig. 9(d), where the typical height is larger by one order of magnitude. This is ascribed primarily to
the ridges feeding liquid into surrounding valleys where more evaporation occurs and secondarily to
mass loss from the ridges themselves over the longer duration under positive gravity.

The rupture pattern in Figs. 12(d) and 12(e) possesses the well-defined lateral length and height
scales. This is in sharp contrast to the comparable case without evaporation where coarsening to a
larger droplet is observed at rupture, as illustrated in Fig. 2(b), in which Bo = 3.33 × 10−3, M =
−7.5, the rescaled side length l = 4π

√
Bo/km ≈ 10.72, and the height scale is about 2.5. The

comparison suggests that evaporation could be used for controlling and creating a pattern with
prescribed length scales. The LW surface pattern featuring irregular depressions with wavy rims is
similar to the experimental results of VanHook et al. [8] [their Figs. 22(b) and 22(c)], where the film
possessed proper initial thickness and the Marangoni number is well above a critical value. However,
the surrounding thick-film region observed in the experiment [8] is absent in our results. It is not
surprising since there is no chance to develop a large drained region surrounded by thick films under
moderate mass loss, as in Fig. 17(c) as well, which never occurred in their experiment. In addition,
the overall patterns depicted in Figs. 12(b) and 12(c) are qualitatively analogous to that observed by
Berg et al. [11] in the evaporating layers [see their Fig. 7(c) for 3 mm of benzene and Figs. 10(a)
and 10(e) for 1 mm of acetone and n-heptane for the similarity]. The typical length scales in their
Fig. 10(a) and our Fig. 12(c) are one order of magnitude larger than the respective thickness. Their
analyses also corroborate the simultaneous introduction of thermocapillary and buoyancy effects.

C. Effects of gravity and ambient cooling and critical M (G > 0 and G < 0)

With Eqs. (B3) and (23) and the transformation (15), the rescaled pressure is found to be

P̂ (x,z,t) ≡ P0/(k|B|) = −3Hxx ± 3
2DJ 2

0 ± (H − z)
{
G

[
1
2 (H + z)f − 1

] − 3
}
. (38)

In Fig. 13 the pressure profile together with streamlines at the early stage is plotted for Fig. 8(a) at
t = 4.2 and Fig. 11(a) at t = 10. The direction of gravity combined with buoyancy is found to serve
as an important control on the interface stability and the flow field.
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FIG. 14. The Hmin evolution of the case I evaporating layers with different thermocapillarity for λ = 2
√

2π ,
K = 0.1, E = 0.05, |D | = 1, G = 0, Bi = 0 or 0.5, and (a) and (c) G < 0 and (b) and (d) G > 0.

Interfacial fluid elements are subject to gravity, vapor recoil, Laplace pressure, and Marangoni
stresses against viscous forces (see the insets in Fig. 13 for those near the troughs). For G > 0, they
flow towards the warmer interior under the resultant force and then return to the interface under
a favorable pressure gradient ∇P̂ . It is reflected by the roughly hyperbolic pattern, contributing
to the understanding of the symmetric convection cells caused by buoyancy and thermocapillary
mechanisms in evaporating layers, as explained in Ref. [68]. For G < 0, the resultant force acting
on the fluid particles just inside the free surface results in the top layer swept aside with the help
of thermocapillarity while cooled by ambience and evaporation. The intersection of the streamline
� = 0 and interface is an indication of mass loss. A larger interfacial pressure at the trough is due
to the opposite direction of vapor recoil and gravity. Then fluid is pushed towards the low-pressure
interior along the cell partition (x = 2

√
2π ) by a sufficient ∇P̂ arising from hydrostatic and Laplace

pressures, although the buoyancy resulting from surface cooling retards this flow. The recirculation
is developed by continuity, suggesting that the Marangoni effect has reached an extent sufficient
to dominate the flow regime according to the criterion in Ref. [17]. Therefore, this evaporation-
driven flow for G < 0 can be attributed with confidence to thermocapillarity and considered as LW
Marangoni convection as buoyancy exerts a stabilizing influence for this flow.

Figure 14 exhibits the influences of G, Bi, and M on evaporation of case I with G = 0. With
different M , it is found that tr could be greater or less than the relevant quasiequilibrium result, thus a
critical value M ±

c can be found in the nonlinear regime, where the superscript + (−) denotes positive
(negative) gravity. In Figs. 14(a) and 14(b) for Bi = 0, with M −

c = 5.35 and M +
c = −7.97 the tr =

5.288 and 8.421 coincide with the corresponding quasiequilibrium results in Fig. 5(a) and Fig. 9(a) of
Ref. [32]. Accordingly, one interesting remark about the dual role of volatility (proportional to K−1)
can be drawn. With |M | > |M ±

c |, the nonequilibrium effect destabilizes relative to quasiequilibrium
by the induced thermocapillarity that counteracts the intrinsic stabilization of K; with |M | < |M ±

c |,
the intrinsic stabilizing effect overcompensates the thermocapillary destabilization and gives rise to
a net stabilization. Chauvet et al. [12] provided relevant experimental verification and a physical
explanation on the opposite effects associated with volatility. Furthermore, the linear theory described
by Eq. (34a) predicts the quasisteady value M ±

c,s = ∓3 for a small K . The discrepancies from the
nonlinear results are due to mass loss being present here (though to a weak degree) and the interface
being far enough from equilibrium (K = 0.1) in the full nonlinear unsteady simulation.

Figures 14(a) and 14(c) show that M −
c = 6.29 for Bi = 0.5 is larger than M −

c = 5.35 for Bi =
0 by 17.6%; with Bi = 0.5, the tr for M = 1 and 10 are both greater than those obtained with
Bi = 0 by about 6.0%. Similarly, in Figs. 14(b) and 14(d), |M +

c | = 9.35 for Bi = 0.5 is higher
than |M +

c | = 7.97 for Bi = 0 by 17.3%, in good agreement with G < 0; for Bi = 0.5, the tr for
M = −10 and −5 are longer than those for Bi = 0 by 8.4% and 7.6%, respectively. The larger
|Mc| and longer tr (for the same M ) in both cases reflect the fact that thermocapillarity is less
effective for Bi > 0 because ambient cooling weakens the temperature variation along the interface,
a stabilization that the thermocapillary effect has to overcome to rupture the layers. This point has also
been indicated by Burelbach et al. [19] in the experiments with an actually evaporating silicone-oil
layer (e.g., h0 = 1.684 mm, k ≈ 0.6, and Bi = 0.11). Therefore, Eq. (25) should be more applicable
in predicting the pattern formation of finite-thickness evaporating layers for which the cooling effect
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FIG. 15. Influences of buoyancy on the case III evaporating layers lying on a substrate with K = 1, E = 0.1,
D = −0.1, M = −5, and Bi = 1. (a) Variation of 〈Nu〉 at tr with G . Squares are for l = 8π with a 181 × 181
mesh, circles are for l = 6π with a 171 × 171 mesh, and the markers are labeled with values of tr . (b) Line
integral convolution plot for the case with G = −0.2 and l = 8π at tr .

of the surroundings can play a stabilizing role. Furthermore, with |M | = 10, the 8.4% extension in
tr for G > 0 is larger than 6.0% for G < 0 due to the stabilization of gravity. The comparisons of tr
for |M | = 0 and 10 in each pair of cases with Bi = 0 or 0.5 reveal the stabilizing role of gravity as
well.

D. Effect of buoyancy on the evaporating layer with positive gravity

Before proceeding to the influence of buoyancy on profile evolution, we note that, for the case
of G > 0, Kimball et al. [43] showed that the buoyancy mechanism contributes to the instability
of evaporative convection and increases the liquid heat-transfer coefficient h

(l)
th . Thus, it is worth

considering its influence on heat transfer in a sessile evaporating layer. The heat flux at the solid-liquid
interface qw = −kthθz|z=0 = h

(l)
th (θw − θI ), whence h

(l)
th can be evaluated as

h
(l)
th = −kthθz|z=0

θw − θI

= −kth�z|z=0

�w − �I

, (39)

where �w = 1 and z = Z. Choosing the average thickness hav as the characteristic length, the local
Nusselt number is given by

Nu = h
(l)
th hav

kth
= −�z|z=0〈H 〉

�w − �I

, (40)

where 〈·〉 = l−2
∫ l

0

∫ l

0 dx dy(·) is defined as the average over the square domain. We then numerically
evaluate the average Nusselt number of the layer by

〈Nu〉 = 〈H 〉
l2

∫ l

0

∫ l

0

dx dy

H
= 〈H 〉〈H−1〉. (41)

As shown in Fig. 15(a), as the contribution of buoyancy increases, 〈Nu〉 tends to increase. The
trend suggests an increasing importance of convective heat transfer, which appears to be more
significant for a shorter l. The ridges become more obvious as warm fluids rise over the wide interior
of the polygons or rolls and collect along the cell partitions, where cooled surface liquid becomes
unstable and flows down to form evaporation convection. Meanwhile, tr is slightly shortened with an
increase in |G |. These reflect that the convection and heat transfer characteristics have been changed
when buoyancy takes effect in the unstable layer. Thus the buoyancy effect indeed contributes to
destabilizing the surface, although its influence on tr and deformation is much less than that of the
Marangoni effect within the Boussinesq approximation.

A representative example of the numerical flow is visualized in Fig. 15(b) by means of line
integral convolution [72]. The technique can generate a vector-field representation for the computed
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FIG. 16. Results for G < 0, K = 0.1, and D = 1 with a mesh of 201 points. Case I evolution with E = 0.05
is shown for (a) M = 1 and G = −0.2 or −0.3 at t = 1,2,3,4,5,6,6.5,6.8,7,tr and (b) M = 5 and G = −0.2
at t = 1,2,3,4,4.6,5,5.2,5.3,5.4,tr . (c) Rupture patterns of cases I and II with G = 0.

horizontal velocity of the interface from Eq. (26), convolved with an initially rasterized image of a
random pixel, to simulate the fluid motion with tracer particles by tracing streamlines with a certain
arc length over the entire surface. The convective pattern is a combination of irregular LW hexagons,
sinuous rolls, and polygons over the expanding valleys, which could be linked to the Marangoni,
buoyancy, and evaporation effects [4,9]. It is shown that the primary pattern is hexagonal-like since the
convection in the evaporating layer is dominated by the thermocapillary effect. The local smearing
near cell peripheries may be due to the insufficient vector length at the relatively narrow ridges.
Nevertheless, this analysis has a limitation of fixed parameters that prevents us from capturing a
possible transition between the patterns [4]. For example, supercriticality would decrease with t if
Ma had been calculated with instantaneous values of �θ (t) and h(t).

The flow patterns in Fig. 15(b), especially the vermiculated rolls, resemble closely that observed
by Zhang [9] in the evaporating R-113 layers with h0 = 1 mm and θw > θI , as can be seen in Zhang’s
Figs. 8(a)–8(c) and 10(c), where the flow was visualized by seeding with aluminum powders. The
wavelength of the hexagonal-like convection [24], λ6 = 3l6/2 ≈ 6.7, with l6 being the average side
length, is larger than the experimental result of λ6 ≈ 6 for the Bénard-type cells in 0.2- (0.32-)
mm evaporating R-113 layers (corresponding to case III without buoyancy) heated (cooled) below
[9]. This should be a buoyancy-driven response mode. It is therefore reasonable to infer that the
coexistence of polygons and rolls, the flow analysis for Fig. 11, and the larger λ6 with buoyancy effect
together give an indication of the LW Marangoni-Rayleigh-Bénard convection in the evaporating
layers with positive gravity.

VI. PROFILE EVOLUTION

We have considered time-dependent simulations with emphasis on ambient cooling, flow field,
and (2 + 1)D pattern formation. The subject of Sec. VI A is to understand the interfacial behavior
influenced by mass loss and buoyancy up to the first rupture. The resulting patterns motivate us
to investigate a hierarchical structure via successive ruptures in Sec. VI B stressing the interfacial
fractal in the absence of gravity and mass loss, as speculated recently in Ref. [51] in passing. Both sets
of studies include the essential evaporation effects of thermocapillary convection and vapor recoil.
Comparisons of the drop profiles in Secs. V and VI A with DCs in Sec. VI B suggest an imperfect
fractal due to mass loss and gravity.

A. Influences of buoyancy, thermocapillarity, and mass loss (G > 0 and G < 0)

We now focus on the effects of gravity combined with buoyancy, thermocapillarity, and mass loss
on the profile evolution that are seen more clearly in the (1 + 1)D simulation on a small domain [50]
of λ = 2

√
2π without ambient cooling (Bi → 0), where thermal energy transferred to the interface

through the liquid is converted entirely to latent heat. Equation (25) is solved in the (1 + 1)D version
with the IC (27a) for different G and M in cases I and II.
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FIG. 17. Results for G > 0, K = 0.1, and D = −1 with a mesh of 201 points. Case I evolution with
E = 0.05 is shown for (a) M = −1 and G = −0.2 or −0.4, corresponding to 0 � t � 11 with �t = 1 and
instants of 11.4 and tr , and (b)M = −5 andG = −0.2 at t = 1,2,3,4,5,6,7,8,9,9.4,9.7,9.8,9.92,tr . (c) Rupture
patterns of cases I and II with G = 0.

As shown in Figs. 16(a) and 16(b) for the case I evolution at G < 0, (i) the layer thins nearly
uniformly during the initial tr/3 as a result of mass loss and surface tension and (ii) the crest of the
elevated region first slightly sinks along with the flattening of the trough under Laplace pressure and
then grows quickly due to RTI [see the arrows aside Fig. 16(a)]. The rapid growth of new valleys is
attributed to the intensified local vapor thrust and thermocapillarity. The weak stabilizing effect of
buoyancy is revealed by Fig. 16(a), in which tr increases merely about 0.6% with a 50% increase in G
and the evolutions are almost identical, or by comparing the relevant results in Figs. 16(a)–16(c). For
example, with E = 0.05 and M = 1, tr = 7.200 for G = −0.3, which is longer than the tr = 7.081
for G = 0 by only 1.7%, and the rupture patterns are essentially the same. With an increase in
M , the evolution becomes more complex and tr is shorter, manifesting the destabilizing impact of
thermocapillarity, as can be seen in Fig. 16(b): (i) Small capillary ridges are generated and droplets
become higher, (ii) spreading of drained regions becomes more evident as the vapor recoil and
thermocapillarity are sufficient to enlarge the deformation, and (iii) with liquid pulled from the
depressions, the secondary drop and capillary ridge divide the previous valleys into two smaller
ones. The transition begins with the reversal of curvature sign at the troughs, where Marangoni
stresses together with vapor recoil prevail over the stabilization of capillary forces.

The differences between destabilizing and stabilizing gravity become transparent, if Figs. 16
and 17 are compared: For G > 0, regardless of whether buoyancy is present or not, only one big
droplet and a drained region fit the interval without an elevated region; also, tr remarkably increases,
because the hydrostatic pressure tends to fill the valley that the vapor thrust and thermocapillarity have
to overcome the flattening effect. For example, with E = 0.05, |M | = 1, and G = 0, tr = 11.575
is longer than 7.081 for G < 0 by 63.5%. Regardless of buoyancy, for a small M the interface
develops a shallow valley under positive gravity and surface tension; however, with an adequate M
one droplet can be trapped in the drained region and capillary ridges are generated whose crests even
exceed the level of the thick-film region. This reflects also that buoyancy plays a weak destabilizing
role in the interface for G > 0. As revealed by Fig. 17(a), the two evolutions are indistinguishable
except close to rupture and tr reduces only by 0.2% with |G | doubled from 0.2 to 0.4; also, we see, by
comparing the relevant results, e.g., with E = 0.05 and M = −5, that tr = 9.983 with G = −0.2,
which is earlier than 10.035 with G = 0 by merely 0.5%, and the rupture patterns are nearly the
same.

Figures 17(a) and 17(b) represent two typical evolutions. The first one is related to a small M ,
in which the layer thins almost uniformly during the early stage. The evolution is then accelerated
especially at the wavelength midpoint because the local vapor recoil and thermocapillary instabilities
dominate over the capillarity and gravity, according to our linear theory [see Fig. 6(d)]. The
valley eventually touches the substrate with zero contact angle in contrast to the sharp troughs
in quasiequilibrium [32]. The profiles of the drained region are similar to that observed by Orell
and Bankoff [68] with evaporating ethanol of h0 = 1.092 mm (see their Fig. 2). The second one is
associated with large M , divided into two stages with the boundary occurring at t = 9.4. The first
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stage is similar to the small-M case or a quasiequilibrium early evolution in Fig. 9(a) of Ref. [32],
suggesting that the initial stabilizations of gravity and capillarity are adequate but overcome by
vapor recoil and thermocapillarity later. The second stage starts with the flattening of the trough
whose curvature then reverses until rupture. From Fig. 17(b) one can identify (i) a shorter tr , (ii) the
emergence of well-defined capillary ridges, (iii) the broadening of the drained region that covers the
substrate with a thinning film, analogous to those found by VanHook et al. [7] using 0.05–0.25 mm
of silicone oil subject to a supercritical temperature difference [see their Figs. 3 and 5(c)], and (iv)
the thinning of the thick-film region being damped, as discussed in Sec. V B, to form a flattened
droplet.

As for the well-defined capillary ridges emerging with large M , explained by the flow field in
Sec. V B, there are two additional reasons related to the small E (∝E
0) of case I: (i) the fluid,
squeezed quickly to the rim of the thick-film region, overcompensates for the amount of local
evaporation (low E) and (ii) the replenishing flow causes a fast increase in local normal stresses
capable of deforming the adjacent interface under weak capillary pressure (small 
0). Furthermore,
for both cases at G < 0 and G > 0, there is no chance to develop the ridges in case II even with
a strong Marangoni effect, shown as dot-dashed lines in Fig. 16(c) and Fig. 17(c), caused by the
sufficient surface tension and evaporation rate under a moderate E . Therefore, an increase in E
suppresses the capillary ridges and droplets.

We now turn to the two reasons for the large-scale drained region. The first one, related to the
reduced vapor recoil, was explained in Sec. V B. The other is associated with the thermocapillarity
resulting from nonequilibrium. The viscous resistance within the depression becomes larger as it
thins down, while σ increases away from the trough along the lateral sides of valley. At an increasing
distance from the trough during evolution, the two forces can reach a dynamical balance, enabling
pressure to uniformize underneath the drained region and vapor recoil to push the rounded valley in
a distributed mode, thus the trough tends to expand. On the contrary, in quasiequilibrium [32] there
is no Marangoni stress to draw the fluid away from a valley that allows the localized vapor thrust to
cause the sharp rupture with the localized trough(s). To summarize, the evolution of the evaporating
layer is sensitive to the direction of gravity and depends strongly on E and M but not G .

B. Dissipative compactons and interfacial fractal

To relate the droplets with zero contact angle in a final profile to DCs, the buoyancy term can safely
be disregarded as compared to the thermocapillary effect. For case I, mass loss is less important and
is neglected for the moment. To alternatively support the conclusions about the gravity effect, we
further eliminate the gravity term. In the (1 + 1)D case, Eq. (25) thus reduces to

Ht + (H 3Hxxx)x + [H 2f J0(K|M | + |D |HJ0)Hx]x = 0, (42)

where the different algebraic signs in M and D have been unified [cf. Fig. 1(b)]. To seek the
touchdown steady-state symmetric localized solution [73] H = H (x) � 0 of Eq. (42), after the first
integral we arrive at [the constant of integration must vanish (see [73], Theorem 2.1)]

H H ′′′ + f (H )J0(H )[K|M | + |D |H J0(H )]H ′ = 0, (43)

where the prime denotes d/dx. The nonlinear ODE has a steady compact support solution with
maximum Hm = H (xm), nonvanishing on its support |x − xm| � ln < ∞ (n ∈ Z+),

x + c2 = ± 1√
2

∫ H (x)

1

{
c1χ − |D |J0(χ )

2(1 + BiK)
− (1 + BiK)

|M |
K

χ ln[χJ0(χ )]

}−1/2

dχ, (44)

where c1 = |D|J0(Hm)
2(1+BiK)Hm

+ (1 + BiK) |M |
K

ln[HmJ0(Hm)] and c2 = −xm ± 1√
2

∫ Hm

1 (·)dχ , with (·)
being the integrand in Eq. (44) for Hm > 1 and c2 = −xm for Hm � 1.

Here we demonstrate that the inverse-function solution in Eq. (44) represents a self-affine set
(see [74], p. 350) parametrized by Hm via comparing the numerical result of the time-dependent
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FIG. 18. Hierarchical DCs indicate the self-affine structure of Eq. (44). (a)–(c) Evolution ofH (x,t) illustrates
droplet formation for K = 1, |M | = 5, |D | = 0.1, and Bi = 0.1 using the IC (27a) with ε0 = 0.1. Lines
represent numerical results of Eq. (42) and circles show the corresponding DCs with Eq. (44). (b) and (c) show
close-ups of the imminent DCs in (a). (d) Plot of Ln and Hm versus 2ln.

simulation of Eq. (42) having local maxima H (n)
m to a hierarchical structure of DCs family with

Hm = H (n)
m , as shown in Figs. 18(a)–18(c). Equation (42) is discretized in [0,10) with 103 nodes

and solved with the numerical method presented in Sec. III B. To efficiently resolve the structure
on smaller scales as in Ref. [49], we iteratively delete the interval(s) occupied by the DC(n) formed
from the computational domain after rupture at trn and then impose the BCs and deploy the available
resolution for the still evolving intervening domain(s) via Eq. (44) until the next rupture at tr(n+1),
which enables us to capture up to DC(4). By this means we examine the transition as the period
decreases, which is distinct from the numerical continuation technique employed in Ref. [50] to
study the property of compact support solution as a function of period. The set of surviving intervals
constructs a Cantor-set-like fractal. The fractalization process can be described as consecutively
replacing the troughs between DCs by increasingly smaller stationary DCs into a hierarchical
structure. Theoretically, this process is continued ad infinitum.

To quantify the fractal properties, the functional relation between the distance Ln of two adjacent
DCs of nth and (n − 1)th orders and the support 2ln of DC(n), as well as that between Hm and 2ln,
are illustrated in Fig. 18(d). The results follow the power laws

Ln ≈ cL(2ln)mL (45a)

and

Hm ≈ cH (2ln)mH , (45b)

with cL ≈ 0.56, mL ≈ 3
2 , cH ≈ 0.28, and mH ≈ 8

5 . It is evident from Eq. (45b) that a self-affinity
extends over several scales similar to those observed in the Marangoni instability of nonevaporating
films [49,50]. As limn→∞ Ln

ln
= 0, multidrop branches in Fig. 4 of Ref. [50] together with their scaling

based on mean thickness indicate such a kind of self-affine structure as an array of drops separated
by dry spots. The fractal structure of droplets emerging from the evolutionary equation (42) agrees
well with the profiles obtained from Eq. (44) that possesses the property in Eq. (45b). This reveals
that Eq. (44) indeed represents self-affine solutions because self-affinity is a necessary condition for
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a fractal [74]. Therefore, the DC that inherently mediates the pattern formation can be identified as a
primitive element responsible for the hierarchical fractal structure. From the viewpoint of energy, the
fractal pattern of Eq. (42) originates from the growth of higher harmonics and is closely related to
the fact that the Lyapunov functional of Eq. (25) with E = 0 (cf. Appendix C) has a local minimum
on the DC.

In Figs. 7(c) and 10(c), we compare the numerically obtained profile having H (n)
m , n = 1,2, with

the corresponding DCs. It seems to be a reasonable approximation in the RTI case. The DC(2) deviates
from the numerical result in Fig. 7(c) since the secondary drop has not yet touched down. For G > 0,
DC(1) only approximates the lateral sides of the valley in Fig. 10(c). Under the stabilization of
positive gravity the duration is significantly longer (here tr,G>0 ≈ 2tr,G<0) and the big drop tends to
flatten and the valley to be filled such that higher harmonics have a chance to rapidly develop in the
later stage (see the physical explanation in Secs. V B and VI A). Another source of the difference
is mass loss, neglected in Eq. (44). The mass loss, together with the resulting earlier touchdown in
simulations performed at E > 0, feeds a lower Hm to Eq. (44) and thus a narrower DC [ln ∝ H 5/8

m ;
see Eq. (45b)]. The comparisons imply that the fractal is defective as a result of mass loss and gravity,
in contrast to the exact one obtained from Eq. (42).

As shown in Figs. 7 and 16 for G < 0 and Figs. 10 and 17 for G > 0, results for a small |M | reveal
that the interfaces rupture prior to the emergence of higher-order DCs; however, with an adequate
|M | and small Bi, a symmetric IC can evolve into a cascade of DCs of different amplitudes. After the
first rupture the solutions have compact supports and drops standing on thin films in Figs. 7(c) and
10(c). The partially coalesced states are not energetically favorable [26], thus there exists a tendency
to higher-order DCs (Fig. 18) which are more stable. The knowledge of the self-affinity of Eq. (44)
and the fractal properties in Eq. (45) suggests that rupture will occur successively at the base of
local higher droplets even with mass loss. For instance, in the insets of Figs. 7(c) and 10(c) the local
troughs can continue evolving and a secondary instability is expected at the local minima to bear
symmetric DCs of the next generation in finite time. This can also explain the transition between
Figs. 7(a) and 7(b). Finally, the instability of evaporating layers could lead to a dropwise fractal-like
pattern, as expected [49] in an experiment. The domain-excluding scheme can be further applied to
investigate the nonconserved system. Markedly, after the formation of lower-order DCs, they should
not remain of constant volume but continue evaporating and receding. The interfacial evolution could
be regarded as quasisteady based on its long time scale relative to touchdown and the DCs formed
can serve as local initial profiles. However, the evaporation dynamics of isolated droplets clearly has
to do with wettability and the contact condition (see, for example, Refs. [3,57,75]), which requires
a separate analysis.

VII. DISCUSSION AND CONCLUSIONS

We generalized the long-wave evolution equation to account for gravity combined with buoyancy
correction and ambient cooling in an evaporating layer. The interfacial or internal dynamics and
stabilities were examined with varying degree of thermocapillarity, buoyancy, and ambient cooling
under negative and positive gravity in three regimes: case I, for E = O(10−2) and D = O(1); case II,
for E = 0.1 and D = O(1); and case III, for E = |D | = 0.1. The (1 + 1)D and (2 + 1)D simulations
were carried out to characterize the instabilities, including tr and surface evolution, which might
reproduce the pattern formation in a quantitative way to make it possible to compare with further
experiments. Special emphasis was laid on evaporative convection and interfacial fractal. The physical
features of the interface and convection are in reasonable agreement with relevant experimental or
numerical results. The results could be significant for enhancement of heat and mass transfer. The
complexity and regularity of the patterns might be useful in the flow control technologies, where
evaporation and surface deformation are essential, such as deposition patterning by transport of
suspended (nano)particles in the volatile liquid films [3]. The large drained regions in evaporating
layers, attributed to thermocapillarity and vapor recoil, should be avoided in cooling applications.
Thus, it is important to sustain an unbroken layer of volatile liquid of large latent heat for cooling,

034001-31



TAO WEI AND FEI DUAN

for example, flowing down a slightly inclined surface [50] of a high-power density. The main results
are summarized as follows.

(i) There are few works in the literature on the nonlinear simulation of the coupled problem in
evaporating layers and a fortiori on the (2 + 1)D problem incorporating a comparison of positive and
negative gravity. Neglecting the other non-Boussinesq effects, the interface instability was found to
give rise to the LW Marangoni-Rayleigh-Bénard (LW Marangoni) convection for G > 0 (G < 0),
whose wavelength depends on the evaporation conditions and liquid properties (such as volatility and
β). The numbers of cells in both (1 + 1)D cases doubled with time. For case I the (1 + 1)D simulations
had an adequate |M | regardless of buoyancy: for G < 0 the main and secondary droplets and the
large dry regions formed along with trapped capillary ridges and for G > 0 the capillary ridges
emerged from either edge of the thick-film regions with another trapped in a single drained region.
These local bulges could be suppressed with a larger E or Bi. In the (2 + 1)D simulation of case III,
a random perturbation evolved into the large-scale drained regions separated by an irregular network
of ridges in both cases of G < 0 and G > 0, while the height scale was one order of magnitude
smaller in the latter. In the nonlinear regime, we identified the critical values of M , demonstrated
the dual role of K stated by Chauvet et al. [12], and showed that ambient cooling played a stabilizing
role by weakening thermocapillarity and vapor recoil.

(ii) The buoyancy played a weak destabilizing (stabilizing) role in rupture instability for G > 0
(G < 0), but made contributions to the large-scale convection and heat transfer. Specifically, for case
III the average Nusselt number increased with |G | and the hexagon wavelength with buoyancy effect
was larger than that of the evaporative convection experiment [9] with negligible buoyancy. A study
similar to the RTI case was performed in Ref. [28] but without buoyancy.

(iii) Even with moderate and strong vapor thrust, the rupture patterns featured the sessile or pendent
drops with zero contact angle and wide troughs, in contrast to quasiequilibrium cases [31,32]. When
mass loss and gravity were absent but vapor recoil was present, a dissipative compacton [49] could
describe the drops. Besides a similar power law for the dry regions [49], we extracted an additional
one, Eq. (45b), to characterize the complex fractal property of the droplets. It was confirmed that the
DC having a nontrivial (in the sense of compactness) self-affinity acted as a primitive element of the
hierarchical pattern. It should also appear in our nonconserved system with nonlinear dissipation.
The fractalization process, however, could be defective as a result of mass loss and gravity, which
imposed restrictions on experimental conditions for verification (such as ambient pressure, volatility,
and liquid thickness).

(iv) The time-dependent LSA suggested that rupture instability was reinforced by the vapor
recoil. The quasisteady analysis yielded a critical modified Marangoni number for small K , M ±

c,s =
3(D − 1

20G ), relative to the quasiequilibrium case. Linear stability analysis for the general cases
with Bi > 0 has been performed using the frozen-time approach to distinguish the influences and
interactions of various mechanisms. For relatively small Ma, there was a critical thickness above
which the interface was stable with G > 0. The stabilization of ambient cooling was significant only
far enough from quasiequilibrium and enhanced with E. Its implications were thus assessed with
K � 0.1 in the nonlinear simulations.

(v) We forecast a neutral locus [Eq. (34b)] for the onset of large cellular convection in a sessile
layer, reminiscent of the thresholds M0

c = 48 and R0
c = 320 in the respective pure LW instabilities

without evaporation [62,63]. The thresholds differed from those found by Nield [14] in the short-
wave instability Mc/M

0
c,SW + Rc/R

0
c,SW ≈ 1, where M0

c,SW = 79.6 and R0
c,SW = 669.0 with k ≈ 2 at

Bi → 0. As in Fig. 3(b), at each value of G , the layer was unstable above the corresponding line Ob;
as G decreased, the stability region was enlarged from A2D2O via A1D1O to A0D0Ox. According to
Eq. (34b), Mc decreases as Rc increases, thus these two instability mechanisms reinforce each other.
This described a balance between the energy supplied by vapor recoil, buoyancy, and Marangoni
stresses and the kinetic energy dissipated by viscosity. It also revealed the destabilizing effect of vapor
recoil. That is, both critical values at the onset of respective convection instabilities were reduced by
a factor of 1

48 Ga|D | being of O(10−2–1).
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(vi) We showed (in Appendix C) that with a special form of the nonconserved part, Eq. (C1)
could be written as a gradient dynamics (C6) in terms of the variation of an appropriate Lyapunov
functional. In other words, for some forms of evaporation term, the variational principle not only
exists but also is a Lyapunov functional. Thus the computational advantage of the variational principle
remained. Besides its higher computational accuracy [55] as compared to standard lubrication
models, an important implication of the form was that a nonconserved dissipative system that was
out of equilibrium might still follow a gradient dynamics. Such a variational structure also precluded
oscillatory solutions, thus no primary or secondary bifurcations to traveling or standing waves could
occur [50].

For an evaporating layer, it would be interesting also to study the interaction between the
SW convection, in either the Bénard-Marangoni [20–22] or Rayleigh-Bénard mode, and the LW
deformation, especially when the instability thresholds are close to each other. The onset of LW
instability can further be compared with that of the corresponding SW version to decide whether the
coupling of the two modes is pronounced. Such an investigation requires a system of two coupled
evolution equations, one for the amplitude of the SW mode and the other for the surface deformation,
to be derived with a (weakly) nonlinear analysis, which is left for future investigation.

Concerning the question of the possibility of violating the Boussinesq approximation when adding
surface deformation and neglecting the other non-Boussinesq effects, one noted the following. (i) The
LW theory can describe the interface evolution close to rupture [1,2,31,54]. The instability, governed
by an evolution equation, always results in deformation on the order of mean thickness. Therefore,
at leading order, it is reasonable to assume that the deformation can be much more significant than
the other non-Boussinesq effects (e.g., variable fluid properties with temperature). (ii) The values
of parameters have been chosen such that |Ra| � |Ga| [23] or, equivalently, 1

3 |G | � 1. With these
in mind, the validity of the Boussinesq approximation can be ensured. However, when a simulation
based on the assumption is compared with experiment for a liquid whose thermophysical properties
are not strictly constant, deviations may arise from the non-Boussinesq contributions, which usually
come from the temperature dependence of viscosity [5]. Finally, as in our case study, buoyancy along
with the Boussinesq approximation can be left out by setting Ra = 0 or G = 0.
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APPENDIX A: BASIC STATE

The O(1) basic state of Eqs. (10)–(14) can be obtained with the similar method in [31],

H̄ (T ) = {−K + [(1 + K + BiK)2 − 2(1 + BiK)ET ]1/2}(1 + BiK)−1, (A1a)

J̄ (T ) = [(1 + K + BiK)2 − 2(1 + BiK)ET ]−1/2, (A1b)

�̄(Z,T ) = 1 − (1 + BiK)J̄Z, (A1c)

P̄d (Z,T ) = 3
2E2D−1J̄ 2 + GH̄ − 1

2 Gr(H̄ − Z)[(1 + BiK)(H̄ − Z) + 2K]J̄ , (A1d)

where the dimensionless dynamic pressure P̄d = P̄ + � is introduced for buoyancy-driven flow.
Equation (A1) describes a time-dependent stationary thinning layer with a flat interface. With
G,Gr,Bi → 0, it reduces to the basic state in Ref. [31]. The physical properties of water and relevant
parameters are provided in Table II for the presentation of basic-state behaviors and the further
calculation. Here we set K = 0.06 and Bi = 10 for illustration. As discussed in Sec. II and Ref. [57],
K could be regarded as a reciprocal of interfacial Bi associated with evaporation and a greater value
would be reached with a smaller a [28].
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TABLE II. Physical properties [76] and evaporative
parameters for water at 101.325 kPa and corresponding
θs with �θ = 10 K, a = 1, and h0 = 10−3 m.

Parameter Value

θs (K) 373.12
Mw (g mol−1) 18.02
ρ,ρg (kg m−3) 958.37,0.5977
σ0 (mN m−1) 58.917
γ (mN m−1 K−1) 0.180
ν (cm2 s−1) 2.941 × 10−3

β (K−1) 7.505 × 10−4

cp (J kg−1 K−1) 4215.6
kth,kth,g (W m−1 K−1) 0.6791,2.509 × 10−2

L̃ (kJ kg−1) 2256.5
D 9.35 × 10−4

E 0.011
K 8.66 × 10−5

Pr 1.75

For K = 0 with Bi → 0, H̄ = (1 − 2ET )1/2 vanishes at evaporation time Te = 1
2E

with velocity
H̄T |T =Te

→ −∞; J̄ = (1 − 2ET )−1/2 increases from unity to infinity as T → Te due to the
constant temperature difference across the thinning layer, �̄w − �̄I = 1 [see Figs. 19(a)–19(c)].
The singularities and nonuniformities of the solution (A1) are as follows: (i) J̄ → ∞ as T → Te, (ii)
P̄d depends directly on vapor thrust, and (iii) quasisteady �̄ cannot satisfy an arbitrary IC. However,
it is expected that disturbances evolve much faster than the basic-state vanishing, thus the late-time
singularities do not hinder our analysis [31]. As T → Te, the inertial effect, required to be small
by LW theory, is significant as higher-order terms become important, which will be resolved by the
terminating criterion in our numerical method (see Sec. III B).

When K > 0 and finite, H̄ vanishes at Te = 1+2K
2E

with finite velocity H̄T |T =Te
= − E

K
for Bi → 0

and at Te = 1+2K+BiK
2E

with the same velocity for Bi > 0, as in Fig. 19(a). Comparing the two Te, one
notices that, in addition to latent heat consumption, the latter contains the effect of the ambient cooling
and thus takes more time to vanish. With Bi → 0 or Bi > 0, J̄ increases from J̄1 or J̄2 at T = 0 to
K−1 at Te [see Fig. 19(b)] and singularity again occurs since the layer has already disappeared at Te.
In addition, �̄w − �̄I decreases from ��2 and ��1, respectively, for Bi → 0 and Bi > 0 at T = 0
to zero at Te [see Fig. 19(c)] and ��1 > ��2 again results from ambient cooling. If K → ∞, J̄ = 0

FIG. 19. Generalized basic-state behavior for (a) H̄ , (b) J̄ , and (c) �̄w − �̄I . In (b) and (c) time is scaled
with Te. In (b) the horizontal dotted line corresponding to K−1 denotes the value of J̄1,2 at T = Te.
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and the thickness remains unity [see Figs. 19(a) and 19(b)]; with, in addition, Bi → 0 the surface
is insulating and heat conduction is fast enough that the film is isothermal; with Bi > 0 the ambient
cooling gives rise to a steady-state temperature difference of ��3 [see Fig. 19(c)].

APPENDIX B: LEADING-ORDER SOLUTION OF RESCALED GOVERNING SYSTEM

Here we detail the O(1) solution leading to Eq. (21). First, we find the evaporative flux and
temperature profile by integrating Eq. (19) subject to �0 = 1 and Eqs. (20b) and (20e),

J0(ξ,τ ) = [K + (1 + BiK)H ]−1, (B1)

�0(ξ,ζ,τ ) = 1 − (1 + BiK)[K + (1 + BiK)H ]−1ζ. (B2)

Then �I = [1 + (Bi + K−1)H ]−1. This reflects the influences of deformation, nonequilibrium, and
convective and conductive heat losses on �I , which will be lower than that of the model with kth,g

kth
→ 0

due to additional ambient cooling that can increase the temperature difference across the layer, thus
favoring buoyancy convection. Interestingly, the coefficient (Bi + K−1) appears to coincide with
the effective Biot number Bieff = αIk in Ref. [12], if ps(θI ) = ρgRgθI /Mw. This also makes the
physical meaning of K̃ more explicit and confirms the effectiveness of the interfacial energy balance
described by Eq. (20b). Solving Eq. (17) with Eqs. (20c), (B1), and (B2), one obtains the pressure
profile

P0 = 3
2 Ē2D̄−1J 2

0 − 3
̄0Hξξ + Ḡ(H − ζ ) + R̄ Pr−1(H − ζ )
[

1
2 (H + ζ )f − 1

]
. (B3)

Equation (B3) consists jointly of vapor recoil and Laplace (or capillary) pressure on the free surface,
as well as the effects of hydrostatic pressure and buoyancy in the bulk. Substituting it into Eq. (16)
and integrating in ζ , one finds the x component of velocity as

U0 = �
(

1
2ζ 2 − Hζ

) − 1
6 R̄Pr−1fξ

(
1
4ζ 4 − H 3ζ

) + 2M̄Pr−1(Hf )ξ ζ, (B4)

with � = −3Ē2D̄−1Hξf J 2
0 − 3
̄0Hξξξ + (Ḡ − R̄ Pr−1)Hξ + 1

2 R̄ Pr−1(H 2f )ξ . For the evolution
equation, one dose not need to find z-component velocity, while it can be obtained readily by
integrating the continuity equation in ζ to visualize the flow field,

W0 = −�ξ

(
1
6ζ 3 − 1

2Hζ 2
) + 1

2�Hξζ
2 + 1

12 R̄Pr−1fξξ

(
1

10ζ 5 − H 3ζ 2
)

− 1
4 R̄Pr−1H 2Hξfξ ζ

2 − M̄Pr−1(Hf )ξξ ζ
2. (B5)

Then a stream function ψ can be presented with the primitive variables

ψ(X,Z,T ) = �
(

1
6Z3 − 1

2HZ2
) − 1

12 GrfX

(
1

10Z5 − H 3Z2
) + Ma Pr−1(Hf )XZ2. (B6)

Taking ζ = H in Eq. (B4), we obtain the horizontal liquid velocity on the interface,

UI0(X,T ) = 1
2H 2

[
3E2D−1HXf J 2

0 + 3
0HXXX − (G − Gr)HX − 1
2 Gr(H 2f )X

]
+ 1

8 GrfXH 4 + 2 Ma Pr−1(Hf )XH. (B7)

In Eqs. (B6) and (B7) the substitutions (Ē,D̄,
̄0,Ḡ,R̄) → (E,D,
0,G,Ra) and (ξ,ζ,τ ) → (X,Z,T )
are made. With these solutions, all the flow-field variables are related to H . Finally, one substitutes
Eqs. (B1) and (B4) into Eq. (18) to obtain Eq. (21).

APPENDIX C: GRADIENT DYNAMICS FORM OF EVOLUTION EQUATION

Here we discuss the related issues for the variational structure of an evolution equation,
which are of fundamental interest and have been studied in Refs. [3,77,78] for volatile cases and
Refs. [25,35,50,55,61,67,73] for nonvolatile cases, following Mitlin [79], who first put a dewetting
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film equation in the latter case into a gradient dynamics form. Now consider the general form

Ht = −∇1 · [H 3∇1P(H )] − J , (C1)

where J is the generalized evaporation flux, J = E J0 in Eq. (25), and the generalized pressure
P(H ) = ±I (H ) + ∇2

1H [+ (−) for G < 0 (G > 0)] with

I (H ) = H + M (1 + BiK)

[
J0 + 1

K
ln(HJ0)

]
− D

2
J 2

0 + 11

120
G

(
H − K2J0

1 + BiK

)

− 3

20

KG ln J0

1 + BiK
+ I0,

in which the integration constant I0 is regarded as a pressure bias that in dimensional form could
be related to the vapor pressure. Equation (C1) will be subject to periodic BCs on the domain
[0,lx) × [0,ly). We study only situations with a physical thickness of H � 0. Multiplying (C1) by
P and integrating by parts, one obtains the rate of dissipation

dF

dt
= −

∫ lx

0

∫ ly

0
H 3‖∇1P‖2dx dy + E

∫ lx

0

∫ ly

0
J0P dx dy, (C2)

where F [H ] = ∫ lx
0

∫ ly
0 [−V (H ) + 1

2‖∇1H‖2]dx dy is an energy functional, incorporating the
surface energy of the curved free interface (due to surface tension) and the “potential” energy

V (H ) = ±
∫

I (H )dH = ±
[

1

2
H 2 + (1 + BiK)M

K
H ln(HJ0) + DJ0

2(1 + BiK)

+ 11

240
G H 2 − 3

20

KG H

1 + BiK
(1 + ln J0) − 7

120

K2G ln J0

(1 + BiK)2
+ I0H

]
. (C3)

Here V (H ) includes component energies associated with gravity, Marangoni stress, vapor recoil,
and buoyancy; the last linear term accounts for an energy offset towards the liquid or gas phase;
and the arbitrary constant of integration is set to zero without loss of generality. It is noted that
limH→∞ |V (H )| = ∞ and limH→0 |V (H )| = 1

2(1+BiK) [
D
K

+ 7K2G ln K
60(1+BiK) ].

To write Eq. (C1) as gradient dynamics, we let E = 0 (mass conserved) since J = E J0 breaks
such a structure [3] and then recast it into a CH type [80] in the context of pattern formation in liquid
layers (see, e.g., Refs. [25,28,35,79]), although with a different potential,

Ht = ∇1 ·
[
Qc(H )∇1

(
δF

δH

)]
, (C4)

where Qc(H ) = H 3 is the mobility function for the conserved part, the first variation δF
δH

= −P .
As dF

dt
� 0, F is a Lyapunov functional for Eq. (C1) with E = 0. We next incorporate two relevant

forms of the nonconserved part used in the literature.
(i) Motivated by the evaporation term in Refs. [3,53,75], e.g., Eq. (12) in Ref. [3], we consider a

special case of the variational-form flux Ja = E J0
δF
δH

, which is expected in the case of evaporation
limited by the phase transition at the interface. Equation (C2) then becomes

dF

dt
= −

∫ lx

0

∫ ly

0
H 3‖∇1P‖2dx dy − E

∫ lx

0

∫ ly

0
J0P

2dx dy � 0 for E � 0. (C5)

The interface thus evolves monotonically in such a way that F is strictly nonincreasing in t towards
its minimum. This confirms the flux Ja with E > 0 to be consistent with the energy functional
underlying the conserved part of the dynamics. Further, Eq. (C1) can take a gradient dynamics form

Ht = ∇1 ·
[
Qc(H )∇1

(
δF

δH

)]
− Qnc(H )

δF

δH
, (C6)
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where Qnc(H ) = E J0 is the mobility for the nonconserved part and the contribution of vapor pressure
I0 has been incorporated into F [78]. It should be mentioned that the physics included in Ja here
is very different from the model by Ajaev and Homsy [75], although they look the same. In the
latter, only capillarity and wettability enter evaporation, however, our Ja includes the influences of
curvature, thermocapillarity, gravity, and vapor recoil on the local pressure, but not wettability since
the liquid layer is thick compared to the range of disjoining pressure [28,50,54]. While when E < 0
more complicated dynamics can arise, as suggested by Eq. (C5), F is no longer guaranteed to be
monotonically decreasing. Equations (C5) and (C6) fall within the general framework in Ref. [77].

(ii) With Jb = E (H − 1), a simplified functional F [H ] = FGL[H ] + Fev[H ] for an extended
CH equation, showing nonlinear behaviors similar to a reduced version of Eq. (C1), has been stated
in Eq. (13) of Ref. [28], with the Ginzburg-Landau free energy FGL and a simplified potential Fev

accounting for mass loss [28]. The evaporation term is a distributed influx or outflux modeled by
a point charge, which allows the system to remain permanently out of equilibrium. The dispersion
relation in Ref. [28] is qualitatively different from that of Eq. (C6) (see Fig. 4 in [77]). Consequently,
the special simplified model cannot be written in the form of Eq. (C6) with the same F in both
terms. That is, it is not a gradient dynamics.

For Eq. (C1) (even in a reduced version) with a more general nonconserved part whether the
gradient dynamics approach can be extended to systematically incorporate such a flux is still an
open question [77,78]. We conjecture that if possible the underlying Fev[H ] could take a more
sophisticated nonlocal form, because the evaporative flux could be a nonlocal function of the whole
interface configuration.

Finally, we restrict ourselves to the conserved system. If a stationary solution of Eq. (C4) exists,
it must minimize F and obey the mass conservation condition

∫ lx
0

∫ ly
0 H dx dy = lx ly . This solution

could be found by minimizing the modified functional

L [H ] =
∫ lx

0

∫ ly

0

[−V (H ) + 1
2‖∇1H‖2 + λLH

]
dx dy, (C7)

where λL is the Lagrange multiplier. This means that the stationary solution should satisfy the
Euler-Lagrange equation for L [H ],

∇2
1H + VH − λL = 0. (C8)

This is equivalent to searching for the steady-state solution of the dynamical system Ht = ∇2
1H +

VH − λL(t), where mass conservation is imposed by λL(t) = (lx ly)−1
∫ lx

0

∫ ly
0 VHdx dy. Therefore,

the solutions of Eq. (C8), obtained by numerically solving the time-dependent problem as t → ∞,
are not only stationary solutions of Eq. (C4) but also stable nonrupture, if two conditions are met:
(i) ±V (H ) has a lower bound [+ (−) for G < 0 (G > 0)] and (ii) ±V (H ) attains a minimum at
H > 0. Note that if one is only concerned about the localized stable stationary nonrupture (SSNR)
states instead of the transient behavior of the system, the constrained optimization problem is more
numerically efficient than solving Eq. (C4).

Figure 20 shows the typical structure of potential ±V with I0 < 0 for different values of M and
D . The curves may have two minima if |M | ∈ (Ml ,Mu), where Ml and Mu are parametrized by
K , G , D , Bi, and I0 [e.g., in Fig. 20(a) when 0.83 < |M | < 5.6 for D = 1], one global minimum
achieved at a finite H if |M | < Ml , or one global minimum at H = 0 if |M | > Mu. With the given
parameters, it is found that the conditions (i) and (ii) are met if 0 < |M | < 5.6 and 0 < |M | < 3
for |D | = 1 in Figs. 20(a) and 20(b), respectively. The potential well allows the existence of SSNR
solutions which lie in its basin of attraction; if disturbed slightly, they can be restored at the bottom.
Physically, we demonstrate that from Fig. 20(a) the destabilizing effects of RTI and vapor recoil
can be suppressed by the adequate stabilizing effect of thermocapillarity in the case of a condensing
layer hanging from a cooled substrate and that from Fig. 20(b) the destabilizations of vapor recoil
and thermocapillarity can be balanced by hydrostatic pressure in the case of an evaporating layer
lying on a heated substrate, while spontaneous rupture should not be surprising in the evaporation
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FIG. 20. Potential energy for K = 0.1, |G | = 0.2, Bi = 0.5, |D | = 0.2 (dashed line) or 1 (solid line), and
different values of M showing global and local minima: (a) V (H ) for condensing layers hanging from a cooled
substrate (D,G > 0) with I0 = −1 and (b) −V (H ) for evaporating layers lying on a heated substrate with
I0 = −3. The horizontal dotted lines indicate the potential wells for several curves.

simulation because of the additional mass loss. Furthermore, the order-of-magnitude variation in the
vapor recoil effect is only significant for |V (H )| as H → 0. The minimum at H = 0 suggests that
the solution is in the form of drops separated by “dry spots”. In addition, the value of I0 (which may
be greater than, less than, or equal to zero) depends on the dynamics of the system and BCs. We take
the a priori values to explain the possible structures of V and no attempt is made to determine I0 in
the brief discussion.
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