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The interactions between vortex tubes and magnetic-flux rings in incompressible
magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers,
and over a wide range of the interaction parameter. The latter is a measure of the turnover
time of the large-scale fluid motions in units of the magnetic damping time, or of the
strength of the Lorentz force in units of the inertial force. The small interaction parameter
results, which are related to kinematic turbulent dynamo studies, indicate the evolution
of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is
also observed at intermediate interaction parameter values, only now the Lorentz force
creates new vortical structures at the magnetic spiral edges, which have a striking solenoid
vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At
high interaction parameter values, the decisive physical factor is Lorentz force effects. The
latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex
tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn,
two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the
vorticity and magnetic field structures are similar. The effects of these structures on kinetic
and magnetic energy spectra, as well as on the direction of energy transfer between flow
and magnetic fields, are also indicated.

DOI: 10.1103/PhysRevFluids.3.033701

I. INTRODUCTION

Turbulence in fluids is a key problem in classical [1], statistical [2], quantum [3,4], and
relativistic [5,6] physics. In contrast to random and Gaussian fluctuations, turbulence is characterized
by nonequilibrium, interscale energy transfer processes, which in (incompressible fluids) give rise to
non-Gaussian fluctuations, as exemplified by the nonvanishing third-order structure function of the
main dynamical field, the flow velocity [7,8]. Perhaps an even more striking characteristic of turbulent
chaos is the key physical role of the curl of velocity, i.e., the flow vorticity. The latter is characterized by
coherent (metastable) structures (tubes and sheets), which are an example of spontaneous dynamical
long-range order [9], and are embedded amidst regions of fluctuating, smaller magnitude vorticity.
The dynamics of coherent vortical structures contribute heavily to the statistical phenomenology of
turbulence (e.g., there is an association between vortex stretching and energy cascade), yet, due to
the analytical intractability of the strong turbulent nonlinearity, it has not been possible until now
to analytically understand their key interactions and, via averaging, to incorporate the latter into the
various statistical theories of turbulence. Another important characteristic of incompressible fluids is
the absence of any wave phenomena, since (by default) there are no sound waves in the system. The
above discussion applies to the hydrodynamics of classical (potential) field theories, e.g., particle
systems interacting via the Lennard-Jones force, where the force-potential does not appear explicitly
in the hydrodynamics (albeit hidden within the fluid stress tensor). This feature is not necessarily
a consequence of the potential character of the interaction force, and indeed the hydrodynamics of
chromodynamic plasmas [10,11] can also be modeled as relativistic fluids, without any reference
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to the microscopic, relativistic gauge field. It is in this context, that the study of electrodynamic
plasmas [12] becomes a very interesting area of turbulence theory, since (a) the gauge (magnetic)
field explicitly appears in the hydrodynamics [hence, magnetohydrodynamics (MHD)], and, via
its convection by the velocity field, becomes turbulent, developing coherent structures of its own.
Thus, it is conceptually important to understand the interactions between structures in the gauge and
inertial fields, and the way these can help understand (in a structural way) some of the complexity
of turbulent chaos, (b) the presence of the Lorentz force in the Navier-Stokes equations enables the
depiction of wave phenomena in the latter (Alfven waves), which lead to novel (in comparison with
incompressible turbulence) phenomenology, such as the propagation of transverse inertial waves
along magnetic field lines.

In standard textbooks [13], the kinematic analogy between velocity and vorticity on the one
hand and magnetic field and current on the other is stressed. However, from the dynamic point
of view, it is better to draw an analogy (in the indicated order) between the three inertial fields
(u,ω,ξ ), where u is the flow velocity, ω = ∇ × u is the flow vorticity, and ξ = ∇ × ω is the flow
palin-vorticity, and the three gauge theoretic fields (A,B,J), where A is the electromagnetic vector
potential, B = ∇ × A is the magnetic field, and J = ∇ × B/μ is the electric current (and μ the
permeability of free space). In this way, B corresponds to ω. Indeed, B obeys a similar equation with
that of ω, which allows for local evolution that preserves any structural field aspects, in opposition to
u that is subjected to nonlocal pressure effects that destroy coherent velocity patterns. This analogy
holds in the definitions of quantities like kinetic helicity HK = u · ω, the corresponding magnetic
helicity HM = A · B, and cross helicity HC = u · B, but it is not complete since, for example,
in the Navier-Stokes equation, the Lamb force term ω × u would have been paired with a term
B × A, while, instead, the Lorentz force J × B appears. This difference in form reflects upon more
fundamental physics differences, since the Lamb force (been part of the inertial force) is conservative,
and responsible for the generation of the complexity we call turbulence, while the Lorentz force
simply smooths out turbulent motions via the J2/σ term (and governs energy transfer between
magnetic and velocity fields via the J · E term). Moreover, it is important to note that, although the
transport of B is similar to the transport of ω, the evolution histories available to B are a superset of
those available to ω, since ω is the curl of the convective field that does the transport, a constraint that
does not bind the dynamics of B. Having in mind these (important) caveats, in this article, we employ B
and ω as the most appropriate pair of gauge and inertial fields whose structural interactions can lead to
a “synthetic” understanding of more complicated MHD turbulence processes. In doing so, we follow
a long tradition in turbulence theory [14–17], that is complementary to other statistical approaches
[18,19]. Inspired by fully resolved Navier-Stokes turbulence results, we choose a straight vortex tube
as a rough model of turbulence structure. Indeed, as shown in Fig. 1 (left), the isosurfaces of enstrophy
in homogeneous, isotropic, Navier-Stokes turbulence of Taylor Reynolds number Reλ ≈ 100 show
many linear structures of weak curvature. Moreover, calculations of MHD turbulence [20] have
indicated the importance of interactions between strong vortex tubes and magnetic flux tubes, having
the latter wrap around the former, increasing their curvature. Employing vortex dynamics methods,
Ref. [21] have explicitly depicted similar processes in a kinematic turbulent dynamo computation,
which analyzed the effect of filamentary vorticity structures on a seed, random magnetic field. It
was shown, that the magnetic field intensifies in between the vortex filaments, and, as it forms thick,
ribbonlike structures, it is wrapped around them. Although interactions between straight ω and B tubes
are important, we choose here to study magnetic-flux rings, since, the latter introduce (all important)
curvature effects, as recognized in earlier publications [22]. Magnetic rings are key MHD structures.
Indeed, Ref. [23] suggested that rings produced by the collision of two solitary magnetic kinks along
a straight magnetic flux tube play a role in solar flare formation, and Ref. [24] have computed the
dynamics of linked magnetic rings to determine the role of magnetic helicity in magnetic field decay.
For the case of magnetic tangles/knots with zero net magnetic helicity, Ref. [25] have shown that
such structures are unstable, and split into two packages moving in opposite directions, each with
finite and opposite magnetic helicity.
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FIG. 1. Left: Vorticity magnitude isosurfaces at level equal to 0.38 times its maximum value, for a
homogeneous, isotropic, incompressible Navier-Stokes turbulence at Taylor Reynolds number Reλ ≈ 100.
Results taken from an accompanying incompressible (non-MHD) turbulence calculation. Although sheetlike
structures are present, we predominantly see linear vortices. Right: The initial configuration consists of a straight
vortex tube, and a magnetic-flux ring, in a periodic box. Both isosurfaces correspond to levels equal to half of
the corresponding maximum field-magnitude values.

In a more general turbulence context, tubes and rings are examples of coherent structures.
The latter have been intensively studied in MHD turbulence, including their generation via flow
instabilities [26], their detection [27], the role of compressibility in their dynamics [28], as well as
their effects on stochastic particle acceleration [29], and energy dissipation [30]. One of the goals
of the present investigation is to help understand better these findings of fully resolved turbulence
calculations, by modeling coherent structures explicitly, and with fine resolution, so that it would be
possible to identify some of the complex phenomenology of turbulence within the present explicit
flow patterns. Our initial conditions are nonhelical, and our magnetic Prandtl number (Prm = ν/λ,
where ν is the kinematic viscosity and λ the magnetic diffusivity) is unity, hence the results are
related to nonhelical, unity Prandtl number turbulence calculations [31] showing organization of the
magnetic field in the form of flux tubes and magnetic sheets. Coherent structure studies with large
Prm values would relate to corresponding turbulence computations [32] and could be performed in
the future.

II. MATHEMATICAL MODEL

We analyze the standard (non-Hall [33]) incompressible MHD system, which includes the fluid
momentum equation,

∂u
∂t

+ ∇
(

p

ρ
+ u · u

2
+ B · B

2ρμ

)
− u × ω − 1

ρμ
(B · ∇)B − ν∇2u = 0,

the equation for the magnetic field transport,

∂B
∂t

+ (u · ∇)B − (B · ∇)u − λ∇2B = 0,

and the two elliptic constraints, ∇ · u = 0 and ∇ · B = 0, that enforce the solenoidal character of
u and B. Here, p is the fluid pressure field, and ρ is the fluid density. Notably, the above system
could be neatly written in terms of the “velocity” B̃ = B/

√
ρμ. In the following, we shall denote

(for example) by J̃ or �̃, electrodynamic quantities incorporating the above scaling for B. It is also
helpful to write the transport equation for ω,

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u − 1

ρ
[(B · ∇)J − (J · ∇)B] − ν∇2ω = 0,
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where, we observe that the reaction of the magnetic field on the fluid introduces an electrodynamic
term ∇ × (J × B), that can act as a vorticity source, differentiating, in this way, the ω and B evolution
laws. The ω and u fields are kinematically related via the Poisson equation,

∇2u + ∇ × ω = 0.

It is helpful to note that, under reasonable boundary conditions (that include periodicity), the V∞
integrals of the kinetic, magnetic, and cross helicities (defined above) are inviscid invariants in
MHD. Hence, in the viscous calculations presented here, they are expected to vary on the diffusion
timescales only, since their values are conserved by convective motions [12,18,34]. An intuitive
understanding of helicities as inviscid invariants follows from the facts that HK,HM,HC inform
about the self-linkage or knottedness (topology) of vortex, magnetic or vortex and magnetic tubes
correspondingly, and that vortex and magnetic-field lines have a “frozen-in” character in ideal flows.
Indeed, since topological change occurs via flux-tube reconnections that rely on viscous action to
allow the vortex and magnetic lines to “slip” relative to the velocity field, it follows that the “frozen-in”
lines of ideal hydrodynamics have no means of altering their topology, hence their helicities ought
to be preserved. In other words, helicity plays the role of a topological charge [35,36].

Finally, we define (a) the flux of vorticity along a vortex tube �,

� =
∫

ω · dS =
∮

u · dl,

where the first integral is over the cross sectional area of a vortex tube, and the second integral (which
follows from Stokes Theorem) is the circulation of u around the tube, and (b) the magnetic flux along
a magnetic-field tube �,

� =
∫

B · dS =
∮

A · dl,

where the first integral is over the cross sectional area of a magnetic tube, and the second integral
(which follows from Stokes Theorem) is the circulation of A around the tube. � and � are going to
be referred to as “tube strengths” in the following.

III. SOLUTION METHODS

The (strongly nonlinear) mathematical model is solved via a staggered grid, fractional step,
projection, finite volume method [37,38]. A book-length discussion of the method is available in
Ref. [39]. All spatial partial derivatives are computed with second-order accurate schemes. The
method employs an explicit, third-order accurate in time, low-storage Runge-Kutta (RK) method for
the computation of advective and source terms. An implicit, second-order accurate in time Crank-
Nicolson (CN) scheme is applied to the viscous and diffusion terms. Since CN scheme is implicit
and the boundary conditions are periodic, the method requires the solution of cyclic-tridiagonal,
linear algebraic equation systems. We have used the Sherman-Morrison formula to reduce the latter
to much easily solved tridiagonal systems. The CN scheme is incorporated into the RK steps and the
method becomes a hybrid RK-CN scheme. In other words, the viscous stress terms are advanced via
the CN scheme, but within the three Runge-Kutta time substeps rather than in one large time step.
In the method, the sum of fluid p and magnetic B·B

2ρμ
pressures define an effective pressure whose

gradient requires special treatment, in order to avoid instabilities. It is incorporated explicitly into the
RK steps, but to enforce incompressibility, an additional calculation after each RK substep projects
the velocity field onto the space of divergence-free vector fields (Hodge projection) [39]. The latter
computation is equivalent to a separate velocity upgrade due to the effective pressure gradient. The net
result of RK and Hodge projection procedures is that, depending on the chosen scheme parameters,
pressure gradient effects are captured with first or second order in time accuracy. In agreement with
the literature [39], we have found the first order accurate in time scheme to be more stable, and we
have employed it here. The incompressibility of the magnetic field is also enforced, at every time
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step, via Hodge projection. On the algorithmics side, the computation of the right-hand side (i.e., of
all terms excepting the time derivative) of velocity and magnetic field equations is performed first,
followed by time advancement, and, as a final processing step, by the Hodge projection of velocity
and magnetic fields.

IV. INITIAL AND BOUNDARY CONDITIONS AND CALCULATION SPECIFICS

The initial conditions include a straight vortex tube and a magnetic-flux ring within a box of
size lb (Fig. 1, right). Both ω and B structures are prescribed following the axisymmetric model
of Ref. [40]. The tube axis belongs to the plane of the ring. Indeed, if the tube extends along
the z axis, then the ring is placed on the xz plane, and its center is located at the (−0.16 lb,0,0)
point. As mentioned in the Introduction, this configuration, in conjunction with the axisymmetric
distribution of both ω and B, makes the initial conditions nonhelical (with respect to all three
helicity types). The vorticity and magnetic fields follow a Gaussian distribution within the tube
and ring, and the cross-sectional radii of the latter (defined via the standard deviation of the
distribution function) are equal to 0.04 lb/0.02 lb, respectively. Since the radius of the magnetic
flux tube is equal to 0.1 lb, it follows that the ring’s cross section has a distance equal to
0.16 − 0.1 − 0.02 = 0.04 lb from the tube axis, hence, it exactly touches upon the cross section of the
vortex.

We do three calculations with the same kinetic Reynolds number Rek = u	/ν, where u is a
characteristic velocity, and 	 a characteristic length scale (that can be taken to be of the order of the
cross-sectional tube and ring radius, so we choose 	 = 0.02lb). Since Prm = 1, the magnetic Reynolds
number Rem = u	/λ is equal to Rek . We adopt a “vortex dynamical” definition of Rek: since � has
u	 units, it follows that �/ν is an effective kinetic Reynolds number, which is all calculations is
set to Rek = 104. Since this is also Rem, how are we to understand the three different computations
presented here? It is best to begin by recalling the concept of the interaction parameter N = ∇ ×
(Lorentz force)/∇ × (inertial force), which scales the Lorentz force against the inertial force, hence,
it indicates how important the magnetic field’s action on the flow is [7]. Here, we writeN = σB2	/ρu,
where B is a characteristic magnetic field magnitude, and σ is the electrical conductivity. Notably,
this formula for N involves only one characteristic length scale 	 for the velocity variations (same
as in the Re number formula), hence, it implicitly assumes that the characteristic velocity variation
length scales normal and parallel to the magnetic field within the initial flux-tube are similar. The
excellent agreement between the scaled N values and the corresponding physics in the numerical
solutions justify this assumption. Since N scales with the square of the characteristic magnetic field
magnitude, it follows that a nice way of controlling N is by tuning the magnetic flux �. Indeed, using
λ = (μσ )−1, we have N = σμB2	2/ρμu	 = νB̃2	2/u	νλ = νB̃2	4/u	νλ	2, and using �̃ ≈ B̃	2,
we get N = �̃2/Rekνλ	2 = �̃2/Rek(λ	)2, since Prm = 1. In terms of the interaction parameter
then, we do three calculations, with N1 = 2.5 × 10−3, N2 = 2.5 × 10, and N3 = 2.5 × 103, that
intuitively correspond to very small (kinematic dynamo regime, as in Ref. [21]), significant,
and very strong Lorentz force effects on the flow (with special emphasis on the generation of
vorticity).

The periodicity was enforced by considering the effects on u and A of vortex tubes and magnetic-
flux rings in all adjacent boxes. The numerics allowed stable computations with Courant-Friedrichs-
Lewy (CFL) number, CFL = 0.75 (for both velocity and magnetic fields). Velocity incompressibility
was enforced with typical accuracy 10−10, and magnetic-field incompressibility with typical accuracy
10−12. The time step is chosen so that the viscous and diffusion timescales are resolved. In N1 and N2

cases, the time step was dictated by u evolution, while in the N3 case, sometimes u and sometimes
B evolutions have restricted the computational time step. However, in all cases, the time step was
dictated by the CFL stability criterion, whose corresponding time steps (typically) were an order
of magnitude smaller than the viscous and diffusion time steps. A fine 5123 staggered grid was
employed throughout. Due to the high Rem value, the results are more relevant to astronomical, rather
than technological or geological plasmas. Indeed, within the liquid core of the Earth, the magnetic
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FIG. 2. N = 2.5 × 10−3. Left: Magnetic-flux ring configurations for three different times: t = 0 (undis-
turbed ring), t = 31.45τd (intermediate ring, just started forming a spiral), and t = 106.25τd (ring warped into
a spiral structure). Here, t = 0 graph simultaneously shows isosurfaces for five values spanning the range 0.5–1
of maximum magnetic field magnitude, t = 31.45τd graph simultaneously shows isosurfaces for five values
spanning the range 0.55–1 of maximum magnetic field magnitude, and t = 106.25τd graph simultaneously
shows isosurfaces for eight values spanning the range 0.8–1 of maximum magnetic field magnitude. Right:
Tube-ring configuration at t = 106.25τd: the ring is wrapped around a virtually undisturbed vortex tube, with
straight vortex lines. For the magnetic field, isosurfaces for ten values spanning the whole range between
minimum and maximum magnetic-field magnitudes are shown simultaneously, while for the vorticity field, a
single isosurface corresponding to half of the maximum vorticity magnitude is shown. Moreover, vortex and
magnetic field lines (that are computed via the Runge-Kutta-Fehlberg numerical integration method) are also
depicted. The field-lines color code is the same for both vorticity and magnetic-field lines. Smaller magnitudes
correspond to blue color and larger magnitudes to red color.

Reynolds number of large eddies is Rem ≈ 100 [7], while in liquid-metals at scales characteristic of
laboratory or industrial settings, Rem is significantly smaller than unity [41].

The calculations are expected to indicate significant dynamics of vorticity and magnetic field
structures due to their interactions with flow strain. Indeed, from many important points of view,
the basic field in fluid dynamics is not a vector (i.e., the velocity u, written in component
form as ui , and similarly for the components ωi of vorticity), but a tensor (velocity gradient
tensor Aij = ∂ui/∂xj ). This is because Aij = Sij − 1

2εijkωk , so Aij encodes both rate of strain
[Sij = 1

2 (∂ui/∂xj + ∂uj/∂xi)] and solid-body rotation local aspects of fluid matter. These aspects
and their interactions form the basic vocabulary of fluid flow analysis. To start, it is important to know

FIG. 3. N = 2.5 × 10−3, t = 106.25τd. Left: Magnetic field spiral, and superposed field lines. Highest field
curvature is associated with the, initially, closest and furthest from the vortex tube parts of the ring, and highest
field-magnitude values are located within the flattened arms of the spiral. Right: Magnetic-field isosurfaces
(low opacity), and current lines: relatively weak current engulfs the magnetic field structure, and the highest
current values are associated with current loops formed within the structure. In both figures, isosurfaces for
ten values spanning the whole range between minimum and maximum magnetic field magnitudes are shown
simultaneously. The field lines are computed via the Runge-Kutta-Fehlberg numerical integration method.
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TABLE I. Mean values of various strain-rate tensor eigenvalues related quantities for the three different
values of the interaction parameter N . From small to large interaction parameter values, the corresponding
times are t = 106.25 τd, t = 102.38 τd, t = 58.29 τd. The corresponding values for fully developed turbulence
in the atmospheric surface layer (at the height 10 m) [8] are also shown for comparison.

Flow type 〈λ1〉
〈Sij Sij 〉1/2

〈λ2〉
〈Sij Sij 〉1/2

〈λ3〉
〈Sij Sij 〉1/2

〈λ2
1〉

〈Sij Sij 〉
〈λ2

2〉
〈Sij Sij 〉

〈λ2
3〉

〈Sij Sij 〉 〈λ
〉

MHD, N = 2.5 × 10−3 0.5003 0.0017 −0.5020 0.4852 0.0020 0.5127 −0.0892
MHD, N = 2.5 × 10 0.5019 0.0017 −0.5036 0.4852 0.0020 0.5126 −0.09
MHD, N = 2.5 × 103 0.5071 0.0022 −0.5093 0.4852 0.0029 0.5117 −0.10
Turbulence, Reλ = 104 0.47 0.06 −0.53 0.41 0.04 0.55

the three (ordered) eigenvalues λi and corresponding eigenvectors λi of Sij . This is because they
give direct information about the nature of local flow (i.e., uniaxial or biaxial extensional flow) and
the alignments between straining process and vorticity and magnetic field vectors. Based on these
key quantities, some important physical measures can be established [8]. First, the vortex stretching
vector Wi = ωiSij , whose internal product with vorticity gives the enstrophy source (amplification
in turbulence) ωiωjSij . Similarly, there is a magnetic stretching vector Mi = BiSij , whose internal
product with magnetic field gives the magnetic energy source (amplification in turbulence) BiBjSij .
Hence, key quantities for understanding enstrophy production are the cosines cos(ω,λi) and
cos(ω,W), while the corresponding quantities for magnetic energy production are the cosines
cos(B,λi) and cos(B,M). On the other hand, the [normalized with the square root of the mean total
strain 〈SijSij 〉1/2] mean values of the rate of strain eigenvalues 〈λi〉 (and similarly the normalized 〈λ2

i 〉
values) are indicative of whether extensional or compressive processes characterize (on average) the
flow. Moreover, the λ
 parameter of Lund and Rogers [42], λ
 = −3

√
6λ1λ2λ3/(λ2

1 + λ2
2 + λ2

3)3/2,
ranges from −1 to 1, and can also indicate the type of deformations caused by the strain-rate tensor,
since λ
 = −1 corresponds to axisymmetric contraction, λ
 = 0 to planar shear, and λ
 = 1 to
axisymmetric extension. The probability density function (pdf) of λ
 is uniform for a Gaussian
velocity field, while, for isotropic turbulence, Lund and Rogers showed that the most probable strain
process is axisymmetric extension that is associated with high dissipation flow regions. We shall
employ such indicators to characterize the flow and gauge-field interactions at different interaction
parameter values.
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FIG. 4. N = 2.5 × 10−3. Left: Scaled B̃ spectrum at t = 106.25τd. Right: Evolution of (scaled) B̃ energy
with time. From lower to upper curves, we move from low to high interaction parameter N values.
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TABLE II. Mean values of vorticity stretching related quantities for the three different values of the
interaction parameter N . From small to large interaction parameter values, the corresponding times are
t = 106.25 τd, t = 102.38 τd, t = 58.29 τd .

Flow type
〈ωiωj Sij 〉

〈ωiωi 〉〈Sij Sij 〉1/2 〈cos(ω,W)〉 〈cos(ω,λ1)〉 〈cos(ω,λ2)〉 〈cos(ω,λ3)〉

N = 2.5 × 10−3 0.6802 × 10−1 −0.5570 × 10−2 −0.471 0.237 × 10−1 0.481 × 10−2

N = 2.5 × 10 0.6694 × 10−1 −0.3471 × 10−2 −0.487 0.237 × 10−1 0.403 × 10−2

N = 2.5 × 103 0.6166 × 10−1 0.1735 × 10−2 −0.580 0.270 × 10−1 −0.182 × 10−2

V. COMPUTATIONAL SOLUTION FOR Rek = Rem = 104, N = 2.5 × 10−3

A good measure of time is in units of the viscous and diffusion timescales of the computation.
Since, ν = λ, and the numerical grid is identical for both u and B, viscous flow timescales
and diffusion magnetic timescales are identical, and equal to τd = (�x)2/(6ν). Here, �x is the
computational grid size. To understand the physics, it is important to note that (a) since Rem � 1
and N 	 1, dissipative effects are small, and the tube is not significantly affected by the magnetic
field, hence, we expect that the ring is predominantly going to be advected by an undisturbed vortex
flow field, (b) that flow ought to remain nonhelical, and (c) the fluid within the tube radius rotates
like a solid body, while the flow in the region outside is a potential vortex flow, where fluid layers
closer to the tube move faster than those far away. As a result, fluid layers rub against each other, and
a material line (in the radial direction) tends to become a spiral. Indeed, as shown in Fig. 2 (left), the
ring is wrapped into a spiral (that at final time has turned four times). In the same figure (right), we
observe that the vortex lines within the tube remain straight, and that no significant vorticity has been
generated in the ring region. The results agree very well with the vortex dynamical kinematic dynamo
in Ref. [21]. Figure 3 (left) shows the magnetic field spiral (t = 106.25τd), with superposed magnetic
field lines. It is observed that the higher magnetic field magnitudes are located within the flattened-ring
structures, where the B lines are smooth, without any direction reversals. This morphology is in
agreement with the scaled strain-rate eigenvalue results of Table I, which indicate two (on average)
positive eigenvalues, hence, due to biaxial extension and strong compression along the third direction,
sheetlike magnetic structures are expected. Two positive eigenvalues are also the signature of fully
developed turbulence (Table I); however, in the latter case, the intermediate eigenvalue is an order
of magnitude larger than in our flow. This is also the case for the average eigenvalue squares. The
above reflect the fact that turbulent vortex structure is certainly more complicated than an ensemble
of straight tubes. The highest magnetic-field line curvature is observed at the locations corresponding
to the two parts of the ring (initially) closer and further away from the tube, with the former situated
at the innermost part of the spiral.

Figure 4 (left) shows the magnetic field (B̃) spectrum (t = 106.25τd). B̃ is normalized with√
Rekλ/	, and distances with 	 (hence, the B̃ spectra are normalized with Rekλ

2/	, and the
normalized wave numbers are k	). There is a viscous cutoff close to the initial magnetic-flux ring
radius (the normalization length 	), and a maximum value at a length scale an order of magnitude

TABLE III. Mean values of magnetic-field stretching related quantities for the three different values of
the interaction parameter N . From small to large interaction parameter values, the corresponding times are
t = 106.25 τd, t = 102.38 τd, t = 58.29 τd .

Flow type
〈BiBj Sij 〉

〈BiBi 〉〈Sij Sij 〉1/2 〈cos(B,M)〉 〈cos(B,λ1)〉 〈cos(B,λ2)〉 〈cos(B,λ3)〉

N = 2.5 × 10−3 0.02970 0.03092 0.2822 × 10−2 −0.6577 × 10−3 −0.2503 × 10−1

N = 2.5 × 10 0.03172 0.03029 0.3083 × 10−3 −0.8622 × 10−3 −0.2471 × 10−1

N = 2.5 × 103 0.05927 0.01781 −0.1263 × 10−2 0.7009 × 10−2 −0.1397 × 10−1
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FIG. 5. Left: Scaled spectra of kinetic energy dissipation rate ε [N = 2.5 × 10−3 (lower curve), N = 2.5 ×
10 (middle curve), N = 2.5 × 103 (upper curve)]. Middle: Scaled spectra of J̃2 (proportional to magnetic-energy
dissipation) [N = 2.5 × 10−3 (lower curve), N = 2.5 × 10 (middle curve), N = 2.5 × 103 (upper curve)].
Right: Scaled cross helicity HC = u · B versus scaled time [N = 2.5 × 10−3 (horizontal curve), N = 2.5 ×
10 (curve close to the horizontal), N = 2.5 × 103 (strongly varying curve)]. From small to large interaction
parameter values, the corresponding times are t = 106.25 τd, t = 102.38 τd, t = 58.29 τd .

larger. This “energy containing” length scale is of the order of the length of the steps of the spiral,
where (as shown in Fig. 3) stretched magnetic-field structures are formed due to the tidal effect
of the vortex flow. Since the vortex tube stretches the initial ring, it generates more magnetic
field, hence, as shown in Fig. 4 (right), the magnetic-field (B̃) energy grows with time. Due to
the small N number, we do not anticipate significant “electrodynamic” vorticity generation. These
are in agreement with quantitative measures of enstrophy (Table II) and magnetic-energy (Table III)
sources, which indicate small amplifications of these quantities. Figure 5 shows the kinetic (left) and
magnetic energy (middle) dissipation rate spectra. The kinetic energy dissipation rate is computed
via the expression ε = 2νSijSij , where Sij = 1

2 (∂ui/∂xj + ∂uj/∂xi) is the strain rate tensor, and
the magnetic energy dissipation rate via J2/σ , hence, up to a scaling factor, it is proportional to the
square of electric current. As expected, ε spectra are larger at low wave numbers, because at small
distances the fluid inside the tube rotates like a solid body, so the dissipation there is minimal. On the
other hand, the magnetic dissipation ought to correspond to the electric current rings shown in Fig. 3
(right), which appear over many diameter scales, so the J2 spectra are more uniformly distributed.
Moreover, in agreement with the discussion of helicity invariants in ideal flow, we have checked the
evolution of cross helicity HC (Fig. 5). We have verified that the computation preserves the initial
level of HC (which was of the order of 10−6), hence, there is no HC generation during the formation
of the magnetic-field spiral. This is shown in Fig. 5 (right) (horizontal line).

The PDF of λ
 (Fig. 6) shows that (locally) the most probable flow field is similar to a planar
shear flow, and, despite the fact that the PDF maximum value is shifted toward the positive λ
 axis,
the mean value 〈λ
〉 in Table I is negative, since strongly negative λ
 values are more frequent
than strongly positive values. Figures 7 and 8 show that there is small enstrophy production in
the system [PDF of enstrophy production peaks at zero, but is emphatically shifted (with small
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probabilities) toward positive values], that is mainly due to a preferable (anti)alignment of vorticity
vector with extensional eigenvector λ1, and vortex stretching vector W. The corresponding results
for magnetic energy production (Figs. 9 and 10) show small magnetic energy production, but the PDF
of magnetic energy source is more symmetric in comparison with the vorticity case, and there is no
predominant tendency of B and M (anti)alignment. These differences between vorticity and magnetic
field dynamics are due to the passive-vector character of the latter in this (kinematic dynamo) flow
(as also discussed in the Introduction).

VI. COMPUTATIONAL SOLUTION FOR Rek = Rem = 104, N = 2.5 × 10

Similar to the small N case, the magnetic-flux ring evolves into a characteristic spiral structure
(Fig. 11, left). This is consistent with the (average) eigenvalues of the local strain-rate tensor (Table I)
that are very similar with the corresponding values in the N = 2.5 × 10−3 case. Similar conclusions
hold for the 〈λ
〉 value in Table I, and the probability density function of λ
 (Fig. 6, middle). However,
an important difference here is the formation of characteristic bulges at spiral arms boundaries.
The magnetic field attains its highest values within these bulges (Fig. 11, right). The new, curved
shape of the flattened spiral-arms surfaces ought to be related to Lorentz force action and vorticity
generation. Indeed, Fig. 12 (left) shows the Lorentz force generated, high-intensity vorticity regions
at the magnetic-field bulges. This effect is due to the higher (as compared with the kinematic case)
interaction parameter value, which allows the Lorentz force to significantly impact on inertial flow
processes. Figure 12 (middle) indicates that the vorticity structure generated by the Lorentz force
is a solenoid. Hence, according to the results, the Lorentz force accelerates the flow within this
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〈ωiωj Sij 〉
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density function of vorticity and vortex-stretching vector cosine cos(ω,W). Both results are for N = 2.5 × 10−3

at time t = 106.25 τd.
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solenoid, while generating a “counterflow” (with respect to the undisturbed vortex flow) in the
adjacent fluid within the magnetic spiral. It is important to note here that, although the vorticity
solenoid is consistent with a jet flow within the coils, the induced-velocity magnitudes are not large
enough to create a distinct jet-flow structure, and the flow (outside the initial vortex-tube core)
remains a mildly deformed potential vortex flow. This is explicit in Fig. 12 (right), where a velocity
isosurface is shown. The large cylindrical surface corresponds to the undisturbed potential flow
field at this distance from the vortex axis, and the inner cylinder to the solid body rotation within the
vortex (since the potential flow outside the vortex is decreasing with distance, there is always a match
between a velocity level within the vortex-core, and the velocity at some distance from the vortex
axis). We observe that the velocity within the vorticity solenoid is equal to the velocity at a smaller
distance from the vortex (i.e., equal to a higher value than the one corresponding to the undisturbed
potential flow velocity at the locations of the structure). Moreover, as shown in Fig. 13 (left), and in
agreement with the small N case, weak-current lines tend to engulf the magnetic-field spiral arms,
while closed current loops of higher intensity are formed within the magnetic structure. An intriguing
feature here is that the closed loops are organized (at places) into current solenoids within the vorticity
solenoid. These small scale currents are responsible for enlarged, high k magnetic dissipation (Fig. 5,
middle) as compared with the smaller interaction parameter case. On the other hand, the small-scale
vorticity solenoids could be responsible for the increased kinetic energy dissipation that is observed
at high k (Fig. 5, left). This is direct evidence of (a relatively weak) departure from kinematic dynamo
picture, and is also indicated by the cross helicity results of Fig. 5 (right), where a small departure
from the horizontal line of the kinematic dynamo case is observed, consistent with a very weak
antialignment between velocity and magnetic fields. Overall, the observed magnetic-field bulges are
a higher N effect, that, however, does not alter the grand picture of spiral wrapping of the field
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for N = 2.5 × 10−3 at time t = 106.25 τd.
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FIG. 11. N = 2.5 × 10, t = 102.38τd. Left: Under the influence of the vortex-tube, the magnetic-flux ring
forms a spiral. In contrast to the small interaction number case, the spiral arms are not flat but present well-formed
bulges at their boundaries. Right: The magnetic field lines are smooth (without any reversals) within the spiral
arms. The highest field values are attained within the bulges. In both figures, isosurfaces for ten values spanning
the whole range between minimum and maximum magnetic field magnitudes are shown simultaneously. The
field lines are computed via the Runge-Kutta-Fehlberg numerical integration method.

around the vortex. Another important higher N effect (Fig. 13, right) has to do with the fact that,
the magnetic-field spiral is not passive, but, like a constrictor, deforms (an initially cylindrical) high
vorticity isosurface within the vortex-tube volume.

As shown in Fig. 4 (right), the magnetic field energy increases with time. Hence, despite the fact
that some of the magnetic field energy is transferred to the fluid (to generate the vorticity-solenoid
structure), on the average, the transfer of energy is from the fluid to the field. Due to nontrivial Lorentz
force effects, it is helpful to compute the kinetic-energy spectra. Indeed, Fig. 14 (left) superposes
the (normalized) kinetic spectra for the N = 2.5 × 10−3 and N = 2.5 × 10 cases. The spectrum
is normalized with the factor (〈ε〉ν5)1/4, where 〈ε〉 is the volume average of the kinetic energy
dissipation rate ε = 2νSijSij . The key difference of the two cases is the appearance of a high wave
number, k−4 scaling regime in the larger N case, that pushes the dissipative exponential cutoff toward
higher k. Since, this effect can only be associated with the Lorentz force action discussed previously,

FIG. 12. N = 2.5 × 10, t = 102.38τd . Left: Magnetic-field isosurfaces (low opacity) shown together with
vorticity isosurfaces. The highest vorticity values are located at the magnetic-field bulges. The vortex tube
presents two indentations at the areas where the magnetic spiral is closest to it. Middle: Intriguing solenoidlike
structure of vorticity-field lines (colored field lines) located at the magnetic field bulges (background isosurface).
It indicates strong Lorentz force effects. The color code refers to the vorticity-field magnitude, with the blue
color corresponding to the smaller values and the red color to the larger values. Not all vortex lines within the
solenoid have equally large vorticity magnitudes with those shown here. Right: Velocity isosurface at level equal
to 0.5 of maximum value. The large (cylindrical) isosurface corresponds to the (undisturbed) potential vortex-
tube-induced flow. The smaller inner cylinder is within the tube’s solid-body rotation region. The superposed
vortex-line solenoid helps to indicate the Lorentz-force-induced vortex-structure with increased (relatively to the
undisturbed vortex flow) velocity there. The field lines are computed via the Runge-Kutta-Fehlberg numerical
integration method.
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FIG. 13. N = 2.5 × 10, t = 102.38τd . Left: Similarly with the small interaction number case, the current
lines (colored tubes) engulf the arms of the magnetic spiral. However, at places, they acquire a solenoid like
structure within the vorticity solenoid structure (white tubes). The current solenoids are associated with the
highest current values. Right: Isosurface of vorticity (at a level equal to 0.83 of maximum value) located
within the initial tube area. Due to Lorentz force action, the magnetic spiral acts like a vortex-tube constrictor,
deforming the (initially cylindrical) isosurface. The field lines are computed via the Runge-Kutta-Fehlberg
numerical integration method.

we can conclude that this spectral regime corresponds to the induced solenoidlike vorticity regions at
the magnetic-spiral edges. This high k regime could be observed (for example) in turbulent dynamo
computations, signaling the end of the kinematic dynamo regime [21], and the start of reciprocal field-
fluid interactions. Notably, around k	 ≈ 0.15, there is a steeper k−5 spectral slope that corresponds
to the vortex tube core and was analytically computed in Ref. [43]. The shape of the magnetic-field
spectra (Fig. 14, right) compares well with the corresponding shape of N = 2.5 × 10−3 spectra.
Both spectra show a similar low wave number k3 slope, but the N = 2.5 × 10 spectrum presents
(relatively) higher energy levels, in the region following the peak of the spectrum.

Probing the dynamics (Figs. 15 and 16), we see that the production of enstrophy recorded in
Table I is associated with the tendency of vorticity to (anti)align with the extensional eigenvector λ1

and the vortex stretching vector W (the other two eigenvectors tend to be normal to the vorticity).
Although, in a similar fashion with the N = 2.5 × 10−3 case, the probablity density function of
enstrophy production peaks at zero, a new element here is the appearance of more extreme values,
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albeit, with very small probabilities. The magnetic field dynamics indicate (Fig. 17) that all strain-rate
eigenvectors (and not just the extensional eigenvector) show strong (anti)alignments with B. On the
other hand, although the probability density function of the magnetic energy source (Fig. 18) (similar
to the N = 2.5 × 10−3 case) peaks at zero value, it now extends over a larger range of values, with
strong amplification events slightly more intense than strong reduction events.

VII. COMPUTATIONAL SOLUTION FOR Rek = Rem = 104, N = 2.5 × 103

In this case (Fig. 4, right), the magnetic energy of the ring is larger than the kinetic energy of the
tube. It is easy to think of ways for producing similar conditions in a turbulent flow. Indeed, the latter
is a hierachy of eddies and vortices that populate its inertial range. Larger eddies are characterized by
larger energy, hence their circulation and Reynolds number is higher than that of the smaller eddies.
Hence, it is plausible that a magnetic ring of high magnetic energy and large radius is initially formed
via large-eddy dynamo action, and that it subsequently creates smaller rings via reconnections with
itself or other rings. One of these highly energetic, smaller rings could interact with the smaller
turbulence eddies according to our model-calculation here.

The magnetic-field energy dynamics of Fig. 4 (right) show that (as expected by the high N value),
the Lorentz force transfers electrodynamic energy to the flow. Figure 19 (left) shows that this transfer
generates (via the electrodynamic source in the vorticity equation) two vortex-rings that “sandwich”
the magnetic ring. The vorticity magnitude in these rings is orders of magnitude higher than the
corresponding one in the vortex tube. As is usually the case in vortex dynamics, one of the rings
reconnects with the vortex tube. Figures 19 (right) and 20 indicate an intriguing vortex structure in
the neighborhood of this reconnection event. Indeed, although the vortex lines within the rings are
circular and follow the ring perimeter, they coil and turn about each other in their route toward the
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FIG. 16. Left: Probability density function of scaled enstrophy source
〈ωiωj Sij 〉

〈ωiωi 〉〈Sij Sij 〉1/2 . Right: Probability

density function of vorticity and vortex-stretching vector cosine cos(ω,W). Both results are for N = 2.5 × 10
at time t = 102.38 τd .
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FIG. 17. Probability density functions of magnetic-field and strain-rate-eigenvector cosines for N = 2.5 ×
10 at time t = 102.38 τd . From left to right: cos(B,λ1), cos(B,λ2), and cos(B,λ3).

point of contact with the tube. The coiling is particularly fierce for those lines that travel all the way
to the contact point, presenting a serpentinelike structure (Fig. 20).

High N physics are dominated by the effects of the Lorentz force on the flow. Figure 21 (left)
shows that the initial magnetic ring has now evolved into a sheet that tends to wrap around the tube,
but two most prominent magnetic rings have now developed on both of its sides. Remarkably, these
two rings are not similar to the bulges we saw formed in the intermediate N case. The latter were
formed on the ring edges along the parallel to the vortex tube direction (endowing also the flattened
spiral surfaces with curvature), while the width of the protruding structures of Fig. 21 grows along
the normal (to the initial magnetic ring plane) direction. Thus, they are different structures altogether.
Their origin can be explained with the help of Fig. 11 (right), where a rare instance of two vortex
rings, a vortex sheet, and a vortex tube interwoven together is depicted. The sheet is collocated with
the flattened initial magnetic ring and is generated by Lorentz force action there. Similarly, since for
smaller N values there was no vortex-ring generation, the two observed vortex rings (also depicted in
Fig. 19, left) ought to be created by Lorentz force action [i.e., the ∇ × (J × B) term in the vorticity
equation] at the (initial) magnetic ring faces. Subsequently, the (B · ∇)u term in the B equation,
where u is now the flow field corresponding to the two vortex rings, ought to have created the two
new magnetic rings in Fig. 21 (left). This is a good example of nonlinear MHD effects. Tables II
and III quantify these effects from various points of view: the vortex stretching vector tends to align
(on average) with the direction of vorticity, while in the smaller interaction parameter cases, the
opposite effect was observed. Similarly, the role of the the third compressive eigenvector is now
different, since (on average) it tends to antialign with the direction of vorticity. On the other hand,
the (average and scaled) magnetic energy production is almost twice as large in the N = 2.5 × 103

case, a reflection of the generation of the two new magnetic-rings (Fig. 21). Moreover, the probability
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FIG. 18. Left: Probability density function of scaled magnetic-energy source
〈BiBj Sij 〉

〈BiBi 〉〈Sij Sij 〉1/2 . Right: Proba-

bility density function of magnetic-field and magnetic-field stretching vector cosine cos(B,M). Both results are
for N = 2.5 × 10 at time t = 102.38 τd .
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FIG. 19. N = 2.5 × 103, t = 5.07τd . Left: The electrodynamic vorticity source creates two vortex rings
that “sandwich” the initial magnetic ring (middle structure). One of the newly created vortex rings reconnects
with the tube. Right: Although the vortex lines within the vortex rings are smooth and circular, the ring-tube
reconnection region is characterized by highly coiled vortex lines. Such a coiled vortex line has reconnected
with two vortex lines that (in the undisturbed flow field) ran parallel to the tube. The vorticity isosurface is
drawn at level equal to 0.32 of the maximum value, and the magnetic-field isosurface at level equal to 0.58 of
the maximum value. The field lines are computed via the Runge-Kutta-Fehlberg numerical integration method.

density function of λ
 favors slightly more negative λ
 values. The generation of strongly dissipative
structures leads to significant (with respect to smaller interaction parameter values) cross-helicity
dynamics (Fig. 5, right), as well as, significantly higher kinetic and magnetic energy dissipation-rate
levels. Indeed, Fig. 5 (left) shows that the low wave number kinetic energy dissipation-rate spectrum
attains a significantly higher level than the corresponding spectrum of a straight vortex tube, while
at high wave numbers, a peak, that most probably corresponds to the vortex-sheet and vortex-tube
reconnection process (Fig. 21, right), is observed. On the other hand, the two new magnetic-rings radii
(Fig. 21, left) correspond to small wave numbers, and the magnetic-energy dissipation rate also peaks
at low k. It is important to remark here the difference between small and large N phenomenologies:
for N 	 1, Lorentz-force effects are negligible, and the ring behaves like a passive-vector of similar
shape; for N � 1, however, the key phenomenology of vortex and magnetic structure emergence
is initiated by Lorentz-force-induced enstrophy generation at the initial magnetic ring location that
would have occurred even in the absence of the vortex tube. By comparison, without the presence of

FIG. 20. N = 2.5 × 103, t = 5.07τd . The serpentine reconnection: a vortex line belonging to a Lorentz-
force induced ring in Fig. 19 approaches the tube-ring contact point in a way reminiscent of a serpentine. The
vorticity magnitudes within the serpentine are orders of magnitude higher than the corresponding ones within
the tube. The vorticity isosurface is drawn at a level equal to 0.32 of the maximum value. The field-lines are
computed via the Runge-Kutta-Fehlberg numerical integration method.
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FIG. 21. N = 2.5 × 103, t = 13.52τd . Left: Magnetic field structure: the initial ring is located at the center
of the structure having evolved into a sheet that is drawn toward the vortex tube. Two new magnetic rings
are collocated with the two new vortex rings created by the Lorentz force. Right: Vorticity field structure: A
rare example where a vortex sheet, two vortex rings, and a (deformed) vortex tube are interwoven together. The
vortex sheet is collocated with the magnetic sheet in the left graphic. The two vortex rings are created by the
Lorentz force and are also collocated with the two magnetic rings in the left graphic. The maximum vorticity
value within the induced vortex rings is 3.35 times larger than the highest vorticity value within the initial vortex
tube. In both figures, isosurfaces for ten values spanning the whole range between minimum and maximum
magnetic-field (left) and vorticity-field (right) magnitudes are shown simultaneously.

a vortex tube (i.e., in a uniform flow), an N 	 1 magnetic ring would simply grow due to diffusive
action. At later times, the flow and magnetic field phenomenologies become complicated, since the
self-propelled vortex rings advect also the magnetic field, hence the interactions of the latter with
the vortex tube are not the dominant effects. Overall, due to the high N physics demonstrated above,
there is a very good correlation between magnetic and vortex structures in this case. Figure 22 shows
kinetic and magnetic spectra. The former present a high wave number k−5/2 scaling regime that
reflects the complicated vorticity structure discussed above. The magnetic spectra have a different
shape than the spectra corresponding to small and intermediate N . In the high N spectra case,
the energy peak is followed directly by a dissipative cutoff. The computed filling-up of the high k

magnetic scales is the culprit of Lorentz force action and ought to be associated with newly generated
magnetic field structures. It is helpful to note here that in the final-time energy spectrum, the viscous
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FIG. 22. N = 2.5 × 103, t = 58.29τd . Left: Normalized kinetic energy spectra for N = 2.5 × 10 (circles),
and N = 2.5 × 103 (triangles). In latter case, there is evidence of a high wave number k−5/2 scaling regime.
Right: Normalized magnetic energy spectra. The N = 2.5 × 103 results (upper curve, triangles) differ from the
N = 2.5 × 10 results (circles), in that the plateau region after the peak in the latter, has now evolved into a new
(displaced) peak, directly followed by dissipative cutoff.
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FIG. 23. Probability density functions of vorticity and strain-rate-eigenvector cosines for N = 2.5 × 103 at
time t = 58.29 τd . From left to right: cos(ω,λ1), cos(ω,λ2), and cos(ω,λ3).

cutoff range is not as extensive as in the smaller interaction parameter value cases. This does not
indicate a resolution flaw, since following the evolution of the spectra from t = 0 to the final time, we
observe that, as the system evolves, more and more of the initial viscous cutoff regime is taken over
by the new, Lorentz-force-induced scaling, but the computation stops before the available viscous
cutoff regime is exhausted. Due to the high Reynolds number, the flow field would (at later times)
develop instabilities and invalidate the numerical resolution, but this regime is not within the scope
of the current investigation, not least because the vortex and magnetic structures would then become
unstable, and structural coherence would be lost. Hence, throughout the high interaction parameter
evolution, the resolution requirement is monitored and always satisfied, and the computation stops
before the physical resolution requirements exceed the available numerical resolution. Based on these,
it can be conjectured that, at much higher values of the interaction parameter, the same sequence
of events (i.e., Lorentz-force-induced formation of two vortex rings followed by the creation of two
magnetic rings adjacent to the initial one) would be observed, but (due to the more vigorous forcing)
the flow would become unstable and transition to turbulence much faster.

When it comes to dynamical mechanisms of enstrophy and magnetic energy production, it is
interesting to observe in Figs. 23–26 that the related probability density functions of the alignment
cosines are remarkably similar with the smaller interaction parameter cases. Certainly, this is
associated with the predominant sheetlike magnetic and vortical structures in Fig. 21. However,
there is a key observation: both probability density functions for enstrophy and magnetic-energy
production peak at zero, and present long tails toward much larger values than in the lower interaction
parameter cases. Hence, it follows the important conclusion that the net amplifications of enstrophy
and magnetic energy are due to the slight imbalance between extreme amplification and reduction
events, i.e., they are “long tails” effects.
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FIG. 24. Left: Probability density function of scaled enstrophy source
〈ωiωj Sij 〉

〈ωiωi 〉〈Sij Sij 〉1/2 . Right: Probability

density function of vorticity and vortex-stretching vector cosine cos(ω,W). Both results are for N = 2.5 × 103

at time t = 58.29 τd .
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FIG. 25. Probability density functions of magnetic-field and strain-rate-eigenvector cosines for N = 2.5 ×
103 at time t = 58.29 τd . From left to right: cos(B,λ1), cos(B,λ2), and cos(B,λ3).

VIII. CONCLUSION

From a certain point of view, fluid turbulence is made possible via the interaction between inertial
and pressure fields. The vortex structure of turbulent chaos (i.e., the vortex configurations allowed by
the theory) depends directly on the fact that pressure is governed by an elliptic equation (action at a
distance), albeit with a very rare (and indeed intriguing in classical field theory) nonlinear source. The
pressure field cannot form any (localized) structures, and affects vortex structures only indirectly, via
its effect on the velocity field. In MHD, one can view the gauge field as another way of interaction
with the inertial field, since the gauge field obeys a very different (parabolic) evolution equation
than pressure. Hence, it can develop localized structures, and can directly impact upon the vorticity
field via the curl of the Lorentz force. This research aimed at enlarging our understanding of these
important MHD issues.

It indicates that vorticity and magnetic field interactions are ways of transforming various MHD
structures and even generating new ones. Hence, at small and intermediate interaction numbers, a
vortex tube transforms a magnetic ring into a flattened spiral, at intermediate N , the Lorentz force
generates a vorticity solenoid, and at high N , the effect of the gauge field on the flow results in the
generation of new, collocated magnetic and vortex rings and sheets. In all cases, we have indicated
the energy dynamics and spectra, showing how the transfer of energy from flow to magnetic degrees
of freedom at small and intermediate N , is reversed at high N , and how the generated structures
affect the shape of kinetic and magnetic energy spectra. Without doubt, the gauge field appears to be
a great transformative and creative force, as far as the vorticity field is concerned. This is particularly
evident in the “serpentine road” to vortex reconnection depicted in the high N case results.

Another general conclusion supported by the results is that, at small N values, ω dominates, and
B behaves like a material field advected by the flow, while, at large N , the backreaction of B on ω
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FIG. 26. Left: Probability density function of scaled magnetic-energy source
〈BiBj Sij 〉

〈BiBi 〉〈Sij Sij 〉1/2 . Right: Proba-

bility density function of magnetic-field and magnetic-field stretching vector cosine cos(B,M). Both results are
for N = 2.5 × 103 at time t = 58.29 τd .
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is the key dynamical factor, and, as a result, new vortex structures appear that induce magnetic field
structures of similar morphology.

It is important to continue placing emphasis on structural aspects of turbulent MHD flows, by either
extending the present “synthetic” approach to the interaction between more complicated structural
patterns, and/or by performing accompanying “analytic” studies, i.e., detecting and tracking structural
elements within an actual turbulent MHD flow field. Incorporating the findings of such studies into
the statistical physics modeling of turbulence is a promising approach for tackling the notorious
“turbulence problem.”
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