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This study considers the onset of stress-free Boussinesq thermal convection in rotating
spherical shells with an aspect ratio η = ri/ro = 0.9 (ri and ro being the inner and outer
radius), Prandtl numbers Pr ∈ [10−4,10−1], and Taylor numbers Ta ∈ [104,1012]. We are
particularly interested in the form of the convective cell pattern that develops, and in
its time scales, since this may have observational consequences. For a fixed Ta < 109

and by decreasing Pr from 0.1 to 10−4, a transition between spiraling columnar (SC)
and equatorially attached (EA) modes, and a transition between EA and equatorially
antisymmetric or symmetric polar (AP/SP) weakly multicellular modes, are found. The
latter modes are preferred at very low Pr. Surprisingly, for Ta > 3 × 109, the unicellular
polar modes become also preferred at moderate Pr ∼ 10−2 because two new transition
curves between EA and AP/SP and between AP/SP and SC modes are born at a triple-point
bifurcation. The dependence on Pr and Ta of the transitions is studied to estimate the types
of modes, and their critical parameters, preferred at different stellar regimes.
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I. INTRODUCTION

Convection is believed to occur in many geophysical and astrophysical objects such as planets
and stars. Compressible convection develops, for example, in main sequence stars (including our
Sun), and during thermonuclear flashes in asymptotic giant branch stars and in the accreted oceans of
white dwarfs and neutron stars. These convective regions may be formed by very thin spherical layers
(ri > 0.8ro) of helium or hydrogen which are subject to the influence of strong temperature gradients
and rotation. From nuclear physics theory, the physical properties, such as kinematic viscosity or
thermal conductivity, can be estimated and may give rise to very low Prandtl and large Taylor numbers
[dimensionless numbers characterizing the relative importance of viscous (momentum) diffusivity
to thermal diffusivity, and rotational and viscous forces, respectively]. This parameter regime, in
combination with very thin spherical shells, makes the study of convection extremely challenging,
even in the incompressible case (Boussinesq).

The study of thermal convection is important because it represents a common mechanism for
transporting energy. In the case of rotating planets and stars it is also essential to maintain their
magnetic fields via the dynamo effect [1] or to explain the differential rotation observed in the Sun
[2] or in the major planets [3]. The basic ingredients occurring in these situations are convection,
rotation, and spherical geometry. Due to its relevance, thermal convection in rotating spherical
geometries has been widely studied using numerical, analytic, and experimental approaches. The
reviews [4,5] give a nice description of them, with application to the Earth’s outer core, or convective
stellar interiors, respectively.

One of the most basic steps in the field is the study of the onset of convection in rotating spherical
shells at large Taylor numbers Ta. This is important because it reveals the convective patterns and the
critical parameters when the conductive or basic state becomes unstable in a regime of astrophysical
interest. Much additional work has been done since [6,7] stated the nonaxisymmetric nature of the
instability giving rise to waves traveling in the azimuthal direction. The previous theories were
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successively improved [8–10], and finally [11] completed the asymptotic theory for the onset of
spiraling columnar convection in spherical shells that are differentially heated.

Numerical studies [12,13] have shown the relevance of the Prandtl number Pr to the onset of
convection. Spiraling columnar (SC) patterns are preferred at moderate and large Pr while convection
is trapped in an equatorial band near the outer boundary when Pr is sufficiently small [equatorially
attached (EA) modes]. The study of low Prandtl number fluids is important because they are likely to
occur in stellar convective layers [14], where thermal diffusion dominates and kinematic viscosities
are very low. This is illustrated, for example, in Ref. [15], with the help of nuclear physics theories,
for stars at various evolutionary stages. For instance, in the case of main-sequence stars, where the
stellar material is nondegenerate, thermal diffusivity was approximated by its radiative contribution,
and for the viscosity, the collisional contribution was also included. With the estimates of ν and κ

they obtained Pr < 10−3 for a sequence of ten different stellar models.
EA modes were described in Refs. [16,17] as solutions of the Poincaré equation with a stress-free

boundary condition and low Pr in rapidly rotating spheres. They are thermoinertial waves with
azimuthal symmetry m > 0 traveling in the azimuthal direction, eastward but also westward for
sufficiently low Pr, and trapped in a thin equatorial band of characteristic latitudinal radius (2/m)1/2.
Several theoretical studies [18,19] have appeared in the last years that have focused on these waves,
which are characteristic of low Pr numbers. By expanding the EA modes as a single and the SC modes
as a superposition of quasigeostrophic modes, the inertial and convective instability problems were
unified [20,21] for 0 � Pr Ta1/2 < ∞ either with the stress-free or nonslip condition. Very recently,
in the zero Prandtl limit, a torsional axisymmetric and equatorially antisymmetric mode have been
found numerically [22] and the asymptotic theory has been developed [23].

Although most of the asymptotic studies agree that the preferred mode of convective instabilities
in rapidly rotating spheres is equatorially symmetric, there exist some regions in (Ta, Pr) parameter
space where equatorially antisymmetric modes may be preferred [16,24,25]. The latter study showed
that at high Ta, antisymmetric convection is confined inside a cylinder tangent to the inner sphere at
the equator [antisymmetric polar mode (AP)], in contrast with the equatorially antisymmetric modes
of EA type found in Ref. [26]. In addition, at the same range of parameters, Ref. [25] found that the
preferred mode can also be of polar type, but equatorially symmetric [symmetric polar (SP) mode].

The case of very thin shells (η > 0.8) is especially relevant for convection occurring in the interiors
or accreted ocean layers of stars, and strongly different from the case of thick shells (η < 0.3). In
the first place, it is numerically challenging because the azimuthal length scale is strongly decreased.
Most of the studies mentioned above consider a full sphere or thick spherical shell, but only a few
of them address thin shells: Refs. [11,13], for instance, address the problem in the case of relatively
thin shells with ri = 0.65ro, and Ref. [27] considers a thinner shell with ri = 0.8ro but by assuming
equatorial symmetry of the flow. In Ref. [28], the effect of increasing the inner radius was studied
in depth in the case of SC convection up to ri = 0.92ro, providing an estimation of the dependence
of the critical Rayleigh number on ri/ro showing that the critical azimuthal wave number increases
proportionally. The small azimuthal length scale of the eigenfunctions imposed severe numerical
restrictions, and the previous study only considered Pr = 1 and Ta up to 108. A second difference
of the very thin shell case is that the number of relevant marginal stability curves becomes large,
and they are closer than for smaller aspect ratios. Because of the numerical constraints, a simplified
model of a rotating cylindrical annulus in the small-gap limit has been adopted in the past [29],
but without including spherical curvature the spiraling convection is impeded [13]. In addition, at
Pr = 7, multiarmed spiral waves were found in Ref. [30] only for the thin shell case, in the slowly
rotating regime.

This paper is devoted to the numerical computation of the onset of stress-free convection at
small Pr in a thin spherical rotating layer. The dependence of the critical parameters on Ta and Pr is
addressed by an exhaustive exploration of the parameter space. The types of instabilities characteristic
of different regions of the parameter space are described, and their transitions traced. We have found
SC, EA, and SP or AP modes, the latter being dominant at large Ta in two separated regions, at low Pr
(where they are multicellular) but also unexpectedly at moderate Pr. A triple point in (Ta, Pr) space,
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where several EA, SC, and polar (P) modes become marginally stable, is also found in a regime of
astrophysical relevance. The possible application of the results to convection occurring in several
types of stars is also discussed.

In Sec. II we introduce the formulation of the problem, and the numerical method used for the
linear stability analysis. In Sec. III the dependence on Ta is studied and that on Pr in Sec. IV.
The regions of dominance of the different instabilities are obtained in Sec. V and their transition
boundaries are analyzed. The applicability of the results to stellar convection is addressed in Sec. VI,
and finally the paper ends with a brief summary of the results obtained in Sec. VII.

II. MATHEMATICAL MODEL AND NUMERICAL SETUP

Thermal convection of a spherical fluid layer differentially heated, rotating about an axis of
symmetry with constant angular velocity � = �k, and subject to radial gravity g = −γ r (with γ

being a constant and r = r êr the position vector), is considered (at this stage we assume Newtonian
gravity and neglect oblateness due to rotation; for some of the astrophysical applications that we
discuss later, these assumptions may eventually need to be relaxed). The mass, momentum, and
energy equations are written in the rotating frame of reference. We use scaled variables, with units
of d = ro − ri for distance, ν2/γ αd4 for temperature, and d2/ν for time. In the previous definitions,
ν is the kinematic viscosity and α the thermal expansion coefficient.

We assume an incompressible fluid by using the Boussinesq approximation. The Boussinesq
approximation is a useful simplification that renders the problem more tractable, and allows us to
relate our results to previous studies that were carried out in the regime of smaller Ta and larger Pr.
It will not be entirely appropriate for all of the astrophysical problems of interest, but is nonetheless
useful as a first step towards the full general problem. We discuss this in more detail in Sec. VI.

The velocity field v is expressed in terms of toroidal � and poloidal 	 potentials

v = ∇ × (�r) + ∇ × ∇ × (	r). (1)

The linearized equations for both potentials, and the temperature perturbation 
 = T − Tc, from
the conduction state [which has v = 0 and temperature Tc ≡ Tc(r) = T0 + Ra η/ Pr(1 − η)2r , with
T0 = Ti − ro�T/d being a reference temperature and �T = Ti − To > 0 the imposed difference in
temperature between the inner and outer boundaries, with r = |r|; see Ref. [31]], are

[(∂t − ∇2)L2 − 2 Ta1/2 ∂ϕ]� = −2 Ta1/2Q	, (2a)

[(∂t − ∇2)L2 − 2 Ta1/2 ∂ϕ]∇2	 + L2
 = 2 Ta1/2Q�, (2b)

(Pr ∂t − ∇2)
 − Ra η(1 − η)−2r−3L2	 = 0. (2c)

The parameters of the problem are the Rayleigh number Ra, the Prandtl number Pr, the Taylor
number Ta, and the aspect ratio η. They are defined by

Ra = γα�T d4

κν
, Ta = �2d4

ν2
, Pr = ν

κ
, η = ri

ro

, (3)

whereκ is the thermal diffusivity. Notice that this effectively constitutes the Rayleigh-Bénard problem
in a spherical rotating geometry.

The operators L2 and Q are defined by L2 ≡ −r2∇2 + ∂r (r2∂r ) and Q ≡ r cos θ∇2 − (L2 +
r∂r )(cos θ∂r − r−1 sin θ∂θ ), (r,θ,ϕ) being the spherical coordinates, with θ measuring the colatitude,
and ϕ the longitude. When stress-free perfect thermally conducting boundaries are used,

	 = ∂2
rr	 = ∂r (�/r) = 
 = 0 at r = ri,ro. (4)

The equations are discretized and integrated as described in Ref. [24]. The potentials and the
temperature perturbation are expanded in spherical harmonics in the angular coordinates, and in the
radial direction a collocation method on a Gauss-Lobatto mesh is used. The leading eigenvalues are
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found by means of an algorithm, based on subspace or Arnoldi iteration (see Ref. [32]), in which
the time stepping of the linearized equations, which decouple for each azimuthal wave number m,
is required. For the time integration, high-order implicit-explicit backward differentiation formulas
(IMEX-BDF) [33] are used. In the multistep IMEX method we treat the discretized version of the
operator Q explicitly in order to minimize storage requirements when solving linear systems at each
time step. To obtain the initial conditions, a fully implicit variable size and variable order (VSVO)
high-order BDF method [33] is used.

With respect to previous versions, the code use is parallelized in the spectral space by using
OPENMP directives in a similar way as in Ref. [34] for the fully nonlinear solver. In the case of the
linear problem, the spherical harmonics mesh is no longer triangular and thus the parallelism of
the code is better. The code is also based on optimized libraries of matrix-matrix products (DGEMM

GOTO [35]). The code has been validated [24] by reproducing several results previously published,
for instance, in Ref. [28]. For the larger Taylor number considered in this study, the computations use
nr = 30–60 radial collocation points and a spherical harmonic truncation parameter of L = 160–600,
depending on the azimuthal wave number m considered. With these choices we obtain errors for the
critical parameters below 2% when increasing the resolution up to nr = 100 and L = 1000.

Given a set of Ta, Pr, and η and for sufficiently small Ra the conductive state is stable against
temperature and velocity field perturbations. At the critical Rayleigh number Rac, the perturbations
can no longer be dissipated and thus convection sets in, usually breaking the axisymmetry of the
conduction state by imposing an mc-azimuthal symmetry (mc is the critical wave number). Then,
according to Ref. [36], it is a Hopf bifurcation giving rise to a wave traveling (propagating) in the
azimuthal direction. In the rotating frame of reference, negative critical frequencies ωc give positive
drifting (phase) velocities c = −ωc/mc and the waves drift in the prograde direction (eastward).
These waves are also usually called rotating waves in the context of bifurcation theory [37,38] and
have temporal dependence u(t,r,θ,ϕ) = ũ(r,θ,ϕ − ct) (where u = [�m

l (ri),	m
l (ri),
m

l (ri)] is the
vector containing the values of the spherical harmonic coefficients at the inner radial collocation
points). Then, these solutions are periodic in time but their azimuthally averaged properties (such
as zonal flow) are constant. Notice that in an inertial reference frame the waves have frequencies
ωI = ωc ± mc�. Typically, the critical waves maintain theZ2 symmetry with respect to the equatorial
plane, i.e., they are symmetric with respect to the equator, but as it was shown in Ref. [25], equatorially
antisymmetric solutions can also be preferred depending on the parameters, and thus fixed symmetry
codes should be avoided when exploring the parameter space. As it will be shown in next sections,
antisymmetric critical solutions are typical when moderate and low Pr are considered in thin spherical
shells.

III. TAYLOR NUMBER DEPENDENCE

Different types of instabilities have been found by varying the Taylor number in the range Ta ∈
[104,1012] for low and moderate Prandtl numbers Pr = 10−4, 10−3, 10−2, and 10−1. The critical
Rayleigh number Rac, drifting frequencies |ωc|, and azimuthal wave number mc are displayed versus
Ta in Figs. 1 and 2. For the largest Prandtl number studied, Pr = 0.1, only spiraling columnar modes,
with Rac = 0.2 Ta0.57, become dominant [see Fig. 1(a)]. This power law, coming from a fit to the
points of the figure, is in close agreement with the results of Ref. [28], obtained with Pr = 1 and
nonslip boundary conditions also in thin spherical shells, and not so far from the leading order
2/3 given by the asymptotic theories [7,11,39]. In the case of |ωc| [Fig. 1(b)] or mc [Fig. 1(c)] the
agreement with the previous theories [7,11,39] is quite good, giving |ωc| = Ta0.34 and mc = 4 Ta0.16.
Spiraling modes always drift in the prograde direction.

The flow structure of the spiral columnar (SC) modes is displayed in the fourth row of the contour
plots shown in Fig. 3. The left group is for the temperature perturbation (from left to right: spherical,
equatorial, and meridional sections) and the right group is for the kinetic energy density v2/2. Notice
in each section the black lines showing the position of the other two. The position of the spherical
section is chosen to be close to a relative maximum. In the case of v2/2 it corresponds to the outer
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FIG. 1. (a) Critical Rayleigh numbers Rac, (b) critical drifting frequencies |ωc|, and (c) critical azimuthal
wave number mc vs the Taylor number Ta for Pr = 10−4, 10−3, 10−2, and 10−1 with a dashed, dotted, dashed-
dotted, and solid line, respectively (blue darkness increasing with Pr online). The symbols mean • AP/SP mode,
� EA mode, and � SC mode. This figure roughly explores the (Ta, Pr) space as only few points are considered.
Details for the interchange between EA and AP/SP modes (jumps in the figure) at Pr = 10−3 and 10−2 are
provided in Fig. 2.

boundary. This figure shows that SC modes are equatorially symmetric and typically elongated in
the axial direction (see the contour lines almost parallel to the vertical axis in the meridional section
of v2/2), spiraling eastward in the azimuthal direction (slightly noticeable in each small cell of v2/2
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FIG. 2. (a) Critical Rayleigh numbers Rac, (b) critical drifting frequencies |ωc|, and (c) critical azimuthal
wave number mc vs the Taylor number Ta for Pr = 10−3 and 10−2 with light and dark gray (blue online),
respectively. The symbols mean • AP/SP mode and � EA mode. Solid (open) points are used for dominant
(nondominant) modes. This figure shows in detail the Ta dependence and the interchange between EA and
AP/SP modes found only at Pr = 10−3 and 10−2 and roughly displayed in Fig. 1. In the case of Pr = 10−2,
nondominant EA modes (�) are also displayed. The power law fits from the results are represented by a solid
line.
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FIG. 3. Spherical, equatorial, and meridional sections of the temperature perturbation 
 (left) and of the
kinetic energy density v2/2 (right) for the preferred modes of convection at Pr = 10−3, Ta = 108 with mc = 18
(first row), Pr = 2 × 10−3, Ta = 108 with mc = 23 (second row), Pr = 10−2, Ta = 108 with mc = 33 (third
row), Pr = 10−1, Ta = 108 with mc = 78 (fourth row), and Pr = 3 × 10−2, Ta = 1010 with mc = 156 (fifth
row). The color scale is not quantitative. 
: Red (blue) means hottest (coldest) fluid (green is for zero). v2/2:
Red (blue) means most (less) energetic fluid Contour plots of low azimuthal wave number SC, EA, and AP
modes can be found in Refs. [13,24,25], respectively.
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AP SP EA SC AP

FIG. 4. Meridional sections of the azimuthal velocity vϕ for the preferred modes of convection at (from left
to right) (Pr = 10−3,Ta = 108), (Pr = 2 × 10−3,Ta = 108), (Pr = 10−2,Ta = 108), (Pr = 10−1,Ta = 108), and
(Pr = 3 × 10−2,Ta = 1010). The color scale is not quantitative: Red (blue) means positive (negative) vϕ (green
is for zero).

in the equatorial section) and nearly tangent to the inner sphere. See also the fourth (from left to
right) meridional section of the azimuthal velocity shown in Fig. 4.

The situation is quite different for Pr = 10−2 and Pr = 10−3. In this case, thermoinertial modes
become preferred, which can be either equatorial (EA) [20,22,24] or polar (P) [25] depending on
Ta. This is shown in Fig. 2 where the critical parameters are plotted versus Ta. At Pr = 10−2 and
Ta < 1.25 × 1010 the instability takes the form of equatorial waves in which convection is nearly
absent in the bulk of the fluid, except for a very thin region near the outer surface at the equatorial
latitudes [see the third row of Fig. 3 or the third (from left to right) meridional section of Fig. 4].
While for the lowest Ta the increasing of Rac is quite slow [see Fig. 2(a)], at Ta ∈ [108,5 × 109] the
power law fits well with Rac = 0.008 Ta0.63, also found in Ref. [24] for the EA modes at Pr = 0.005
in a nonslip thick internally heated shell. From around Ta = 5 × 109 the Rac of EA modes follow
a power law with a slightly larger exponent ∝Ta0.83, as found in Ref. [22] for the EA modes in a
stress-free sphere at the same Pr and up to Ta = 1014. Nevertheless, the only difference observed
between modes following the two different power laws is that at high Ta the patterns of 
 and vr are
significantly more attached to the outer boundary.

Although at Pr = 10−2 the modes are mostly prograde, for the lowest Ta, retrograde waves have
been found [see the jump in Fig. 2(b) at Ta = 4 × 104]. This is typical and has been reported before
for EA in thick shells. At Ta ∈ [106,5 × 109] the variation of |ωc| with Ta can be reasonably well
approximated by |ωc| = 0.25 Ta0.48 while from Ta = 5 × 109 (i.e., when EA become nondominant)
it is better to use |ωc| ∝ Ta0.43. Both have an exponent that is a bit larger than predicted by asymptotic
theories but in close agreement with the case of EA modes on a full sphere [22].

The dependence of the critical azimuthal wave number mc displayed in Fig. 2(c) for the EA
modes is a little bit lower than theoretical predictions, following mc = 3 Ta0.13 in the interval Ta ∈
[107,1010]. For lower Ta < 107, mc remains nearly constant while for Ta > 1010 (where EA are non
dominant) the exponent seems to increase to mc ∝ Ta0.18. At higher Ta > 1011 the exponent found
for EA modes in a full sphere was 0.25.

Surprisingly, and in contrast to what is found in full spheres, at Ta ≈ 1.25 × 1010, EA modes are
no longer preferred and either equatorially symmetric or antisymmetric polar modes, as in Ref. [25],
are selected. Unlike the latter study with η = 0.4, these antisymmetric modes have a very large mc

and are dominant in a significantly larger interval Ta ∈ [1.5 × 1010,1012]. By comparing our results
at η = 0.9 with those of Ref. [25] at η = 0.4 and those of Ref. [22] at η = 0, it seems that the thinner
the shell, the more probable it is that AP or SP modes become dominant at high Ta and moderate Pr.
As it will be shown in the next section, AP or SP modes of relatively small azimuthal wave number
are the most typical at low Pr.
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In the range explored Ta ∈ [1.25 × 1010,1012] the critical azimuthal wave number of the polar
mode remains almost unchanged mc ∈ [155,158] [see Fig. 2(c)] and the frequency follows |ωc| ∝
Ta0.5. The dependence of Rac is not so clear and no power law can be fitted. When high azimuthal
wave number AP or SP modes become preferred, convection is located in a narrow band parallel to
the equator at very high latitudes, and v2/2 is almost z independent. This is displayed in last row
of Fig. 3 or the rightmost meridional section of Fig. 4. The latter figure also shows the existence
of a strong shear layer corresponding to a cone which is tangent to the inner sphere at latitudes
close to 30◦.

At Pr = 10−3 inertial prograde modes also become preferred, but in this case EA modes are
dominant at high Ta > 6.13 × 109 and AP or SP are dominant at low Ta < 6.13 × 109 (i.e., the
situation is reversed when compared with that at Pr = 10−2). The transition can be clearly seen
in the jump (from |ωc| ≈ 5 × 104 to |ωc| ≈ 104) of Fig. 2(b). At such small Pr the Rac increases
slowly with Ta. Only when EA modes become selected does the dependence seem to approach to
∝Ta0.63, and |ωc| is roughly ∝Ta0.5 in the whole Ta interval. The dependence of mc is of staircase
type but globally is increasing slowly up to Ta ∼ 108, and beyond this with a slope ∝Ta0.18. While
the patterns of convection of EA modes at Pr = 10−3 are quite similar to those at Pr = 10−2, those
of AP or SP modes exhibit differences. The first noticeable difference is the azimuthal length scale
(compare the first/second with the last row in Fig. 3). A second difference is that at Pr = 10−2 the
z dependence of v2/2 is enhanced. This is not surprising because these polar modes are dominant
at larger Ta. In addition, at Pr = 10−3 the modes are weakly multicellular (see the spherical and
meridional sections of 
) with convection present at larger latitudes and with shear layers extending
from polar latitudes to close to the equator [see the first/second plot (from left to right) of Fig. 4].
Notice that there are no fundamental differences in the patterns of the AP and SP modes. For such
a thin shell, any link between the high latitudes on both hemispheres practically disappears, and an
AP mode can be obtained by azimuthally shifting an SP mode on one of the hemispheres.

Finally, at Pr = 10−4 only SP or AP modes such as those at Pr = 10−3 are preferred up to
Ta = 1012. Up to Ta ≈ 108 there is almost no difference in the critical parameters between Pr = 10−3

or Pr = 10−4 (see Fig. 1). In addition, Rac starts to increase very slowly from Ta > 1010 and no power
law can be fit. Polar modes drift with very large (up to 106) frequencies that follow |ωc| = 1.5 Ta0.48.
For such small Pr = 10−4, the modes can be prograde but also retrogade as it happens for Ta = 109

and 1010 and mc = 19. The azimuthal wave number mc also starts to increase from Ta > 1010 with
mc = 0.3 Ta0.18, i.e., with the same slope as for Pr = 10−3 from Ta > 108 [see Fig. 1(c)]. Then, for
the polar modes, the large Ta limit (where mc starts to increase) seems to be reached at Pr Ta1/2 ∼ 10.

IV. PRANDTL NUMBER DEPENDENCE

According to the previous section, different types of modes may be preferred depending on Pr.
The aim of this section is to find the transitions between these modes in the parameter space (Ta, Pr).
To that end, further exploration by varying Pr is needed.

Figure 5 shows Rac, |ωc|, and mc as a function of Pr ∈ [10−4,10−1] for a set of six Taylor numbers
from Ta = 106 to Ta = 1011. In this figure the transition between spiraling, equatorial, and polar
modes can be identified by the cusps in the Rac curves [Fig. 5(a)] and jumps in the |ωc| [Fig. 5(b)] or
mc [Fig. 5(c)] curves. By increasing Pr from 10−4 there exist first one or several transitions among
SP and AP modes for all Ta explored (some of them can be retrograde at Pr ∼ 10−4). This is clearly
noticeable from Fig. 5(c) in the jumps in each of the mc curves at the left of the plot. The convection
patterns of these polar modes were described in the previous section and are shown in the first (AP)
and second (SP) rows of Fig. 3 and in the first (AP) and second (SP) plots of Fig. 4. For transitions
between polar modes (either symmetric or antisymmetric) the jumps in |ωc| are very small, as are
the cusps in Rac.

The second transition, observed at a critical Pr number which tends to decrease with increasing
Ta, is between polar and equatorial modes. At the transition, |ωc| decreases sharply by roughly one
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FIG. 5. (a) Critical Rayleigh numbers Rac, (b) critical drifting frequencies |ωc|, and (c) critical azimuthal
wave number mc vs the Prandtl number Pr for Ta = 106, 107, 108, 109, 1010, and 1011 [thin dashed, dotted,
dashed-dotted, dashed-double-dotted, solid, and double-dotted line style, respectively (blue darkness increases
with Ta online)]. The symbols mean • AP/SP mode, � EA mode, and � SC mode. Solid (open) points are used
for dominant (nondominant) modes. The thick dashed line marks the transition between nondominant EA and
SC modes at Ta = 1010. This figure shows the tendency of AP/SP, EA, and SC modes to be preferred at smaller
Pr when Ta increases. For the largest Ta, AP/SP modes are preferred at very small but also at relatively high Pr.
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FIG. 6. (a) Critical Rayleigh numbers Rac and (b) critical drifting frequencies |ωc| vs the Prandtl number
Pr for Ta = 1011 and azimuthal wave numbers m = 66, m = 157, and m = 215. The symbols mean • AP/SP
mode, � EA mode, and � SC mode. Solid (open) points are used for dominant (nondominant) modes. While
for m = 66 the three types of modes are found, for m = 157 and 215 only AP/SP or SC are obtained.

order of magnitude and Rac increases, with a smaller slope. There exists also a jump in mc, and the
jump tends to decrease with Ta.

For Ta � 109 and larger Pr, a third transition between EA and SC modes is found. As for the
transition between SP/AP and EA modes, the critical Pr of this transition tends to decrease with
increasing Ta, although at a slightly slower rate. This transition is also characterized by a decrease
of |ωc| but is not so pronounced. When the new modes become preferred, Rac increases at a lower
rate, and they have a very small azimuthal length scale (seen as a big jump in mc).

As mentioned in the previous section, we have found very high azimuthal wave number polar
modes preferred at moderate Pr and large Ta. They are clearly dominant at Ta = 1010 and 1011 around
Pr = 10−2 (see the top right part of Fig. 5) and their region of stability tends to increase with Ta.
In the curve for Ta = 1010 the transition between the nondominant EA and SC modes is shown (the
open symbols on the right part of that curve). To visualize how these polar modes become dominant,
Rac and |ωc| are plotted in Fig. 6 versus Pr for the azimuthal wave numbers m = 66, 157, and 215
at Ta = 1011. While for Pr ∈ [10−4,10−1] the m = 66 mode can be polar, equatorial, or spiraling
(notice the two transitions in jumps of |ωc|), the m = 157 and 215 modes only show a transition
between AP/SP and SC modes. When decreasing Pr beyond the transition, Rac starts to decrease
faster. The fact that the transition occurs at larger Pr for the m = 157 polar mode allows it to be
dominant.
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FIG. 7. (a) Transitions between the different types of preferred modes (the points are obtained from Figs. 2
and 5 by means of linear interpolation). (b) Detail of (a) showing the triple point. The dashed line and the open
circle mark the transition between nondominant EA and SC modes shown in Fig. 5.

We confirm the trend occurring in thicker shells. The smaller the Pr, the smaller is Rac and mc

and the larger is |ωc|. In the Pr interval explored, due to the multiple transitions, Rac cannot be fit by
simple power laws. The drifting frequencies remain nearly constant for each type of mode, with the
SC modes having a slightly steeper decrease. The dependence of mc with Pr can be approximated
as roughly ∝Pr0.14 when Ta > 106 for the EA modes and ∝Pr0.2 for the SC modes and the larger Pr.
This contrast with the results on the full sphere [22] where an exponent of 0.54 was found for the
EA modes.

V. TRANSITIONS IN THE (Ta, Pr) PARAMETER SPACE

From Figs. 2 and 5 and some additional computations, not shown in those figures, the locations
of the different transitions in the (Ta, Pr) parameter space have been obtained by linear interpolation,
and the regions of stability of the different modes have also been roughly established. This is shown
in Fig. 7, where the transitions from AP/SP to EA modes, from EA to SC modes, from EA to high
m AP/SP modes, and from high m AP/SP to SC modes, correspond to the four different curves
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TABLE I. Critical parameters for equatorial, spiraling, and polar modes of convection at Ta = 2.8 × 109

and Pr = 2.12 × 10−2. The differences between all Rac are less than 1% (assumed for spatial resolution errors).
Then, at this (Ta, Pr), an AP, EA, and SC mode are preferred at the same time.

Type mc Rac ωc

EA 57 2.5564 × 104 −7.6968 × 103

SC 92 2.5662 × 104 −2.6474 × 103

AP 154 2.5699 × 104 −9.6376 × 104

containing cyan, green, blue, and gray points, respectively. The general trend of this figure is that
polar modes are preferred at very low Pr, equatorial modes at moderate Pr, and spiral modes at larger
Pr, but polar modes with high azimuthal wave number can also be preferred at moderate Pr. As Ta is
increased, the positions of the transitions tend to be located at lower Pr. For instance, we have obtained
PrP/EA = 0.68 Ta−0.29 (cyan points) and PrEA/SC = 1.67 Ta−0.2 (green points), both power laws for
Ta > 108. At approximately (Ta3, Pr3) = (2.8 × 109,2.12 × 10−2) there is a transition between EA,
AP, and SC modes, giving rise to a triple Hopf bifurcation. At this point an equatorial, a polar, and
a spiraling mode have equal critical Rayleigh numbers within 1% of precision (Table I), i.e., of
the same order of the spatial truncation errors. We report a triple point in the context of thermal
convection in rotating spherical geometry. Choosing parameters near (Ta3, Pr3) will give rise to a
very rich variety of traveling and modulated waves with very different azimuthal wave numbers,
convective patterns, and energy balances.

The region of stability of the high m polar modes seems to widen with Ta, making the region of
stability of equatorial modes thinner. By extrapolating the EA/SC transition curve to larger Ta > 1012

(by continuing the dashed line through the open circle and so on in Fig. 7) one might expect the
EA/SC transition curve to appear again, arising at another triple point. This is likely to happen
because the slope of the P/SC transition curve seems to be larger than that of the EA/SC modes. A
similar argument can be applied to conclude that the region of equatorial modes confined between
the two regions of polar modes will probably disappear, so that at some fixed Ta > 1012 there will
exist only three types of modes when Pr is varied, namely (from low to large Pr) AP/SP, EA, and SC
modes. An interesting question then arises: Could it be that for some Ta > 1012 high wave number
AP/SP modes become preferred again between EA and SC modes?

VI. APPLICATION TO CONVECTION IN STARS AND STELLAR OCEANS

For the sake of curiosity, the critical parameters of the onset of convection for three different
types of astrophysical applications will be estimated in the following with the help of the power law
scalings obtained in previous sections. They are as follows: (1) Spiraling modes: Rac ∼ 0.2 Ta0.57,
|ωc| ∼ Ta0.34, and mc ∼ 4 Ta0.16; (2) equatorial modes: Rac ∼ 0.008 Ta0.63, |ωc| ∼ 0.25 Ta0.48, and
mc ∼ 3 Ta0.13; and (3) polar modes: |ωc| ∼ 1.5 Ta0.48 and mc ∼ 0.3 Ta0.18 for Pr Ta1/2 > 10.

In addition, the type of instability (SC, EA, or P) can be predicted using PrP/EA = 0.68 Ta−0.29

and PrEA/SC = 1.67 Ta−0.2 obtained in Sec. V. The Taylor number, Ta = �2d4/ν2, and Prandtl
number, Pr = ν/κ , come from values of physical properties (see Table II) obtained in previous
studies, the details of which are given below. We also estimate the period of the waves from
P = (2πmc/|ωc|)d2/ν in seconds. Recall that negative frequencies give positive drifting (phase)
velocities c = −ωc/mc and the waves drift in the prograde direction.

At this point, it is worth mentioning the applicability of these results to stellar convection. In our
Boussinesq model, density variations are neglected, except in the buoyancy term. These are far from
stellar conditions, where the scale height of density variations [40] can be three orders of magnitude
smaller than the gap width of the convective layer. However, this simplification can be justified when
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TABLE II. Physical parameters of three example astrophysical convection scenarios. Jupiter is included for
comparison purposes. Thermal diffusivity κ , kinematic viscosity ν, layer width d , and rotation rate �.

Accreting white Accreting neutron Molecular region
Property Suna dwarf oceanb star oceanc Jupiterd

κ (cm2 s−1) 107–109 101–105 106 10−5

ν (cm2 s−1) 100–104 10−4–10−2 106 10−6

d (cm) 1010 108 103–104 108

� (s−1) 2.6 × 10−6 7 × 10−5 102 2 × 10−4

aValues taken from Ref. [46] and references therein.
bValues taken from Refs. [15,49,50].
cValues taken from Refs. [49,51,52].
dValues taken from Refs. [53,54].

the focus is to study the basic but relevant mechanisms of rotation, buoyancy, and thin spherical
geometry, and their interconnections.

In addition, it is often stated that the qualitative dynamical properties of Boussinesq flows are
inherited by compressible flows at the same parameter conditions, provided the velocities remain
subsonic. For instance, quite similar large-scale two vortex turbulent structures have been found
in Ref. [41] in a rectangular box both with and without strong stratification, in both cases with
kinetic energy scaling as k−3 (k is the Kolmogorov wave number). In the specific case of rotating
spherical shells, the linear theory of anelastic convection was formulated in Ref. [42]. They found
that with stratification, convection tends to be moved to near the outer shell with larger Rac, mc,
and |ωc| for Pr = 0.1,1,10. Specifically, with the strongest stratification, ρri

/ρro
≈ 150, the critical

parameters increase, with respect to the Boussinesq case, by around an order of magnitude in the
worse case. With these considerations, the linear theory of Boussinesq convection may be used to
obtain reasonable bounds for the critical parameters for compressible flows in a regime where the
compressible formulation is still numerically unfeasible. Further support for this result is given in
Ref. [43]. The same scaling laws for the critical parameters, in both Boussinesq and compressible
linear analysis, are valid in the limit of large rotation in a rotating plane layer geometry with very
low Pr. As the authors of Ref. [43] stated in their study, further research at the very low Pr number
regime is needed. Recently, Ref. [44], also in a rotating plane layer geometry, found restrictions on the
Boussinesq approximations at very low Pr. In this study, asymptotic scalings for the Boussinesq and
compressible onset of convection were compared with numerical computations of the compressible
case. For a perfect gas, with a moderate ratio between the domain and the temperature scale heights,
differences of less than one order of magnitude in Rac were found between the two approximations,
at Pr = 10−4.

Although convection in stars is believed to be fully turbulent [45,46], the analysis of the onset
of convection is worthwhile because patterns and characteristics at the onset may be able to persist
even in strongly nonlinear regimes. This was argued to happen in Ref. [47] even in the case of
nondominant inertial and axisymmetric modes. A previous study [48] also suggests that the mean
period of a fully developed turbulent solution does not change drastically from that of the onset of
convection. In that study at Pr = 0.1, the frequency spectrum of time series from turbulent solutions
that are 100 times supercritical have a maximum peak at a frequency roughly three times larger than
the corresponding value at the onset of convection.

For illustration, we shall now consider a selection of different astrophysical scenarios where
convection is important, to assess how the results of our study would apply. Shell or envelope
convection can arise in many different astrophysical scenarios. Low mass main sequence stars burning
hydrogen to helium in their cores, for example, are expected to have convective zones in their
envelopes. In Sec. VI A we consider this scenario and look at the parameter space appropriate to
the Sun. Shell convection can also occur during post-main-sequence evolution, via shell burning or
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TABLE III. Estimation of the critical parameters and a typical time scale P = (2πmc/|ωc|)d2/ν in seconds
(this is the time scale associated with the drifting phase velocity as computed in the rotating frame) for the Sun,
a white dwarf, and a neutron star depending on the type of mode, spiraling (SC), equatorial (EA), or polar (P).
In the case of neutron stars, only SC modes are considered since they are the only ones that can be preferred for
the range of parameters. For the Sun and the white dwarf scenario considered, all of them could be preferred
depending on the appropriate particular choice of Pr. This is indicated by the critical Pr at the P/EA and EA/SC
transitions, which are also shown.

Accreting white Accreting neutron
Type of mode Property Sun dwarf ocean star ocean

Ta 1021–1029 1028–1032 104–108

Pr 10−9–10−3 10−9–10−3 101–102

PrP/EA 10−9–10−6 10−10–10−8 10−3–10−1

PrEA/SC 10−6–10−4 10−6–10−5 10−2–100

SP Rac 1011–1016 1015–1017 103–106

|ωc| 107–1010 109–1011 100–101

mc 104–105 105–106 100–101

P (yr) 106–109 107–108 10−8–10−6

EA Rac 1011–1016 1015–1018

|ωc| 109–1013 1013–1014

mc 103–104 104

P (yr) 103–104 102–103

P Rac

|ωc| 1010–1014 1013–1015

mc 103–104 104–105

P (yr) 102–104 102–103

as elements heavier than hydrogen are burned. This may occur on the red giant branch, horizontal
branch, and asymptotic giant branch (see, for example, Refs. [55–58]). We do not examine these
scenarios in this paper, but note them for reference. White dwarfs can also develop convection
in various ways. Isolated white dwarfs develop convective zones as they cool, and we examine
this scenario in Sec. VI B. Accreting white dwarfs and neutron stars can also develop convective
zones as accreted material from a companion star undergoes thermonuclear burning. When this
burning is unstable, this can manifest in bright transient bursts: classical novae on accreting white
dwarfs, and type I x-ray bursts on accreting neutron stars. We do not study the convective zones of
accreting white dwarfs further in this paper, but refer the interested reader to, for example, Refs. [59–
62]. However, in Sec. VI C, we consider the parameter space appropriate for accreting neutron
star oceans.

A. Sun

For convection occurring in the Sun (Refs. [63,64] provide good reviews focusing on the role of
rotation), kinematic viscosities range from ν = 1 cm2 s−1 near the surface to ν = 104 cm2 s−1 in the
deeper layers, due to radiative viscosity (see Ref. [46] and the references therein). This gives rise to
very low Prandtl numbers Pr ∈ [10−9,10−3] and, depending on the size d of the convective layer, to
quite large Rayleigh numbers Ra ∈ [1018,1024] (see Sec. 2.4 of Ref. [5], Sec. 2.3 of Refs. [65] or [66]).
By assuming a size d = 1010 cm (η > 0.8) [46], one expects Ta ∈ [1021,1029]. Our predictions are
shown in Table III. According to this table, given the low Prandtl number of the Sun, the most probable
type of mode is equatorial. This type of Boussinesq solar convection was first studied in Ref. [2] by
considering only the radial dependence for small amplitude convection at small Ta. Recent studies
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on solar convection in the context of rotating spherical shells incorporate more complex physics by
using the anelastic approximation [67]. More realistic parameters (Ta = 106 and η ≈ 0.7) have been
considered in Ref. [68], and weak lateral entropy variations at the inner boundary have been imposed
in Ref. [69]. Nevertheless, they are restricted to moderate Pr ∼ 0.1. According to our results, and
assuming the lowest Pr < 10−6, it is also possible that polar modes become preferred, or at least
become relevant, when nonlinearities are included.

At this point it is interesting to see which time scales come from our results at the above estimated
range of Ta. Considering an equatorial mode, a long time scale, P ∼ 103–104 yr, is obtained. In the
case of polar modes, the time scale is a little bit shorter, at 102–104 yr. These orders of magnitude
estimates are not dissimilar to the long-term variability time scales of the Sun, the Gleissber and
Suess (also named the de Vries) cycles of 50–140 and 170–260 yr, respectively [70], an unnamed
500 and 1000 yr cycle and the Hallstatt cycle (2300 yr) [71], or the evidence of millenial periods of
6000 yr [72] and 9500 yr [73] suggested recently. Notice the robustness of the predictions: Although
Ta spans eight orders of magnitude, the periods obtained vary by only two orders of magnitude.
Many of the principal features of the well-known 11-yr Schwabe period can basically be explained
in terms of dynamo theory [74,75]. However, its origin is still not well understood because the
fields are strongly influenced by rotation and turbulent convection [76]. Moreover, the long-term
solar-activity variation described above imposes several constraints on current solar dynamo models
(either deterministic or including chaotic drivers). See Sec. 4.4 in the very recent review [77] for
further details. Because convection is believed to be the main driver of natural dynamos [1], and
the different dynamo branches first bifurcate from purely convective flows, the time scales predicted
from our results may be present in dynamos bifurcated from convective flows at a similar range of
parameters. Simulating such self-excited dynamos at the parameter regime covered in our study is
still numerically unattainable.

B. Cooling white dwarfs

White dwarfs are highly degenerate, except in a thin layer close to the surface. The idea that
cooling white dwarfs may have a convective mantle is a long-established one (see, for example,
Refs. [78–80]). Very recently, Ref. [50] suggested that associated dynamo action might explain the
magnetic field observed in isolated white dwarfs. The authors focused on a heavy (1.0M�) white
dwarf because magnetic white dwarfs are typically observed to be more massive. Here, we consider
a cooling white dwarf with properties similar to the one studied in that paper, noting, however, that
convective envelopes of white dwarfs could occupy a much wider range of parameter space.

Following Ref. [49], a kinematic viscosity of ν = 3.13 × 10−2 cm2 s−1 was used in Ref. [50]. We
consider the range ν = 10−4–10−2 cm2 s−1 of possible viscosities, take d = 108 cm as the size of
the convective layer (see Fig. 1 of Ref. [50]), and a total stellar radius of roughly R = 5 × 108 cm
for our estimations. These values give rise to η ≈ 0.8. However, as the white dwarf cools, the size
of the convective layer decreases towards zero, giving rise to larger values of η. Although periods
of white dwarfs range from hours to days or longer [81], we assume a period of 1 day. Results are
shown in Table III. As in the case of the Sun, the expected low Prandtl number makes equatorial
modes more feasible, but polar modes are also possible. Convection sets in at a critical Rayleigh
number 1015–1018, with drifting periods ∼102–103 yr. Further work would be required to investigate
the potential consequences.

C. Accreting neutron stars

The case of convection in very thin oceans of accreting neutron stars covers quite a different region
in Ta,Pr parameter space compared to the Sun and white dwarfs. Neutron stars typically have radii
∼10 km and rotation rates up to �1 kHz. Accreting neutron stars build up very thin oceans (which
are, in the zones where burning and convection occur, composed primarily of hydrogen, helium,
and carbon) with d < 104 cm, making the aspect ratio very large, η = ri/ro � 0.999. Convection is
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expected to be triggered due to thermonuclear burning of the accreted material, which can take place in
an unstable fashion due to the extreme temperature dependence of the nuclear reactions, giving rise to
the phenomenon of type I x-ray bursts (see Strohmayer and Bildsten [82] for a general review of type I
x-ray bursts and [83–85] for more specific discussions of convection). Surface patterns known as burst
oscillations are observed to develop frequently during thermonuclear bursts, motivating our interest
in convective patterns [52]. Due to the high densities of matter in the neutron star ocean, the main
contribution to microphysics is from highly degenerate electrons. The heat capacity can be estimated
using the formula for a degenerate gas of fermions, cP = (π2kb/2μemp)kbT /EF ∼ 108 ergs g−1 K−1

[86]. Conductivity, K ∼ 1016 ergs cm−1 s−1 K−1, and kinematic viscosity, ν ∼ 106 cm2 s−1, are
estimated from expressions in Refs. [49,51], thus the Prandtl number is of the order Pr ∼ 102. These
high viscosities and extremely thin convective layers combine to ensure that the Taylor number is not
so high, ranging from Ta = 108 for d = 104 cm (the expected ignition depth for carbon), and Ta = 1
for d = 102 cm (the expected ignition depth for hydrogen/helium). The full accreted ocean extends
to a depth of a few times 104 cm. Given this range of possible values for Ta, very different flow
regimes might be expected, and further research is needed into the physical conditions of neutron
star oceans (our current study does not fully cover this range of parameter space). In what follows,
and in Tables II and III, we discuss a more restricted range Ta ∈ [104,108], so as not to extrapolate
too far beyond the bounds our study.

If we assume Pr = 102 and Ta ∈ [104,108] to be the valid regime of a neutron star ocean, it is
clear from extrapolating Fig. 7 that the preferred mode of convection will be SC. The Pr values are
beyond the range covered in our study, however, the numerical computations of Ref. [13] just fall into
the neutron star regime, albeit in a thicker shell (geometric effects are believed to be of secondary
importance with respect to Pr). At Pr = 102 these authors obtained the following power laws, Rac =
1.99 Ta0.66, |ωc| = 0.0190 Ta0.33, and mc = 0.0687 Ta0.16 if we use the analytic formulas, and Rac =
4.057 Ta0.66, |ωc| = 0.0683 Ta0.33, and mc = 0.0819 Ta0.16 if we use the numerical values at Ta = 108

given in Table 2 of Ref. [13] (it should be noted that the definition of Ta used in Ref. [13] is different
from the one used here). Then, Rac ∼ 103–106, |ωc| ∼ 100–101, and mc ∼ 100–101, which gives
rise to a period P ∼ 1–10 s.

One of the less well understood phenomena occurring on neutron stars are burst oscillations (for a
review, see Ref. [52]). These occur on accreting neutron stars in the aftermath of a type I x-ray burst,
and are observed as modulation of the x-ray luminosity at a frequency very close to that of the spin
frequency, sometimes drifting by up to a few Hz in the tail of a burst as the ocean cools. They are
caused by pattern formation in the burning ocean. Currently, the two leading explanations for this
phenomenon involve flame spreading [87–91], or global modes of oscillation of the ocean [92,93], but
no model yet fits the data precisely, and both mechanisms may be involved. Convection is expected
to occur in many bursts, however, and the possible role of convection in pattern formation has yet
to be fully investigated. With a rotating frame frequency of 0.1–1 Hz, the time scales associated
with the convective patterns computed above are certainly compatible with those required to explain
burst oscillations (where a small rotating frame frequency would be required to keep the observed
frequency within a few Hz of the spin frequency).

It should be noted that in these computations we have only accounted for temperature differences,
and do not take into account burning physics or compositional gradients. This would not affect the
estimated dimensionless parameters Pr ,Ta but does mean that there is much work to do before a
direct comparison can be made with astrophysical phenomena since nonlinear effects would become
relevant. To illustrate more easily the parameter regime into which the astrophysical scenarios
mentioned above fall, Figs. 8(a) and 8(b) highlight the region occupied by each [in (1 − η,Ta) and
(Pr ,Ta) parameter space, respectively], together with the region covered by current and previous
numerical studies. In addition, Fig. 8(b) includes the region of preference of each convective
instability AP/SP, EA, and SC extrapolated from Fig. 7. While the Sun and white dwarfs have
aspect ratios η that are numerically attainable, they have Ta numbers which are impossible to handle
with current simulations. The latter does not occur in the case of neutron stars, but, in contrast, very
thin layers, demanding prohibitive spatial resolutions, must be considered.
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FIG. 8. (a) Estimates of Ta and 1 − χ for stellar convective oceans and parameter values of the current (red)
and previous (green) numerical studies of thermal convection which are clearly still far from stellar conditions.
(b) Same as (a) but for Ta and Pr. The estimated region of stability of the different convective instabilities SC
(with stripes), EA (plain), and AP/SP (cross hatched) is also shown.

VII. CONCLUSIONS

The onset of low Prandtl number Boussinesq thermal convection in fast rotating very thin spherical
shells is investigated carefully in this paper, by means of detailed numerical computations. A
massive exploration of the parameter space (Ta, Pr) is performed in a range of astrophysical interest
characterized by low Pr and high Ta and a very thin spherical shell η = 0.9 with stress-free conditions.
The use of efficient time integration methods has been useful for integrating the short temporal scales
exhibited by the flows at high Ta and low Pr. The parallelism of the code allows us to cope with
the high resolutions needed to follow the marginal stability curves for a wide range of azimuthal
wave numbers m ∈ [10,500]. This is necessary because the curves of quite different m are very
close in the case of very thin shells. In comparison with previous linear numerical studies in such a
thin (η > 0.8) geometry [28], the present study considers several orders of magnitude larger Ta and
smaller Pr numbers. The region of the parameter space covered is even wider than most of the linear
studies in thicker shells. Such very low Pr and large Ta number have previously been reached only
in the recent numerical [22] and analytic [23] studies, and then only for the case of a full sphere.

An exploration at four fixed Pr < 1 reveals the existence of three types of preferred modes as Ta is
varied. Prograde spiraling columnar (SC) convection occurs at larger Pr and the power laws obtained
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for the critical parameters agree quite well with previous results. For intermediate Pr, equatorial
(EA) modes, which can be retrograde for small Ta, are found to be consistent with former studies
considering thicker shells but, surprisingly, prograde equatorial antisymmetric or symmetric polar
(AP/SP) modes with a high wave number can also dominate at Pr = 10−2 and Ta = 1012. The latter
types of modes are the only ones preferred at the lowest Pr = 10−4, but in this case they can also be
retrograde and show multicellular structures and strong shear layers which extend in the latitudinal
direction. Antisymmetric polar modes, with convection confined inside the inner cylinder, were found
for the first time in Ref. [25] considering a shell with η = 0.4, but they are dominant in a substantially
smaller range of Ta when compared with our results at η = 0.9. The latter fact increases the relevance
of polar antisymmetric convection since low Prandtl number fluids convecting in very thin shells are
common in stellar interiors.

With further exploration, by varying Pr, the transitions among SC, EA, and AP/SP modes are
computed and traced in the (Ta, Pr) space. Previous studies [24,27] provided only a qualitative sketch
in a smaller parameter region. At the lowest Pr values, polar modes become the only ones that are
preferred and the critical parameters become nearly constant, suggesting the zero Prandtl limit is
not far. The transition between AP/SP and EA modes takes place at PrP/EA = 0.68 Ta−0.29, giving
rise to a sharp step in the drifting frequency |ωc| and a jump in mc. The step and the jump tend
to decrease with Ta. Equatorial modes are superseded by SC at PrEA/SC = 1.67 Ta−0.2 but only for
Ta < 2.8 × 109. The transition between EA and SC modes is also characterized by a sharp step in
the drifting frequency |ωc| and a big jump in the azimuthal wave number.

At larger Ta and moderate Pr we have found two additional transitions. One is between EA
and AP/SP modes and the other is between AP/SP and SC modes, taking place at larger Pr. The
frequencies |ωc| are slightly increased for the former but strongly decreased for the latter. The
situation for mc is different: It increases substantially when AP/SP polar modes become selected
but only slightly when SC overcomes the AP/SP modes. The two transition curves intercept at
(Ta3, Pr3) = (2.8 × 109, 2.12 × 0−2), giving rise to a triple-point bifurcation that we report in the
context of thermal convection in rotating spherical geometry. At this triple point, AP/SP, EA, and SC
modes are dominant and have very different |ωc| and mc. This is relevant because when nonlinearities
are included, a rich variety of chaotic dynamics may be expected almost at the onset. In addition, as the
three types of modes are characterized by different physical mechanisms, nonlinear solutions driven
by different force balances are expected to coexist at the triple point. The study of the associated zonal
flows and the magnitude of any differential rotation that arise in these different nonlinear regimes is
important for the understanding of stellar ocean convection.

Finally, the fit formulas computed are used to estimate the critical parameters, the characteristic
time scales, and the most likely mode for the onset of convection occurring in the Sun, white dwarfs,
and accreting neutron stars. Although Boussinesq thermal convection in thin rotating spherical shells
fails to reproduce the compressibility effects in stellar fluids, it captures the essential features of
rotation and spherical geometry and thus gives valuable insight for further studies of more realistic
models. Using known values of the physical properties, reasonable results for the critical Rayleigh
number and the time scales are achieved, which are of similar order to observational phenomena
reported in the literature.

According to our results, equatorial modes (and polar modes with less degree) are the best
candidates in the case of Sun and cooling white dwarf convection because of their low Pr. Their time
scales are about 102–104 yr for the Sun, encompassing the well-known long-term period Gleissber
and Suess or Hallstatt cycles, and slightly lower at 102–103 yr for white dwarfs. In the case of
accreting neutron star oceans, the situation seems to be quite different. It is not clear which regime
they will belong to, because they have very viscous (electron degeneracy) fluids. Our results suggest
Ta = 100–108 depending on the size of the shell considered and Pr = 102. If we assume Ta > 103,
then convection will take the form of spiraling columns drifting very rapidly (on time scales of
1–10 s). These time scales are consistent with some of the time scales seen in thermonuclear bursts
where the accreted ocean develops patterns known as burst oscillations, and may therefore be of
interest to studies of this as yet unexplained phenomenon.
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