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Morphing continuum analysis of energy transfer in compressible turbulence
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A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting
flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT
solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8° compression
ramp. The simulation results validated MCT with experiments as an alternative for modeling
compressible turbulence. The required size of the smallest mesh cell for the MCT simulation
is shown to be almost an order larger than that in a similar direct numerical simulation
study. The comparison shows MCT is a much more computationally friendly theory than
the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale
of individual eddies is illuminated through the subscale rotation introduced by MCT. In
this regard, MCT provides a statistical averaging procedure for capturing energy transfer
in compressible turbulence, not found in classical fluid theories. Analysis of the MCT
results show the existence of a statistical coupling of the internal and translational kinetic
energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating
a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the
energy cascade within compressible turbulence without the use of excessive computational
resources.
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I. INTRODUCTION

Turbulence remains as one of the most relevant unsolved problems in physics today. The study
of compressible turbulence, in particular, applies to many fields within physics and engineering,
including supersonic aircraft design, inertial confinement fusion, and star formation within galaxies.
Still, modeling and analyzing these complex flows is a constant challenge. Kovasznay addressed this
challenge by decomposing the weak turbulent fluctuations about a uniform mean flow with spatially
uniform mean thermodynamic properties into three modes of fluctuations: vortical, acoustic, and
entropic modes [1]. For first-order modes, the three types of disturbances are decoupled from each
other at fluctuation amplitudes [2]. For the second-order modes, however, couplings arise between any
two modes, and their interaction generates the other modes [3]. Goldstein [4] showed that for linear
unsteady disturbances about an arbitrary potential flow, the fluctuations need only be decomposed
into vortical and entropic modes. The vortical modes are found in divergence-free velocity fields with
no pressure fluctuations, while the entropic mode arises from temperature spottiness [1]. Kovdszany
decomposition has been employed in linear rapid-distortion theory [5], in homogeneous [6] and
inhomogeneous [7] turbulence, and in shock wave turbulent interactions [8].

The influence of the vortical fluctuation modes or small scale eddies on the dynamics of
compressible turbulent flows is one of the most difficult aspects to simulate and visualize. The
interactions between individual eddies and between subscale eddies and translational mean flow can
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provide insight into the energy cascade process [9-15]. For the case of compressible turbulence,
the interactions at the smallest length scales are fundamental to shock-turbulent boundary layer
interactions (STBLI), when turbulence is amplified and eventually dissipated after passing through
the shock wave [16-21].

Kolmogorov’s picture of a continuous transition of kinetic energy at the large scales to dissipation
of heat at the molecular level still shapes the mainstream discussion of energy transfer within
turbulence [22]. A constant question, however, is the extent of this model’s applicability to the smallest
relevant length scales. Leonard employed filtering techniques to the incompressible Navier-Stokes
equations to determine the contribution of subgrid-scale eddies to the energy cascade process [9].
The nonlinear advection term was determined to be a primary factor in extracting energy from the
mean flow, while the Reynolds stress component played a minor role. In the case of isothermal
compressible turbulence, Aluie found evidence that Kolmogorov’s picture may still be applicable
when pressure dilatation effects decay sufficiently quickly [14]. A key part of Aluie’s study was the
observed statistical decoupling of kinetic and internal energy at smaller scales, allowing for local
conservative cascade to the smaller eddies. Indeed, the energy transfer from the inertial length scale
to the subscale eddies dramatically affects the dynamics at the smallest relevant length scales. The
details of subscale motion then become important for either molecular dissipation or inverse energy
cascade.

From these studies, the specifics of the contributions of individual eddies are inferred from
manipulations of the Navier-Stokes equations. Once a relevant smallest length scale is specified,
the simulation or experiment cannot directly describe the dynamics of smaller eddies [23]. Direct
numerical simulations (DNS) can produce energy spectra for a wide range of length scales [24,25] but
will inevitably incur higher computational costs if the details of individual eddies are needed. These
limitations arise due to the assumption of the fluid as a continuum of infinitesimal points. Small-scale
dynamics such as eddy rotation are inferred from the behavior of these points. Furthermore, the
variables of the Navier-Stokes equations do not explicitly include terms that allow for the control of
subscale motion. Velocity fields present useful data, but the interpretation of this subscale behavior
is left to the researcher.

To extract details at the smallest scales, some researchers approached turbulence from a different
starting assumption of the fluid. Eringen derived new equations for fluids containing an inner
structure, where the components of the fluid possess a finite size and orientation [26]. This new
picture of the fluid, known as a morphing continuum, led to a mathematical formulation that
incorporated a new term for the rotation of these inner structures. Since this formulation, the extent of
the success of morphing continuum theory (MCT) in reproducing turbulent profiles for compressible
and incompressible turbulence has been well documented [18,27-31]. In particular, MCT was able
to capture a post-shock inverse energy cascade through spectral analysis of the kinetic energies of
translation and subscale rotation [18]. Still, a thorough application of MCT to the problem of energy
cascade in compressible turbulence has yet to occur.

This paper applies MCT to the problem of the contribution of subscale eddies to the energy
cascade process for compressible turbulence. Using MCT, the study is able to decompose the motion
of the subscale eddies into translational and rotational motions, and investigates the energy transfer
between kinetic and internal energy. Supersonic freestream turbulence over a compression ramp is
simulated and used to analyze the energy transfer at the subscale level, using the governing equations
and new relevant variables of MCT. Section II gives the physical picture of the fluid through the lens
of MCT and derives the relevant governing equations. Section III describes the numerical scheme
employed to discretize the equations of MCT and the algorithm to solve these equations. Section IV
tests the order of accuracy of this numerical scheme on a simple Couette flow. Section V describes
the test case of the compression ramp, the results from the MCT simulation, and any observations
relevant to the discussion of energy transfer for compressible turbulence. A further discussion and
concluding thoughts are presented in Sec. VI.
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II. MORPHING CONTINUUM THEORY

Eringen’s microcontinuum field theories [26,32-34], the starting physical picture for MCT,
assume that the fluid comprises inner structures with arbitrary shapes and self-spinning rotation.
The macroscopic and subscale motions of these inner structures are expressed by

xp = x (Xk,t), k=1273, (D
Xk = Xg(x,t), K =123, )
& = xkxk (Xk,1)Egk, Ex = Xrkér, 3)

where X ¢ and x;, refer to the initial and final positions of the inner structure, with coordinates denoted
by k or K, while & and y; ¢ represent the local rotation and deformation vectors of the inner structure.
The inner structures have a total of nine degrees of freedom, making the mathematics extremely
tedious. MCT simplifies these inner structures by assuming subscale isotropy in deformation, thus
removing the degrees of freedom related to the deformation x;x of the inner structures [18]. This
simplification means that any deformation is presumed to be isotropic at the length scale of the
smallest inner structures. The resulting fluid element in MCT differs from the classical fluid theory
by having, in addition to the translational motion, a local rotation characterized by the gyration, wy.
The angular momentum of these inner structures becomes pjwy, where j represents the inertia of
the inner structure, defined by Chen ef al. [28,35] to be

. Jmm

J=75" “)
In addition to the isotropic deformation of the inner structures, morphing continuum theory considers
these inner structures to be small eddies in the turbulent flow. The theory assumes these eddies to
have rigid spherical structures and constant material properties. Chen [28] showed that the inertia of
these spheres has the relation j = %dz, where d represents the sphere’s diameter.

The total velocity of these subgrid eddies can now be written as v,‘("tal = v + (d/2)wy, where
vy is the eddy translational velocity and wy is the gyrational motion of an eddy. If the magnitude
of the gyrational motion of the eddy is small compared to the translational motion, the gyration is
mathematically equivalent to the perturbed velocity found in the Reynolds-averaged Navier-Stokes
(RANS) equations [18].

A. Governing equations for compressible flow

As discussed previously, the main variables that govern the motion of the subscale eddies in
an MCT flow are the translational motion v; and local gyration wy;. From these variables, the new
deformation rate of the MCT-based fluid becomes [34]

ax = Uk + €lkm@m, (5)

by = wi, (6)

where ay; represents the classical deformation-rate tensor from the Navier-Stokes equations with
an additional term representing the effect of the rotation of the inner structures. The by; tensor is a
new deformation tensor not found in the classical fluid theory, representing the strain experienced
due to gradients in the gyration. Decomposing the first deformation rate tensor into symmetric and
skew-symmetric components yields

ap = 2k + i) + Sk — vkt + 2€0mn) | (7

Skt Qi
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where Sy; represents the strain experienced by the deformation of the fluid element, similarly to
the classical Navier-Stokes theory, while €2, represents the rigid body rotation. €2 is similar to
the classical spin rate tensor, but with an additional term that takes into account the effect of the
gyration. Since €2y, is skew symmetric, then the permutation tensor €5, can be used to convert €2,
into a vector field. Chen [28] referred to this field as the absolute rotational field, 2;, characterized
by the expression

Q= €imS2 = —€pmVik + 20wp. ®)

For classical fluids, converting the spin rate tensor to a vector field yields a Galilean invariant vorticity.
In MCT, €, yields a more general rotational field that includes the contribution of the gyration in
addition to the vorticity field, making the absolute rotation field Galilean invariant and objective [28].
Similar to the classical Navier-Stokes vorticity field, the absolute rotational field represents twice
the rotation vector of the MCT fluid element.

With the deformation-rate tensors above, the constitutive equations for the Cauchy stress tensor,
moment stress tensor, and heat flux are derived to be [28]

ty = — P8 + Atr(@mn)o + (U + )aw + pa, ©)
my; = aTeklmT,m + Oltr(bmn)fskl + ﬂbkl + yblk’ (10)
qr = —K TJc + AT €RImDm [, (11)

where p is the fluid density, p is the pressure, w is the dynamic viscosity, A is the second coefficient
of viscosity, « is the coupling coefficient between the linear and angular momenta, y is the subscale
diffusion coefficient, 7 is the temperature gradient, and K is the thermal conductivity; ar, ¢, and
B are material constants that are set to zero for this study. Plugging these equations into the balance
laws, one obtains the governing equations for a compressible flow:

Conservation of mass:

Dp
Conservation of linear momentum:
Dv,,
1Y Dt = —Pm + ()" + /'L)vn,nm + (M + K)vm,nn + K(Emnkwk,n)- (13)
Conservation of angular momentum:
. Dw,,
L] D_f = (Ol + ;B)wn,nm + Y Wm nn + K(Emnkvk,n - 2wm) (14)
Conservation of energy:
DE
P = —(PVm).m + AV m Vi) k& + [ (Vv + €mionvr) + (ke + Ve vl x
+ (@@ mor + Borwr + Yoo i)k + (KT )k, (15)

where E = e 4+ 1/2(v,yv,n + jon,w,,) is the total energy density of the fluid, and e is the internal
energy. oy disappears after substitution into the balance laws, since my; x and g will yield
o%eklm Tk =0 and aTTeklmwm,lk = 0. To close this system of equations, the fluid is assumed to
be an ideal gas, leading to the following relations:

p

_ 16
p(Cp —Cy) (16)

e=c,T =c¢,

p
2 _

Cy

1
IOE = + EP(UmUm + Ja)ma)m)a (17)
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where ¢, is the specific heat at constant pressure and c, is the specific heat at constant volume.
Finally the generalized Stokes’ hypothesis for MCT is employed to relate the second coefficient of
viscosity (A) with dynamic viscosity () and coupling coefficient (k) as [28]

3 +2u+k =0. (18)

B. Nondimensional form of the MCT governing equation

To better understand the contribution of the individual eddies, the MCT governing equations are
non-dimensionalized, where the dimensionless groups are defined based on the physical parameters
of interest. Starting with the distance and motion variables, the length scales x,, and the translation
velocity v,, will be parametrized with the square-root of the subscale inertia L = /j and the
freestream velocity Uy respectively. The temporal term ¢ will be dimensionalized with the time
it takes the freestream velocity to cover the distance L, i.e., L/Us. The gyration w,,, meanwhile,
will be dimensionalized with the inverse of temporal term. In summary the dimensionless variables
are

L S N S S — (19)
L Us L/Ux Us/L
The thermodynamic variables of the density p and pressure p will be dimensionalized according to
the freestream density p and dynamic pressure pU, go Substituting the nondimensionalized variables
into the governing equations yields a set of dimensionless groups that captures the physical behavior
of each parameter. One parameter is the Reynolds number, which is defined as the ratio of the
convection to the diffusion of linear momentum,

_ PocUsL
wtie

Re (20)
As for the energy equation, two dimensionless numbers appear: the Prandtl number, which defines
the ratio of momentum diffusivity to thermal diffusivity, and the Eckert number, which defines the
relationship between a flow’s kinetic energy and the boundary layer enthalpy difference:
UZ
pro TR g U 21
K cpToo

The previously defined parameters are typical dimensionless groups found in the classical fluid
theory. The next dimensionless term that is specific to MCT will be called Er in honor of Eringen,
and is defined as the ratio of the inertial forces to the viscous forces arising from the gyration:

_ PoUsL
—

Er (22)

The other parameters found in MCT will also be non-dimensionlized with respect to the convection
term:

UsL? UsL? UsL?
Cp= 2= oy = = o POTT (23)
o B Y
In this regard the governing equations in dimensionless form become the following:
Conservation of mass:
ap Ao
—+V-(p¥V)=0 (24)
at
Conservation of linear momentum:
apy) o A 1L [1s o0 Aoa 1oy o 24 &
— +V - [V =-Vp+ —|zV(V- N+ V¥V |+ |V xb—-=V(V-¥)|. (25
ot Re |3 Er 3
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Conservation of angular momentum:

WO ¥ (i) = [+ — VT @)+ — o+ — (T x9-26).  (6)
AYL0] —_— —_— —_— (0] —_— XV —L4LW).
a7 Co Cg c, Er
Conservation of energy:
DE LG B =~ (0 + 9 [(091 94999 — 260 -9 + 29 [ Lo@ 0
~ V)= — A\ _— . \4 A\ V- VV— — A\ f =V v
o7 P PV Re 3 Er' |3
+oxv—[ViT- i|+—V [(V - w)w]+—V (V®)- &)
o
+ L ¢ @-(Vo)h) + L ¢ (27)
C, ReEcPr ’

III. NUMERICAL SCHEME

The solver developed to implement the MCT compressible governing equations is constructed
in the framework of the finite volume discretization. One reason for choosing finite volume is due
to its easy implementation, and its convergence to a stable solution for complex flows. The spatial
domain implemented is divided into contiguous control volumes or cells, with the physical variables
of velocity, gyration, pressure, density and temperature collocated (i.e., located at the cell center).

The transport equation for any conserved property can be written in the following form:

Y V) =V-TVh+ S, 28)
ﬁf_/ — — ~—

) convective term diffusive term source term
transient term

Here, ¢ refers to a transport variable, 'y is the diffusivity or the diffusion coefficient, and Sy is
the source term. Letting ¢ = p yields the continuity equation, ¢ = pv,, gives the linear momentum
equation, ¢ = jpw,, yields the angular momentum equation, and ¢ = p E gives the energy equation.
The finite volume method requires that the governing equations in their integral form be satisfied
over the control volume. Applying spatial integration on Eq. (28),

/ —‘fdv+/ V~(vqb)dV=/ V.(r¢v¢)dV/ SydV. 29)
V. V. V.

For the present solver, a simple forward Euler method was implemented for the unsteady term,
9 n+1 n
| Gpav =, (30)
v, ot At
where V, represents the cell volume, the subscript ¢ refers to the cell center, and superscript n refers

to the current time step. Implementing the forward Euler method on the conservation of mass, linear
momentum, angular momentum, and energy equations yields

ap prtl — pr
/ Pav ~Pe_—Fey 31)
v. of Af
(0% Ag\n+1 n
/ (pV) (pV)C — (V) V. (32)
v, of Af
d(pa KO — (p@)!
/ (pw) ~ (PO) - (p@); V., (33)
V. of At
IPE PEYH — (PE!
/ (b ) ~ PE) - (PE); V.. (34)
v. of At
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This scheme is first order in time, but can be modified to a higher-order Runge-Kutta time integration
scheme.

Care is taken with the numerical scheme implemented on the convection terms in MCT, which
are V - (p¥),V - (p¥9), V - (p¥®), and V - (HE¥). The numerical scheme adopted for the convection
terms should be able to capture the shock wave and discontinuities, while avoiding oscillations.
Replacing the volume integral by a surface integral through the use of the divergence theorem, the
convection terms can be approximated as

/V V. (v$)dV = fs (v§)-dS~ Y vips Sy, (35)
¢ f

where Y ¢ denotes the summation over the faces of the control volume, vy - S is the volumetric
flux, Sy is the face normal vector, and ¢ ; represents the face value of the transport variable. Notable
methods found in the literature are able to effectively produce accurate nonoscillatory solutions for
¢ . These methods are the piecewise parabolic method (PPM) [36]; the essentially nonoscillatory
(ENO) method [37,38]; weighted ENO (WENO) [39]; and the Runge-Kutta discontinuous Galerkin
(RKDG) method [40]. All of these methods involve Riemann solvers, characteristic decomposition,
and Jacobian evaluation, making them troublesome to implement. The scheme implemented in
this study is a second-order, semidiscrete, non-staggered scheme, introduced by Kurganov, Noelle,
and Petrova (KNP) [41] as a second-order generalized Lax-Friedrichs scheme. The interpolation
procedure of the transport variable ¢ from the cell center ¢. to the face center ¢, implemented in
this scheme is split into two directions corresponding to the outward or inward direction of the face
normal,

Zfoﬁfo = Z[asf+vf+¢f+ +(A—a)Syrvi s +wp(dr—+ sl (36)
f f
where Sy is the same as Sy and S;_ = —S. The subscript f+ is denoted for the directions

coinciding with S¢, , and f — for the opposite direction. The twoterms S¢ Vs s andSy_vs_¢pr_
in Eq. (36) represent the fluxes evaluated at the S s and S s_ directions respectively. The last part of
Eq. (36) represents an additional diffusive term based on the maximum speed of propagation of any
discontinuity that may exist at the face. The weighted coefficient « is

o=Vt (37

i+ + -

where v/ ¢ is the local speed of propagation, shown to be
Ve =max(cpi|Sel + @pi.cr— ISyl + ¢5-.0), (38)
V- =max(cry|Ssl = pry.cr-Srl = hr-.0), (39)

and cy+ = /¥ RTy+ is the local speed of sound at the face. The diffusive volumetric flux @y has
the form,

wp=a(l —a)(Yrp +Yyr). (40)

The scheme implemented to interpolate the values at the center of the face in the directions of S,
and S_ is based on the limiting standard first and second orders upwind [42]. The interpolation at
f+ for example is

S =0 —gr)Po + gr+Pn, 41)

where the subscripts O and N represent the nodes at the center of the owner cells and neighbor
cells respectively, and the KNP geometric weighting factor gy = B7(1 — wy) with B being the
van-Leer limiter function.
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TABLE I. Algorithm for solving the MCT governing equations.

while ¢ < end time
Interpolate all the fields from the cell center to face center
Calculate the convective, diffusive, and gradient terms
Solve the continuity equation for p
Solve the linear momentum equation for u;
Solve the angular momentum equation for w;
Solve the energy equation for E
Update the temperature 7' from E
Update the pressure using the ideal gas law
Update the boundary conditions
Update time (t"*! = " + At)

All of the gradient terms in the MCT governing equations are computed using the Green-Gauss
theorem [43,44],

| vorav =3 a8, “2)
i f

c

where the face value is calculated using the compact stencil method [44], which is simply the
geometric average of the two cell-centered values of the face,

¢r = 8o + (1 —g)dn, (43)

where g, is the geometric weighting factor. The only exception is the pressure gradient, V p, in the
linear momentum equation, which was discretized according to the Kurganov, Noelle, and Petrova
(KNP) [41] flux splitting scheme:

D ¢S =) [aSyi¢r +(1—a)S; ¢y, (44)
f f

where « is the weighted coefficient defined previously.
Finally, the diffusion terms are approximated by

/VV -(TpVe)dV = /S(F(,)Vq)) -dS & Z(F¢,V¢)f.Sf. (45)
f

The (I'y V) s term can be obtained as the weighted average of the gradients at the face centroids
multiplied by the diffusivity at the centroid,

TeVP)r =8 (TyVP)o + (1 — g )Ty Vo). (46)

In most cases, the diffusivity is interpolated linearly from the cell center values to the faces. The curls
of the transport variables are represented by the of-diagonal components in the antisymmetric part of
the corresponding Green-Gauss gradients. Therefore, the curls of these variables can be computed
in a fashion similar to the gradient terms.

Now that the specifics of the finite volume solver have been described, the final step is to give
an overview of the algorithm employed. The solver developed is a fully explicit solver: all terms in
the MCT governing equations are evaluated at the previous time step. This approach enables fewer
computations per time step, but does put a constraint on the size of the time step. The full algorithm
of the MCT solver is shown in Table I. With this algorithm in place, numerical simulation of the
compressible flow can be done through the perspective of MCT.
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FIG. 1. Boundary conditions for a 2D Couette flow.

IV. VERIFICATION: COUETTE FLOW

Verification of the compressible MCT solver was done by comparing the numerical results of the
compressible isothermal Couette flow with the analytical solution. The assumptions for the Couette
flow are that the flow is fully developed, steady state, isothermal, compressible, and two-dimensional
[28], i.e., zero velocity in the y and z directions and zero gyration in the x and y directions.

Under these assumptions the governing equations for MCT are reduced to

9%v dw,

LY 47
(i) 1)
9 9

y 20O i, =0, 48)

dy? dy

As for the boundary conditions, the moving plate is placed at a height 4 above the fixed plate, and
moves in the x direction at the a velocity Uy, while the gyration at both plates is fixed at zero due
to the no-slip condition. Figure 1 illustrates the boundary conditions of the system. The analytical
solutions of gyration and velocity for the Couette flow are

1 u eMy
w; ZC]S[—1+ <1 — B)e‘ y+7:|, (49)
CotCly+ 20 LA P N (50)
Uy = —1—(1==)e - - ,
4 1y Vi D D y
where
2
M- IC(N«"'K)7 D=1~|—€Mh, S=K+M’ G =— K ,
y(u+«) K+ 20 K+ u
(=2 + D)e"™MSG De"™ M
C4=+UO, CI=TU07

F=(—14"Y2GS+ D[-GS +"™(hM + GS — GhMS)].

Figure 2 plots the velocity and gyration profiles across half of the channel height. Here, the
dynamic viscosity u and the gyration diffusion coefficient y were fixed at 1, while the value of
the rotational viscosity, «, varied from O to 10. The figure shows that, as « increases from O to 10,
the linearity of the velocity profile starts to curve, particularly near the boundary. The figure shows
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FIG. 2. Velocity and gyration profile for the MCT Couette flow.

that the classical rectilinear profile of the Couette flow is a special case of the MCT Couette flow at
Kk =0.

The details of the numerical order calculation and verification for the velocity and gyration are
shown in Table II. The results clearly indicate that the solver exhibits the desired optimal second
order of accuracy.

V. VALIDATION: COMPRESSION RAMP

Finally, the advantage of compressible MCT in capturing the energy cascade at the level of the
subscale eddies will be showcased in a shock wave and turbulent boundary layer interaction (STBLI)
case, in particular the compression ramp configuration. The compression ramp has some technical
advantages over other STBLI cases, mainly due to the generated shock waves emanating outward
through the outflow part of the computational domain, removing the need to impose a highly accurate
far-field boundary condition [45].

TABLE II. Velocity and gyration error analysis.

5x5 10 x 10 20 x 20 40 x 40
Vel L, 0.0265 0.0087 0.0029 0.0012
Order 1.613 1.569 1.334
Vel L, 0.0192 0.0060 0.0018 0.0006
Order 1.681 1.717 1.632
Gyr L, 0.0769 0.0290 0.0091 0.0033
Order 1.408 1.672 1.456
Gyr L, 0.0265 0.0087 0.0029 0.0012
Order 1.579 1.769 1.693
Axy, 0.2 0.1 0.05 0.025
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FIG. 3. Size of the compression ramp computational domain.

For our particular case, the experiment of Kuntz et al. experiment [46,47] of a supersonic flow
over an 8° compression ramp is replicated. In their paper, Kuntz et al. considered a series of five
compression ramps ranging from 8° to 24°. Using this set of ramp angles, Kuntz et al. were able to
capture a full range of possible flow fields, including flow with no separation, flow with incipient
separation, and flow with a significant amount of separation. The experimental data of Kuntz ef al.
has been referenced to derive shock-wave/boundary-layer interaction (SWBLI) models based on
mass conservation [48]. In addition, this data was used to validate the accuracy of different RANS
models [19,49], to analyze the significance of the spanwise geometry variation, and to relate it to
a canonical compression flow for a three-dimensional bump flowfield [50]. For the 8° compression
ramp, Kuntz’s experimental results showed no separation of the flow near the corner ramp, making it
an ideal simple case to demonstrate the capabilities of MCT. Another reason why the 8° compression
ramp is chosen is the two-dimensional behavior of the shock near the ramp corner, giving credence
to the assumption of a two-dimensional flow, as well as the adiabatic condition at the wall, resulting
in no heat dissipation [51]. Figure 3 shows a schematic for the present ramp configuration.

A. Material parameters

The working fluid is assumed to be an ideal gas, where the equation of state is p = pRT. The
gas constant is taken as R = 287.06 m?s~2K ™!, the specific heat coefficient for constant pressure
is ¢, = 1004.06 J/(kg K) and the Prandtl number is Pr = 0.7. The summation of all the viscous
coefficients was computed by Sutherland’s law:

e (1.458 x 1076)T3/2
TR = T 04

The incoming freestream conditions are listed in Table III as reported in the experiment of Kuntz
et al. [47]. The temperature at the wall was set to adiabatic conditions, in reference to the experiments
by Kuntz et al. [46]. The boundary layer thickness é and the momentum layer thickness 6 for the

(D

TABLEIII. Freestream flow conditions taken form the experiment setup of Kuntz

et al. [46].
Do (P2) Poo (kg/m?) U (m/s) T (K)
14319 0.465 612 107.79
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TABLE IV. Dimensionless numbers based of the freestream conditions of the experimental setup.

j (m?) Ma Re Er c, Cq Cs

106 2.94 38000 38400 1.5809 x 10° 0 0

incoming flow, reported by Kuntz ez al. [46], at the location of the ramp edge were measured to be
8.27 and 0.57 mm. As for the MCT variables, Wonnell and Chen [29] showed that the viscous forces
arising from the gyration should be around 99 times the dynamic viscosity (i.e., k = 99u) to obtain a
turbulent incompressible flow. This study follows the work of Wonnell and Chen by making « equal
to0 991 [29]. The two other dimensionless parameters (C, and Cg) are set to zero, since currently
there is no physical meaning to them. Table IV shows the MCT dimensionless parameters introduced
in Sec. II computed from the freestream conditions and the length scale parameter L = +/j.

B. Boundary conditions and meshes

The subject of spatially evolving turbulent flows poses a particular challenge for numerical
simulation, due to the need for time-dependent inlet conditions at the upstream boundary. In many
cases, the downstream flow is highly dependent on the conditions of the inlet. Therefore it is necessary
to specify a realistic time series of turbulent fluctuations that are in equilibrium with the mean flow,
while still satisfying the governing equations. For this reason, creating accurate inflow turbulent
conditions may require costly independent simulations [52], forced transition [53], a long leading
edge [19], or cost-saving but crude inflow generation methods [54].

Oliver tested turbulent RANS models for a flow past an 8° compression ramp [19]. In this study,
the length of the flat plate upstream of the ramp corner exceeded 605. The reason for this addition
was to allow the inflow to develop from a uniform to a turbulent flow, with a boundary layer that
matched the experimental boundary layer thickness.

Here, MCT has the ability to control the eddy structure of the flow by the gyration term, enabling
it to model turbulence without the need for complex boundary conditions. Wonnell and Chen [29]
showed through utilizing the subscale eddies near the wall that MCT can control the regime of the
flow and change it from laminar to transitional or turbulent. They later showed that, in addition to
controlling the eddies near the wall, one can control the eddies’ rotational speed at the inlet, and thus
control the incoming turbulent kinetic energy 1/2pjwywy [18].

The inflow variables implemented in the current case to achieve a turbulent flow are decomposed
into two parts: the mean and fluctuating components. For the mean flow, a prescribed turbulent mean
velocity profile was defined at the inlet, through the implementation of Martin’s procedure [52].
Figure 4 plots the inlet velocity profile from the MCT simulation with the experimental incoming
velocity profile [47] located 0.068 upstream of the compression ramp.

The fluctuations are generated by controlling the rotational speed of the upstream eddies. This
happens because the instantaneous inlet gyration wy is decomposed into mean and fluctuating parts:

wi(t,y) = (@ (y)) + o (2, ), (52)

where (wy) is the mean value of the gyration and wj(¢) is the fluctuating rotation speed of the
eddy. The perturbations are produced through a random number generator with the range of values
constrained by the root-mean squared (rms) gyration, and turbulent intensity from the experiments
at the specified point. The rms value of the perturbed gyration becomes

(53)
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FIG. 4. Velocity profile of the incoming flow implemented in both MCT cases versus the experimental data
(KAA 1987: [46,47]).

and the turbulent intensity of the MCT flow becomes
Wmsd /2
U

It can be seen that the larger the range of the perturbation in the gyration field, the larger the rms
value and thus the larger the turbulent intensity. In order to focus on the effects of the fluctuations,
the mean gyration was set to zero, while the amplitude of the perturbed gyration was defined so that
the turbulent intensity of the incoming flow matches the experimental turbulent intensity results of
Kuntz et al. [46], as shown in Fig. 5.

The remaining boundary conditions at the inlet are the pressure and temperature, which are set to
the freestream conditions in Table III. At the outlet and top boundaries, supersonic outflow boundary
conditions are implemented, and for the ramp wall the no-slip and adiabatic boundary conditions are
implemented.

A structured grid is generated, with the distance between the corner and the outlet equal to 68, and
the length upstream of the corner equal to 0.065. The number of cells used in the current simulation
is 505 in the streamwise and 1000 in the wall-normal directions. In the wall-normal direction, the
grid spacing near the wall is Ay' = 1.34 with 10 grid points within y* < 30. Figure 6 plots the
Van Driest transformed velocity at the inlet. It is evident from the figure that the cell resolution in
the y direction is sufficient to capture the viscous sublayer and the logarithmic region of the velocity
profile.

(54)

C. Comparison between the simulation and experiments

Validation of the proposed MCT scheme was conducted through comparing the pressure at the
wall as well as the velocity profile between the experiments and the simulation. Figure 7 plots the
normalized wall pressure of the experimental results versus the RANS results of Oliver [19] and
Asmelash [49], and the proposed MCT numerical solver results.

The figure shows that the MCT solution comes closer to predicting the experimental wall pressure
than the turbulent RANS models, especially near the ramp edge, where MCT captured the first four
points of the experimental data while RANS only captured the first point. The difference between the

024604-13



CHEIKH, WONNELL, AND CHEN
10
s KAA 1987
------- MCT Formulation

bo 0.2 04 0.6 0.8
y/6

FIG. 5. Turbulent intensity at the inlet for MCT and experimental results (KAA 1987: [46,47]).

RANS and MCT wall pressure results can be attributed to the convective scheme implemented in each
case. In the RANS simulations of the compression ramp, Oliver [ 19] implemented a first-order upwind
scheme, and Asmelash [49] implemented a a second-order upwind scheme. Here, the MCT scheme
is a second-order generalization of the Lax-Friedrichs scheme. It is also worthwhile to mention that
the mesh requirement for the MCT case is less demanding compared with a similar DNS study for
a compression ramp [55]. The grid spacing near the wall for the MCT case is Ay™ = 1.34 with
10 grid points for y* < 30, while for a similar DNS [55] the required spacing normal to the wall
is Ayt = 0.2 with more than 20 grid points in y* < 20. Unlike the classical DNS relying on fine

30 -
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!
!
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0 I 1
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FIG. 6. Van Driest transformed streamwise velocity profile at the inlet.
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FIG. 7. Mean wall pressure distribution from MCT and experimental results (KAA 1987: [46,47]; OLSBA
2007: [19]; AMS 2013: [49)).

meshes to resolve subscale motions, MCT formulates subscale motions into the governing equations.
Therefore, the mesh requirements for MCT are less restrictive than DNS, resulting in MCT being a
more computation-friendly theory for turbulent flows. Figure 8 shows the normalized flow velocities
at three locations, 36, 4.24, and 5.46 downstream from the ramp corner, and the MCT numerical
solver results. The figure shows that MCT is capable of capturing the boundary layer profile inside
the shock.

D. Subscale kinetic energy

As stated previously, the aim of this paper is to investigate the energy transfer between the
subscale eddies and the bulk flow inside the shock. Chen [28] stated that the total energy density of
each subscale eddy can be expressed as

E = Yuu; + joo) +e, (55)
where %u,-u[ contributes to the translational kinetic energy, % Jjw;w; contributes to the rotational
kinetic, and e = ¢, T represents the internal energy density of the flow. Analysis of the energy cascade
is achieved by the use of the conventional Reynolds averaging (also known as time averaging) method
and the mass-weighted averaging method (better known as Favre averaging). The main advantage
of these methods is in their ability to resolve the relevant physical processes at different scales [56].
The following notations are used for the mean values: ( ) for the Reynolds average and { } for the
Favre average, which is defined as

_o#)
{p} = o)

where ¢ represents any time-dependent variable. Here, the single prime represents the Reynolds
fluctuation, and double prime represents the Favre fluctuations.

The scale decomposition employed in the total energy density equation (55) is carried out using
Favre filtering in order to account for the density fluctuations of the flow. The Favre decomposition
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of the total energy density is

E= %{ui}{ui} + {u ] + %uu + Slodo) + jlo)e] + J0/o] +le)+¢. (56)
The first term on the right-hand side, %{u[ Hu;}, is the Favre-averaged mean flow translational kinetic
energy, and represents the mean translational speed of the flow. The second term satisfies the relation
(p{u;}u!) = 0and may be called the Favre-fluctuating mean flow translational kinetic energy. Huang
[57] gives a physical interpretation of the second term by examining the turbulent diffusion in the total
energy equation. The final term, corresponding to the translational motion, is %uﬁ/u;/, and refers to the
Favre-fluctuating translational kinetic energy. Similarly, one may define the rotational components
of the kinetic energy: the Favre-averaged mean flow rotational kinetic energy as é{wi Hw;}, the
Favre-fluctuating mean flow rotational kinetic energy as j{w; }w/, and the Favre-fluctuating rotational

Finally, {e} is the Favre-averaged internal energy, and e” is the Favre-

kinetic energy as %wf’a)l”
fluctuating internal energy.
Applying Reynolds averaging over the Favre-decomposed total energy density yields the mean

component of the total energy density,

2 2 2 2

The first two terms on the right-hand side represent the contribution of the mean translational and
mean rotational kinetic energies to the mean total energy density. The next two terms represent the
contribution of the averaged Favre-fluctuations to the mean total energy. The %(u;’ul’/) term is found
in most classical papers discussing turbulence, and is used in the computation of the turbulent Mach
number. The other term % (] w]') is strictly unique to an MCT flow, and represents the fluctuations in
the subscale eddies’ rotational speed. Therefore, an MCT flow adds to the classical turbulent Mach

number a component from the eddies’ rotation,

_ {u;} . {wi} 1 "o J,onon ”
(E) = {ui}\ (ui) — — ) + o\ (0i) = —— | + s (uju;) + S{w;0;) + {e} +(e7).  (57)

M, = V3w + 4 rer) (58)
(c)

where (c) represents the Reynolds average speed of sound. Figure 9 plots the turbulent Mach number
for the 8° compression ramp at different locations along the streamwise direction. For locations near
the ramp edge, the turbulent Mach number is higher than it is further downstream. The explanation
for the decay in the fluctuations will be given in the following part of the discussion. The last two
terms in Eq. (57) represent the contribution of the mean Favre internal energy and the average
Favre-fluctuating internal energy to the mean total energy density. Note that {e} + (¢”) = (e). The
reason the mean Reynolds internal energy is not represented is to see the contribution of the Favre
fluctuations to the flow.

In order to understand the energy cascade at the level of the subscale eddies, the rotational
component of the mean total energy density is investigated. Figure 10 compares the mean rotational
component j{w; }({w;) — %) with the averaged Favre-fluctuating rotational component 4 (o] ;') at
different locations along the ramp. The variables were normalized with respect to the the freestream
total energy density E,, = %Ugo + ¢y Too- The figure clearly shows that the averaged component of
the rotational kinetic energy density is zero outside the boundary layer, indicating an irrotational bulk
flow, as was specified at the inlet boundary ({(w; )inler = 0). Near the wall (y/8 < 0.1), an increase
in the magnitude of the averaged component of the rotational kinetic energy density is clearly
observed, which can be attributed to the shear forces arising from the wall as well as the diffusion
of the near-wall eddies, as is clear in the contour plot of Fig. 10. Inside the boundary layer but away
from the wall (0.1 < y/§ < 1), the figure shows areas with large values of mean rotational kinetic
energy, indicating the presence of eddies. It can be seen from the figure that the eddies near the
boundary layer are more are tightly packed than the eddies near the walls, which are more stretched
and elongated. The fluctuating component of the rotational kinetic energy starts out with a large
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FIG. 9. Turbulent Mach number at different location at (a) 1.83, (b) 36, (c) 4.28, and (d) 5.45 along the
ramp.

magnitude and decays as it moves along the ramp to less than half of its starting value. The reason
for having large values of the fluctuation near the ramp edge is due to their proximity to the inlet,
which has a boundary condition to generate turbulence by adding fluctuations to the rotational speed
of the flow ((@!®)])iner = wrzms). Moreover, the profile of the fluctuations at x /§ = 1.8 is consistent
with the inlet condition, since the turbulent rotational speed is defined inside the boundary layer and
diminishes at the edge of the boundary layer. Finally, when comparing the fluctuations along the
ramp, the plot shows a large number of local minima and maxima near the ramp edge, with rapid
variation between each extremum. This trend implies that there are a lot of small subscale eddies,
each separate from the others, as is clear in the contour plot of §(w/ /). Further along the ramp,

i ) — wi} /2 j(w"w"y /2 s dfwit ((wi) = {wi}/2)
1051(%}((“}; {wi}/2) 101J<“' “ )/ 107

o o

e
oS
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FIG. 10. Rotational kinetic energy component of the mean total energy density, mean (
(- --.),at(a) 1.8, (b) 368, (c) 4.25, and (d) 5.4 along the ramp.

) and fluctations
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FIG. 11. Translation kinetic energy component of the mean total energy density, mean ( ) and fluctations

(- --.),at(a) 1.8, (b) 36, (c) 4.25, and (d) 5.4 along the ramp.

the plot for %(wl’.’a);’) shows fewer local minima and maxima with a slower rate of change for each
extremum. The results imply that a lot of the previous small subscale eddies merge together or diffuse
into the mean flow. This behavior is evident from the contour of %(a)l// o). The impact of rotational
kinetic energy on the translational kinetic energy and internal energy will be shown in the following
discussions.

Starting with the translational kinetic energy, Fig. 11 plots the normalized mean components of

the translational kinetic energy {u; }({u;) — %) as well as the normalized averaged Favre-fluctuating

components %(ug/ u!) at different locations along the ramp. It can be seen from the figure that the

biggest contributor to the total energy is the mean translational kinetic energy component of the flow,
with the averaged Favre-fluctuations component being smaller than the freestream total energy by four
orders of magnitude. The behavior of the averaged Favre fluctuations’ translational kinetic energy is
decomposed into the near-wall section (y/§ < 0.1) and the boundary layer section (0.1 < y/§ < 1).
For the near-wall part, an increase in the magnitude is observed along the streamwise direction. This
increase is strongly associated with the shear forces arising from the wall, as well as the increase
in the rotational speed of the subscale eddies near the wall. The boundary layer section shows an
increase in the average Favre-fluctuating translational kinetic energy along the ramp, coinciding
with the decrease of the average Favre-fluctuating rotational component of the flow. In summary, the
eddies’ rotational energy is dissipated into the translational fluctuating energy.

The other aspect of this energy transfer involves the transmission of rotational kinetic energy to
internal energy. Figure 12 compares the Favre-averaged internal energy {e} with the averaged Favre-
fluctuating internal energy (e”) at different locations along the ramp. From the figure, it is evident that
the mean component of the internal energy is constant, except near the wall where it is increasing in
magnitude along the streamwise direction. The averaged Favre-fluctuating internal energy away from
the wall starts with a maximum value of 0.4 and decreases along the streamwise direction. The large
value near the ramp edge and the large oscillations in the averaged Favre-fluctuating internal energy
are directly related to the rotational speed of the subscale eddies, and in particular the averaged Favre-
fluctuating rotational component of the total energy density. When the averaged Favre-fluctuating
rotational kinetic energy component of the total energy is high, this increase in turn leads to high
fluctuations in the averaged Favre-fluctuating internal energy (e”); as the averaged Favre-fluctuating
rotational Kinetic energy decays along the ramp so does the averaged Favre-fluctuating internal
energy. One can conclude that the fluctuations in the internal energy are created from the fluctuations
in rotational kinetic energy. Still, as the eddies move along the streamwise direction, they diffuse
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FIG. 12. Internal energy component of the mean total energy, mean ( ) and fluctations (- - _ ), at

(a) 1.88, (b) 38, (c) 4.26, and (d) 5.46 along the ramp.

and merge with the mean component of the energy, resulting in a decay in the average fluctuating
component of the internal energy. Figure 12 clearly confirms that along the streamwise direction a
decay in the fluctuating component of the internal energy occurs.

The final component of the total energy density is the instantaneous fluctuating part,

! :
E' = {uibu — i) + E(u,"uQ’ — (uiu) + jloi(o] — (o) + %(wﬁ’w,f’ —(wfw) + e (59)

Figure 13 plots the translational kinetic energy component of Eq. (59), as well as the internal energy
and rotational kinetic energy components at different locations along the ramp ata time step ¢t = 0.005
seconds. The figure clearly shows that the fluctuations in the eddies’ rotational kinetic energy at the

1 10*
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FIG. 13. Instantaneous total energy density profiles, translational component ( ), internal component
(- - - ) and rotational component ( ), at (a) 1.84, (b) 38, (c) 4.25, and (d) 5.44 along the ramp.
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inlet had an effect on the instantaneous fluctuations in the translational kinetic energy as well as the
internal energy of the eddies.

VI. CONCLUSION

A shock-preserving finite volume method for solving the MCT governing equation is presented
and verified for its second-order spatial accuracy. The fluxes are constructed using the generalized
Lax-Friedrichs splitting scheme. An MCT-based method for inserting turbulent fluctuations into the
fluid flow, that allows for the direct input of turbulent kinetic energy into the flow, is also presented.
When comparing MCT simulation data with the experiments of Kuntz et al. [46], the MCT solver
is shown to reproduce the surface pressure and velocity profile after the presence of the shock. The
required cell number for simulation is compared with a DNS study in a similar case. The comparison
shows MCT can provide meaningful results with the smallest cell size (Ay*) being ten times larger
than the one used in the classical DNS. This comparison validates MCT as a computation-friendly
alternative theory for compressible turbulence.

A new statistical averaging procedure relying on the multiscale nature of MCT is also introduced
and used to analyze energy cascade at the length scale of eddies. Through the newly introduced
variable of subscale eddy rotation, the evolution of subscale eddy kinetic energy can be carefully
monitored in a compressible turbulent flow. The results show that the fluctuations in the eddies’
rotational energy correspond well to the fluctuations in the translational and internal energy, indicating
a transfer of the subscale energy across the fluctuating components of the flow. These figures give a
visual representation of the contribution of individual eddies to the overall dynamics of the turbulence,
as well as its structure. A closer look at more complex compressible flows can assess features such as
the effects of compressibility on subscale energy transfer. These simulations are left for future work.
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