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The article considers the strain-rate tensor distribution in various isotropically distributed
incompressible flows. By means of a fortunate choice of variables, a strong degeneracy
in the probability distribution of strain-rate tensor characteristics is found in numerical
simulations of isotropic turbulence. This allows us to reduce the probability density function
(PDF) of the strain-rate tensor to a function of one variable. Also it appears that for those
particular parameters that reflect the ratio of different eigenvalues of the strain tensor (s and
β parameters), the shapes of their probability distributions are universal and do not depend
on the specific shape of distribution. Furthermore, it is also shown analytically that for all
time-reversible statistical isotropic flows the probability distribution of s is uniform, which
generalizes previous numerical calculations.
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I. INTRODUCTION

The velocity field in a turbulent flow is known to be stochastic. Its statistical properties have
attracted the attention of researchers in physics, mechanics, and mathematics for more than a
century, but the problem is still far from being solved. The velocity gradients play a significant
role in different turbulent processes. In particular, they play an important role in a theoretical
consideration [1] that gives physical interpretation of the known multifractal model in the isotropic
turbulence. They are also responsible for the passive scalar transport [2]. Statistical properties
of the velocity gradients were calculated in many direct numerical simulations (DNSs) and were
measured in a wide range of experiments (see the overview [3] and the references therein). There are
also many phenomenological theoretical models for these quantities (see the overview [4] and the
references therein).

A. Short overview of the previous results

This article studies the case of incompressible isotropic turbulent flow. Statistical properties of
the strain-rate tensor, which is known to be a symmetrical part of the full velocity gradient tensor
are considered:

Sij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (1)

In most of the research concerning the problem (e.g., Refs. [5–17]), the statistical properties of
the strain-rate tensor are considered in terms of its rotation invariants; these are the combinations of
the tensor components that do not depend on the rotation of the coordinate system. For instance, the
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eigenvalues of the tensor [13–15] or traces of its powers [12–16] can play the role of such invariants:

PS = −Tr(S) ≡ 0, (2)

QS = − 1
2 Tr(S2), (3)

RS = − 1
3 Tr(S3), (4)

where PS is equal to zero due to incompressibility of the flow. The traces of greater strain-rate tensor
powers are the explicit functions of QS and RS because there are only two independent rotation
invariants for this tensor [4]. Consideration of two independent rotation invariants is sufficient to
describe the statistics of isotropic flow [5,18].

There are other rotation invariants called normalized eigenvalues (s and β); their single PDFs
do not give the full statistic information of the strain but are useful in considering fluid particle
deformation tendencies. Each of these values gives the unique strain-rate tensor eigenvalue ratio but
says nothing about the absolute values of the eigenvalues. Since these invariants were introduced
and analyzed in Refs. [6,7], their statistics have been investigated in many articles (e.g., Refs. [8–
11,13,17]). The measured single PDFs of the normalized eigenvalues show little dependence on the
turbulent flow characteristics; i.e., they almost repeat themselves for different flows from paper to
paper (compare corresponding figures in Refs. [6–8,10,11,17]).

Concerning theoretical investigations, most results can only be deduced for Gaussian distributed
quantities. This makes Gaussian distributions topical in turbulence research in spite of the well-known
distinctive features of the turbulence statistics such as irreversibility and intermittency.

We can divide these studies into two parts. The first part uses phenomenological reasons to model
some nonlinear processes in dynamical equations by Gaussian processes to close the statistical
equations [4,19]. The second part of the studies, which this article follows to some extent, was
pioneered in Ref. [20] and concerns various statistical properties in normally distributed isotropic
velocity field to compare them with the ones numerically or experimentally obtained from isotropic
turbulent velocity field. Such approach does not use dynamical equations, and thus the properties
obtained in the case of the normally distributed velocity field can be considered kinematic [21].

B. Present article results

The mathematical basis of the article and notation for different PDFs is placed in Appendix A,
where we derive different relations between PDFs of strain-rate tensor components and their different
rotation invariants.

We start Sec. II by defining rotation invariants ξ+ and ξ−. Their PDF is plotted for the DNS data
extracted from the Johns Hopkins University (JHU) turbulence database (JHTDB) [22,23]. This PDF
in the most part of its domain turns out to have linear parallel contour levels; this allows us to reduce
it to a one-dimensional function. In Sec. III, it is shown analytically that this symmetry also takes
place in statistically isotropic time-reversible flows.

II. STRAIN-RATE TENSOR DISTRIBUTION SYMMETRY
IN FORCED ISOTROPIC TURBULENCE

Let us introduce the following non-negative rotation invariant combinations:

ξ+ = (−QS)3/2 + 3
√

3

2
RS,

ξ− = (−QS)3/2 − 3
√

3

2
RS. (5)

We plot the PDF of ξ+ and ξ− based on the data from JHU turbulence database [24]. Figure 1
shows that the PDF of ξ+ and ξ− depends almost purely on the linear combination of invariants ξ+
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FIG. 1. The histogram of invariants ξ+ and ξ− in the JHTDB distribution case (i.e., obtained from JHU
database). The red lines show the symmetry. Note that the horizontal scale differs from the vertical scale, and
the levels of the function are skewed to the horizontal axis.

and ξ−:

ξa = 1 + a

2
ξ+ + 1 − a

2
ξ−, (6)

where a ∼ −0.6 ÷ −0.5 is a fixed constant parameter. Hence, the PDF of invariants ξ+ and ξ− turns
degenerate in the JHTDB distribution case (we designated the distribution simulated in the database
as “JHTDB distribution” by analogy with Gaussian distribution). The invariant ξa introduced in (6)
will be useful in our further consideration. It can be also expressed in terms of invariants QS and RS :

ξa = (−QS)3/2 + 3
√

3a

2
RS. (7)

A. Estimation of symmetry parameter

We now introduce the normalized eigenvalues s and β mentioned in the introduction [6,7]:

s = −3
√

6λ1λ2λ3(
λ2

1 + λ2
2 + λ2

3

)3/2 = 3
√

3RS

2(−QS)3/2 , (8)

β =
√

6λ2√
λ2

1 + λ2
2 + λ2

3

. (9)

Here λ1, λ2, and λ3 are the eigenvalues of the strain-rate tensor in decreasing order. Both s and
β can change in the interval [−1; 1]. It turns out that the symmetry found above produces exact
relations for s and β PDFs; they depend on the symmetry parameter a only. In addition, this allows
us to calculate the symmetry parameter precisely.

Using the PDF of ξ+ and ξ−, the discovered symmetry can be expressed as follows:

fξ+ξ− (x+,x−) = f

(
1 + a

2
x+ + 1 − a

2
x−

)
, (10)

where x+ and x− are arguments of the PDF that are responsible for ξ+ and ξ−, respectively, and f

is a function of one variable. By calculation of the Jacobian of the transformation from ξ+ and ξ− to
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QS and RS , the following relation between their PDFs can be calculated:

fQSRS
(q,r) = 9

√
3

2
(−q)1/2 · fξ+ξ−

(
(−q)3/2 + 3

√
3

2
r,(−q)3/2 − 3

√
3

2
r

)
. (11)

Here q and r are the arguments of the PDF corresponding to QS and RS , respectively. From (10)
and (11), one can obtain

fQSRS
(q,r) = 9

√
3

2
(−q)1/2f

(
(−q)3/2 + 3

√
3

2
ar

)
. (12)

From the latter relation for the QS and RS PDF, one can obtain the relation for the single PDF of
the normalized eigenvalue s (see Appendix A 3 for details):

fs = 6
∫ +∞

0
f (t3(1 + as))t5dt. (13)

By changing t to t 3
√

1 + as, one can see that the considered PDF does not depend on specific
shape of the function f :

fs ∝ 1

(1 + as)2 . (14)

Normalization of fs finally results in

fs =
(
1 − a2

)
2(1 + as)2 . (15)

Analogously, universality of the PDF of β can be found:

fβ = 3

4
(1 − β2)

(
1 − a2

)
(
1 + a

2 β(3 − β2)
)2 . (16)

To find a, relation (15) can be rewritten in a more convenient way:√
1

fs

=
√

2

1 − a2
(1 + as). (17)

This means that f
−1/2
s depends linearly on its argument. It is illustratively confirmed by Fig. 2.

This dependence can be approximated by means of the least-squares fitting that leads to the following
value of a for JHTDB distribution:

a � −0.53. (18)

The fitting line with its analytical expression placed over the numerical results is also depicted in
Fig. 2.

FIG. 2. Dependence of f −1/2
s on s in the JHTDB distribution case and linear fitting (17) of f −1/2

s on s in
the JHTDB distribution case with its analytical expression.
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B. Full strain-rate tensor statistic degeneracy

In Appendix A 2, we deduce an important relation between the strain-rate tensor Sij distribution (a
function of five variables) and the QS and RS PDF (depending on two variables), where summation
over repeated indices is assumed:

fS{σ } = 1

2π2
fQSRS

(
−1

2
σijσji,−1

3
σijσjkσki

)
. (19)

Here the subscript S is used to indicate the strain-rate tensor PDF; we also introduce the
multivariable {σ } = (σ11,σ22,σ12,σ13,σ23) for an argument of the PDF, σij corresponding to Sij .
Together with (12), this equation means that the full strain-rate tensor statistics can also be written
in terms of the function f of one variable.

III. STRAIN-RATE TENSOR STATISTICS IN THE CASE OF ISOTROPIC
TIME-REVERSIBLE DISTRIBUTIONS

This section proves analytically that for statistically isotropic time-reversible flows the symmetry
(10) also takes place with parameter a equal to zero.

One can conclude that the statistic irreversibility appears due to the skewness of its PDF as a result
of the prevalence of direct processes over inverse ones. On the contrary, reversible statistics must
contain equal number of direct and inverse processes on the average. This is reflected in the fact that
the reversible distribution of strain-rate tensor Sij depends on invariant QS only [5]. Because of this,
in Appendix A 2 we prove a nontrivial fact: For reversible distributions, the PDF of invariants QS

and RS also depends on argument q only,

fQSRS
(q,r) = frev(q), (20)

where frev is a function of one variable. Using the expression reciprocal to (11), one can obtain for
the PDF of invariants ξ+ and ξ−:

fξ+ξ−(x+,x−) = 24/3frev
(− 1

22/3 (x+ + x−)2/3
)

9
√

3(x+ + x−)1/3
. (21)

The latter relation shows that the symmetry (10) with parameter a equal to zero takes place in
the case of arbitrary time-reversible distribution. Thus, by substituting a = 0 in (15) and (16), the
universal time-reversible shapes of s and β PDFs can be deduced:

fs = 1
2 , (22)

fβ = 3
4 (1 − β2). (23)

The calculated shapes of fs and fβ are in absolute agreement with the previous numerical
calculations for the Gaussian distribution [8], which is known to be a specific case of time-reversible
distribution (red dot-dashed and blue dashed curves in Fig. 3 coincide with dotted curves in Figs. 1(a)
and 1(b) in Ref. [8] respectively). That is, this section generalizes the numerical results [8] for any
arbitrary time-reversible case.
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FIG. 3. PDFs (22) and (23) of parameters s and β in the case of time-reversible distribution.

A. Gaussian distribution case

The relations deduced in Appendix A make it possible to calculate analytically the PDFs of
different strain-rate tensor invariants in random isotropic incompressible velocity field with Gaussian
statistics. The analysis of this case is placed in Appendix B.

B. Possible influence of large-scale stochastic energy sources on the zero region of turbulent statistic

It can be seen in Fig. 4 that the distribution is not skewed in the small region of invariants ξ+ and
ξ− near the origin. There is less than 1% of the distribution in this region and, thus, it naturally
could be designated as the “zero region.” Therefore, parameter a is not constant and becomes
zero in the zero region, which means time reversibility of the JHTDB statistic in this region. The
presence of some Gaussian (or other time-reversible) noises, which are the result of the large-scale
energy production, is a possible natural mechanism of such a phenomenon. For instance, in the JHU
turbulence database, this noise production is achieved by keeping constant the total energy in modes
with the small wave-number magnitude. Physically it is equivalent to adding some stochastic force
with time-reversible statistics (to keep the full energy constant).
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FIG. 4. The histogram of invariants ξ+ and ξ− in the zero region in the JHTDB distribution.
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IV. CONCLUSION

In this article, strain-rate tensor statistics in incompressible isotropic stochastic flows is considered.
Rotation invariants ξ+ and ξ− are introduced in (5). Their distribution fξ+ξ− turns out to have the
symmetry (10) both for isotropic turbulence simulated in the JHU database, with a = −0.53 (see
Sec. II), and for time-reversible distributions, with a = 0 (see Sec. III). The consequences of this
symmetry are the following: First, it leads to universality of the normalized eigenvalues (s and
β) distributions; second, it means degeneracy of the complete distribution of strain-rate tensor
components.

High precision of the presented degeneracy gives us some hope that it provides the true asymptotic
behavior for the strain-rate statistics in isotropic turbulence. However, this result, whether it is general
or only approximate, is a challenge for further theoretical studies.
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APPENDIX A: PDFS OF DIFFERENT STRAIN-RATE TENSOR INVARIANTS AND RELATIONS
BETWEEN THEM

In this Appendix, we provide the analytical approach for PDFs analysis by deducing different
relations and integral transformations between PDFs of strain-rate tensor components and its different
rotation invariants in cases of isotropy and incompressibility.

1. PDF of strain-rate tensor eigenvalues

In fact, the eigenvalues depend nonlinearly on strain-rate tensor components. Now we find the
transformation from the strain-rate tensor distribution to the strain-rate tensor eigenvalues PDF. Let

FIG. 5. The domain of the maximum strain-rate tensor eigenvalue λ1 and the minimum strain-rate tensor
eigenvalue λ3 (grayscale).

024603-7



A. V. KOPYEV

us introduce the strain-rate tensor PDF of five variables:

fS(σ11,σ22,σ12,σ13,σ23) = fS{σ }. (A1)

Subscript S means that the function is the strain-rate tensor PDF; we also introduce multivariable
{σ } = (σ11,σ22,σ12,σ13,σ23) for convenience. The subscript of PDF (S) denotes the physical quantity
it corresponds to. Notations for variables (σ ) differ from the subscript according to mathematical
notation system [25,26] chosen in this article.

As was mentioned in the introduction, the strain-rate tensor PDF in the case of the statistical
isotropy includes five variables in the form of two orientation-invariant combinations. Such
combinations are, for instance, either invariants QS(S11,S22,S12,S13,S23) = QS{S} = − 1

2SijSji and
RS{S} = − 1

3SijSjkSki or eigenvalues λ1{S} and λ3{S} (summation over repeated indices is assumed):

fS{σ } = f
QSRS

S

(
−1

2
σijσji,−1

3
σijσjkσki

)
(A2)

= f
λ1λ3
S (λ1{σ },λ3{σ }). (A3)

In (A2) and (A3), superscripts denote the invariant combinations of strain-rate tensor components.
Let us turn from the tensor components coordinate system to the one including λ1 and λ3:

fS{σ } dσ11dσ22dσ12dσ13dσ23︸ ︷︷ ︸
d5{σ }

= f
λ1λ3
S (λ1{σ },λ3{σ })d5{σ }

= f
λ1λ3
S (x,y)

∣∣∣∣
∣∣∣∣∂(S11,S22,S12,S13,S23)

∂(λ1,λ3,P1,P2,P3)

∣∣∣∣
∣∣∣∣ λ1 = x,λ3 = y

P1 = p1,P2 = p2
P3 = p3︸ ︷︷ ︸

J (x,y,p1,p2,p3)

dxdydp1dp2dp3

= f
λ1λ3
S (x,y)|J (x,y,p1,p2,p3)|dxdydp1dp2dp3, (A4)

where P1 = P1{S}, P2 = P2{S}, and P3 = P3{S} are any strain-rate tensor components combinations
independent of λ1 and λ3 and J (x,y,p1,p2,p3) is the Jacobian of the transformation from the strain-
rate tensor components to the coordinate system including λ1 and λ3. Thus, we can introduce and
express the PDF of λ1 and λ3 as follows:

fλ1λ3 (x,y) = f
λ1λ3
S (x,y)

∫∫∫
|J (x,y,p1,p2,p3)|dp1dp2dp3. (A5)

It is common knowledge that under coordinate transformation a PDF is multiplied by the Jacobian.
That is why the PDF of the eigenvalues fλ1λ3 (x,y) is not equal to the function f

λ1λ3
S (x,y) and demands

its own notation.
It has been shown (see Ref. [27] and references therein) that in the case of SO(3) symmetry, the

triple integral in (A5) can be written in the form∫∫∫
|J (x,y,p1,p2,p3)|dp1dp2dp3 = A|(x − y)(2x + y)(x + 2y)|, (A6)

where A is a constant factor, which is shown in Appendix B to be equal to 2π2. Hence, finally, by
substitution (A6) in (A5) we get for the fλ1λ3 (x,y) domain (i.e., inside the sector {x � −x − y; y �
−x − y} depicted in Fig. 5):

fλ1λ3 (x,y) = A|(x − y)(2x + y)(x + 2y)|f λ1λ3
S (x,y) (A7)

= 2π2|(x − y)(2x + y)(x + 2y)|f λ1λ3
S (x,y). (A8)

024603-8



DEGENERACY OF VELOCITY STRAIN-RATE TENSOR …

2. PDF of strain-rate tensor invariants QS and RS

The domain DQSRS
of invariants QS and RS (3) is shown in Fig. 6. It is bounded by the curves

RS = ± 2
3
√

3
(−QS)3/2 in the lower half plane [12,16]. We introduce the PDF of invariants QS and

RS , which we note fQSRS
(q,r). Relation between the strain-rate tensor eigenvalues PDF fλ1λ3 (x,y)

and the PDF of QS and RS invariants can be deduced:

fλ1λ3 (x,y) = |(x − y)(2x + y)(x + 2y)|fQSRS
( − (x2 + xy + y2),xy(x + y)), (A9)

where |(x − y)(2x + y)(x + 2y)| is the Jacobian of the transformation from (QS ; RS) plane to (λ1; λ3)
plane. Comparing (A7) and (A9) with use of (A2) and (A3), we find a simple relation between
fQSRS

(q,r) and f
QSRS

S (q,r):

fQSRS
(q,r) = 2π2f

QSRS

S (q,r). (A10)

This relation means that in the time-reversible distribution case considered in Sec. III, fQSRS
(q,r)

depends on variable q only. This fact is not trivial: fλ1λ3 (x,y) in this case does not depend on the
combination x2 + xy + y2 only, because of the nontrivial Jacobian presence in an analogous relation
(A7).

From (A10) and (A2) one can also derive a very important expression reciprocal to (A10); it
determines the strain-rate tensor distribution of five variables via the QS and RS PDF of two variables:

fS{σ } = 1

2π2
fQSRS

(
−1

2
σijσji,−1

3
σijσjkσki

)
. (A11)

3. PDF of parameter s

Making use of the definition of s (8), it is possible to get the s PDF from fQSRS
. It can be done by

the integral transformation:

fs =
∫ 0

−∞
dq

∫ 2
3
√

3
(−q)3/2

− 2
3
√

3
(−q)3/2

fQSRS
(q,r)δ

(
s − 3

√
3r

2(−q)3/2

)
dr. (A12)

Here δ(s − g(q,r)) is the Dirac δ function [28] on the surface g(q,r); the integration domain
DQSRS

is shown in Fig. 6. The calculation (A12) can be reduced to the following expression:

fs = 4

3
√

3

∫ +∞

0
fQSRS

(
−t2,t3 2s

3
√

3

)
t4dt, (A13)

where s ∈ [−1; 1]. It is used in the article to obtain (13).

RS
QS

R S
2

3
3

Q s
3 2 R

S

2

3
3 Q
s 3 2

FIG. 6. DQSRS
: the domain of QS and RS invariants (grayscale).
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4. PDF of parameter β

Now we proceed to deducing analogous integral transformations for β. To do it, we use the explicit
relations between parameters s and β given in Ref. [6]:⎧⎪⎨

⎪⎩
β = 2 sin

(
1

3
arcsin s

)
s = β(3 − β2)/2

. (A14)

Determining the Jacobian of transformation (A14) and using (A13), we can find

fβ = 2√
3

(1 − β2)
∫ +∞

0
fQSRS

(
−t2,t3 β

(
3 − β2

)
3
√

3

)
t4dt, (A15)

where β ∈ [−1; 1].

APPENDIX B: CALCULATIONS FOR GAUSSIAN DISTRIBUTION CASE

In this Appendix, we will consider the random isotropic incompressible velocity field with
Gaussian statistics (the Gaussian distribution case).

In Ref. [21], it was shown that from the isotropic Gaussian distribution of the flow velocity follows
the Gaussian distribution of the velocity gradient tensor components and particularly of the strain-rate
tensor components. In the incompressible case, the form of the strain-rate tensor components PDF
is the following:

fS{σ } =
√

3

2

(
5

2π〈ω2〉
)5/2

exp

[
− 5

2〈ω2〉
(
σ 2

11 +σ11σ22 + σ 2
22 + σ 2

12 + σ 2
23 + σ 2

13

)]
, (B1)

FIG. 7. Joint PDF of the maximum and the minimum strain-rate tensor eigenvalues in the Gaussian
distribution case. The axes are made dimensionless through dividing by 〈ω2〉 in the corresponding degrees:
This makes the PDF contour shape universal. The difference between every two neighbor contour levels is one
decade. The exponents of the decade level are the following: 0 for the red point (the maximum of PDF), −1 for
the pink thickest contour, −2 for the orange dashed one, and −3 for the green dot-dashed one.
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FIG. 8. Joint PDF of invariants QS and RS in the Gaussian distribution case. The axes labels are made
dimensionless by means of dividing by 〈ω2〉 in corresponding powers: This makes the PDF contour shape
universal. The difference between every two neighbor contour levels is one decade. The exponents of the
decade level are the following: 0 for the red point (the maximum of PDF), −1 for the pink thickest contour, −2
for the orange dashed one, −3 for the green dot-dashed one, and −4 for the blue thick one.

where 〈ω2〉 is the expectancy of squared vorticity of the flow. Using, this we can find from (A7) the
shape of the eigenvalues PDF, which is depicted by a contour graphic in Fig. 7:

fλ1λ3 (x,y) =
√

3A

2

(
5

2π〈ω2〉
)5/2∣∣(x − y)(2x + y)(x + 2y)

∣∣ exp

[
− 5

2〈ω2〉 (x2 + xy + y2)

]
. (B2)

FIG. 9. Joint PDF (B5) of invariants ξ+ and ξ− in the case of Gaussian distribution with 〈ω2〉 = 125. The
axes labels are made dimensionless by means of dividing the function arguments by 〈ω2〉3/2. The function levels
are shown in the legend. The white region corresponds to the function singularity. The levels shape shows fξ+ξ−
dependence on the linear combination of its arguments (i.e., x++x−

2 ) only, which means that for the Gaussian
distribution the parameter of symmetry (10) is equal to a = 0.
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By using normalization of fλ1λ3 we now can find the parameter A without direct calculation of
integral (A6):

A = 2π2. (B3)

Then from (A10) we find the joint PDF of QS and RS invariants, which is also depicted by a
contour graphic in Fig. 8:

fQSRS
(q,r) =

√
3

π

(
5

2〈ω2〉
)5/2

exp

[
5

2〈ω2〉q
]
. (B4)

Also, the PDF of ξ+ and ξ− can be easily found from the inverse to (11) relation:

fξ+ξ− (x+,x−) = 8

9
√

π (x+ + x−)1/3

(
5

25/3〈ω2〉
)5/2

exp

[
− 5

25/3〈ω2〉 (x+ + x−)2/3

]
. (B5)

It can be seen that fξ+ξ− satisfies symmetry (21) deduced in Sec. III for the arbitrary time-reversible
case. Also it has a singularity at the origin. The contours of the function for 〈ω2〉 = 125 are shown
in Fig. 9.
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