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Instability and dynamics of volatile thin films
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Volatile viscous fluids on partially wetting solid substrates can exhibit interesting
interfacial instabilities and pattern formation. We study the dynamics of vapor condensation
and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication
approximation incorporating surface tension, intermolecular effects, and evaporative fluxes.
Parameter ranges for evaporation-dominated and condensation-dominated regimes and a
critical case are identified. Interfacial instabilities driven by the competition between the
disjoining pressure and evaporative effects are studied via linear stability analysis. Transient
pattern formation in nearly flat evolving films in the critical case is investigated. In the weak
evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich
droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical
simulations show that long-time behaviors leading to evaporation or condensation are
sensitive to transitions between filmwise and dropwise dynamics.
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I. INTRODUCTION

Pattern formation of thin liquid films has been studied in many experimental and theoretical
works [1,2] and has important connections to many engineering applications of coating flows.
Morphological changes such as localized thinning, rupture, coarsening, and droplet dynamics can
arise from instabilities caused by the interaction of various physical influences. In the limit of low
Reynolds number, the governing Navier Stokes equations can be reduced to a thin-film equation for
the evolution of the thickness of the fluid layer on a solid substrate. Lubrication models for free-surface
flows of these thin layers of viscous fluids have been studied extensively in many contexts [3–6].

In this work we will take a closer look at a thin-film model for a volatile viscous fluid on a
solid at a fixed temperature, where the temperature difference with the surrounding vapor can drive
evaporation or condensation. Specifically, the aim of this paper is to understand the forms of dynamics
that can result from the interaction of substrate wettability and evaporation or condensation of the
fluid. Stability analysis will show that both significant transient dynamics and a strong dependence
on initial conditions can occur as the fluid layer evolves between droplike and filmlike states.

Wetting properties of solid substrates can qualitatively affect the behavior of ultrathin layers (less
than 100 nm) of fluids. While hydrophilic or wetting materials encourage the spreading of fluids to
form more uniform films, hydrophobic or nonwetting solids repel the fluid and favor breakup into
structures that ultimately leads to arrays of droplets [7–9]. Generally called dewetting phenomena,
these interactions are driven by van der Waals forces between the solid and fluid and are modeled

*hangjie@math.ucla.edu
†witelski@math.duke.edu

2469-990X/2018/3(2)/024001(26) 024001-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.3.024001&domain=pdf&date_stamp=2018-02-01
https://doi.org/10.1103/PhysRevFluids.3.024001


HANGJIE JI AND THOMAS P. WITELSKI

by a disjoining pressure as a contribution to the dynamic pressure in the thin-film equation. Early
stages of the dynamics involve instabilities of flat films [10] leading to finite-time rupture [11,12]
and later growth of dry spots [8,9,13–15] and coarsening dynamics of interacting metastable droplets
[16]. These studies have addressed how spatial structures in the films develop subject to the overall
conservation of mass for nonvolatile fluids. There has been less work on how the change of mass
from slow evaporation or condensation interacts with dewetting behavior [13,17,18].

The study of thin films subject to fluid evaporation and vapor condensation is especially important
for systems such as precorneal tear films [19], thermal management [20], and drying paint layers
[21,22]. In particular, since dropwise condensation on hydrophobic surfaces is more energy efficient
compared to the filmwise condensation mode [23], many studies have considered the influence of
the surface wettability on the dynamics [24–27].

The basic physics of thin films with phase changes has many applications in many systems
in engineering and other physical systems [28]. Describing the evaporative mass flux across the
liquid-vapor interface generally involves the influence of both the liquid phase and the diffusion of
the vapor, as in the two-sided model in [29]. Simplified one-sided models are obtained by decoupling
the dynamics of the fluid from that of the spatially uniform vapor concentration. Burelbach et al.
[30] proposed a one-sided model by assuming that the density, viscosity, and thermal conductivity
in the vapor are negligible compared to those in the liquid. Following their work, Oron and Bankoff
[31,32] investigated the dynamics of a condensing thin liquid film using an evaporative mass flux
only dependent on film thickness and neglected effects such as thermocapillarity and vapor thrust. A
model was derived by Ajaev and Homsy [33–35] that incorporates thermal effects, surface tension,
and disjoining pressure in the evaporative flux. In all of these models the dynamics of the vapor phase
are not included except through a boundary condition at the vapor-fluid interface. Related problems
of evaporating liquid droplets associated with moving contact lines were also studied [33,36,37]. For
a thorough review of the modeling and numerical studies of volatile thin films, see [3,38].

While some results are available for the stability and dynamics of volatile polar thin films
on partially wettable solid substrates with various forms of evaporative fluxes [33,34,39,40], the
nonlinear stability and pattern formation of thin films undergoing phase change on a hydrophobic
substrate still need further investigation. The competition between the evaporation or condensation
effects and the disjoining pressure is the focus of our paper. We will show that interfacial instabilities
driven by the disjoining pressure can yield transient pattern formation under weak evaporation.
Balances between the evaporative effects, intermolecular forces, and the surface tension produce a
family of spatially uniform or periodic steady states whose instabilities lead to interesting transitions
between dropwise and filmwise dynamics.

The structure of this paper is as follows. In Sec. II the model for volatile thin films on a partially
wetting substrate is formulated. In Sec. III spatially uniform states will be discussed and the related
transient instabilities with respect to spatial perturbations will be investigated via linear stability
analysis. Spatially periodic steady states representing droplets will be presented in Sec. IV and their
stability will be analyzed in Sec. V. Numerical simulations of the model and comparison with the
analytical predictions for systems with small numbers of droplets are given in Sec. VI. A discussion
of remaining open questions is given in Sec. VII.

II. MODEL FORMULATION

We consider a two-dimensional thin fluid film spreading over a uniformly heated or cooled solid
substrate (shown in Fig. 1). Under the long-wavelength approximation and in the limit of the low
Reynolds number, the classic thin-film equation can be derived from the full Navier-Stokes equations
[6]. Following [35], we consider an evaporating-condensing thin-film equation by including an
additional flux term to a mass-conserving thin-film model.

We consider a Newtonian fluid with density ρ, viscosity μ, thermal conductivity κ , and specific
latent heat L. The dimensional scales for the model are chosen following [33–35]. If the lateral
length scale is Lx , then the characteristic velocity is U = κT ∗/ρLLx , set by a mass balance at
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FIG. 1. Schematic representation of a two-dimensional thin fluid film on a uniformly heated (cooled) solid
substrate where J represents the evaporative (condensing) mass flux.

the free surface with T ∗ being the liquid saturation temperature. The capillary number is given by
C = μU/σ and the pressure and time scales are given by σC1/3/Lx and 3Lx/U , respectively, where
σ is the surface tension. We will consider small temperature differences from T ∗ and will argue that
variations to σ can be neglected.

The resulting governing equation in nondimensional form for viscous coating flows is given by a
one-dimensional fourth-order nonlinear partial differential equation for the thickness h of the fluid
layer over a periodic domain on 0 � x � L,

∂h

∂t
= ∂

∂x

(
h3 ∂p

∂x

)
− J, (1a)

where the evaporative mass flux is given by

J (h) = βp(h)

h + K0
, (1b)

with the hydrodynamic pressure p(h) incorporating the influences of kinetics at the interface [34],
surface tension [4], and wetting properties of the substrate. The dimensionless parameters are given
by

β = 3σ

ρLC1/3Lx

, K0 = ρU
√

2πR̄T ∗

2ρvLC1/3
, (1c)

arising from a thermodynamic-kinetic condition at the interface [33], which relates the jump in both
temperature and pressure at the fluid-vapor interface to the evaporative mass flux. The parameter
β scales the effect of changes in the dynamic pressure in the evaporation and condensation effects
and the parameter K0 characterizes the importance of phase-change kinetics at the interface [35].
Here R̄ is the gas constant per unit mass and ρv is the vapor density. The pressure in (1b) is given
by the difference between a generalized disjoining pressure �(h) and the linearized curvature of the
interface

p(h) = �(h) − ∂2h

∂x2
, (1d)

where �(h) is shifted by a constant P0 from a standard disjoining pressure �̃(h) describing substrate
wetting properties,

�(h) = �̃(h) − P0 with �̃(h) = A

h3

(
1 − ε

h

)
(1e)
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and

P0 = − T0 − T ∗

βC2/3T ∗ , (1f)

where T0 is the temperature at the fluid-solid interface.
The product of β and P0 in the evaporative flux (1b) represents the scaled difference of

the temperature of the heated or cooled solid substrate from the liquid saturation temperature.
Specifically, P0 < 0 indicates that the vapor phase is undersaturated and P0 > 0 corresponds to
supersaturated vapor. Note that adding a constant to the disjoining pressure �(h) will not change the
form of the conservative flux since it is given by the gradient of the pressure in the partial differential
equation (PDE) (1a). With this form, �(h) = �̃(h) − P0, the pressure term in the evaporative flux
(1b) is consistent with that in the conservative term.

In the present work we use the physically motivated regularized form of �̃(h) in (1e) with the
rescaled Hamaker constantA. We will useA > 0 in �̃(h) to indicate the overall hydrophobic character
of the substrate. The dimensionless parameter ε > 0 is set by the height at which the attractive van
der Waals forces and short-range Born repulsion balance and provide a positive O(ε) lower bound for
the film thickness [22,31,32,41]. For the rest of the paper, we will use the scaling A = ε2, following
other studies of dewetting films [6,31,41].

Different forms of �̃(h) have been used in the literature to characterize the hydrophobic
or hydrophilic properties of the substrate. For instance, the form �̃(h) = A/h3 represents [42]
unbalanced van der Waals forces. It has been shown [10] that instabilities caused by this form of
�̃(h) with A > 0 can lead to finite-time rupture, that is, the film thickness h approaches zero at an
isolated point as a critical time is approached [11,12]. For the case A < 0 this �̃(h) can describe the
wetting property of a hydrophilic substrate [17,35].

Several other forms of evaporation loss or condensation source terms have also been used in
the literature. In [30,37,43] a simple form for the evaporative mass flux term is taken, J (h) =
E0/(h + K0), where the dimensionless evaporation number E0 distinguishes the evaporation case
with E0 > 0 from the condensation case with E0 < 0. In the evaporation model for a thin film on
a wetting substrate derived by Ajaev and Homsy [33–35] the evaporative flux takes the form in
(1b) with �̃ = A/h3 for A < 0. In [40,44] a different form of the evaporative flux was derived by
assuming that the flux is proportional to the difference between the chemical potential of the vapor
and the liquid.

An important implication of the form of the evaporative flux (1b) is that the local condensation or
evaporation depends on three factors: the film thickness, the surface tension, and the pressure P0. For
example, evaporation may occur from negatively curved portions of the film (hxx < 0) even when
the vapor is oversaturated with P0 > 0, and a positively curved portion of the film (hxx > 0) may
condense when a negative P0 is present if the curvature is large enough. This was also described in
[28,40].

Thermal Marangoni stresses are generated by variations in the surface tension due to its
dependence on temperature. Papers that consider thermocapillary stresses driven by large temperature
gradients include [30,34,43]. In this paper we focus on dynamics subject to small temperature
differences from the saturation temperature T ∗ and small length scale [35,45]; under these conditions
we make the assumption that Marangoni stresses are weak and can be omitted from (1a). Other papers
on volatile thin films that show that thermocapillary stresses can be neglected under appropriate
conditions include [17,46,47].

Starting from positive and finite-mass initial data h0(x) > 0 at time t = 0, the dynamics of the
model (1) is governed by the interactions between the mass-conserving spatial flux and the evaporative
flux. It is convenient to write the generalized potential as the integral of �(h),

U (h) =
∫

�(h)dh = − ε2

2h2
+ ε3

3h3
− P0h. (2)

024001-4



INSTABILITY AND DYNAMICS OF VOLATILE THIN FILMS

This form combines the intermolecular forces between the fluid and the solid substrate, and the
evaporation and condensation effects through the last term. Following results from [18], we define
the energy functional that governs the dynamics of (1) as

E[h] =
∫ L

0

1

2

(
∂h

∂x

)2

+ U (h)dx. (3)

A direct calculation of the time derivative of the functional (3) leads to the dissipation of energy

dE
dt

= −
[∫ L

0
h3

(
∂p

∂x

)2

dx + β

∫ L

0

p2

h + K0
dx

]
� 0. (4)

This observation will be used for a short proof that evaporation can never overcome the disjoining
pressure in the Appendix; this behavior is physically expected for adsorbed films, but is not guaranteed
for all mathematical forms of evaporative fluxes [48].

Since the contribution from each integral in (4) is non-negative, at an equilibrium state each
integral must equal zero independently. The first integral yields that ∂p/∂x = 0, which indicates that
p is a constant over the domain. For β > 0 the second integral in (4) being zero then leads to p ≡ 0.
Whether equilibria exist as drops or uniform films depends on the pressure offset P0; our analysis of
the dynamics will be partitioned into regimes determined by the equilibrium solutions.

The total mass of the film is of key interest and its rate of change due to the evaporative term can
be obtained by integrating Eq. (1a) and incorporating the periodic boundary conditions

M(t) =
∫ L

0
h dx,

dM
dt

= −β

∫ L

0

p

h + K0
dx. (5)

Using (1d) and performing an integration by parts, we get

dM
dt

= β

(∫ L

0

h2
x

(h + K0)2
dx −

∫ L

0

�(h)

h + K0
dx

)
. (6)

For the special case with β = 0 the mass is conserved and no evaporation or condensation occurs. In
other cases, the increase or decrease of the mass is more complicated. For β > 0, this indicates that
if �(h) � 0 over the domain, then (6) yields a positive growth rate, namely, condensation, while if
�(h) is sufficiently large to overcome the first integral, then evaporation occurs. In the critical case
where the sign of �(h) is changeable, transitions between condensation and evaporation can occur.

To study the interesting combination of dewetting and evaporative and condensing effects, we will
start exploring by examining the instability of both spatially uniform and nonuniform equilibrium
solutions.

III. STABILITY OF SPATIALLY UNIFORM FILMS

We begin by examining the dynamics for solutions that are perturbations of uniform flat fluid
layers. Since mass is not conserved, the mean height h̄(t) can evolve with time and there is a need to
cover a range of behaviors spanning from evaporating down to uniform adsorbed layers to flooding
under condensation.

We follow the approach in [40,48] and perturb the uniform film by an infinitesimal Fourier mode
disturbance

h(x,t) ∼ h̄(t) + δei2kπx/Leσ (t), (7)

where k is the wave number and σ (t) describes the growth of the perturbation starting from the initial
amplitude δ � 1, with σ (0) = 0. Expanding the PDE (1) about h = h̄ then gives the O(1) and O(δ)
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FIG. 2. Plot of �̃(h) given by (1e) with ε = 0.1, with the dashed lines representing the thresholds of the
parameter P0, which determines the multiplicity of spatially uniform solutions in the system. The thresholds
separate the undersaturated, critical case, and supersaturated regimes.

equations, respectively,

dh̄

dt
= −βJ̃ (h̄) where J̃ (h̄) = �(h̄)

h̄ + K0
, (8a)

dσ

dt
= −

[(
2kπ

L

)2

h̄3 + β

h̄ + K0

][
�′(h̄) +

(
2kπ

L

)2
]

+ β

h̄ + K0
J̃ (h̄), (8b)

For β �= 0, the equilibria of (8a) are the spatially uniform steady states of (1), namely, the heights
yielding zero disjoining pressure �(h̄) = 0. As shown in Fig. 2, the number of spatially uniform
steady states depends on the value of the parameter P0 relative to the critical pressure Pε set by the
disjoining pressure, from the unique maximum at hpeak = 4

3ε where

�(hpeak) = Pε − P0, Pε = 27

256
ε−1 > 0. (9)

In particular, there are three regimes.
(i) Undersaturated vapor (US). If P0 < 0, there is one uniform steady state with Hm < hpeak.
(ii) Critical case (CC). If 0 < P0 � Pε , there are two uniform steady states withHm � hpeak � Hc.
(iii) Supersaturated vapor (SS). If P0 > Pε , there is no uniform steady state.
These cases for the range of P0 are of central importance for both the stability analysis and

dynamics of this problem. For P0 < Pε in the critical and undersaturated cases, the spatially uniform
steady state Hm defines a minimum thickness adsorbed layer,

Hm = ε + P0ε
2 + 4P 2

0 ε3 + O(ε4), ε → 0, (10)

while in the critical case, for 0 < P0 < Pε , another constant steady state Hc also exists,

Hc = P
−1/3
0 ε2/3 − 1

3ε − 2
9P

1/3
0 ε4/3 + O(ε5/3). (11)

While Hc depends on P0 in the leading order, Hm has a weaker dependence on P0 with a saddle-node
bifurcation occurring at P0 = Pε . Similar results on flat-film steady states are available in [39,40],
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FIG. 3. Bifurcation diagram of the uniform steady states Hc and Hm as functions of P0. Arrows indicate the
dynamics for the mean thickness h̄(t) in each of the regimes US, CC, and SS: condensation with h̄(t) increasing
or evaporation with h̄(t) decreasing, and Hm being stable while Hc is an unstable steady state.

where other forms for the disjoining pressure were used. For the rest of this article, we set the system
parameters ε = K0 = 0.1, yielding Pε ≈ 1.05.

The equilibria Hm and Hc are fixed points of (8a) and then (8b) reduces to the dispersion relation
for the growth rate of perturbations λ from standard linear stability analysis,

σ (t) = λt, λ(h̄) = −
[(

2kπ

L

)2

h̄3 + β

h̄ + K0

][
�′(h̄) +

(
2kπ

L

)2
]
. (12)

For h̄ = Hm, �′(h̄) > 0 to yield that λ � 0, so Hm is stable with respect to all perturbations. For
h̄ = Hc, �′(h̄) < 0 and the thickness Hc is long-wave unstable with respect to perturbations with
0 � k < kc below a critical wave number kc = L|�′(Hc)|1/2/2π .

Linear stability analysis of films with other thicknesses has been previously carried out using the
frozen time (or quasisteady h̄) approach [30,39,49], but this is limited to only short-time behaviors.
We will consider the evolution more globally by using the full dynamics of (8a) and (8b) for the
mean film thickness and amplitude of spatial perturbations.

The loss or gain of mass and evolution of the mean film thickness h̄(t) follows directly from
(8a) and the ranges of h for which �(h) is positive or negative (see Fig. 3). For the critical and
undersaturated cases, the local linear stability and instability of Hm and Hc extend to show those
states to be dividing lines between regimes of condensation and evaporation for uniform films. For
the supersaturated case, � > 0 for all h̄ > 0 and hence all films will exhibit condensation.

We now turn to (8b) to investigate the possibility for development of spatial patterns on the film
surface. Figure 4(a) shows the growth rate dσ/dt as a function of h̄ for several values of P0 at a
given perturbation wave number k = 6. We observe that there exists a threshold pressure P0 = Pc(k)
for the growth of spatial perturbations. For P0 < Pc, films of thickness h̄ are linearly unstable to
perturbations over a band of average film thicknesses

h̄−(P0,k) < h̄ < h̄+(P0,k), (13)

for which dσ/dt > 0 [see Fig. 4(b)]. To see an illustration of the impact of this instability, we consider
an example with P0 = 0.5 and the initial condition h0(x) = 0.2 + 10−4 cos(12πx/L) in (1). Here
the initial mean thickness is h̄0 = 0.2, which lies in the unstable range h̄− < h̄ < h̄+ for k = 6 [see
Fig. 4(b)]. The value of h̄0 is also less than Hc(P0) ≈ 0.222, so by (8a) we expect evaporation to

024001-7



HANGJIE JI AND THOMAS P. WITELSKI

−0.4

−0.2

0

0.2
(a) (b)

0.05 0.1 0.2 0.3 0.4

P0 = −10.0

P0 = 0.5

P0 = 10.0

d
σ

/
d
t

h̄

−0.4

−0.2

0

0.2

0.05 h̄− 0.2 h̄+ 0.3 0.4

Hm Hc

P0 = 0.5

d
σ

/
d
t

h̄

FIG. 4. (a) Plot of dσ/dt vs h̄ at several values of P0 (with k = 6, β = 0.001, and L = 20 fixed). Here
Pc ≈ 8.455 is a threshold for growth of spatial instabilities for P0 < Pc. (b) Critical film heights h̄−,h̄+ marking
the range where spatial perturbations grow for P0 = 0.5. This range of heights is different than the ranges for
evaporation or condensation of uniform films set by the equilibria Hm,Hc.

occur. To compare the linearized model against direct simulations of (1), we define the average film
thickness

〈h〉 = 1

L

∫ L

0
h dx. (14)

The simulation in Fig. 5(a) shows transient pattern formation with the perturbation amplitude growing
while h̄(t) evolves downward through the unstable range. As h̄(t) crosses h̄− the perturbations decay
as the solution eventually converges to the spatially uniform steady state Hm. In Fig. 5(b) we compare
the prediction for the evaporation rate from (8a) against the effective rate exhibited by the average
thickness d〈h〉/dt ≈ −βJ̃ (〈h〉). We observe that for this example the assumptions in (8a) and (8b)
hold well over most of the dynamics except for an intermediate period. When 〈h〉 ≈ 0.13 the spatial
perturbations became sufficiently large to have nonlinear effects making deviations between h̄ and
〈h〉 noticeable (with the nonlinear spatial perturbations having nonzero means).

To understand when the influences of transients will be significant, we examine the behavior
described by (8b). Since we know that h̄ evolves monotonically between the equilibria Hc and Hm,
it is helpful to combine (8a) and (8b) to form the associated ordinary differential equation (ODE) for
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0 5 10 15 20
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h

x
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FIG. 5. (a) Evaporation with transient pattern formation starting from the initial data h0(x) = 0.2 +
10−4 cos(12πx/L) with the system parameters P0 = 0.5, β = 0.001, and L = 20. (b) Dots represent the
effective rate of evaporation d〈h〉/dt plotted against the decreasing average film thickness in the PDE simulation,
compared against the prediction −βJ̃ (〈h〉) from (8a) (solid curve).
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FIG. 6. Dispersion relation plot of dσ/dt against the wave number k at the values h̄ = 0.127,0.133,0.2,0.3.
The parameter P0 = 0.5 is in the critical case range 0 < P0 < Pε and the other parameters are identical to those
in Fig. 4.

the evolution of the spatial perturbation amplitude with respect to changes in the mean thickness,

dσ

dh̄
= 1

J̃

[
1

β

(
2kπ

L

)2

h̄3 + 1

h̄ + K0

][
�′(h̄) +

(
2kπ

L

)2
]

− 1

h̄ + K0
. (15)

In the limit of weak evaporation and condensation effects, this takes the form

dσ

dh̄
∼ h̄ + K0

β�(h)

(
2kπ

L

)2

h̄3

[
�′(h̄) +

(
2kπ

L

)2
]

= O

(
1

β

)
for β → 0 (16)

and hence we can conclude that for β → 0 spatial perturbations can display large transient growth
relative to given changes of the mean film height. Since the factor in square brackets in (16) is the
same as in (12), we see that these transient instabilities share the same critical wave number kc

for long-wave instability. In general, the limit of weak phase-change effects (β → 0) is a singular
perturbation: For finite times (1) with β → 0 approaches nonvolatile behavior, but for sufficiently
long times (t → ∞) changes in mass will create significant differences in behaviors.

In contrast, when β is large,

dσ

dh̄
∼ 1

�(h̄)

[
�′(h̄) +

(
2kπ

L

)2
]

− 1

h̄ + K0
= O(1) for β → ∞ (17)

and there is no separation of time scales between the evolution of h̄(t) and σ (t). This means that
with strong evaporation, perturbations would not have a chance to appreciably grow in amplitude
before h̄(t) has moved out of the unstable range and hence rapidly evaporating films would always
stay close to uniform in height.

Figure 6 gives the dispersion relation (8b) for several values of h̄. We observe that for a range of
h̄ values the most unstable wave number is positive, k∗ > 0. This means that patterns can develop
for those thicknesses (see the h̄ = 0.2 and h̄ = 0.3 curves). Below some threshold for h̄, the most
unstable wave number is attained at k∗ = 0, indicating that any spatial perturbations will decay
relative to the evolution of the uniform film h̄(t) (see the h̄ = 0.127 and h̄ = 0.133 curves). For zero
wave number these perturbations are constant in space, h̄ → h̄ + δeσ ; this effectively reduces to a
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0.3 + 0.001

∑6
k=1 cos(2kπx/L) with L = 40 and other parameters identical to Fig. 5. (b) Contour plot of

the growth rate dσ/dt with the thick line representing the computed most unstable wave number k∗ as the
condensation occurs.

sensitivity analysis for (8a) with respect to the evolving base state h̄(t): dσ/dt = −βJ̃ ′(h̄). Similar
analysis for the stability of dewetting evaporating thin films was also done in [18]. The transition
between these h̄-dependent forms of dispersion relations occurs at k∗ = 0 and appears similar to
the type-II and type-III instabilities described in [50]. The significant qualitative changes in the
dispersion relation as h̄(t) evolves show that the frozen-time approximation cannot be expected to
give good predictions for the dynamics in the critical pressure regime.

In Fig. 7 we demonstrate that under the same system parameters, starting with a thicker film
(〈h0〉 = 0.3 > Hc) yields condensation. With P0 = 0.5 in the critical range, the numerical simulation
for (1) starting from the weakly perturbed film (initial profile given in the figure caption) shows
monotonic growth of the mass. The apparent most unstable wave number k∗ is numerically tracked
by using the Fourier transform of the time derivative of the PDE solution ∂h/∂t and is plotted against
the average film thickness. Starting from k∗ = 6, the evolution going down to k∗ = 0 is shown
overlaid on the contour lines of the dispersion relation (8b) and follows the linear prediction well.
This is expected, since while there may be some transient growth of spatial modes, as condensation
continues and h̄(t) increases further, the perturbations are relatively small in amplitude and will also
eventually decay out. So transient pattern formation also can occur in condensation, but it is not as
dramatic as in evaporation.

The long-time behavior for condensation is unbounded growth of the film thickness (sometimes
called flooding), where h̄ → ∞. In this limit, Eq. (8a) requires P0 > 0 and hence this behavior only
occurs in the critical and supersaturated cases, with the flux reducing to J̃ ∼ −P0/h̄. For h̄ → ∞,
(8b) reduces to dσ/dt ∼ −h̄3(2kπ/L)4, namely, for all β (and all P0 > 0), spatial perturbations will
decay due to surface tension and flooding will always be manifested in terms of flat films following
the leading-order behavior

dh̄

dt
∼ βP0

h̄
⇒ h̄(t) ∼

√
2βP0t for t → ∞. (18)

IV. NONUNIFORM STEADY STATES

Recalling the energy (4), all steady states of (1) have zero pressure and the periodic nonuniform
steady states satisfy the boundary-value problem on 0 � x � L,

d2h

dx2
− �(h) = 0, h(0) = h(L), h′(0) = h′(L). (19)
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FIG. 8. Phase plane for the second-order steady-state solutions satisfying (19) in the critical case with
0 < P0 < Pε . The homoclinic orbit (solid line) corresponds to the droplet solution in Fig. 9(a) and the dashed
line represents the periodic solution in Fig. 9(b).

For the undersaturated case with P0 < 0 and the supersaturated case with P0 > Pε , Eq. (19) does not
have any nonuniform solutions. In this section we will obtain nontrivial periodic solutions to (19)
that exist only for the critical case with 0 < P0 < Pε .

Steady states of the mass-conserving thin-film equation satisfy the same form of second-order
differential equation problem (19). For the conservative problem with β = 0, P0 in (1e) is a free
parameter that parametrizes the continuous family of coexisting steady states. For the nonconservative
model (1) with β > 0, P0 is an imposed system parameter that determines a unique nonuniform steady
state on a given domain.

With different forms of �̃(h) in (1e), the steady states and stability of conservative thin-film
equations have been the focus of many studies. In [41] Bertozzi et al. considered the steady states
using the regularized disjoining pressure �̃(h) = Ah−3(1 − ε/h). Laugesen and Pugh studied the
properties and energy levels of positive steady states for a generalized conservative thin-film equation
with �̃(h) = h−α [51,52] and provided linear stability results for a nonconservative thin-film model
with a linear fourth-order term [53]. In [52] Laugesen and Pugh showed that the linear stability
of even steady states that satisfy periodic boundary conditions on (0,L) is equivalent to the linear
stability of the steady states with respect to the Neumann (or no-flux) boundary conditions over the
half domain 0 � x � L/2.

The phase plane of (h,hx) is plotted in Fig. 8, where the equilibrium Hm(P0) is a saddle point and
Hc(P0) is a center point. Picking a value of the minimum height hmin in the range Hm � hmin � Hc

determines a contour in the phase plane describing a periodic steady-state solution. For each value
of hmin, the corresponding maximum height hmax comes from U (hmax) = U (hmin). In particular, if
hmin = Hm, we have a homoclinic orbit through the saddle point Hm which corresponds to a solitary
droplet solution shown in Fig. 9(a). The maximum height Hmax of the droplet is then given by the
root of U (Hmax) = U (hmin), which for ε → 0 can be written as

Hmax = 1

6P0
+ ε + O(ε2). (20)
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FIG. 9. (a) Typical steady-state droplet solution and (b) a periodic solution satisfying the ODE (19).

For Hm < hmin < Hc, we have periodic steady-state solutions with a typical plot presented in
Fig. 9(b). The length of the period 
(hmin) of the periodic steady state h(x) can be obtained by


(hmin) =
∫ 
(hmin)

0
dx = 2

∫ hmax

hmin

1√
2U (s) − 2U (hmin)

ds. (21)

Small-amplitude periodic steady-state solutions h bifurcate from the spatially uniform steady state
Hc [18]. Using linear stability at Hc, it can be shown [41,54] that the minimum period of oscillations
is given by


s = 2π√−�′(Hc)
. (22)

Equation (21) defines a monotonic function on hmin satisfying


(hmin → Hc) = 
s, 
(hmin → Hm) → ∞.

We define primary periodic steady-state solutions with a single maximum on the domain 0 � x �
L as h = Hs(x). Figure 10 shows that the average thickness 〈Hs〉, parametrized by L, bifurcates from
Hc at L = 
s . Since Hs(x) approaches a finite-mass solitary droplet, we have limL→∞〈Hs〉 = Hm.

0

Hm

Hc

0.3

0 s 2 s 3 s 4 s

Hs Hs,2 Hs,3 Hs,4

h

L

FIG. 10. Bifurcation diagram for 〈h〉 parametrized by the domain size L with the parameter P0 = 0.5.
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FIG. 11. (a) Bifurcation diagram of steady states to (19) with the domain size L = 3.05 showing that a
family of nonuniform steady states coexists with the constant steady states Hm and Hc in a specific range of
P0. The solid lines represent the stable steady states and the dashed lines correspond to the unstable ones.
(b) Coexisting equilibria of (19) with the average film thickness 〈h〉 = 0.24 and the domain size L = 3.05.

Higher-order families of nonuniform steady states Hs,k(x) with k periods bifurcating from Hc at
L = k
s for k = 2,3, . . . are also shown in Fig. 10. Multiple periodic nonuniform steady states can
coexist on a given domain with L � 2
s .

The value of the system parameter P0 is also important in selecting between multiple coexisting
periodic steady states Hs(x). With a fixed domain size L = 
 = 3.05, a bifurcation diagram of the
average film thickness of steady states satisfying (19) with respect to P0 is presented in Fig. 11(a).
It shows that in addition to the constant steady states h ≡ Hc and h ≡ Hm, a family of nonuniform
steady-state solutions Hs(x) exists for P ◦ � P0 � P • bifurcating from the uniform steady state Hc

at P0 = P ◦ and P0 = P •. These two bifurcation points can be obtained by setting 
s = L and solving
(22) for the P0 values. Moreover, there exists a critical P ∗ = P ∗(
) such that for P ∗ < P0 < P • the
average thickness 〈Hs〉 of Hs(x) is monotonically decreasing with respect to the parameter value P0,
while for P ◦ < P0 < P ∗ we have 〈Hs〉 increasing with P0. The maximum value 〈H ∗〉 of the average
thickness is attained at P0 = P ∗ and the average thickness of small-amplitude steady-state solutions
are given by 〈H ◦〉 and 〈H •〉 at P0 = P ◦ and P0 = P •, respectively.

The above bifurcation diagram also characterizes the coexistence of steady states with given
length of period and average film thickness. Specifically, it indicates that for 〈H ◦〉 < 〈h〉 < 〈H ∗〉,
two nonuniform steady states and the uniform state Hc coexist. An example of coexisting steady
states with 〈h〉 = 0.24 is shown in Fig. 11(b), which corresponds to three marked dots in Fig. 11(a).
This is consistent with the results obtained in [51] on the existence and uniqueness of steady-state
solutions of the mass-conserving thin-film model with specific domain size and average thickness.

V. STABILITY ANALYSIS OF NONUNIFORM STEADY STATES

In the preceding section we have studied the steady states and in this section we focus on their
linear stability and transient behavior. We consider a positive 
-periodic steady state Hs(x) over the
domain 0 � x � L and perturb it by setting h(x,t) = Hs(x) + δ�(x)eλt , where δ � 1 and �(x)
is also 
 periodic. Since Hs(x) satisfies the ODE (19), we linearize Eq. (1) around the steady state
Hs(x) and obtain the O(δ) equation

λ� = L �, (23)

where the linear operator L is

L � ≡
[
− β

Hs + K0
+ d

dx

(
H 3

s

d

dx

)](
�′(Hs)� − d2�

dx2

)
. (24)
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We rewrite this fourth-order operator as the product of two second-order operators

L � = QP�, (25)

where Q is an operator that includes the evaporative flux and the mobility

Qw ≡ − βw

Hs + K0
+ d

dx

(
H 3

s

dw

dx

)
(26)

and P is the linearized pressure operator

Pv ≡ �′(Hs)v − d2v

dx2
. (27)

The operator L is not self-adjoint with respect to the standard L2 inner product; the adjoint operator
L † is given by

L †� ≡ PQ�. (28)

If there are any positive eigenvalues λ to the problem (23), then the steady state Hs(x) is unstable.
In Sec. V A we will study this eigenvalue problem for the conservative model with β = 0 where L
in (24) reduces to a simpler operator. Then, through an operator expansion in the limit β → 0, we
obtain the stability of the nonuniform steady states in Sec. V B. For simplicity in this section we only
focus on the case where a one-period solution fits in the domain, that is, L = 
, but this framework
can be easily extended to solutions with multiple periods.

A. Linear stability of the conservative PDE with β = 0

The linear stability analysis of the steady states of the conservative PDE with β = 0 is important
to the understanding of the stability of equilibria of the model (1) with β � 1, so here we begin
with a brief overview of the stability of the steady states of the model [41]. We will derive a critical
domain size L = 
∗ where the stability of the steady states changes for β = 0.

The linear stability of these nonuniform steady states Hs(x) can be obtained by solving the
eigenproblem (23), which by using β = 0 reduces to

L0� = λ�, where L0� ≡ d

dx

[
H 3

s

d

dx
(P�)

]
. (29)

We numerically solve this eigenproblem for the steady states presented in Fig. 11(a) and show that
for the range P ∗ < P0 < P • the family of nonuniform steady states is stable. It coexists with the
branch of spatially uniform unstable steady state h ≡ Hc and becomes unstable for P ◦ < P0 < P ∗.
While the stability of the uniform steady states h ≡ Hm is independent of P0, the other steady state
h ≡ Hc is only stable in the ranges P • < P0 < Pε and P0 < P ◦ and is unstable for P ◦ < P0 < P •,
where the nonuniform steady state exists. This difference from the stability of Hc described in Sec. III
is due to the conservation-of-mass condition for β = 0 (eliminating the k = 0 mode) and periodic
boundary conditions on a finite domain selecting discrete modes.

Numerical evidence suggests that the critical value P ∗ is monotonically decreasing with respect to

 for 
 > 
s . Therefore, given a fixed value of the parameter P0, there exists a critical period 
∗ such
that P ∗(
∗) = P0. Then, for any period 
 in the range of 
s < 
 < 
∗, we have P ∗(
) > P ∗(
∗) = P0.
This indicates that the corresponding steady state Hs(x) with the period 
 and average film thickness
〈Hs〉 is unstable with a positive eigenvalue λ to the eigenproblem (29). There coexists another steady
state which is stable with P0 > P ∗(
) with the same period 
 and average film thickness 〈Hs〉. On
the other hand, for 
 > 
∗ with P ∗(
) < P ∗(
∗) = P0, there exists a stable steady state Hs(x) and
the corresponding steady state with P0 < P ∗(
) is unstable.

For the parameter P0 = 0.5, we numerically calculate the corresponding critical period as 
∗ =
3.005. With this parameter choice in Fig. 12 we plot the two largest eigenvalues of the eigenproblem
(29) for the nonuniform steady state Hs(x) over a range of periods 
. In addition to the λ = 0
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FIG. 12. Dependence of dominant eigenvalues of Hs(x) on the period 
 for the eigenproblem (29) with
P0 = 0.5, where the critical period is given by 
∗ = 3.005.

translational mode, for 
s < 
 < 
∗ we have a positive eigenvalue making Hs unstable, while for

 > 
∗ Hs is stable.

The relationship between the period of a given steady state and the critical length of period 
∗
is important to the stability of the PDE (1) for both the cases β = 0 and β �= 0. In the following
section we focus on the influence of weak nonconservative effects and for β > 0 we will see the
same change in stability at 
 = 
∗.

B. Nonuniform steady states: Linear stability with β → 0

For nonuniform steady states Hs(x) with β �= 0 we first derive some properties for the
eigenfunctions of L [Eq. (23)] and then characterize its dominant eigenmodes using an asymptotic
operator expansion as β → 0. By taking the L2 inner product of L � and P�, integration by parts,
and using β > 0 then leads to

〈L �,P�〉 = −β

∫ L

0

(P�)2

Hs + K0
dx −

∫ L

0
H 3

s

[
d

dx
(P�)

]2

dx � 0. (30)

Applying (23) to the inner product and using integration by parts, one gets

〈L �,P�〉 = λ〈�,P�〉 = λ

∫ L

0
�′(Hs)�

2 + �2
xdx. (31)

Combining (30) and (31), we conclude that the eigenfunctions associated with positive eigenvalues
λ > 0 satisfy ∫ L

0
�′(Hs)�

2 + �2
xdx � 0.

Moreover, if λ = 0, then the two integrals in (30) indicate that the eigenfunction � associated with
zero eigenvalue is determined by

P� ≡ �′(Hs)� − d2�

dx2
= 0. (32)

The solution of (32) leads to a translational eigenfunction associated with zero eigenvalue, �T = dHs

dx
.
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For the special case with β = 0 when P0 can take a continuous range of values, there is an
additional eigenfunction �P

0 = dHs

dP0
|β=0 in the null space of the linearized operator L . Taking the

derivative of (19) with respect to P0 yields P�P
0 = 1, which then leads to L �P

0 = Q(1) = 0.
To understand the dependence of the spectrum of L on the parameter β, we consider the

asymptotic expansions as β → 0,

� = �0 + β�1 + · · · , λ = λ0 + βλ1 + · · · . (33)

Substituting these expansions into the eigenproblem (23) leads to the O(1) problem

L0�0 = λ0�0, (34)

which is equivalent to the eigenproblem (29) for the conservative thin-film equation (41) without any
mass-conservation constraint. It has been shown in [11,55] that the linear operator L0 is self-adjoint
with respect to a weighted H−1-norm. Therefore, from spectral theory, for a compact domain the
associated spectrum of the leading-order eigenvalue problem (34) is real and discrete. The O(β)
problem can be written as

L0�1 − λ0�1 = P�0

Hs + K0
+ λ1�0. (35)

Integrating (34) over the domain gives

λ0

∫ L

0
�0dx = 0, (36)

from which we see that any nonzero eigenvalue of (34) leads to a zero-mean eigenfunction, and if
�0 has a nonzero mean then the corresponding λ0 = 0. The translational mode �T

0 = dHs

dx
has a zero

mean due to the periodic boundary conditions and λT
0 = 0. The pressure mode �P

0 = dHs

dP0
|β=0 has

λP
0 = 0 and a nonzero mean. We denote the largest nonzero eigenvalue by λV

0 , whose associated
eigenmode �V

0 has zero mean and leads to growth or decay of spatial variations from the mean of
the solution h(x,t).

For the translational eigenfunction �T the expansion (33) is trivial since this branch of zero
eigenvalue is independent of the value of β and exists for any periodic solutions. For the second
eigenfunction �P we can integrate (35) over the domain and apply the periodic boundary conditions
to obtain

λP
1 = − 1〈

�P
0 ,1

〉 〈 P�P
0

Hs + K0
,1

〉
.

For the �V mode, integrating (35) over 0 � x � L and applying (36) then yields∫ L

0
�V

1 dx = − 1

λV
0

∫ L

0

P�V
0

Hs + K0
dx. (37)

This is not guaranteed to be zero, therefore, for β �= 0 we expect to have eigenfunctions of (23) with
nonzero means which account for the loss or gain of mass in the dynamics. Moreover, in this case λV

1

can be determined by applying the solvability condition to (35). Note that the adjoint operator L †
0

of the leading-order operator L0 takes the form L †
0 �V

0 ≡ (PQ|β=0)�V
0 , where the eigenfunction of

the adjoint operator associated with the leading-order eigenvalue λV
0 is denoted by �V

0 . Taking the
inner product of �V

0 with the right-hand side of (35) gives

λV
1 = − 1〈

�V
0 ,�V

0

〉 〈 P�V
0

Hs + K0
,�V

0

〉
. (38)

We now investigate the linear stability of the nonuniform steady state Hs(x) where the domain size
L is in the range of either L > 
∗ or 
s < L < 
∗. Specifically, we are interested in the bifurcation
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FIG. 13. Plots of the largest three eigenvalues of (23) over a range of β with the period 
 satisfying
(a) 
 = 2.9 < 
∗, (b) 
 = 3.005 = 
∗, and (c) 
 = 3.2 > 
∗. The critical period is 
∗ ≈ 3.005 for P0 = 0.5.

of the eigenproblem (23) parametrized by β in the limit of β → 0. Recall from Sec. V A that the
parameter P0 = 0.5 corresponds to the critical 
∗ = 3.005. We will use this parameter value for the
following discussion. To demonstrate that 
∗ = 3.005 is indeed a critical value for the nonuniform
steady state Hs(x), we numerically calculate the dominant eigenvalues of the eigenproblem (23) with

∗ = 3.005 and 0 � β � 0.002. The eigenvalues are plotted in Fig. 13(b), showing that the three
branches of eigenvalues come together at β = 0.

For 
 > 
∗, the dominant eigenvalues of the 
-periodic steady state Hs(x) are plotted against β in
Fig. 13(c). It shows that in the limit β → 0, the nonuniform steady state Hs(x) is unstable to the �P

mode with λP ∼ λP
1 β as β → 0 where λP

1 > 0, while for 
s < 
 < 
∗, the plot in Fig. 13(a) indicates
that the unstable eigenvalue λV takes the form λV ∼ λV

0 + λV
1 β as β → 0 where λV

0 ,λV
1 > 0.

For solutions with multiple droplets, additional unstable zero-mean coarsening modes that account
for symmetry breaking and droplet merging coexist with the dominant modes described above [56].
We will consider the simplest case for steady states with two droplets where there is only one
symmetry-breaking mode �B and one droplet-merging mode �M .

VI. NUMERICAL SIMULATIONS

To understand the significance of the stability of the nonuniform equilibria, we focus on the effects
of the unstable eigenmodes of Hs(x) based on PDE simulations of (1) starting from initial conditions
of the form

h0(x) = Hs(x) + δ�(x), (39)

where�(x) is a normalized eigenmode associated with a positive eigenvalueλ and‖�‖2 = 1,�(0) �
0, and |δ| � 1. Since it is assumed that the solution takes the form of h(x,t) ∼ Hs(x) + δ�(x)eλt

when it is close to the steady state, the growth or decay of the perturbation in time can be quantified
by

‖h(x,t) − Hs(x)‖2 = δ‖�‖2e
λt + O(δ2).

Unless stated otherwise, for all the simulations in this section, we set β = 0.001 and P0 = 0.5.
We begin by studying the dynamics from a single-drop steady state Hs(x). We use a numerical

example to illustrate how the nonconservative eigenfunctions are tied to the evaporation dynamics.
With 
 = L = 3.0 satisfying 
s < 
 < 
∗, the eigenproblem for the nonuniform steady state Hs has
only one positive eigenvalue λV = 0.03744. Starting from the initial data λV = Hs − 0.0001�V ,
evaporation occurs and the solution eventually converges to the stable spatially uniform steady state
h = Hm (see Fig. 14). Although the initial condition has average height 〈h0〉 > Hc, suggestive of
filmwise condensation based on (8a), the strong influence of the spatial profile leads to dropwise
evaporation. In the early stage, Fig. 14(a) shows that the spatial variations increase as the peak of
the solution increases while minima decrease, and the growth rate of ‖h − Hs‖2 is consistent with
the predicted growth rate given by the unstable eigenvalue λV (see Fig. 15). In the later stage the
convergence rate to the uniform steady state h = Hm agrees with the analytical prediction from (12)
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FIG. 14. (a) Early-stage evolution (0 � t < 250) and (b) the later stage (t > 250) of evaporation with the
initial condition close to the nonuniform steady-state solution Hs for a PDE simulation starting from the initial
data h0(x) = Hs − 0.0001�V with domain size L = 
 = 3.

with the wave number k = 0, λm = −β�′(Hm)/(Hm + K0) = −0.286 79. If the simulation starts
with λV = Hs + 0.0001�V instead, then condensation with decreasing spatial variations occurs,
eventually leading to flooding (18).

Now we study the more complicated dynamics that can occur with multiple droplets. For
simplicity, only two-droplet steady states will be investigated. We consider the nonuniform steady
state Hs,2(x) with the period 
 = 3.5 > 
∗ on 0 � x � 7. By numerically solving the eigenproblem
(23), we obtain three unstable eigenmodes (see Fig. 16) in addition to the translational zero eigenmode
(not shown).

The eigenvalue λB = 0.007 36 corresponds to the coarsening mode �B that leads to symmetry
breaking, λM = 0.006 11 corresponds to the eigenmode �M that yields droplet merging, and λP =
0.005 28 is associated with the mode �P that corresponds to evaporation or condensing effects.
Among the three unstable eigenmodes, the only mode with nonzero mean is the �P that yields
evaporative effects; the other two eigenmodes govern the dynamics that conserve mass.

The set of PDE simulations in Fig. 17 demonstrates the effects of these eigenmodes as the initial
conditions (39) with perturbation amplitude δ = 0.1. With �(x) = �B , initial perturbations lead to
mass increase of the left droplet while the droplet on the right shrinks in time, breaking the symmetry
of the original state [see Fig. 17(a)]. For �(x) = �M as the perturbation, the two droplets with the
period 
 = 3.5 merge into one larger droplet with the period 
 = 7 [see Fig. 17(b)]. These two

10− 5

10− 3

10− 1

0 100 200 300 400 500

h(x, t) − Hs(x) 2

h(x, t) − Hm 2

O(eλV t)
O(eλm t)

t

FIG. 15. Growth and decay rates of the L2-norms between the PDE solution shown in Fig. 14 and the steady
states Hs(x) and Hm, showing that the solution evolves from the Hs(x) state towards Hm.
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FIG. 16. Unstable eigenmodes of the nonuniform steady state Hs,2(x) with two zero-mean modes �B and
�M and a nonzero-mean mode �P where the domain size L = 2
 = 7 and the other system parameters are
identical to those in Fig. 14.

examples are similar to the coarsening dynamics observed in conservative thin-film models [56].
In Fig. 17(c) we show the results for the perturbation � = �P where initially spatial variations
decrease. The solution eventually evolves into a spatially uniform film which grows indefinitely in
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FIG. 17. The PDE simulations of two droplets on 0 � x � 7 starting from h0(x) = Hs,2(x) + 0.1� showing
(a) symmetry breaking with � = �B , (b) droplet merging with � = �M , and (c) flattening with � = �P .
(d) Corresponding changes of 〈h〉 in time, where the long-time behavior of the solutions perturbed by the �B

mode is identical to that of the �M mode shifted by �t = 217.
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FIG. 18. Transition-state diagram connecting linearized dynamics in the small-domain case with 
 < 
∗.

time. This flooding dynamics will also occur at later times for the simulations from Figs. 17(a) and
17(b) with h̄(t) = O(t1/2) following (18), similar to Fig. 19.

The evolving average film thickness 〈h〉 of the three simulations is plotted in Fig. 17(d), showing
that among the three eigenmodes �P yields the fastest condensation, while the dynamics driven
by the two zero-mean modes are delayed by the early-stage coarsening. Solutions from all these
simulations are approaching flat films governed by the large thickness limit (8a). Both Figs. 17(a)
and 17(b) proceed by coarsening to a growing single drop and then leading to flooding. They differ
in the position and formation time of that drop, but the flooding behavior is the same except for a
time shift of �t = 217 between the two.

Figure 18 gives a transition diagram that summarizes the relations between the instabilities and
dynamics of the coexisting states studied above in a small domain for 
 > 
∗. Droplet steady states
Hs,1 and Hs,2 perturbed by the eigenmode �P either converge to the constant equilibrium Hm (see
Fig. 14) or exhibit filmwise condensation [see Fig. 17(c)]. The two coarsening modes �B and �M

account for the transition from Hs,2 to Hs,1 up to a spatial translation [see Figs. 17(a) and 17(b)]. For
droplets states with periods in the range of 
s < 
 < 
∗, the stability of some of the eigenmodes can
change and the transition from droplets to flat films can be induced by the �V mode. While filmwise
dynamics with an increasing or decreasing total mass are relatively straightforward to understand (see
Sec. III), whether droplet states and coarsening dynamics will lead to evaporation or condensation
is more difficult to identify.

With a larger domain size, more complicated dynamics are expected and need further investigation.
With more droplet states involved, more unstable coarsening and flattening modes will appear in the
corresponding transition diagram. Figure 19 shows the dynamics of (1) starting from a typical initial
profile h0(x) = 0.2 − 0.03 sin(6πx/L) + 0.01 sin(4πx/L) on the periodic domain 0 � x � L with
L = 20. Initially, the long-wave instability due to the disjoining pressure �(h) yields coalescence
of the film into three isolated droplets connected by a thin layer h ∼ ε. Due to the competition
between the evaporation effects and the disjoining pressure, the right and the left droplets collapse
sequentially to the thin layer, followed by the slow condensation of the center droplet. This dropwise
condensation mode then transitions to filmwise condensation as the condensing droplet reaches the
size of the domain. Moreover, it is shown in Fig. 20 that making a small perturbation (changing 〈h0〉)
to the initial conditions used in (19) can lead to very different droplet dynamics than presented in
Fig. 19. Instead of dropwise and filmwise condensation, the three isolated droplets all collapse for
long times, indicating that the dynamics are sensitive to the initial conditions.

Motivated by the different dynamics shown in Figs. 19 and 20, we now more systematically
explore the dependence of evaporation versus condensation on initial conditions and the β value.
The plot in Fig. 21 shows simulation results starting from the family of initial conditions

h0(x) = h̄0 − 0.03 sin(6πx/L) + 0.01 sin(4πx/L), (40)
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FIG. 19. (a) Numerical simulation of dewetting of a volatile thin film starting from typical initial conditions:
early-stage dewetting yielding three metastable droplets, subsequent collapse of the left and right droplets
occurring while the center droplet gradually grows, followed by filmwise condensation after the substrate
is flooded. (b) Plot showing the average thickness 〈h〉 decreasing in the early regime for 0 � t < t∗ ≈ 440
corresponding to dewetting and evaporation, with later condensation yielding increasing average thickness for
t > t∗.

parametrized by a range of values for h̄0 on the domain 0 � x � L with L = 20. We also use a
range of values for β in (1) to examine the impact of weak versus strong evaporation relative to
dewetting effects. For each simulation with a given (β,h̄), the observation of long-time evaporation
or condensation is labeled by open or closed circles, respectively, in Fig. 21. For large h̄ the dynamics
rapidly converges to filmwise condensation, while sufficiently small h̄ leads to evaporation. For a
given β, there is an intermediate range of h̄ at which we observe early-stage coarsening dynamics
followed by dropwise evaporation or condensation dynamics, similar to the evolutions shown in
Figs. 19 and 20. We use a simple curve to indicate the separate regions of observed evaporation
and condensation dynamics. These simulation results for finite-amplitude initial conditions are not
obvious from the linear stability results for infinitesimal perturbations (Sec. III), which would suggest
that the dividing curve be the constant h̄0 = Hc for all β. We suspect that the separation curve
approaches Hc as β → ∞.
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FIG. 20. (a) The PDE simulation starting from initial data h0(x) = 0.197 − 0.03 sin(6πx/L) +
0.01 sin(4πx/L) for the model (1) and (b) the corresponding monotonically decreasing average thickness
in time.
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FIG. 21. Plot showing the influences of β and the initial film height to evaporation (denoted by open circles)
or condensation (denoted by closed circles) dynamics. The (β,h̄0) values used in Figs. 19 and 20 are labeled by
closed and open squares, respectively.

VII. DISCUSSION

We have observed interesting transient pattern formation and interfacial instabilities of volatile
thin fluid films from the model (1) in the weak evaporation limit. In a critical range of pressures,
we have shown that transitions between filmwise and dropwise dynamics can yield various phase
changes.

Unlike the conservative thin-film equation

∂h

∂t
= ∂

∂x

(
h3 ∂

∂x

[
�(h) − ∂2h

∂x2

])
, (41)

equivalent to β = 0 in (1), where a continuous family of nonuniform steady states with a constant
pressure p ≡ c exists in the system, the steady-state solutions of (1) correspond to a single value
of the pressure determined by the liquid-vapor balance at the imposed temperature. While models
for coarsening dynamics in (41) have been constructed [16], because of the difference in the set of
steady states there are still open questions on how to formulate similar reduced models for volatile
films.

While the focus of this paper has been on weak evaporative effects, we are also interested in
transient patterns under strong evaporative influences (with β large). In particular, we would like to
better understand the interaction between droplets coarsening and volatility and identify the behavior
of the evaporation-condensation dividing line in Fig. 21 in the large-β limit.

In this paper the dynamics of a two-dimensional evaporative-condensing thin-film model has been
demonstrated and we expect some of the results to be naturally extended to the three-dimensional
case. Furthermore, the current nonlinear analysis of equilibrium stability is limited to a relatively
small system. For a larger-scale domain more complicated and interesting pattern formation will
arise and need further analysis.

We plan to further study the dynamics predicted by this mathematical model with parameter
values appropriate to typical volatile fluids such as water or ethanol. Our assumption on Marangoni
effects being negligible may put further constraints on ranges of parameters in the model. To test for
robustness of the dynamics for pattern formation, we plan to include thermocapillary stresses and
other physical effects such as vapor recoil and gravity in the model [30,36,37,57,58]. For instance,
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in [59], destabilizing gravitation and stabilizing surface tension are considered for a film under a
cooled horizontal plate. In [58], Panzarella et al. incorporated buoyancy, capillary, and evaporative
effects to study a horizontal film boiling model.

APPENDIX: POSITIVITY OF SOLUTIONS WITH β � 0

In this Appendix we show that for β � 0 the evaporative mass flux cannot cause rupture
singularities and the solution stays positive. The proof of this result depends on the properties of
the disjoining pressure �(h) and the corresponding potential U (h) = ∫

�(h)dh. From (2) we have
limh→0 U (h) = ∞ and

lim
h→∞

U (h) =
⎧⎨
⎩

−∞ for P0 > 0
0 for P0 = 0
+∞ for P0 < 0,

where the borderline case is consistent with the properties of the potential function used in mass-
conserving thin-film equations in [16,41]. The proof of this statement for P0 < 0 is similar to the
arguments from Ref. [41]. For P0 > 0, we use an alternative approach to show the regularity of the
solution.

Theorem. If β � 0 and the initial data satisfy h0 > 0, h0 ∈ H 1([0,L]), and E[h0] < ∞, then a
unique positive smooth solution to Eq. (1) exists for all t > 0.

Proof. For β � 0 and h > 0, the functional (3) is monotonically dissipating. Using this fact,
with the positive initial data, it suffices to derive a priori pointwise upper and lower bounds for the
solution. Then the uniform parabolicity ensures that the solution is smooth and unique.

Since the functional is monotonically decreasing, at any time T > 0,

1

2

∫ L

0

∣∣∣∣∂h

∂x
(T )

∣∣∣∣
2

dx � E[h0] −
∫ L

0
U (h(T ))dx. (A1)

For P0 � 0, we directly observe that −U (h) has an a priori upper bound independent of h, implying
that

∫ |∂xh(x,T )|2dx is bounded. For P0 > 0, while −U (h) → ∞ as h → ∞, based on the form of
U (h) in (2), we notice that −U (h) has an upper bound

−U (h) =
(

ε2

2h2
− ε3

3h3

)
+ P0h � 1

6
+ P0h. (A2)

Then we consider the estimate for
∫ |∂xh(x,T )|2dx. Using the Cauchy-Schwarz inequality, one

obtains that for any 0 � x and y � L,

|h(y) − h(x)| =
∣∣∣∣
∫ y

x

∂sh(s)ds

∣∣∣∣ �
∫ L

0
|∂sh(s)|ds � L1/2

(∫ L

0
|∂sh(s)|2ds

)1/2

. (A3)

Suppose that at time t = T the solution h(x,T ) attains its minimum hmin at x = x0. Then setting
y = x0 in (A3) yields∫ L

0
h(x,T )dx �

∫ L

0
|hmin + [h(x,T ) − hmin]|dx � |hmin|L + L3/2

(∫ L

0
|∂xh(x,t)|2dx

)1/2

.

(A4)

Using (A2) and (A4) we get

−
∫ L

0
U (h(T ))dx � 1

6
L + P0|hmin|L + P0L

3/2

(∫ L

0
|∂xh(x,t)|2dx

)1/2

. (A5)

Combining (A5) and (A1) leads to
1
2‖∂xh(T )‖2

L2 − P0L
3/2‖∂xh(T )‖L2 � E[h0] + 1

6L + P0|hmin|L. (A6)
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Henceh(x,T ) ∈ H 1([0,L]). Since theH 1-norm bounds theL∞-norm in one space dimension,h(x,T )
has an a priori pointwise upper bound. Then we derive an a priori pointwise lower bound for h(x,T ).
First, from (A1) we note that ∫ L

0
U (h(x,T ))dx < E[h0]. (A7)

By the Sobolev embedding theorem, for some constant C1 we have ‖h(x,T )‖C0,1/2 � C1‖h(x,T )‖H 1 .
Again suppose that h(x,T ) attains its minimum hmin at x = x0. By the Hölder inequality, for some
constant Ch we obtain h(x) � hmin + Ch|x − x0|1/2. So for some constants C2(ε) > 0 and C3 > 0,
we have∫ L

0
U (h(x,T ))dx �

∫ L

0

C2(ε)

h(x,T )3
dx − C3 �

∫ L

0

C2(ε)

(hmin + Ch|x − x0|1/2)3
dx − C3 (A8)

and ∫ L

0

C2(ε)

(hmin + Ch|x − x0|1/2)3
dx �

∫ x0+(hmin/Ch)2

x0−(hmin/Ch)2

C2(ε)

(2hmin)3
dx = C2(ε)

4C2
hhmin

. (A9)

By (A7)–(A9), the solution cannot go below a positive threshold at any time T > 0. This completes
our proof.

Remarks. When β < 0, the positivity of the solution is no longer guaranteed. Since the energy
functional (3) is then not a Lyapunov functional, the energy argument presented in the proof does
not apply to this case. In fact, finite-time rupture may occur and the PDE may break down past a
critical time when specific values of system parameters are chosen (see [48]).
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