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We examine the potential of the nonlinear parabolized stability equations (PSE) to
provide an accurate yet computationally efficient treatment of the growth of disturbances in
H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually
induce breakdown to turbulence and can as such identify the onset of transition without
relying on empirical correlations. Since the local PSE solution at the onset of transition
is a close approximation of the Navier-Stokes equations, it provides a natural inflow
condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by
avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the
pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution
and downstream turbulent statistics from a DNS of the full domain. When the PSE are used
in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the
laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.
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I. INTRODUCTION

Modeling of laminar-turbulent transition remains one of the key challenges in the numerical
simulation of boundary layers, especially at coarse grid resolutions. Transition to turbulence strongly
affects many aspects of high practical significance such as the distribution of wall-shear stress or
surface heat transfer. Consequently, the accurate identification of the onset of transition becomes of
foremost importance for reliable estimates of drag and surface temperature. The issue is particularly
relevant in wall-modeled large-eddy simulations (WMLES), which require 10–100 times more grid
points in the thin laminar region than in the turbulent regime to properly capture the amplification
of disturbances preceding the breakdown to turbulence [1]. Our study analyzes the ability of the
nonlinear parabolized stability equations (PSE) to provide an accurate and computationally efficient
inflow boundary condition for direct and large-eddy simulations (LES) of flat-plate H-type transition
in order to alleviate the grid-point requirements in the pretransitional zone.

Boundary-layer transition to turbulence describes a complex process which can advance through
several distinct pathways. In the presence of relatively low levels of external perturbations, as found,
for instance, at atmospheric conditions, the transition process often begins with the amplification of
exponential instabilities. In zero-pressure-gradient boundary layers, exponential growth can occur
via the Tollmien-Schlichting (TS) wave, a viscous instability that becomes active past a critical
Reynolds number. The TS wave is initially most unstable at zero spanwise wave number and is
as such unable to initiate the three-dimensional state associated with breakdown to turbulence. In
so-called K-type transition [2], three dimensionality is provided by an oblique mode of the same
frequency as the TS wave, while in H-type transition the TS wave is supplemented by a subharmonic
oblique mode [3]. The modulation of the Blasius boundary layer by the amplifying TS wave causes
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the oblique modes to rapidly amplify so that the latter can be interpreted as secondary instabilities
of the TS wave. Bypass transition, which can outpace transition by exponential instabilities in the
presence of moderate to high levels of external perturbations (see, e.g., [4,5]), describes another route
to turbulence which is, however, not the subject of the present study.

Direct numerical simulation (DNS) of the Navier-Stokes equations has been frequently used
as a tool to investigate transitional flows. However, its high computational cost is unaffordable in
most practical settings. In order to explore more computationally efficient approaches, Sayadi and
Moin [6] conducted wall-resolved LES (WRLES) of H- and K-type transitional boundary layers.
They found that constant-coefficient models for the subgrid-scale stress tensor could not predict the
transition and the flow remained laminar at all streamwise locations. The reasons were traced back
to the non-negligible turbulent viscosity in the laminar region, which dampens the amplification of
instabilities. Dynamic subgrid-scale models sufficiently reduced the turbulent viscosity in the laminar
flow and allowed the growth of disturbances [6]. When the grid was fine enough, WRLES reproduced
the skin-friction overshoot observed in DNS. However, these calculations still require a relatively
large number of grid points to capture the growth of instabilities, of the order of Re1.85, which is not too
far from the DNS scaling Re2.64, where Re is the characteristic Reynolds number of the problem [7].

Additionally, most of the grid points in the three directions used in WRLES are clustered close
to the wall and more savings are achieved by adopting the so-called wall-modeled LES. In this case,
the wall stress is directly imposed at the wall instead of the classic no-slip boundary condition in
order to relieve the grid requirements [7]. However, most wall models are derived assuming a fully
developed turbulent state which overestimates the momentum drain at the wall in the laminar zone and
triggers premature transition. To address the issue, Bodart and Larsson [8] proposed a sensor based
on the resolved turbulent-kinetic-energy to switch off the wall-model eddy viscosity and revert to the
no-slip condition when the flow above the wall is detected as laminar. The results were satisfactory,
although a threshold parameter had to be prescribed to discern between laminar turbulent flow. In
two related studies on a flat-plate boundary-layer transition, Park and Moin [9,10] devised a wall
model able to account for nonequilibrium effects. However, the sensor from Bodart and Larsson [8]
and wall-normal DNS-like resolution were still necessary in the laminar pretransitional region in
order to achieve an accurate prediction of the transition location.

The PSE were introduced by Herbert [11] and Bertolotti et al. [12] as an effective means for
studying the evolution of small disturbances in spatially evolving flows. The approach captures
nonparallel effects and has opened new avenues to the analysis of the spatial growth of disturbances
in slowly varying shear flows such as boundary layers, jets, and far wakes. Both linear and nonlinear
forms of the PSE exist; see, e.g., [13] for a survey of differences. The nonlinear PSE account for
interactions between modes that eventually induce breakdown to turbulence. Starting from an initial
disturbance field within the boundary layer, the nonlinear PSE allow the identification of the onset of
transition without relying on empirical correlations or prescribed thresholds, in contrast to Reynolds-
averaged Navier-Stokes (RANS) equations models (see, e.g., [14]) or alternative approaches based
on linear stability theory such as the eN method [15,16].

The present study continues the work by Hack and Moin [17] and aims to combine the advantages
of the PSE and LES to enable the efficient simulation of transitional boundary layers. In the laminar
regime, the streamwise evolution of the instability waves is captured using the nonlinear form of
the PSE. Once the flow begins to transition, the local PSE solution is used as the inflow boundary
condition in direct and large-eddy simulations. We show that in the classic H-type transition scenario,
coupled calculations of the PSE with DNS, the PSE with WRLES, and the PSE with WMLES are
able to predict the location of transition and reproduce the correct physical behavior in both the
pretransitional and turbulent regions. When compared to configurations where DNS or WRLES are
used to compute the flow solution along the entire domain, the computational cost is reduced by
several orders of magnitude.

The paper is organized as follows. The PSE are revisited in Sec. II. Section III describes the
numerical experiments used in our study. The results are presented in Sec. IV, which is further
divided in three subsections corresponding to the analysis of the pretransitional zone, the prediction
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of friction coefficient, and the study of the turbulent region. A summary and conclusions are offered
in Sec. V.

II. PARABOLIZED STABILITY EQUATIONS FOR MODELING
THE PRETRANSITIONAL REGION

The parabolized stability equations were introduced by Herbert [11] and Bertolotti et al. [12] as
a computationally efficient alternative to DNS in the study of convectively unstable flows such as
laminar boundary layers. The PSE can incorporate both nonparallel and nonlinear effects and thus
capture the flow physics more faithfully than classical stability theory based on the assumption of
parallel flow. Comparisons of the amplification of instabilities in boundary layers between the PSE
and DNS have been carried out for instance by Bertolotti et al. [12] and Joslin et al. [18] and showed
excellent agreement.

In the following, the streamwise, wall-normal, and spanwise directions are denoted by x, y, and
z, respectively. The derivation of the parabolized stability equations for incompressible flow starts
by decomposing the state vector q̄ into a base state (U,V,W,P )T and a perturbation component
(u,v,w,p)T such that q̄(x,y,z,t) = Q(x,y) + q(x,y,z,t), where u, v, and w and their uppercase
versions are the streamwise, wall-normal, and spanwise velocities, respectively, and p is the pressure.
Introduction of this decomposition into the Navier-Stokes equations and subtraction of mean-flow
terms yields

∂u
∂t

+ U · ∇u + u · ∇U + 1

ρ
∇p − 1

Re
�u = −u · ∇u, (1)

∇ · u = 0, (2)

where ρ is the fluid density. The perturbation field is assumed periodic in the spanwise direction and
time and is expressed in terms of a Fourier expansion. The streamwise variation of the disturbance is
split into a fast-changing oscillatory component which is governed by a complex wave number α(x)
and a slowly changing shape function q̂(x,y). The full ansatz for the disturbance field thus becomes

q(x,y,z,t) =
N∑

n=−N

M∑
m=−M

q̂n,m(x,y) exp

(
i

∫ x

0
αn,m(ξ )dξ + inβz − imωt

)
, (3)

where β is the real spanwise wave number of the disturbance and ω is its real frequency. All lengths
are normalized by the boundary-layer thickness at the inflow location x0 of the computational domain
and velocities are normalized by the free-stream convective speed at that location. The spanwise and
temporal Fourier expansions are truncated at a finite number of N and M modes, respectively. The
ambiguity arising from the streamwise variation of both q̂ and α is resolved via the constraint

∫
	y

q̂H
n,m

∂ q̂n,m

∂x
dy = 0, (4)

where superscript H denotes the transpose conjugate. This constraint ensures that q̂n,m(x,y) varies
slowly with the streamwise coordinate. Other normalization conditions are possible, although they
have been shown to produce similar results [18–20]. Introducing the ansatz (3) and retaining terms
up to order Re−1, the PSE take the form

Aq̂n,m + B
∂ q̂n,m

∂y
+ C

∂2q̂n,m

∂y2
+ D

∂ q̂n,m

∂x
= F̂n,m. (5)
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The definitions of the operators A, B, C, and D for a steady, three-dimensional base state (U,V,W,P )T

are

A =

⎛
⎜⎜⎜⎝

r + ∂U
∂x

∂U
∂y

0 iα

0 r + ∂V
∂y

0 0
∂W
∂x

∂W
∂y

r iβ

iα 0 iβ 0

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎝

V 0 0 0
0 V 0 1
0 0 V 0
0 1 0 0

⎞
⎟⎠,

C =

⎛
⎜⎜⎜⎝

− 1
Re

0 0 0

0 − 1
Re

0 0

0 0 − 1
Re

0

0 0 0 0

⎞
⎟⎟⎟⎠, D =

⎛
⎜⎝

U 0 0 1
0 U 0 0
0 0 U 0
1 0 0 0

⎞
⎟⎠,

with r = −imω + iαn,mU + inβW + 1
Re (α2

n,m + n2β2). The forcing term F̂n,m accounts for the
nonlinear terms on the right-hand side of Eq. (1) and is evaluated via a fast Fourier transform. In
order to keep the computational effort at a minimum, the marching procedure at first only considers
modes that are part of the initial condition. Additional modes are included if the magnitude of the
respective nonlinear term F̂n,m exceeds a threshold which is set to 10−7 in the present study.

We note that the above form (5) of the parabolized stability equations is not fully parabolic, which
makes the system ill posed for a spatial-marching approach. Detailed analyses by Haj-Hariri [20]
and Li and Malik [21] showed that the streamwise pressure gradient is the main contributor to the
residual ellipticity. Following Day et al. [19], we alleviate this issue by introducing a damping factor
0 � ε � 1 such that

∂p

∂x
=

M∑
m=−M

N∑
n=−N

(
iαn,mp̂n,m + ε

∂p̂n,m

∂x

)
exp[i(nβz − mωt)]. (6)

The present choice of ε = 0 removes the slow contribution to the total pressure gradient, while the fast
part associated with the harmonic oscillation and the exponential growth of the instability is retained.

Homogeneous Dirichlet boundary conditions are used for regular modes with n �= 0 or m �= 0
both at the wall and in the free stream

un,m,vn,m,wn,m = 0 at y = 0, un,m,vn,m,wn,m = 0 at y → ∞. (7)

In the case of the mean-flow distortion (n = 0 and m = 0) mass conservation requires a nonzero
wall-normal velocity in the free stream so that

u0,0,v0,0,w0,0 = 0 at y = 0, u0,0,
∂v0,0

∂y
,w0,0 = 0 at y → ∞. (8)

Several factors contribute to the increased computational efficiency of the PSE approach when
compared to direct numerical simulations. First, the Fourier series in t and z from Eq. (3) are
severely truncated. Furthermore, the decomposition of the streamwise derivative into a slow- and
a fast-changing part allows a coarser streamwise resolution since the grid only needs to resolve
the former. Finally, the parabolic nature of the discretized equations permits their efficient solution
via a marching procedure in x. The marching terminates when the iterative update of the wave
number or solution of the nonlinear system fails to converge. This is typically related to the rapid
growth of nonlinear effects and the limited length of the Fourier series which produce an inaccurate
representation of the flow past the onset of transition.

The particular approach adopted for the flat-plate geometry in this work takes advantage of the
spanwise homogeneity of the flow to expand the velocity field in Fourier series. Nevertheless, the PSE
can also accommodate more general configurations involving complex geometries. For example,
Herbert et al. [22] and Stuckert et al. [23] have implemented the PSE method in general curvilinear
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coordinates, and applications to swept wings can be found in [24–26], among others. Other
extensions of the PSE applicable in the absence of spanwise homogeneity are the surface-marching
PSE [27,28], which assumes slow spatial variations in the spanwise direction, and the plane-marching
PSE [29–31], where the base flow is strongly dependent on the cross-sectional coordinates. These
extensions of the method will be employed in future works in order to extend the current analysis
to more general scenarios.

III. NUMERICAL EXPERIMENTS

We consider a zero-pressure-gradient flat-plate boundary layer from laminar to turbulent flow
through H-type transition [11]. Unless otherwise stated, velocities are nondimensionalized by the
free-stream velocity U∞. Wall units are denoted by the superscript + and defined in terms of uτ , ν,

and δ, where uτ ≡
√

ν ∂U
∂y

|y=0 is the friction velocity, ν is the kinematic viscosity of the flow, and δ

is the boundary-layer thickness at 99% of U∞. We define δ0 as δ at the inlet location. The Reynolds
numbers based on the distance from the leading edge and the momentum thickness are denoted by
Rex and Reθ , respectively.

In all cases, transition is triggered by imposing an inflow condition consisting of the Blasius
solution plus disturbances obtained from the local Orr-Sommerfeld–Squire problem. In particular,
we prescribe the disturbance in terms of a fundamental TS wave and a subharmonic oblique wave at
Rex = 1.8 × 105. The fundamental nondimensional frequency of the TS wave is 2F = ων/U 2

∞ =
1.2395 × 10−4 and the subharmonic frequency is set to F . Following Joslin et al. [18], the root-mean-
square amplitudes of the fundamental and subharmonic disturbances are 0.0048 and 0.145 × 10−4,
respectively, and the spanwise wave number of the latter is βδ0 = 0.6888. Regarding the remaining
boundary conditions, the Blasius solution is used at the top of the computational domain and a
convective boundary condition with convective velocity U∞ is applied at the outlet [32]. The spanwise
direction is periodic.

The length, height, and width of the simulated box are Lx = 305δ0, Ly = 30δ0, and Lz = 20δ0.
At the outlet, δ/δ0 ≈ 6, which is comparable to values observed in earlier studies (e.g., [33,34]).
All computations were run for ten periods of the fundamental frequency (after transients) with 100
velocity fields that are equally spaced in time stored per period.

We will investigate the potential of the PSE to model the pretransitional region through
six numerical experiments named DNS-DNS, PSE-DNS, PSE-WRLES, CLES-CLES, WMLES-
WMLES, and PSE-WMLES. The first part of the name denotes the approach used to compute the
pretransitional zone (with the same inflow condition as described above). The second part is the
method employed to calculate the transitional and turbulent regions. The CLES is equal to WMLES
but imposing the no-slip boundary condition at the wall and C denotes coarse. The corresponding
grid resolution and number of degrees of freedom of each case are summarized in Table I. Seven
spanwise Fourier modes were used for solving the PSE in all of the cases. The domain decomposition
for the six experiments is sketched in Fig. 1. The matching location between PSE and DNS/WRLES
is set at Rex = 4.0 × 105, while for PSE-WMLES it is located at Rex = 5.0 × 105. The choice
of the two different locations will be discussed in detail later. For now, we can briefly mention
that the PSE provide the flow from the inlet location up to Rex = 5.0 × 105. At this stage, the
amplitudes of the disturbances computed with the PSE grow very rapidly, which can be seen as an
indicator of the onset of transition. For the PSE-DNS and PSE-WRLES cases, we are interested in
computing the flow before it departs from the laminar solution. For that purpose, we choose the PSE
solution at Rex = 4.0 × 105 as the inflow condition. On the other hand, the wall-normal mesh in the
PSE-WMLES case is too coarse to capture the fine details during the transitional breakdown, and
we will use the PSE solution at the last streamwise available location, that is, Rex = 5.0 × 105.

A reference DNS simulation of the full domain is performed with inflow conditions identical to
those used for PSE calculations in order to make meaningful comparisons. The PSE-DNS case is
used to assess the suitability of PSE for treating the pretransitional region. In the PSE-WRLES case
we combine PSE for the pretransitional region and WRLES for the transitional and turbulent zones.
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TABLE I. Parameters of the different numerical experiments. Here �x and �z are the streamwise and
spanwise grid spacings and �ymin is the minimum (closest to the wall) wall-normal resolution. For the PSE,
seven spanwise Fourier modes are used. Here Npoints is the number of grid points for each particular region and
case and Ntotal is the total number of points in the full domain.

Pretransition Transition+turbulence

Case �x+ �y+
min �z+ Npoints �x+ �y+

min �z+ Npoints Ntotal

DNS-DNS 7.2 0.3 5.1 100 × 106 7.2 0.3 5.1 150 × 106 250 × 106

PSE-DNS 44.0 0.2 0.2 × 106 7.2 0.3 5.1 150 × 106 150.2 × 106

PSE-WRLES 44.0 0.2 0.2 × 106 45.0 1.0 22.0 4 × 106 4.2 × 106

CLES-CLES 45.0 18.1 22.0 2.6 × 106 45.0 18.1 22.0 4 × 106 6.6 × 106

WMLES-WMLES 45.0 18.1 22.0 2.6 × 106 45.0 18.1 22.0 4 × 106 6.6 × 106

PSE-WMLES 44.0 0.2 0.2 × 106 45.0 18.1 22.0 0.8 × 106 1.0 × 106

We will explore further computational savings by using wall models, as commonly required in most
engineering applications of external flows. The CLES-CLES and WMLES-WMLES cases are used
to investigate the deficiencies of wall models in transitional scenarios and the PSE-WMLES case is
the wall-modeled counterpart of PSE-WRLES with a coarser grid in the wall-normal direction.

FIG. 1. Sketches of zero-pressure-gradient flat-plate transitional boundary layers for the six cases under
consideration: (a) DNS-DNS, (b) PSE-DNS, (c) PSE-WRLES, (d) CLES-CLES, (e) WMLES-WMLES, and
(f) PSE-WMLES. Note that the flow from each panel is not plotted at comparable times. Colors represent
streamwise velocity from zero (black) to free-stream velocity (white). The arrows and dashed red lines delimit
the regions where different methodologies are used to compute the flow solution. The exact matching location
between PSE and DNS-WRLES is at Rex = 4.0 × 105 and between PSE and WMLES at Rex = 5.0 × 105. The
actual details of the simulations are summarized in Table I.
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FIG. 2. Isocontours of positive instantaneous wall-normal velocity at a value of 3 × 10−2U∞ at the same
time: (a) the DNS-DNS case and (b) the PSE-DNS case. Note that the spatial structures observed in (a) and (b)
are almost identical even if (b) uses the PSE solution for the pretransitional region up to Rex = 4 × 105.

The DNS and LES solutions are computed by integrating the incompressible Navier-Stokes
equations with staggered second-order central finite-difference approximations as described in [35].
Time advancement is achieved by a third-order Runge-Kutta scheme [36], combined with the
fractional-step procedure [37]. All LES are carried out with the dynamic Smagorinsky subgrid-scale
model as in [38,39]. The WMLES is performed with the equilibrium wall model from Kawai and
Larsson [40]. The code is parallelized using Message Passing Interface with a global transpose from
y-z to x-y planes. For the PSE, a second-order backward discretization is used to advance the solution
in x. The wall-normal discretization uses a spectral approach based on Chebyshev polynomials. Given
the streamwise parabolic nature of the discretized PSE, the coupling between PSE and DNS, WRLES,
or WMLES is effectively imposed as an inflow boundary condition in the latter. As an example of the
flow structures obtained in the simulations, Fig. 2 shows the emergence of the characteristic staggered
configuration of transitional hairpin vortices for the DNS-DNS and PSE-DNS cases (see also [41]).

IV. RESULTS

A. Pretransitional region

In this section we analyze in detail the differences and similarities between DNS and PSE
solutions in the pretransitional region of the flow. For this purpose, we compare the spanwise
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FIG. 3. Root mean square of the streamwise velocity Fourier modes as a function of Rex and wall-normal
distance. (a) Subharmonic mode (1,1) and (b) fundamental mode (2,0). Grayscale denotes the DNS-DNS case
and solid red lines are for the PSE-DNS case. Contours are 0.1, 0.5, and 0.9 of the maximum at Rex = 4.0 × 105.
(c) Root mean square of the streamwise velocity Fourier modes at y/δ0 for maximum urms. Symbols are for
PSE-DNS and modes (2,0), red circles; (1,1), blue squares; (0,0), yellow diamonds; (3,1), black down triangles;
and (4,0), green up triangles. Solid lines are for DNS-DNS.

and temporal Fourier transforms of the streamwise velocity fluctuations. We focus first on the two
most representative modes, the fundamental and subharmonic waves defined in Sec. III as those
corresponding to the temporal and spanwise wave-number pairs (2,0) and (1,1), respectively, where
the first component of the vector is the temporal wave number in terms of F and the second component
a multiple of the spanwise wave number β.

The results are presented in Figs. 3(a) and 3(b) as a function of the streamwise and wall-normal
coordinates. A more detailed comparison is shown in Fig. 3 at y/δ0 for urms maximum. The agreement
between DNS and PSE is reasonably good and the latter capture the downstream evolution of the TS
wave in addition to the exponential growth of the subharmonic mode. Our results are thus consistent
with those by Joslin et al. [18], whose extensive investigation also reported a good match between
DNS and PSE. Furthermore, the resulting transitional hairpin vortices for the PSE-DNS case are
visually indistinguishable from those obtained for the DNS-DNS case, as shown in Fig. 2.

In order to further assess the importance of the particular flow structure provided by the PSE
solution in the PSE-DNS case, a test case with a modified inflow condition is considered. The new
inflow was computed by imposing a random perturbation velocity field to the Blasius solution with
the additional constraints of (i) equal mean kinetic energy in both the wall-normal direction and time
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FIG. 4. Isocontours of positive instantaneous wall-normal velocity at a value of 3 × 10−2U∞ for DNS-DNS
with the modified inflow condition at different times (a) tU∞/δ0 = 0, (b) tU∞/δ0 = 86, and (c) tU∞/δ0 = 203.
The reference time is set to zero in (a), corresponding to the moment at which the inflow condition is switched
from the PSE to randomized inflow (see the text for details).

as the PSE solution and (ii) the same number of spanwise and temporal modes as those of the original
PSE inflow. Hence, the resulting solution has the same frequencies and energies as those computed
from the PSE but lacks structural information. Isocontours of the instantaneous vertical velocity
are shown in Fig. 4 at different instants after switching the inflow from the PSE to the randomized
version. The results show that the flow laminarizes completely after a few flowthroughs without
transitioning again, at least along the limited streamwise length of our domain. This observation
highlights the critical role of the PSE in accurately predicting the onset of transition by supplying a
physically meaningful inflow velocity field.

B. Predicting the location of transition

In this section we will use the skin-friction coefficient Cf , defined as the nondimensionalized
mean wall-shear stress 2τw/ρU 2

∞, as a marker for detecting the transition to turbulence. The location
of transition is commonly associated with the departure of the Cf from the laminar solution. We first
discuss the prediction of transition for the DNS-WRLES cases and subsequently for those involving
WMLES.

The streamwise distribution of Cf for the first three cases presented in Table I is reported in Fig. 5.
Since we are interested in solving the flow before the sudden increase of Cf , the matching location
with the PSE solution is set at Rex = 4 × 105. In PSE-DNS, the onset of transition is accurately
predicted compared to DNS-DNS despite the strong reduction in the number of degrees of freedom
attained in the pretransitional region (from 100 × 106 to 0.2 × 106). The results demonstrate that the
PSE faithfully account for the linear and nonlinear growth of disturbances that ultimately result in the
breakdown of the laminar flow, in accordance with the accurate predictions of the different modes
discussed in Sec. IV A. The transition location is still correctly captured in PSE-WRLES, which
shows good agreement for the skin-friction coefficient in both the laminar and turbulent regions,
even after reducing the total number of grid points by a factor of 60 (from 250 × 106 to 4.2 × 106).

The above findings are in fundamental contrast to RANS-based approaches, which fail to predict
the correct location of the transition even with a considerably higher number of grid points [14]. This
is a consequence of the RANS averaging process, which eliminates the effects of linear disturbance
growth and therefore commonly relies on empirical correlations to capture the onset of transition [42].
The same applies to other approaches such as the eN method, which is not universal and needs to
be calibrated with experimental data [43]. For WRLES, it was shown by Sayadi and Moin [6]
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FIG. 5. Skin-friction coefficient as a function of the Reynolds number for cases involving DNS and WRLES:
solid black line, DNS-DNS; dashed red line, PSE-DNS; dash-dotted blue line, PSE-WRLES; black squares,
Blasius correlation; and circles, correlation from the DNS by Sayadi et al. [41]. The vertical dashed line is
located at the coupling streamwise coordinate for PSE with DNS and WRLES.

that constant-coefficient models also fail to differentiate between laminar and turbulent flows when
WRLES is used in the entire domain and the turbulent eddy-viscosity remains active throughout the
whole domain inhibiting the growth of perturbations. Treatment of the pretransitional region with
the PSE avoids this issue. Another added advantage of adopting the PSE instead of WRLES for the
laminar region is the reduction of the computational cost by at least an order of magnitude.

The most noteworthy deficiency of PSE-WRLES compared with DNS-DNS is the faster growth
of the skin-friction coefficient in the transitional region, presumably due to the lack of resolution
required to capture the full dynamic breakdown of the transitional hairpins. Figure 6 contains the

FIG. 6. Isocontours of positive instantaneous wall-normal velocity at a value of 3 × 10−2U∞ for PSE-
WRLES.
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FIG. 7. Skin-friction coefficient as a function of the Reynolds number for cases involving DNS and
WMLES: solid black line, DNS-DNS; dashed blue line, WMLES-WMLES; dotted green line, PSE-WMLES;
and diamonds, CLES-CLES. The vertical dashed line is located at the coupling streamwise coordinate for PSE
with WMLES.

instantaneous wall-normal velocity during transition for PSE-WRLES and should be compared with
its DNS-DNS counterpart in Fig. 2. The WRLES resolution (see Table I) is fine enough to capture the
transitional hairpins, although they are noticeably shorter in x. As the breakdown of the transitional
hairpins was correctly represented in PSE-DNS, the issue is most likely related to the performance
of the subgrid-scale model during transition rather than to the inflow condition provided by the PSE
solution.

Next we discuss further computational savings by implementing a wall model. Results for Cf are
shown in Fig. 7 for the three last cases from Table I. Figure 8 compares the instantaneous vertical
velocity at a wall-parallel plane for DNS-DNS, CLES-CLES, WMLES-WMLES, and PSE-WMLES.
The WMLES-WMLES and CLES-CLES cases illustrate the main issues of WMLES and LES with
coarse near-wall resolution. In both settings, the number of wall-normal grid points per boundary-
layer thickness in the turbulent region is chosen to be ∼30, which is sufficient for the accurate
representation of the large-scale eddies in the outer region [44]. At the inlet, this corresponds to
∼7 grid points within the boundary layer. The near-wall region is underresolved with a grid spacing
�y+ = 18.1 at the wall. The equilibrium wall model is used in WMLES-WMLES, and CLES-CLES
is computed using the same grid as WMLES-WMLES but imposing the no-slip boundary condition at
the wall instead of the wall-stress from the wall model. Hence, CLES-CLES is a coarse LES near the
wall and the flow never transitions from laminar to turbulent, presumably because the wall-normal
resolution is insufficient to support the growth of the perturbations [Fig. 8(b)]. In contrast, the
presence of the wall model over the full extent of the domain in the WMLES-WMLES case artificially
triggers the breakdown to turbulence immediately after the inflow [Fig. 8(c)], as reported in previous
studies [8]. The equilibrium wall model, like most RANS-based approaches, uses a RANS eddy
viscosity in the near-wall layer consistent with an external turbulent flow. While this approximation
has proven successful in many applications where the flow is fully turbulent, or even in nonequilibrium
regimes, it drastically fails in laminar flows. In these cases, the overestimation of the momentum
drain at the wall causes a premature transition. To address this deficiency, Bodart and Larsson [8]
introduced a sensor based on the turbulent kinetic energy to switch off the RANS eddy viscosity
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FIG. 8. Instantaneous vertical velocity at a wall-parallel plane at y+ ≈ 30 with wall units computed from
the DNS-DNS case: (a) DNS-DNS, (b) CLES-CLES, (c) WMLES-WMLES, and (d) PSE-WMLES. Velocities
are normalized by U∞.

of the wall model and revert to the no-slip condition when the flow above the wall was identified
as laminar. The PSE-WMLES case [Fig. 8(d)] alleviates the problem without the need of a sensor
by explicitly treating most of the laminar region using the PSE, with the extra advantage of further
reducing the cost by a factor of 6 compared to the WMLES-WMLES case. The outcome represents
a substantial improvement over CLES-CLES and WMLES-WMLES, where Cf was under- and
overpredicted with an error larger than 200%.

Although unrelated to the PSE inflow condition, the characteristic Cf overshoot during transition
is still underpredicted in PSE-WMLES. This is probably due to the inability of the equilibrium wall
model to capture the wall footprint of the transitional hairpins after their breakdown. The issue is
again related to the inconsistency between the fully developed turbulent state assumed by the wall
model and the actual structure of the transitional flow. The Cf overshoot was well predicted by Park
and Moin [9,10] and Bodart and Larsson [8]. However, these computations were carried out with
wall-normal DNS-like resolution along the transitional region where the wall model was inactive.

Finally, we can discuss the choice of the matching location with the PSE taking into account the
results presented above. Due to the fast breakdown of the flow in the WMLES region, the streamwise
location of the inflow for the PSE-WMLES case is set just before the PSE solution diverges, that is,
Rex = 5 × 105, differently from the DNS and WRLES cases, where the coupling is at Rex = 4 × 105.
The reason is that in the last two cases, the PSE are in charge of providing the correct flow structure
before the onset of transition, while in PSE-WMLES the role of the PSE is just to estimate the
onset of transition. In this last case, the flow structure is diminished for two reasons: First, the mesh
along the y coordinate is too coarse to capture the wall-normal details of the PSE solution and,
second, the wall model forces the transition regardless of the particular flow structure imposed at the
coupling point between the PSE and WMLES. This is different for the wall-resolved cases, which
are highly sensitive to small changes in the inflow condition. For that reason, even minute deviations
between the PSE and DNS solutions immediately before the breakdown to turbulence can shift the
transition region. Preliminary calculations (not shown) pointed out that the streamwise matching
location between PSE and DNS/WRLES needs to be approximately 40δ from the PSE breakdown
region in order to obtain accurate predictions.
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FIG. 9. (a) Mean streamwise velocity and (b) streamwise, (c), wall-normal, and (d) spanwise root-mean-
square velocity fluctuations at Reθ = 987 (Rex ≈ 7 × 105) for DNS-DNS (solid black line), PSE-DNS (dashed
red line), PSE-WRLES (dash-dotted blue line), and PSE-WMLES (dotted green line).

C. Turbulent region

In this section we evaluate the performance of PSE-WRLES and PSE-WMLES in the turbulent
region right after the transition. Some test cases not reported here suggest that after the breakdown
of the transitional hairpin vortices, the role of the LES becomes more prominent on the one-point
statistics of the flow in the turbulent region than the particular structure of the inflow solution
computed from the PSE. This observation is further supported by previous works on flat-plate
boundary-layer transition where different tripping methods converge to the same turbulent average
solution once the memory of the upstream conditions has faded [45]. It follows that beyond the
breakdown to turbulence, the influence of the PSE solution rapidly diminishes. Despite the secondary
role of PSE in the turbulent region, the analysis is still relevant since both PSE and WRLES/WMLES
must interact accordingly in the first stages after the transition in order to produce realistic turbulence.

Figure 9 compares the mean streamwise velocity profile and rms fluctuating velocities at Reθ =
987 (Rex ≈ 7 × 105). Velocities and lengths are scaled in local wall units. Both the mean and rms
velocities exhibit good agreement. Some differences appear in the mean velocity profile close to 10%
in the wake region, although errors of this scale can be argued to be acceptable given the aggressive
reduction in the number of degrees of freedom, which is of the order of 60 times smaller in the
PSE-WRLES approach and 250 times in PSE-WMLES.
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Since U∞ is imposed as the top boundary condition in both DNS and LES, the aforementioned
velocity deficit in the PSE-WRLES wake is a direct consequence of the inaccurate viscous stress at the
wall, used to nondimensionalize the mean velocity in wall units. The solution is slightly improved by
introducing the wall model in the PSE-WMLES case. Overall, both PSE-WRLES and PSE-WMLES
provide comparable predictions, although the computational cost is lower for PSE-WMLES. As
discussed in Sec. IV B, the deficiencies in the turbulent region are unrelated to the PSE, which has
been shown to perform well in the PSE-DNS case, and future improvements in the turbulent region
should focus on testing alternative wall models.

V. CONCLUSION

In the present study we have investigated the capabilities of the parabolized stability equations
to provide accurate predictions of H-type laminar-turbulent transition in the zero-pressure-gradient
boundary layer. A set of six computational experiments was performed to assess the suitability of the
PSE to, first, model the disturbed laminar region and, second, act as an inflow condition in DNS, as
well as in wall-resolved and wall-modeled LES just before the onset of transition. The results showed
that the PSE-DNS combination is able to provide an accurate representation of the pretransitional
region, including the growth of the most significant modes and prediction of transition location, and
correct one-point statistics in the turbulent region right after the flow breaks down. The importance of
the particular solution provided by the PSE was established in a case where the PSE inflow condition
was replaced by a randomized version with identical energy but different spatial flow configuration.
Our results show that when the structure of the inflow is erroneous, transition is delayed and the flow
laminarizes.

Further computational savings, of the order of 100 times compared with DNS, were achieved by
combining the PSE with wall-resolved and wall-modeled LES for the transitional and turbulent zones
while still reproducing the statistics with reasonable accuracy along the full boundary layer domain.
For wall-resolved LES, the typical transitional hairpins are still present, although their breakdown is
faster than in DNS. In the case of wall-modeled LES, the flow transitions prematurely when the wall
model is active in the laminar region, and this issue is successfully addressed by modeling the laminar
zone with the PSE. This approach avoids empirical correlations as well as the sensors often used
to deactivate wall models before transition, with the additional advantage of further computational
savings.
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