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Marangoni-flow-induced partial coalescence of a droplet
on a liquid/air interface
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The coalescence of a droplet and a liquid/air interface of lower surface tension was
numerically studied by using the lattice Boltzmann phase-field method. The experimental
phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107
(2009)] at sufficiently large surface tension differences was successfully reproduced for
the first time. Furthermore, the emergence, disappearance, and re-emergence of “partial
coalescence” with increasing surface tension difference was observed and explained. The
re-emergence of partial coalescence under large surface tension differences is caused by the
remarkable lifting motion of the Marangoni flow, which significantly retards the vertical
collapse. Two different modes of partial coalescence were identified by the simulation,
namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher
Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni
flow with that of the downward flow driven by capillary pressure, a criterion for the transition
from partial to total coalescence was derived based on scaling analysis and numerically
validated.
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I. INTRODUCTION

The coalescence of a droplet with a liquid/air interface is of fundamental relevance to a variety
of natural and industrial systems including rain/cloud formation [1], coarsening of emulsions [2],
spray atomization [3], and microfluidic devices [4,5]. After the initial contact of the droplet and
the interface, a considerable amount of surface energy is converted to the flow kinetic energy and
thereby causes significant interfacial oscillation. This, however, does not always result in one-off
complete droplet merging with the interface; the occurrence of partial coalescence with concomitant
secondary droplets may occur. The secondary droplets may repeat the partial coalescence for several
times [6], forming a fascinating coalescence cascade with self-similarity.

Although partial coalescence was first observed half a century ago [7], it was inadequately
understood until high-speed cameras and advanced computation techniques became available and
affordable in recent years. Thoroddsen and Takehara [6] experimentally identified a cascade of partial
coalescence, which stops when the secondary droplet becomes sufficiently small and the viscous
effect becomes prominent. Chen et al. [8] experimentally observed that the partial coalescence
for low-viscosity fluids, occurring for a certain range of drop sizes, exhibits the viscous, the
inertiocapillary and the gravitational regimes. Blanchette and Bigioni [9] showed both experimentally
and numerically that partial coalescence is caused by the capillary wave convergence on the top of
the droplet rather than by the previously recognized Rayleigh-Plateau instability [10]. Ray et al. [11]
computationally revealed that it is the competition between the horizontal and vertical momentum of
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the droplet that determines the transition between partial and total coalescence. Honey and Kaveh-
pour [12] experimentally observed that smaller secondary drop bounces higher because of the larger
driving capillary force. They also developed a theory that includes the capillary and gravitational
forces to predict the maximum height of the bouncing droplet. By using liquid mixtures of different
viscosities, Gilet et al. [13] found that partial coalescence occurs only when both the Bond number
(Bo) and the Ohnesorge number (Oh) are below certain critical values. At low Bo numbers, the critical
Oh number was found to be 0.026 ± 0.003 [10]. Blanchette and Bigioni [14] further determined the
critical Oh number as a function of the Bo number as well as of the density and viscosity ratios. In
consideration of that droplet coalescence on a flat interface can be conceptually treated as the extreme
case of the coalescence of two unequal-sized droplets, Zhang et al. [15] experimentally identified the
critical larger-to-smaller droplet diameter ratio, above which partial coalescence occurs. This ratio
can be as small as 1.55 and increases monotonically with the Oh number.

Most of the previous investigations consider the situation in which the droplet and the interface
are made of the same liquid, and little attention has been paid to the situation in which the droplet and
the interface are made of different liquids. Because the conversion of surface energy to kinetic energy
is critical to the coalescence process, the different surface tensions of the droplet and the interface
could be highly consequential, as they often emerge as the result of either temperature difference
or composition difference. In this regard, Blanchette et al. [16] studied both experimentally and
numerically the effect of surface tension gradient on the partial coalescence. They found that partial
coalescence is greatly facilitated if the surface tension of the interface, denoted by σi , is larger than that
of the droplet, denoted by σd , and that the total coalescence is facilitated if σi < σd . Furthermore, if
σi/σd < 0.42, a secondary droplet is ejected from the top of the merged drop. However, the interesting
phenomenon of droplet ejection, possibly caused by the Marangoni stress, was not computationally
reproduced in Blanchett et al.’s paper and left behind the underlying physics to be understood.
Martin and Blanchette [17] further considered the situation in which the surface tension difference is
induced by surfactant. Their simulations, although not reporting the abovementioned droplet ejection
phenomenon, show that the coalescence of a surfactant-free droplet (of a higher surface tension) with
a surfactant-laden interface (of a lower surface tension) behaves similarly with the abovementioned
coalescence of binary liquids in that a moderate Marangoni effect would suppress partial coalescence.
Recently, Shim and Stone [18] experimentally discovered the damped coalescence cascade if (σi-σd )
exceeds a threshold. In the new regime, the rebound of secondary droplets is suppressed by the
accelerated air drainage in the gap, which is driven by the Marangoni flow at every pinch-off.

In spite of these noteworthy advances, the effect of surface tension difference on the coalescence
process is still insufficiently understood. Particularly, little effort has been devoted to studying the
ejection of secondary droplet when the liquid/air interface has a significantly lower surface tension
than the droplet.

In the present study, we aim to numerically investigate the coalescence dynamics of a droplet on a
liquid/air interface with σi < σd , with particular interest in the partial coalescence at sufficiently large
surface tension differences. In the following text, the numerical method, the results and discussion,
and the concluding remarks are presented in Secs. II to IV.

II. NUMERICAL METHOD

A. Problem specifications

When a droplet comes into contact with a liquid interface, droplet coalescence may take place at
the contact point for zero or sufficiently small impact velocity of the droplet, or along a circular rim
[19] for a large-velocity impact, which causes a non-uniform concave gas film between the droplet
and the interface. In both cases, the flow is symmetric with respect to the axis that is through the
center of the droplet and normal to the interface. Consequently, the present numerical simulation
was performed in an axisymmetric domain, as illustrated in Fig. 1, where the symmetrical axis is on
the left and open boundary conditions are specified on the other sides.
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FIG. 1. Specifications of computational domain and boundary conditions.

The reservoir (Liquid 2) and the ambient gas are initially stationary, while the droplet (Liquid 1)
is set with a vanishingly small downward velocity to trigger the coalescence. The droplet and the
reservoir are assumed to have the same density and viscosity but different surface tensions so that
σi < σd , thereby always inducing a Marangoni flow towards the droplet. For clarity and convenience
of the following discussion, we additionally denote σi = σS and σd = σL, where the subscript S and
L denote small and large, respectively.

To capture the interfacial flow and the variation in local surface tension, two temporally and
spatially varying scalars are employed in the present study. The composition C denotes the volume
fraction of liquid either from the droplet or from the reservoir and hence C = 0 denotes gas phase
and C = 1 liquid phase. The composition C1 stands for the volume fraction of the reservoir fluid and
hence C1 = 0 denotes either ambient gas or the Liquid 1 and C1 = 1 the Liquid 2. In short, the droplet,
the reservoir, and the ambient gas can be distinguished by (C = 1, C1 = 0), (C = 1, C1 = 1),
(C = 0, C1 = 0), respectively. The proportion of Liquid 2 in local liquid is therefore given by
C̃1 = C1/C.

B. Governing equations with phase-field method

High-fidelity simulation of the present problem could be rather challenging because of the large
density jump across the interface as well as the substantial variation in the interfacial stress. In
view of the flexibility in handling interfacial flows, the phase-field method, or alternately known as
the diffuse-interface method [20,21], is employed in the present study. In this method, the defined
composition C is used to capture the interface between the liquid and the ambient gas and is governed
by the Cahn-Hilliard equation in the form of

∂C

∂t
+ u · ∇C = M∇2μC, (1)

where u is the fluid velocity, M the mobility, and μC = μ0 − k∇2C = ∂E0/∂C − k∇2C the
chemical potential with E0 being the bulk free energy and k the gradient factor. The bulk free
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energy can take a double-well function E0 = βC2(1 − C)2 and the chemical potential is thereby
given by μC = β(4C3 − 6C2 + 2C) − k∇2C [22].

For single-component two-phase flows,β and k are constants, and the surface tension is determined
by σ = √

2kβ/6. The liquid-gas interface reaches its equilibrium profile as long as the free energy
is minimized, and the equilibrium interface profile, C(z) = 0.5 + 0.5 tanh(2z/ξ ), is determined
through μC = β(4C3 − 6C2 + 2C) − k∇2C ≡ const, in which z is the coordinate normal to the
plane interface, and ξ = √

8k/β is the interface thickness [22]. In the present study, to give rise to
the variation in surface tension while maintaining a uniform interface thickness, both β and k are
taken as variables with respect to the local surface tension by k = k0σ/σL, and β = β0σ/σL, where
σ/σL is determined by C̃1. To avoid the artificial diffusion induced by the mismatch of chemical
potential of different liquids, the mobility in Eq. (1) varies as M = M0σL/σ instead of being a
constant. As a result, the relaxation of the liquid/gas interface to its equilibrium state with minimum
free energy is completely determined by the composition C.

The composition C1 is treated as a passive scalar and its transport equation is given by

∂C1

∂t
+ u · ∇C1 = ∇ · (D∇C1) + C̃1M∇2μC, (2)

where D is the composition diffusivity, and the second term on the RHS of Eq. (2) describes the
variation of C1 caused by the Cahn-Hilliard diffusion of the liquid/gas interface. It is noted that, since
C1 involves the interface between the gas and Liquid 2, its transport requires minimizing the free
energy of the subsystem and thereby maintaining the gas/Liquid 2 interface close to the equilibrium
profile, which is realized by the last term in Eq. (2).

In addition to Eqs. (1) and (2), the continuity equation and the momentum equation for
incompressible fluids are given by

∇ · u = 0, (3)

and

ρ

[
∂u
∂t

+ u · ∇u
]

= −∇p + ∇ · [μ(∇u + ∇uT )] + μC∇C + |∇C|2∇k − (∇k · ∇C)∇C, (4)

where p is the pressure and μ is the dynamic viscosity. It is noted that the last three terms on the RHS
of Eq. (4) represent the interfacial forces: the first one corresponds to the surface tension and the latter
two stand for the Marangoni stress. The implementation of the interfacial forces in their potential
forms is advantageous to relieve the numerical difficulty in handling interfacial forces. More details
on deriving these terms are referred to Refs. [23,24].

C. Numerical implementation

In the present study, Eqs. (1), (3), and (4) are numerically solved in the framework of
lattice Boltzmann method (LBM) [25,26]. Two distribution functions are used to capture the
liquid/gas interface and to compute the velocity field as well as the dynamic pressure that enforces
incompressibility [22,27]. To improve the numerical stability in the simulation of low-viscosity flows,
the multiple-relaxation-time collision operator [28] is adopted. It should be noted that, by using
the potential form of the interfacial force and the isotropic finite difference, the present numerical
methodology is capable of suppressing the well-known spurious current to a relatively low level even
at high density ratios [27]. The present numerical methodology has been successfully applied to the
simulation of droplet collision/coalescence of both Newtonian and non-Newtonian fluids as well as
the dynamics of premixed flames [29–32]. The details about the transformation from the macroscopic
governing equations to their corresponding LB equations in an axisymmetric coordinate system have
been fully described in the authors’ previous paper [29], and they will not be repeated here.

Solving Eq. (2) for the composition C1 is critical owing to the decisive effect of C1 on the
surface tension distribution. Since the liquid/gas interface occupies only a few grids to minimize its
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FIG. 2. Dependence of surface tension on the fluid composition. BMB 2009 [16].

finite-thickness effect on the interface dynamics, numerical diffusion of the propagating front of C1

should be adequately reduced to accurately model the Marangoni flow. Since the accuracy of LBM is
only second order in both time and space, the transport equation of composition C1, which requires
higher accuracy, is solved by using the third-order Runge-Kutta method [33] for time discretization
and the fifth-order WENO scheme [34] for spatial discretization.

As for the physical properties, the density is a linear function of C by

ρ = ρlC + ρg(1 − C), (5)

where the subscript l and g denote the liquid and the gas phase, respectively. The kinematic viscosity
of the fluid is computed by

1

ν
= C

νl

+ 1 − C

νg

, (6)

implying that the collision frequency in the LBM is linearly proportional to C [21].
In the present simulation, the surface tension of the liquid mixture is set according to the experiment

of Ref. [16], where the droplet is water and the reservoir is ethanol. The dependence of local surface
tension (normalized by σ̃ = σ/σL) on fluid composition (C̃1 = C1/C) is determined by nonlinearly
fitting the experimental data, whose apparent nonlinearity shown in Fig. 2 invalidates a linear fitting.
It is seen that the fitted curve, σ̃ = σ/σL = f (C1/C) = f (C̃1), satisfies the two limiting cases
such as f (C̃1 = 0) = 1 and f (C̃1 = 1) = σS/σL = σ ∗ ≈ 0.3 for the water droplet and the ethanol
interface. The cases with σ ∗ < 0.3 cannot be realized by using these two liquids and therefore are
not considered in the present study.

The cases with σ ∗ > 0.3 can be obtained by using the mixture of ethanol and water as the Liquid
2 while retaining water as the Liquid 1. The dependence of the variable surface tension on the fluid
composition is given by σ̃ = σ/σL = f [C̃1f

−1(σ ∗)], where f −1 is the inverse function of the fitting
function. It is readily seen that the function satisfies the two limiting cases such as f (C̃1 = 0) = 1
and f (C̃1 = 1) = σ ∗.

According to the dimension analysis of the present problem, the six independent non-dimensional
parameters to describe flow similarity can be chosen as the normalized surface tension difference
1 − σ ∗, the Ohnesorge number Oh, the Weber number We, the density ratio ρ∗, the viscosity ratio
μ∗, and the Schmidt number Sc, as defined in Table I. The Bo number is not necessary since
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TABLE I. Nondimensional parameters in the simulation.

Parameter Value/Range

Normalized surface tension difference 1 − σ ∗ = (σL-σS)/σL 0 ∼ 0.7
Ohnesorge number Oh = μl/

√
ρlσLD0 0.0018 ∼ 0.015

Weber number We = ρlU2D0/σL 10−4 ∼ 1.2
Density ratio ρ∗ = ρl/ρg 500
Viscosity ratio μ∗ = μl/μg 50
Schmidt number Sc = νl/D 1000

the gravitational force is insignificant compared with the surface tension force in the experiment
concerned [16]. In the present simulation, ρ∗ and μ∗ are fixed at 500 and 50, respectively, and
therefore the gas phase does not have significant influence on the droplet coalescence as have been
confirmed in many previous studies [14,16,19]. The Sc number measures the relative importance of
momentum transport compared with the composition transport, and it has a typical value of 1000
for binary-liquid system. According to our test, the droplet coalescence process is not significantly
affected as long as Sc is large (see Supplemental Material [35] for the effect of diffusion on the
droplet coalescence process). The We number, which is the ratio of the droplet inertia to its surface
tension, is set to be 10−4 to initiate coalescence without distracting the present focus on the effect
of surface tension. It is noted that, a slight overlap between the interfaces, which was used in the
authors’ previous simulation on the coalescence of two droplets with uniform surface tension [30], is
problematic in the present study because it immediately brings out the Marangoni stress and results in
the imbalanced stress jump condition cross the local interfaces. This local stress imbalance requires
updating the velocity and the pressure fields by solving the governing equations for a few time steps,
while the solving process is often subjected to the numerical instability and even causes numerical
divergence. In contrast, the present setup of the initial condition is well-posed and numerically stable,
and its uncertainty is increasingly negligible by decreasing the initial downward velocity. Using a
We number as small as 10−4, the possible effects caused by the nonzero droplet initial velocity are
minimal.

In the present phase-field simulation, the diffuse liquid/gas interface thickness is resolved by five
grids, and the radius (R0) of the droplet occupies 180 grids to produce grid-independent results
(see Supplemental Material [36] for the grid-independence study). The numerical interface Pèclet
number Pei = ξ

√
σL/(ρlR0)/(M0β) is fixed at 1.23 to keep the liquid-gas interface close to the

equilibrium profile throughout the droplet coalescence processes. The width of the reservoir is set to
be Lr = 5R0, which is sufficiently large to eliminate possible boundary effects on the coalescence
outcome while keeping an acceptable computational cost (see Supplemental Material [37] for the
domain-width-independence study). In the simulation, time is normalized by t∗ = (t − t0)/tosc, where
t0 denotes the onset of coalescence, and tosc =

√
ρlR

3
0/σL is the characteristic oscillation time of the

droplet. A typical run with the present numerical resolution and for a duration of t∗ = 3 takes about
300 h on an Intel 3.5 GHz Broadwell CPU.

III. RESULTS AND DISCUSSION

A. Experimental verification

Although the experiment on droplet coalescence with an interface of significantly lower surface
tension was given by Blanchette et al. [16], their simulations were only performed for (1 − σ ∗) �
0.33, possibly limited by their numerical method. In the present study, the extreme case of (1 − σ ∗) =
0.7 was successfully simulated to verify the capacity of the adopted methodology. In Blanchette
et al.’s experiment, the droplet falls down from a syringe and impacts on the reservoir with a nonzero
velocity, which is, however, not explicitly given in their paper. By measuring the moving distance
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FIG. 3. Experimental verification of droplet ejection at (1 − σ ∗) = 0.7, Oh = 0.0018, and We = 1.2. The
experimental images are adapted from Ref. [16].

of the droplet apex during the first few images in Fig. 2(d) of Ref. [16] and thereby estimating the
impact velocity, we found the experimental We number is close to unity.

As shown in Fig. 3, the present method is capable of reproducing the experimental observations,
particularly the droplet ejection phenomenon. Two characteristic time instants of the coalescence
process, including the emergence of a cusp on the top of the droplet at t∗ = 0.529 and the pinch-off
of a secondary droplet from the liquid column at t∗ = 1.101, are also well captured.

To quantitatively verify the present simulation in terms of energy conversion among different
forms, which poses additional challenges to the numerical methodology with increasing surface
tension difference [16], the evolution of various energies during the coalescence was examined
and shown in Fig. 4. The total energy (TE) is composed of the surface energy (SE) defined by
SE = ∫

s
σdS, the kinetic energy (KE) by KE = ∫

V
(ρu2/2)dV , and the cumulative dissipation

energy (DE) by DE = ∫
t
�dt , where V , S and t denote volume, surface, and time, respectively.

To calculate the surface energy, the liquid-gas interface is chosen as the C = 0.5 isosurface. In the
axisymmetric coordinates, the viscous dissipation rate � is given by

� = 2μ

[(
∂uz

∂z

)2

+
(

∂ur

∂r

)2

+
(ur

r

)2
]

+ μ

(
∂ur

∂z
+ ∂uz

∂r

)2

− 2

3
μ

[
1

r

∂(rur )

∂r
+ ∂uz

∂z

]2

. (7)

It is seen that, for (1 − σ ∗) as large as 0.7, the total energy is still well conserved throughout
the simulation, with the maximum deviation being less than 5%. Consequently, the present method
is believed to be capable of accurately handling the problem concerned. It is also noted that the
simulation of Blanchette et al. [16] shows about 10% variation of total energy at a surface tension
difference of (1 − σ ∗) = 0.33.

B. Effect of surface tension difference

To explore the underlying physics for the droplet ejection phenomena, we first simulated and
compared the coalescence processes with different (1 − σ ∗), as shown in Fig. 5, in which case (a) is
the benchmark case with uniform surface tension, and cases (b)–(d) have increasingly large surface
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FIG. 4. Evolution of different energy components (normalized by the total energy) during the droplet
coalescence shown in Fig. 3.

tension differences (1 − σ ∗). For all the cases, the Oh number and the We number are fixed at
Oh = 0.005 and We = 10−4, while (1 − σ ∗) is increased through reducing the surface tension of the
reservoir. It is seen that, with the increase of the surface tension difference, the coalescence results
in the non-monotonic outcome from “partial coalescence” to “total coalescence” and to “partial
coalescence.”

In the benchmark case (a), the droplet tends to merge into the reservoir, driven by its capillary
pressure, and it also experiences interfacial oscillation and results in partial coalescence finally.
Following the initial contact of the droplet and the reservoir, a liquid bridge is built as illustrated in

FIG. 5. Droplet coalescence at different surface tension differences (a) (1 − σ ∗) = 0, (b) (1 − σ ∗) = 0.3,
(c) (1 − σ ∗) = 0.5, (d) (1 − σ ∗) = 0.7, and fixed Oh = 0.005 and We = 10−4.
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FIG. 6. Evolution of the liquid bridge of case (a) in Fig. 5. (a) Schematic of the liquid bridge, whose
principal radii of curvature are denoted by Ra in the azimuthal direction and Rr in the radial direction. The
representative point (green dot) on the bridge corresponds to the one closest to the axis. (b) Trajectory of the
representative point, whose coordinates, (r, z), with respect to the center of the initial liquid/air interface, (0, z0),
are normalized by the droplet diameter D0.

Fig. 6(a), and the trajectory of the representative point with minimum distance to the axis is plotted
in Fig. 6(b). It is seen that, the evolution of the liquid bridge mainly exhibits two stages. During
the first stage, the liquid bridge expands horizontally outwards while rises up with the upwardly
propagating capillary wave. During the second stage, the liquid bridge shrinks horizontally inwards
with the downwardly retracting interface. Despite of its shift in the vertical position, the final breakup
of the liquid bridge takes place close to the point of initial contact. Consequently, we can focus only
on the horizontal motion of the liquid bridge, which is driven by the net capillary force 	p =
2σ (R−1

a − R−1
r ), where R−1

a and R−1
r denote the azimuthal and the radial curvature of the bridge,

respectively [see Fig. 6(a)]. Figure 7 compares two typical configurations of the liquid bridge during
the initial expansion and the final shrinkage. It clearly shows that, compared to the initial expansion
with R−1

r � R−1
a , R−1

a is significantly reduced to R−1
r 	 R−1

a during final shrinkage so that the strong
horizontal inward capillary force squeezes the fluid away from the bridge and results in pinch-off.
For simplicity and convenience of the following discussion, we follow the terminology of Blanchette

FIG. 7. Schematic of the liquid bridge during (a) the initial expansion and (b) the final shrinkage.
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and Bigioni [9], who used “horizontal collapse” to denote the horizontal expansion and shrinkage of
the bridge, and “vertical collapse” to denote the vertical retraction of the droplet as it merges with
the interface. Therefore, partial coalescence occurs only when the vertical collapse sufficiently lags
behind the horizontal collapse so that the liquid bridge has a small azimuthal curvature throughout
its final shrinkage. In the present case, this is phenomenologically attributed to the propagation of the
capillary wave on the droplet interface, which carries abundant liquid upwards and thereby retards
the vertical collapse.

For a moderate surface tension difference (1 − σ ∗) = 0.3, as shown in Fig. 5(b), partial
coalescence cannot take place and the droplet merges completely with the reservoir. Driven by
the Marangoni flow, the reservoir fluid climbs up the droplet, leading to a reduction of local
surface tension on the droplet surface. As discussed above, the horizontal collapse is governed
by the capillary force and therefore can be regarded as a large-wavelength and low-frequency
oscillation of the interface, whose timescale can be estimated by

√
ρlR

3
0/σ . Lowering the surface

tension of the liquid bridge from σL to σS would result in a prolonged horizontal collapse since√
ρlR

3
0/σS/

√
ρlR

3
0/σL = √

1/σ ∗ > 1. Therefore, partial coalescence no longer occurs when the
vertical collapse becomes dominant over the horizontal collapse for (1 − σ ∗) exceeding a certain
critical value. According to Ref. [16], the critical (1 − σ ∗) for the disappearance of partial coalescence
is as small as 0.05 for a wide range of Oh numbers.

If the surface tension difference is further increased to (1 − σ ∗) = 0.5, however, partial coa-
lescence reappears as shown in Fig. 5(c). Compared with case (a), in which pinch-off occurs at
t∗ ≈ 1.63, breakup of liquid bridge in case (c) takes a longer time of t∗ ≈ 2.53, and the ratio of
the times is approximately 1.55 ≈ √

1/σ ∗. This indicates that the breakup is also caused by the
horizontal collapse, and that the reemergence of partial coalescence should be owing to the retarded
vertical collapse. By further increasing the surface tension difference to (1 − σ ∗) = 0.7, as shown in
Fig. 5(d), partial coalescence still occurs in such an intense manner that the secondary droplet, after
its detachment from the reservoir, keeps ascending rather than descending in Fig. 5(c). This implies
that, although the horizontal collapse is postponed compared with that in case (c), the retardation of
vertical collapse is more prominent than that of the horizontal collapse at sufficiently large surface
tension differences.

To better understand the effect of Marangoni flow on the vertical collapse, which gives rise to
the non-monotonic emergence of partial coalescence, the vertical trajectories of the droplet apex for
various (1 − σ ∗) are compared in Fig. 8. To measure the Marangoni effect, the Marangoni number,
generally defined by Ma = 	σL/(μlD), where 	σ = σL-σS is the surface tension difference, and
L is the characteristic length [38], can be written as Ma = (1 − σ ∗)Sc/Oh2 if L takes D0, indicating
that Marangoni flow intensifies with either increasing (1 − σ ∗) or decreasing the Oh number. As
shown in the figure, during the initial coalescence (t∗ < 0.7), the droplet apexes are not affected by
the flow induced by the expansion of the liquid bridge, and their trajectories are independent of the
Ma number. Subsequently, the droplet apex in case (a) is adequately lifted by the upward propagating
capillary waves, but it in case (b) shows a suppressed lifting motion (0.7 < t∗ < 1.2) before shrinking
to the reservoir more rapidly, as the droplet interface covered by the lower surface tension fluid results
in a weakened interfacial oscillation. In cases (c) and (d) with larger Ma numbers, the droplet apex
exhibits otherwise enhanced upward movement and thereby significantly slows down the vertical
collapse. Consequently, the reemergence of partial coalescence at larger surface tension differences
should depend on whether the Marangoni flow is strong enough to generate a considerable lifting
motion on the droplet apex to significantly retard the vertical collapse, otherwise the vertical collapse
would be accelerated and total coalescence is thereby facilitated.

It should be also noted that, although molecular diffusion in the liquid-phase is slow, the mixing of
the two liquids, as represented by the yellow/green regions in Fig. 5, shows an obvious enhancement
for cases (b)–(d) compared to case (a), which was also observed in the simulation of the coalescence
of either a droplet and a reservoir [16] or two droplets [39] with surface tension difference. Such
enhanced mixing, as pointed out by Kim et al. [40,41], is caused by the significant vorticity generation
from the propagating Marangoni flow, and the gradient in surface tension is therefore not limited to
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FIG. 8. Comparison of the vertical trajectory of the droplet apex for the cases in Fig. 5. z denotes the
instantaneous vertical position of the droplet apex, and z0 stands for the initial vertical coordinate of the interface.
The difference in the Ma number is caused by (1 − σ ∗) since the Oh number is fixed.

the vicinity of the point where the two different fluids initially meet, but spans over a much larger
length scale while the reservoir liquid spreading over the droplet surface.

C. Effect of viscous damping

Recognizing the critical role of Marangoni flow in facilitating partial coalescence, we shall
further discuss the viscous effect since Ma ∝ Oh−2. Figure 9 shows the coalescence cases (a)–(d)
corresponding to increasing Oh numbers, with fixed (1 − σ ∗) = 0.7 and We = 10−4. It is seen that
the Marangoni flow is greatly dampened by the viscous force with the increase of the Oh number,
and that partial coalescence can occur when the Oh number is below a certain value, or the droplet
will merge completely with the reservoir as shown in case (d). For cases (a)–(c) which result in
partial coalescence, two different modes are further identified: (I) peak ejection at sufficiently small
Oh number such as case (a), where the Marangoni flow is strong enough to entrain abundant fluids
upwards and finally eject a secondary droplet from its peak; (II) bottom pinch-off at moderately small
Oh numbers as cases (b) and (c), where the Marangoni flow is less intensive compared with that in
case (a) but still able to lift the droplet to a certain height and facilitate pinch-off at the bottom bridge.
It should be noted that Blanchette et al. discovered only peak injection in their limited experiments,
where only two cases of droplet ejection are shown in Fig. 11(a) of Ref. [16].

It is noted that, the increase in the Oh number, apart from slowing down the Marangoni flow
by the increased viscous force, may also dampens the horizontal collapse. As mentioned above, the
horizontal collapse can be regarded as a large-wavelength, low-frequency oscillation of the interface,
whose wavelength λ is on the order of R0. As such, the wavenumber and the angular frequency
of the horizontal collapse could be estimated by kwave = 2π/λ ∼ 2π/R0, and ω0 ∼ √

σSk3
wave/ρl =√

8π3σS/ρlR
3
0 [42], respectively. The effect of viscous damping on interfacial oscillation is considered

to be small as long as kwave/
√

ω0ρl/μl = (2π/R0)/

√√
8π3σS/ρlR

3
0ρl/μl ≈ 6.52Oh � 1 [43], or

equivalently Oh � 0.15, suggesting that the horizontal collapse of the cases in Fig. 9 with maximum
Oh = 0.015 are not significantly affected by the viscous force. Therefore, the two modes of partial
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FIG. 9. Droplet coalescence at different Oh numbers (a) Oh = 0.003, (b) Oh = 0.005, (c) Oh = 0.010,
(d) Oh = 0.015, and fixed (1 − σ ∗) = 0.7 and We = 10−4.

coalescence can be further explained by examining the dependence of the non-dimensional breakup
time t∗break = tbreak/

√
ρlR

3
0/σS on the Oh number, in which tbreak denotes the duration from the initial

contact to the first breakup, and
√
ρlR

3
0/σS is the characteristic oscillation time of the lower surface

tension interface. As shown in Fig. 10 for the cases with Oh � 0.004, peak ejection occurs and
t∗break decreases with decreasing Oh number. This indicates that the breakup shows no correlation
with the interfacial oscillation and should be attributed to the Rayleigh-Plateau instability, since the

FIG. 10. Dependence of the normalized breakup time on the Oh number.
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FIG. 11. Time evolution of the flow field for (a) partial coalescence with peak injection, (b) partial
coalescence with bottom pinch-off, and (c) total coalescence at fixed (1 − σ ∗) = 0.7 and We = 10−4.

Marangoni flow is increasingly prominent in stretching the droplet into an elongated column shape
with reduced viscous damping at lower Oh numbers. For the cases with Oh > 0.004, bottom pinch-off
takes place and t∗break levels off with increasing the Oh number, indicating that the breakup is caused
by interfacial oscillation with the arrival of the horizontal collapse, which is not obviously affected
by the viscous force.

The evolution of the flow fields in the typical cases of partial coalescence with peak injection,
partial coalescence with bottom pinch-off, and total coalescence in Fig. 9, are sequentially drawn in
Fig. 11. It is seen that, for the case (a) with the smallest Oh number, the Marangoni flow moves very
fast on the droplet surface to the droplet apex, forming a strong converging flow towards the axis
and stretching the droplet vertically into a column shape. The apex of the droplet, during the vertical
elongation, keeps accumulating in the presence of downward capillary pressure gradient, and forms
a bulb while the ligament below is still being stretched upwards. As the bulb grows, the neck finally
breaks up as a result of Rayleigh-Plateau instability, and the secondary droplet continues ascending
with its remaining inertia. In case (b) where bottom pinch-off occurs, the Marangoni flow is less
intensive and the lifting motion is no longer observed for t∗ � 1.6. It is also noted that, the Marangoni
flow remains on the interface for a relatively long time after its initial convergence at the droplet apex,
indicating that the propagating front of the lower surface tension fluid from the reservoir becomes
diluted while wrapping up the droplet. This dilution could be ascribed to the enhance mixing due
to Marangoni flow. For case (c), the Marangoni flow is even weaker and the lifting effect is hardly
observed. Instead, the vertical collapse is accelerated rather than being prolonged in cases (a) and
(b), and the liquid bridge transits from shrinking to expanding before it can generate a significant
inward capillary force to facilitate pinch-off.

D. Critical condition for Marangoni-flow-induced partial coalescence

After clarifying the mechanisms of partial coalescence, we are now ready to address the
question: under what condition does partial coalescence occur? Since the critical condition for the
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disappearance of partial coalescence caused by the minor surface tension differences [(1 − σ ∗) <

0.1] has been clarified by Blanchette et al. [16], we only focus on the re-emergence of partial
coalescence at sufficiently large (1 − σ ∗) in the present study. In view of the critical role of the
Marangoni flow as discussed above, one may naturally presume that there is a critical Ma above
which partial coalescence could take place. However, this assumption could be easily overthrown
since Fig. 5(b) with Ma = 4.8 × 104 results in total coalescence but Fig. 9(c) with much smaller
Ma = 2.8 × 104 results in partial coalescence.

Considering that the occurrence of partial coalescence depends on whether a remarkable lifting
motion could be generated to retard the vertical collapse, we should pay attention to the competition
between the downward flow driven by capillary pressure gradient and the upward fluid entrainment
by Marangoni flow. Regarding to the scaling analysis, we followed the approach of Shim and Stone
[18] to estimate the Marangoni flow velocity. Denote l to be the temporal distance that the lower-
surface-tension fluid has propagated along the droplet surface, and the characteristic Marangoni flow
velocity can therefore take UMa = dl/dt . Assume that the surface tension gradient is spread out over
the length l, UMa is derived through balancing the Marangoni stress and the viscous stress as

UMa ∼ (δ/ l)	σ/μl, (8)

where δ denotes the interior fluid layer thickness entrained by the interfacial shear flow and is
estimated by

δ ∼
√

μl(l/UMa)/ρl. (9)

Substituting Eq. (9) into Eq. (8) we have

UMa ∼ [(	σ )2/(ρlμll)]
1/3 = α[(	σ )2/(ρlμll)]

1/3, (10)

In which α is a proportionality constant. Note that UMa = dl/dt , l(t) can be thereby obtained by
solving Eq. (10) with the initial condition of l(0) = 0, which gives

l(t) = θ [(	σ )2/(ρlμl)]
1/4t3/4, (11)

in which θ = (4α/3)3/4. Let l(t) = πR0, the characteristic time for the Marangoni flow to reach the
droplet apex is then given by

tup = (π/θ )4/3
[
R4

0ρlμl/(	σ )2
]1/3

. (12)

On the other hand, the downward acceleration of the droplet could be estimated by

duz/dt = ∇p/ρl ∼ 2σL/
(
ρlR

2
0

)
, (13)

and the characteristic time for the droplet to fall over R0 is given by

tdown =
√

2R0/(du/dt) ∼
√

ρlR
3
0/σL. (14)

By comparing these two time scales, we have

tdown/tup =
√

ρlR
3
0/σL/

[
(π/θ )4/3[R4

0ρlμl/(	σ )2]1/3] ∼ [(1 − σ ∗)/
√

Oh]2/3. (15)

To generate a significant lifting motion, Marangoni flow should arrive at the droplet apex early
enough before a considerable downward velocity is gained, suggesting that partial coalescence may
occur when (1 − σ ∗)/

√
Oh exceeds a certain value. To verify this hypothesis, extensive simulations

were conducted in the present study for a wide range of Oh numbers. As demonstrated in Fig. 12, a
critical value of (1 − σ ∗)/

√
Oh does exist between partial and total coalescence and approximately

equals to 6.75, which agrees well with the experiments by Blanchette et al. [16]. Physically, with
the increase of the Oh number, larger surface tension difference is required to facilitate partial
coalescence, while for water-ethanol-like systems with maximum σ ∗ = 0.3, Marangoni flow is not
able to induce partial coalescence as long as Oh > 0.01.
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FIG. 12. Critical condition for Marangoni-flow-induced partial coalescence. BMB 2009 [16].

IV. CONCLUDING REMARKS

The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically
studied by using the phase-field method. The lattice Boltzmann method was employed as the
computational platform for solving the flow field as well as the liquid/air interface. Both surface
tension and Marangoni stress take the potential form in the simulation to relieve numerical difficulty
in handling interfacial forces. To visualize internal mixing and capture the accompanied variation in
surface tension, another transport equation for the fluid from the reservoir was also solved by using
the finite difference method.

The simulation results show that, compared with the droplet coalescence of identical fluids, the
surface tension difference causes an extra conversion of surface energy to kinetic energy through the
Marangoni flow, and the coalescence results in a non-monotonic transition from “partial coalescence”
to “total coalescence” and to “partial coalescence” with increasing surface tension difference. Such a
non-monotonicity is caused by the competition between the horizontal and the vertical collapses. The
horizontal collapse is governed by interfacial oscillation and prolongs monotonically with increasing
surface tension difference. The vertical collapse is significantly affected by the Marangoni flow and
behaves distinctly with different Ma numbers: if Ma is small, the upward lifting motion by the
convergence of capillary wave would be weakened, since the droplet interface is covered by the
lower surface tension fluid driven up by the Marangoni flow, and the vertical collapse is thereby
accelerated; if Ma is large, the vertical collapse would be otherwise retarded by the upward fluid
entrainment after the convergence of the Marangoni flow. Therefore, partial coalescence reemerges
at sufficiently large surface tension difference as long as the retarded horizontal collapse overwhelms
the even retarded vertical collapse.

The viscous force significantly dampens the propagation of the Marangoni flow, and the reemerged
partial coalescence manifests two different modes such as peak injection and bottom pinch-off. Peak
injection occurs in extremely low viscous situations and the secondary droplet is ejected from the
peak owing to the Rayleigh-Plateau instability. Bottom pinch-off occurs in a range of higher Oh
numbers and the breakup is owing to the interfacial oscillation.

Recognizing the decisive effect of the lifting motion of the droplet apex in facilitating partial
coalescence, we derived the critical condition for the Marangoni-flow-induced partial coalescence
by comparing the characteristic timescale of the upward Marangoni flow propagation with that of
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the retraction driven by downward capillary pressure. Results show that partial coalescence occurs
when (1 − σ ∗)/

√
Oh exceeds a certain value of approximately 6.75, which agrees well with the

experimental observations by Blanchette et al. [16].
The present results apply to miscible fluids with differences in surface tension, which often

emerges from the differences in either fluid temperature or fluid composition. The situation where
surfactants induce the surface tension difference is similar to the present problem in that a Marangoni
flow is also generated on the droplet surface. Differently, as the local concentration of the surfactants
is affected by the expansion/contraction of the interface, the unevenly distributed surface tension
during interfacial deformation would bring in additional interface elasticity that is not considered
in the present study. Recent simulation by Martin and Blanchette [17] shows that, although the
interface elasticity significantly affects the coalescence dynamics of a surfactant-laden liquid droplet
on a surfactant-laden interface of the same liquid, the coalescence of a surfactant-free droplet (of
a higher surface tension) with a surfactant-laden interface (of a lower surface tension) behaves
similarly with one of the present simulations, where a moderate Marangoni effect would suppress
partial coalescence. However, the re-emergence of partial coalescence at sufficiently large surface
tension differences was not observed in their simulation. This is possibly because the limited range
of parameters covered in their simulation result in (1 − σ ∗)/

√
Oh < 1.67 ((1 − σ ∗) < 0.167, Oh >

0.01 according to Fig. 9 in Ref. [17]), which is too small to cause partial coalescence, as the criteria
determined by the present study is (1 − σ ∗)/

√
Oh > 6.75.

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China
(Grant No. 51606134) and the National Natural Science Funds for Distinguished Young Scholar
(Grant No. 51525603). The work at the Hong Kong Polytechnic University was sponsored by the
Hong Kong Research Grants Council/General Research Fund (Grants No. PolyU 152217/14E and
No. PolyU 152651/16E).

[1] F. Raes, R. V. Dingenen, E. Vignati, J. Wilson, J. Putaud, J. H. Seinfeld, and P. Adams, Formation and
cycling of aerosols in the global troposphere, Atmos. Environ. 34, 4215 (2000).

[2] V. E. Ziegler and B. A. Wolf, Bimodal drop size distributions during the early stages of shear induced
coalescence, Polymer 46, 9265 (2005).

[3] E. Villermaux, Fragmentation, Annu. Rev. Fluid Mech. 39, 419 (2007).
[4] H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a

lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381 (2004).
[5] D. Velev, B. G. Prevo, and K. H. Bhatt, On-chip manipulation of free droplets, Nature 426, 515 (2003).
[6] S. T. Thoroddsen and K. Takehara, The coalescence cascade of a drop, Phys. Fluids 12, 1265 (2000).
[7] G. E. Charles and S. G. Mason, The coalescence of liquid drops with flat liquid/liquid interfaces, J. Colloid

Sci. 15, 236 (1960).
[8] X. Chen, S. Mandre, and J. J. Feng, Partial coalescence between a drop and a liquid-liquid interface, Phys.

Fluids 18, 051705 (2006).
[9] F. Blanchette and T. Bigioni, Partial coalescence of drops at liquid interfaces, Nat. Phys. 2, 254 (2006).

[10] B. Ray, G. Biswas, and A. Sharma, Generation of secondary droplets in coalescence of a drop at a
liquid-liquid interface, J. Fluid Mech. 655, 72 (2010).

[11] G. E. Charles and S. G. Mason, The mechanism of partial coalescence of liquid drops at liquid/liquid
interfaces, J. Colloid Sci. 15, 105 (1960).

[12] E. M. Honey and H. P. Kavehpour, Astonishing life of a coalescing drop on a free surface, Phys. Rev. E
73, 027301 (2006).

[13] T. Gilet, K. Mulleners, J. P. Lecomte, N. Vandewalle, and S. Dorbolo, Critical parameters for the partial
coalescence of a droplet, Phys. Rev. E 75, 036303 (2007).

023602-16

https://doi.org/10.1016/S1352-2310(00)00239-9
https://doi.org/10.1016/S1352-2310(00)00239-9
https://doi.org/10.1016/S1352-2310(00)00239-9
https://doi.org/10.1016/S1352-2310(00)00239-9
https://doi.org/10.1016/j.polymer.2005.07.055
https://doi.org/10.1016/j.polymer.2005.07.055
https://doi.org/10.1016/j.polymer.2005.07.055
https://doi.org/10.1016/j.polymer.2005.07.055
https://doi.org/10.1146/annurev.fluid.39.050905.110214
https://doi.org/10.1146/annurev.fluid.39.050905.110214
https://doi.org/10.1146/annurev.fluid.39.050905.110214
https://doi.org/10.1146/annurev.fluid.39.050905.110214
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1146/annurev.fluid.36.050802.122124
https://doi.org/10.1038/426515a
https://doi.org/10.1038/426515a
https://doi.org/10.1038/426515a
https://doi.org/10.1038/426515a
https://doi.org/10.1063/1.870380
https://doi.org/10.1063/1.870380
https://doi.org/10.1063/1.870380
https://doi.org/10.1063/1.870380
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1016/0095-8522(60)90026-X
https://doi.org/10.1063/1.2201470
https://doi.org/10.1063/1.2201470
https://doi.org/10.1063/1.2201470
https://doi.org/10.1063/1.2201470
https://doi.org/10.1038/nphys268
https://doi.org/10.1038/nphys268
https://doi.org/10.1038/nphys268
https://doi.org/10.1038/nphys268
https://doi.org/10.1017/S0022112010000662
https://doi.org/10.1017/S0022112010000662
https://doi.org/10.1017/S0022112010000662
https://doi.org/10.1017/S0022112010000662
https://doi.org/10.1016/0095-8522(60)90012-X
https://doi.org/10.1016/0095-8522(60)90012-X
https://doi.org/10.1016/0095-8522(60)90012-X
https://doi.org/10.1016/0095-8522(60)90012-X
https://doi.org/10.1103/PhysRevE.73.027301
https://doi.org/10.1103/PhysRevE.73.027301
https://doi.org/10.1103/PhysRevE.73.027301
https://doi.org/10.1103/PhysRevE.73.027301
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303
https://doi.org/10.1103/PhysRevE.75.036303


MARANGONI-FLOW-INDUCED PARTIAL COALESCENCE OF …

[14] F. Blanchette and T. P. Bigioni, Dynamics of drop coalescence at fluid interfaces, J. Fluid Mech. 620, 333
(2009).

[15] F. H. Zhang, E. Q. Li, and S. T. Thoroddsen, Satellite Formation During Coalescence of Unequal Size
Drops, Phys. Rev. Lett. 102, 104502 (2009).

[16] F. Blanchette, L. Messio, and J. W. M. Bush, The influence of surface tension gradients on drop coalescence,
Phys. Fluids 21, 072107 (2009).

[17] D. W. Martin and F. Blanchette, Simulations of surfactant effects on the dynamics of coalescing drops and
bubbles, Phys. Fluids 27, 012103 (2015).

[18] S. Shim and H. A. Stone, Damped coalescence cascade of liquid drops, Phys. Rev. Fluids 2, 044001
(2017).

[19] K. L. Pan and C. K. Law, Dynamics of droplet-film Collision, J. Fluid Mech. 587, 1 (2007).
[20] D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys.

155, 96 (1999).
[21] P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase flows of

complex fluids, J. Fluid Mech. 515, 293 (2004).
[22] T. Lee and L. Liu, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput.

Phys. 229, 8045 (2010).
[23] H. Liu, A. J. Valocchi, Y. Zhang, and Q. Kang, Lattice Boltzmann phase-field modeling of thermos capillary

flows in a confined micro channel, J. Comput. Phys. 256, 334 (2014).
[24] R. Borcia and M. Bestehorn, Phase-field model for Marangoni convection in liquid-gas systems with a

deformable interface, Phys. Rev. E 67, 066307 (2003).
[25] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30, 329

(1998).
[26] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys.

Rep. 222, 145 (1992).
[27] T. Lee, Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation

method for binary fluids, Comput. Math. Appl. 58, 987 (2009).
[28] D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. Luo, Multiple-relaxation-time lattice

Boltzmann models in three dimensions, Phil. Trans. R. Soc. Lond. A 360, 437 (2002).
[29] K. Sun, M. Jia, and T. Wang, Numerical investigation on the head-on collision between unequal-sized

droplets with multiple-relaxation-time lattice Boltzmann model, Int. J. Heat Mass Transf. 70, 629 (2014).
[30] K. Sun, T. Wang, P. Zhang, and C. K. Law, Non-Newtonian flow effects on the coalescence and mixing of

initially stationary droplets of shear-thinning fluids, Phys. Rev. E 91, 023009 (2015).
[31] K. Sun, P. Zhang, C. K. Law, and T. Wang, Collision Dynamics and Internal Mixing of Droplets of

Non-Newtonian Liquids, Phys. Rev. Appl. 4, 054013 (2015).
[32] K. Sun, S. Yang, and C. K. Law, A diffuse interface method for simulating the dynamics of premixed

flames, Combust. Flame 163, 508 (2016).
[33] S. Gottlieb and C. Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp. 67, 73 (1998).
[34] G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126, 202

(1996).
[35] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602 for the

effect of diffusion on the droplet coalescence process.
[36] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602 for the

grid-independence study.
[37] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602 for the

domain-width-independence study.
[38] A. Thess, D. Spirn, and B. Jüttner, Viscous Flow at Infinite Marangoni Number, Phys. Rev. Lett. 75, 4614

(1995).
[39] F. Blanchette, Simulation of Mixing Within Drops Due to Surface Tension Variations, Phys. Rev. Lett.

105, 074501 (2010).
[40] H. Kim, J. Lee, T. H. Kim, and H. Y. Kim, Spontaneous marangoni mixing of miscible liquids at a

liquid-liquid-air contact line, Langmuir 31, 8726 (2015).

023602-17

https://doi.org/10.1017/S0022112008004801
https://doi.org/10.1017/S0022112008004801
https://doi.org/10.1017/S0022112008004801
https://doi.org/10.1017/S0022112008004801
https://doi.org/10.1103/PhysRevLett.102.104502
https://doi.org/10.1103/PhysRevLett.102.104502
https://doi.org/10.1103/PhysRevLett.102.104502
https://doi.org/10.1103/PhysRevLett.102.104502
https://doi.org/10.1063/1.3177339
https://doi.org/10.1063/1.3177339
https://doi.org/10.1063/1.3177339
https://doi.org/10.1063/1.3177339
https://doi.org/10.1063/1.4905917
https://doi.org/10.1063/1.4905917
https://doi.org/10.1063/1.4905917
https://doi.org/10.1063/1.4905917
https://doi.org/10.1103/PhysRevFluids.2.044001
https://doi.org/10.1103/PhysRevFluids.2.044001
https://doi.org/10.1103/PhysRevFluids.2.044001
https://doi.org/10.1103/PhysRevFluids.2.044001
https://doi.org/10.1017/S002211200700657X
https://doi.org/10.1017/S002211200700657X
https://doi.org/10.1017/S002211200700657X
https://doi.org/10.1017/S002211200700657X
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1006/jcph.1999.6332
https://doi.org/10.1017/S0022112004000370
https://doi.org/10.1017/S0022112004000370
https://doi.org/10.1017/S0022112004000370
https://doi.org/10.1017/S0022112004000370
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2010.07.007
https://doi.org/10.1016/j.jcp.2013.08.054
https://doi.org/10.1016/j.jcp.2013.08.054
https://doi.org/10.1016/j.jcp.2013.08.054
https://doi.org/10.1016/j.jcp.2013.08.054
https://doi.org/10.1103/PhysRevE.67.066307
https://doi.org/10.1103/PhysRevE.67.066307
https://doi.org/10.1103/PhysRevE.67.066307
https://doi.org/10.1103/PhysRevE.67.066307
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1016/j.camwa.2009.02.017
https://doi.org/10.1016/j.camwa.2009.02.017
https://doi.org/10.1016/j.camwa.2009.02.017
https://doi.org/10.1016/j.camwa.2009.02.017
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.055
https://doi.org/10.1103/PhysRevE.91.023009
https://doi.org/10.1103/PhysRevE.91.023009
https://doi.org/10.1103/PhysRevE.91.023009
https://doi.org/10.1103/PhysRevE.91.023009
https://doi.org/10.1103/PhysRevApplied.4.054013
https://doi.org/10.1103/PhysRevApplied.4.054013
https://doi.org/10.1103/PhysRevApplied.4.054013
https://doi.org/10.1103/PhysRevApplied.4.054013
https://doi.org/10.1016/j.combustflame.2015.10.027
https://doi.org/10.1016/j.combustflame.2015.10.027
https://doi.org/10.1016/j.combustflame.2015.10.027
https://doi.org/10.1016/j.combustflame.2015.10.027
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602
http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602
http://link.aps.org/supplemental/10.1103/PhysRevFluids.3.023602
https://doi.org/10.1103/PhysRevLett.75.4614
https://doi.org/10.1103/PhysRevLett.75.4614
https://doi.org/10.1103/PhysRevLett.75.4614
https://doi.org/10.1103/PhysRevLett.75.4614
https://doi.org/10.1103/PhysRevLett.105.074501
https://doi.org/10.1103/PhysRevLett.105.074501
https://doi.org/10.1103/PhysRevLett.105.074501
https://doi.org/10.1103/PhysRevLett.105.074501
https://doi.org/10.1021/acs.langmuir.5b01897
https://doi.org/10.1021/acs.langmuir.5b01897
https://doi.org/10.1021/acs.langmuir.5b01897
https://doi.org/10.1021/acs.langmuir.5b01897


KAI SUN, PENG ZHANG, ZHIZHAO CHE, AND TIANYOU WANG

[41] H. Kim, K. Muller, O. Shardt, S. Afkhami, and H. A. Stone, Solutal Marangoni flows of miscible liquids
drive transport without surface contamination, Nat. Phys. 13, 1105 (2017).

[42] H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, 1932).
[43] F. Denner, Frequency dispersion of small-amplitude capillary waves in viscous fluids, Phys. Rev. E 94,

023110 (2016).

023602-18

https://doi.org/10.1038/nphys4214
https://doi.org/10.1038/nphys4214
https://doi.org/10.1038/nphys4214
https://doi.org/10.1038/nphys4214
https://doi.org/10.1103/PhysRevE.94.023110
https://doi.org/10.1103/PhysRevE.94.023110
https://doi.org/10.1103/PhysRevE.94.023110
https://doi.org/10.1103/PhysRevE.94.023110



