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The structure of a standing plane shock wave in a polyatomic gas is investigated on
the basis of kinetic theory, with special interest in gases with large bulk viscosities, such
as CO2 gas. The ellipsoidal statistical model for a polyatomic gas is employed. First, the
shock structure is computed numerically for various upstream Mach numbers and for various
(large) values of the ratio of the bulk viscosity to the shear viscosity, and different types of
profiles, such as the double-layer structure consisting of a thin upstream layer with a steep
change and a much thicker downstream layer with a mild change, are obtained. Then, an
asymptotic analysis for large values of the ratio is carried out, and an analytical solution
that describes the different types of profiles obtained by the numerical analysis, such as the
double-layer structure, correctly is obtained.
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I. INTRODUCTION

A shock wave is described as a discontinuous surface, across which the density, the velocity
normal to the surface, and the temperature of a gas exhibit jumps in inviscid gas dynamics. In reality,
however, the shock wave has a structure; that is, physical quantities undergo steep but continuous
changes across a thin layer of a few mean free paths. To describe such a structure, one has to use, in
principle, kinetic theory of gases instead of ordinary gas dynamics.

The structure of a standing plane shock wave is one of the most fundamental problems in kinetic
theory and has been investigated by many authors experimentally [1–3], theoretically [4,5], and
numerically [6,7] (see also, e.g., Refs. [8–13]). In the present study, we consider this classical
problem with special interest in polyatomic gases with large bulk viscosities, such as carbon dioxide
(CO2) gas.

Recently, the shock-structure problem was investigated for polyatomic gases on the basis of
extended thermodynamics [14–16], and some interesting results were obtained. In Ref. [14], relatively
weak shock waves were considered, and it was shown that for CO2 gas, macroscopic quantities exhibit
profiles of three different types (types A, B, and C in Refs. [14–16]), depending on the upstream
Mach number, as shown by the schematic density profile in Fig. 1. When the Mach number is very
close to 1, i.e., the shock wave is very weak, the profiles of the density, velocity, and temperature
are almost symmetric with respect to the centers of the respective profiles (type A). When the Mach
number is increased slightly, the profiles become nonsymmetric and exhibit a corner upstream (type
B; the corner is not a real corner but is almost a corner). If the Mach number is increased slightly
more, one obtains profiles with a double-layer structure, consisting of a thin front layer with a steep
change and a thick rear layer over which the quantities slowly approach the downstream equilibrium
values (type C). In the present paper, we borrow the notation types A, B, and C from Ref. [14]. The
type-C profiles have been obtained also for higher Mach numbers (M− = 1.3, 3, and 5, where M− is
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FIG. 1. Schematic figure of the profiles of types A, B, and C. The figure is a reproduction of Fig. 1 in
Ref. [14] (courtesy of S. Taniguchi).

the Mach number at upstream infinity) on the basis of the nonlinear extended thermodynamics [16].
The existence of the type-C profiles had been known for a long time [17–19]. The reader is referred
to Refs. [14,16] and references therein.

In Ref. [16], the authors make some effort to validate the nonlinear extended thermodynamics
for polyatomic rarefied gases in strong nonequilibrium conditions. In addition, the macroscopic
equation (with 14 macroscopic variables) used in Ref. [14], which was derived by the extended
thermodynamics in Ref. [20], is shown to be obtained [21] also from the Boltzmann equation,
with a modeling of the internal modes by a single continuous variable [22], by a moment closure.
Nevertheless, it would be important and interesting to confirm the results of Refs. [14,16] directly
from kinetic theory. As mentioned in Refs. [14,16], however, it is not an easy task because of the
extreme complexity of the collision integral of the Boltzmann equation for a polyatomic gas. This
obliges us to introduce phenomenological models at some point in the theory or numerical analysis.
Nevertheless, it is still an interesting problem to see whether type-A, B, and C solutions appear or not
for the CO2 gas on the basis of kinetic theory. This was the motivation of our preliminary note [23].

In Ref. [23], we adopted, as the basic equation, the polyatomic version of the ellipsoidal statistical
(ES) model [24], which was proposed in Ref. [25] and was rederived in a systematic way in Ref. [26]
(note that it is different from the model for a polyatomic gas proposed in Ref. [24]). This model
has a simple structure in which the internal degrees of freedom are expressed by an additional
(continuous) energy variable associated with the internal modes. Although it is simple, it satisfies
the basic properties of the Boltzmann equation for a polyatomic gas [25], such as the conservation
laws and the H theorem [27].

It is known that the ratio of the bulk viscosity μb to the viscosity μ is quite large for CO2

gas and is of the order of 1000 [28,29]. This large value of the ratio μb/μ causes a large shock
thickness, which gives a computational difficulty, in particular, for type-C profiles, since a very large
computational domain as well as a fine grid system inside the thin front layer is required. For this
reason, in our previous paper [23], we considered an artificial CO2 gas with a smaller values of the
ratio μb/μ (�100), which was called a pseudo-CO2 gas. It was shown that the pseudo-CO2 gases
with increasing ratio μb/μ tended to reproduce the double-layer structure (type C) well.

The present study is a continuation and extension of Ref. [23]. First, we carry out an accurate
numerical computation based on the same ES model for the pseudo-CO2 gases with larger values
of the ratio μb/μ up to the real CO2 gas with μb/μ being of the order of 1000 and show that
the solutions corresponding to type-A, B, and C profiles are obtained. Then, we derive a set of
macroscopic equations that describes the thick rear layer in type-C profile (with the help of an
appropriate jump condition corresponding to the thin front layer), as well as entire type-A and B
profiles, by an asymptotic analysis for large μb/μ under a slowly varying assumption. It should be
mentioned that the shock-structure problem for a polyatomic gas has been studied in a recent paper
[30] using essentially the same macroscopic equations (with six macroscopic variables), which were
obtained by different approaches, that is, by the extended thermodynamics [31] and by a moment
closure based on kinetic theory [31,32]. Mention should also be made of a recent paper [33] that has
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investigated a shock structure for the CO2 gas using the Navier-Stokes equations with accurate CO2

physical properties.
The paper is organized as follows. After this introduction in Sec. I, the problem and assumptions

are described in Sec. II, and the problem is formulated both in dimensional and dimensionless forms
in Sec. III. Section IV is devoted to the description of the numerical method and the result of the
numerical analysis. In Sec. V, the asymptotic analysis for large μb/μ is carried out to derive the
set of macroscopic equations, and its solution is compared with the numerical solution. Section VI
contains short concluding remarks. In addition, we summarize the basic properties of the ES model
in Appendix A and provide some materials supplementary to the numerical analysis in Appendix B
and to the asymptotic analysis in Appendix C.

II. PROBLEM AND ASSUMPTIONS

Let us consider a stationary plane shock wave standing in a flow of an ideal polyatomic gas. We
take the X1 axis of the coordinate system (X1, X2, X3) perpendicular to the shock wave. The gas
at upstream infinity (X1 → −∞) is in an equilibrium state with density ρ−, flow velocity v− =
(v−, 0, 0), and temperature T−, and that at downstream infinity (X1 → ∞) is in another equilibrium
state with density ρ+, flow velocity v+ = (v+, 0, 0), and temperature T+. We investigate the steady
behavior of the gas under the following assumptions:

(i) The behavior of the gas is described by the ellipsoidal statistical (ES) model of the Boltzmann
equation for a polyatomic gas [25,26].

(ii) The problem is spatially one dimensional, so that the physical quantities are independent of
X2 and X3.

Let us denote by γ the ratio of the specific heats, that is, γ = cp/cv , where cp and cv are the
specific heat at constant pressure and that at constant volume, respectively. In this paper, we assume
that cp, cv , and thus γ are constant (calorically perfect gas; it is also called polytropic gas in the
literature). Then, γ is expressed in terms of the internal degrees of freedom δ of a molecule as

γ = (δ + 5)/(δ + 3), (1)

where δ can be any positive real number (not restricted to an integer). We denote by M− the Mach
number of the flow at upstream infinity, i.e., M− = v−/

√
γRT−, where R is the gas constant per

unit mass (R = k/m with the Boltzmann constant k and the mass of a molecule m). Then, the
Rankine-Hugoniot relations give the following expressions of the downstream quantities ρ+, v+,
and T+ in terms of the upstream quantities ρ−, v−, and T− and the upstream Mach number M− (see
Appendix A 2):

ρ+ = (γ + 1)M2
−

(γ − 1)M2− + 2
ρ−, (2a)

v+ = (γ − 1)M2
− + 2

(γ + 1)M2−
v−, (2b)

T+ = [2γM2
− − (γ − 1)][(γ − 1)M2

− + 2]

(γ + 1)2M2−
T−. (2c)

Incidentally, the Mach number of the flow at downstream infinity M+, i.e., M+ = v+/
√

γRT+, is
given as

M+ =
[

(γ − 1)M2
− + 2

2γM2− − (γ − 1)

]1/2

. (3)
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III. FORMULATION OF THE PROBLEM

A. Basic equations

Let us consider a polyatomic gas with internal degrees of freedom δ. Let t be the time variable,
X (or Xi) the position vector in the physical space, ξ (or ξi) the molecular velocity, and E the energy
associated with the internal modes. We denote the number of the gas molecules contained in an
infinitesimal volume d XdξdE around a point (X, ξ , E) in the seven-dimensional space consisting
of X , ξ , and E at time t by

1

m
f (t, X, ξ , E)d XdξdE . (4)

We call f (t, X, ξ , E) the velocity-energy distribution function of the gas molecules. It is governed by
the ES model of the Boltzmann equation for a polyatomic gas [25,26]. In the present time-independent
and spatially one-dimensional case, where f = f (X1, ξ , E), the equation is written in the following
form:

ξ1
∂f

∂X1
= Q(f ), (5)

where

Q(f ) = Ac(T )ρ(G − f ), (6a)

G = ρEδ/2−1

(2π )3/2[det(T)]1/2(RTrel)δ/2�(δ/2)
exp

(
−1

2
(ξi − vi)(T−1)ij (ξj − vj ) − E

RTrel

)
, (6b)

(T)ij = (1 − θ )[(1 − ν)RTtrδij + νpij /ρ] + θRT δij , (6c)

ρ =
∫∫ ∞

0
f dEdξ , (6d)

vi = 1

ρ

∫∫ ∞

0
ξif dEdξ , (6e)

pij =
∫∫ ∞

0
(ξi − vi)(ξj − vj )f dEdξ , (6f)

Ttr = 1

3ρR

∫∫ ∞

0
|ξ − v|2f dEdξ , (6g)

Tint = 2

δρR

∫∫ ∞

0
Ef dEdξ , (6h)

T = 3Ttr + δTint

3 + δ
, (6i)

Trel = θT + (1 − θ )Tint. (6j)

Here, ρ is the density, v (or vi) =(v1, 0, 0) the flow velocity, pij the stress tensor, Ttr the temperature
associated with translational motion, Tint the temperature associated with the energy of the internal
modes, T the temperature, dξ = dξ1dξ2dξ3, and the domain of integration with respect to ξ is the
whole space of ξ . The symbol δij indicates the Kronecker delta, and ν ∈ [−1/2, 1) and θ ∈ (0, 1] are
the constants that adjust the Prandtl number and the bulk viscosity. In addition, Ac(T ) is a function
of T such that Ac(T )ρ is the collision frequency of the gas molecules, �(z) is the gamma function
defined by

�(z) =
∫ ∞

0
sz−1e−sds, (7)

023401-4



SHOCK-WAVE STRUCTURE FOR A POLYATOMIC GAS …

T is the 3 × 3 positive-definite symmetric matrix whose (i,j ) component is defined by Eq. (6c), and
det(T) and T−1 are, respectively, its determinant and inverse. Here and in what follows, we basically
use the summation convention, i.e., aibi = ∑3

i=1 aibi , aicij bj = ∑3
i,j=1 aicij bj , etc. The pressure p

and the heat-flow vector qi are given by

p = RρT, (8)

qi =
∫∫ ∞

0
(ξi − vi)

(
1

2
|ξ − v|2 + E

)
f dEdξ , (9)

where Eq. (8) is the equation of state. It should be noted that in Ref. [25], the variable I , which is
related to our E as E = I 2/δ , is used as an independent variable instead of E . See Appendix A in
Ref. [34] for the relation between the notation in Ref. [25] and that of the present paper.

The vanishing of the collision term Q(f ) = 0 is equivalent to the fact that f is the following local
equilibrium distribution:

feq = ρEδ/2−1

(2πRT )3/2(RT )δ/2�(δ/2)
exp

(
−|ξ − v|2

2RT
− E

RT

)
. (10)

In addition, for an arbitrary function g(t, X, ξ , E), the following relation holds (see Appendix A):∫∫ ∞

0
ϕrQ(g)dEdξ = 0, (11)

where ϕr (r = 0, ..., 4) are the collision invariants, i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1
2 |ξ |2 + E . (12)

It should also be mentioned that for Eq. (5), the viscosity μ, the thermal conductivity κ , the Prandtl
number Pr, and the bulk viscosity μb are obtained as

μ = 1

1 − ν + θν

RT

Ac(T )
, κ = γR

γ − 1

RT

Ac(T )
, Pr = 1

1 − ν + θν
, μb = 1

θ

(
5

3
− γ

)
μ

Pr
. (13)

The boundary condition at upstream infinity and that at downstream infinity are given as follows:

f = ρ−Eδ/2−1

(2πRT−)3/2(RT−)δ/2�(δ/2)
exp

(
− (ξ1 − v−)2 + ξ 2

2 + ξ 2
3

2RT−
− E

RT−

)
, (X1 → −∞), (14a)

f = ρ+Eδ/2−1

(2πRT+)3/2(RT+)δ/2�(δ/2)
exp

(
− (ξ1 − v+)2 + ξ 2

2 + ξ 2
3

2RT+
− E

RT+

)
, (X1 → ∞). (14b)

We investigate the shock-wave structure on the basis of the system, Eqs. (5), (6), and (14), with
special interest in the case of large μb/μ. When μb/μ = ∞ (i.e., θ = 0), the Rankine–Hugoniot
relations take a different form, which is derived in Appendix A 3 [Eq. (A20)]. This plays an important
role in the present study.

B. Dimensionless system

In this subsection we introduce dimensionless variables and present our basic system in
dimensionless form. Let us introduce the dimensionless quantities [xi , ζi , Ê , f̂ , Ĝ, Âc(T̂ ), ρ̂, v̂i ,
p̂ij , T̂tr , T̂int, T̂ , T̂rel, p̂, q̂i], which correspond to the original dimensional quantities [Xi , ξi , E , f , G,
Ac(T ), ρ, vi , pij , Ttr , Tint, T , Trel, p, qi], by the following relations:

xi = Xi/l−, ζi = ξi/(2RT−)1/2, Ê = E/RT−, (f̂ , Ĝ) = (f,G)/2ρ−(2RT−)−5/2,

Âc(T̂ ) = Ac(T )/Ac(T−), ρ̂ = ρ/ρ−, v̂i = vi/(2RT−)1/2, p̂ij = pij /p−,

(T̂tr, T̂int, T̂ , T̂rel) = (Ttr, Tint, T , Trel)/T−, p̂ = p/p−, q̂i = qi/p−(2RT−)1/2, (15)

023401-5



SHINGO KOSUGE AND KAZUO AOKI

where p− = Rρ−T−, and l− = (2/
√

π )(2RT−)1/2/Ac(T−)ρ− is the mean free path of the gas
molecules in the equilibrium state at rest with density ρ− and temperature T−. We occasionally
use the bold-faced letters x, ζ , v̂, and q̂ for xi , ζi , v̂i , and q̂i , respectively.

Using these dimensionless quantities, we obtain the following dimensionless form of the ES
model (5):

ζ1
∂f̂

∂x1
= 2√

π
Q̂(f̂ ), (16)

where

Q̂(f̂ ) = Âc(T̂ )ρ̂(Ĝ − f̂ ), (17a)

Ĝ = ρ̂

π3/2[det(T̂)]1/2 T̂
δ/2

rel �(δ/2)
Êδ/2−1 exp

(
−(ζi − v̂i)(T̂−1)ij (ζj − v̂j ) − Ê

T̂rel

)
, (17b)

(T̂)ij = (1 − θ )[(1 − ν)T̂trδij + νp̂ij /ρ̂] + θT̂ δij , (17c)

ρ̂ =
∫∫ ∞

0
f̂ dÊdζ , (17d)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ dÊdζ , (17e)

p̂ij = 2
∫∫ ∞

0
(ζi − v̂i)(ζj − v̂j )f̂ dÊdζ , (17f)

T̂tr = 2

3ρ̂

∫∫ ∞

0
|ζ − v̂|2f̂ dÊdζ , (17g)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ dÊdζ , (17h)

T̂ = 3T̂tr + δT̂int

3 + δ
, (17i)

T̂rel = θT̂ + (1 − θ )T̂int. (17j)

Here, dζ = dζ1dζ2dζ3, and the domain of integration with respect to ζ is the whole space of ζ . The
(dimensionless) pressure p̂ and heat-flow vector q̂i are given by

p̂ = ρ̂T̂ , (18)

q̂i =
∫∫ ∞

0
(ζi − v̂i)(|ζ − v̂|2 + Ê)f̂ dÊdζ . (19)

Corresponding to the statement including Eq. (10), Q̂(f̂ ) = 0 is equivalent to the fact that f̂ is
the dimensionless local equilibrium distribution given by

f̂eq = ρ̂Êδ/2−1

(πT̂ )3/2T̂ δ/2�(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
. (20)

In addition, the dimensionless version of the statement containing Eqs. (11) and (12) reads as follows:
For an arbitrary function ĝ(t̂ , x, ζ , Ê), the relation∫∫ ∞

0
ϕ̂r Q̂(ĝ)dÊdζ = 0 (21)
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holds, where ϕ̂r (r = 0, ..., 4) are the dimensionless collision invariants, i.e.,

ϕ̂0 = 1, ϕ̂i = ζi (i = 1, 2, 3), ϕ̂4 = |ζ |2 + Ê . (22)

The boundary conditions (14) are nondimensionalized as follows:

f̂ = Êδ/2−1

π3/2�(δ/2)
exp

(−[(ζ1 − v̂−)2 + ζ 2
2 + ζ 2

3

]− Ê
)
, (x1 → −∞), (23a)

f̂ = ρ̂+Êδ/2−1

(πT̂+)3/2T̂
δ/2
+ �(δ/2)

exp

(
− (ζ1 − v̂+)2 + ζ 2

2 + ζ 2
3

T̂+
− Ê

T̂+

)
, (x1 → ∞), (23b)

where

v̂− = v−
(2RT−)1/2

=
√

γ

2
M−, v̂+ = v+

(2RT−)1/2
=
√

γ

2

(γ − 1)M2
− + 2

(γ + 1)M−
, (24a)

ρ̂+ = ρ+
ρ−

= (γ + 1)M2
−

(γ − 1)M2− + 2
, T̂+ = T+

T−
= [2γM2

− − (γ − 1)][(γ − 1)M2
− + 2]

(γ + 1)2M2−
. (24b)

We will investigate Eqs. (16) and (23) numerically in Sec. IV and analytically in Sec. V. To
analyze the system, we first specify the internal degrees of freedom δ or the ratio of the specific heats
γ [cf. Eq. (1)] for the gas under consideration, and then determine the functional form of Ac(T ) and
the values of ν and θ on the basis of the transport coefficients (13).

From the conservation laws (see Appendix A 2), the following relations hold for any x1:

ρ̂v̂1 = v̂−, p̂11 + 2ρ̂v̂2
1 = 1 + 2v̂2

−, p̂12 = p̂13 = 0, (25a)

q̂1 + p̂11v̂1 + v̂1

(
3 + δ

2
p̂ + ρ̂v̂2

1

)
= v̂−

(
5 + δ

2
+ v̂2

−

)
. (25b)

These relations can be used for the accuracy tests in the numerical analysis.
When μb/μ = ∞, the Rankine-Hugoniot relation is given by Eq. (A20), which is different from

Eq. (2). For later convenience, we introduce the dimensionless density ρ̂∗∗, flow velocity v̂∗∗, and
translational temperature T̂∗∗ at the downstream condition of the Rankine-Hugoniot relations for
μb/μ = ∞. That is, because Ttr− = Tint− = T− holds in the present problem, Eq. (A20) gives the
following expression of them:

ρ̂∗∗ = ρ+
ρ−

= 4M̃2
−

M̃2− + 3
, v̂∗∗ = v+√

2RT−
=
√

5

6

M̃2
− + 3

4M̃−
, (26a)

T̂∗∗ = Ttr+
T−

= (5M̃2
− − 1)(M̃2

− + 3)

16M̃2−
, (26b)

where

M̃− = v−√
5RT−/3

. (27)

IV. NUMERICAL ANALYSIS

A. Preliminaries

Since we are considering the case where v̂2 = v̂3 = 0, we can assume that the velocity-energy
distribution function f̂ is cylindrically symmetric with respect to ζ1 in the ζ space, that is,

f̂ = f̂ (x1, ζ1, ζρ, Ê), ζρ = (
ζ 2

2 + ζ 2
3

)1/2
. (28)
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This form makes some components of p̂ij , q̂i , and thus (T̂)ij trivial in addition to v̂2 = v̂3 = 0, i.e.,

p̂12 = p̂13 = p̂23 = 0, q̂2 = q̂3 = 0, (T̂)12 = (T̂)13 = (T̂)23 = 0. (29)

Then, we introduce the following marginal velocity distribution functions:

φ1(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0
ζρf̂ (x1, ζ1, ζρ, Ê)dÊdζρ, (30a)

φ2(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0
ζ 3
ρ f̂ (x1, ζ1, ζρ, Ê)dÊdζρ, (30b)

φ3(x1, ζ1) = 2π

∫ ∞

0

∫ ∞

0
ζρ Ê f̂ (x1, ζ1, ζρ, Ê)dÊdζρ. (30c)

If we multiply Eq. (16) with Eq. (28) by 2π (ζρ, ζ
3
ρ , ζρ Ê), integrate the resulting equations from 0 to

∞ with respect to ζρ and Ê , and rewrite the macroscopic quantities in Eq. (17) in terms of φ1, φ2,
and φ3, then we obtain the following system of equations for φ1, φ2, and φ3:

ζ1
∂φk

∂x1
= 2√

π
Âc(T̂ )ρ̂(�k − φk), (k = 1, 2, 3), (31)

where ⎡⎣�1

�2

�3

⎤⎦ = ρ̂√
π (T̂)1/2

11

⎡⎣ 1
(T̂)22

(δ/2)T̂rel

⎤⎦ exp

(
− (ζ1 − v̂1)2

(T̂)11

)
, (32a)

(T̂)11 = (1 − θ )[(1 − ν)T̂tr + νp̂11/ρ̂] + θT̂ , (32b)

(T̂)22[=(T̂)33] = (1 − θ )[(1 − ν)T̂tr + νp̂22/ρ̂] + θT̂ , (32c)

ρ̂ =
∫ ∞

−∞
φ1dζ1, v̂1 = 1

ρ̂

∫ ∞

−∞
ζ1φ1dζ1, (32d)

p̂11 = 2
∫ ∞

−∞
(ζ1 − v̂1)2φ1dζ1, p̂22[=p̂33] =

∫ ∞

−∞
φ2dζ1, (32e)

T̂tr = 2

3ρ̂

∫ ∞

−∞
[(ζ1 − v̂1)2φ1 + φ2]dζ1, T̂int = 2

δρ̂

∫ ∞

−∞
φ3dζ1, (32f)

T̂ = 3T̂tr + δT̂int

3 + δ
, T̂rel = θT̂ + (1 − θ )T̂int. (32g)

The boundary conditions for Eq. (31) can be obtained from Eq. (23) by the same procedure. The
result is as follows:⎡⎣φ1

φ2

φ3

⎤⎦ = 1

π1/2

⎡⎣ 1
1

δ/2

⎤⎦ exp(−(ζ1 − v̂−)2), (x1 → −∞), (33a)

⎡⎣φ1

φ2

φ3

⎤⎦ = ρ̂+
(πT̂+)1/2

⎡⎣ 1
T̂+

(δ/2)T̂+

⎤⎦ exp

(
− (ζ1 − v̂+)2

T̂+

)
, (x1 → ∞). (33b)

We will analyze Eqs. (31), (32), and (33) numerically. It should be noted that the molecular velocity
components ζ2 and ζ3 and the energy variable Ê have been eliminated in Eqs. (31), (32), and (33),
so that we need to handle only two independent variables x1 and ζ1.
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Finally, we note that the (dimensionless) heat flow is expressed as

q̂1 =
∫ ∞

−∞
(ζ1 − v̂1)[(ζ1 − v̂1)2φ1 + φ2 + φ3]dζ1. (34)

B. Grid system and finite-different scheme

We limit the range of x1 to a finite range −Dn � x1 � Dp with sufficiently large positive constants
Dn and Dp (Dn < Dp) and set the grid points x(i) (i = −Nn, − Nn + 1, ...,0, ..., Np − 1, Np; Nn <

Np) in such a way that x(−Nn) = −Dn, x(0) = 0, and x(Np) = Dp. We also limit the range of the
molecular velocity ζ1 to a finite range −Zn � ζ1 � Zp with large positive constants Zn and Zp

and set the grid points ζ(j ) (j = 0, 1, 2, ..., 2M − 1, 2M) as ζ(0) = −Zn and ζ(2M) = Zp. The grid
systems used for the computation are summarized in Appendix B 1.

Then, we denote the values of φk and �k (k = 1, 2, 3) and those of the macroscopic quantities at
the grid points at the nth step of iteration by

φ
[n,i,j ]
k = φk(x(i), ζ(j )) at the nth iteration (k = 1, 2, 3), (35a)

�
[n,i,j ]
k = �k(x(i), ζ(j )) at the nth iteration (k = 1, 2, 3), (35b)

h[n,i] = h(x(i)) at the nth iteration, (35c)

where h = ρ̂, v̂1, p̂11, p̂22, . . ..
We adopt the following finite-difference scheme for Eq. (31):

ζ(j )∇φ
[n+1,i,j ]
k = B[n,i]

(
�

[n,i,j ]
k − φ

[n+1,i,j ]
k

)
, (36)

where

B[n,i] = 2√
π

Âc(T̂ [n,i])ρ̂[n,i], (37)

and ∇φ
[n,i,j ]
k indicates the second-order upwind difference for ∂φk/∂x1 defined as follows:

(i) for ζ(j ) > 0,

∇φ
[n,i,j ]
k =

⎧⎪⎨⎪⎩
(
φ

[n,−Nn+1,j ]
k − φ

[n,−Nn,j ]
k

)
/d−Nn+1 (i = −Nn + 1),

w0(di,di−1)φ[n,i,j ]
k − w1(di,di−1)φ[n,i−1,j ]

k

+w2(di,di−1)φ[n,i−2,j ]
k (−Nn + 2 � i � Np),

(38a)

(ii) for ζ(j ) < 0,

∇φ
[n,i,j ]
k =

⎧⎪⎨⎪⎩
(−φ

[n,Np−1,j ]
k + φ

[n,Np,j ]
k

)
/dNp

(i = Np − 1),

−w0(di+1,di+2)φ[n,i,j ]
k + w1(di+1,di+2)φ[n,i+1,j ]

k

−w2(di+1,di+2)φ[n,i+2,j ]
k (−Nn � i � Np − 2).

(38b)

Here,

di = x(i) − x(i−1), w0(a,b) = 2a + b

a(a + b)
, w1(a,b) = a + b

ab
, w2(a,b) = a

b(a + b)
.

If we express ∇φ
[n,i,j ]
k as

∇φ
[n,i,j ]
k =

{
α+

i,0φ
[n,i,j ]
k + α+

i,1φ
[n,i−1,j ]
k + α+

i,2φ
[n,i−2,j ]
k , for ζ(j ) > 0,

α−
i,0φ

[n,i,j ]
k + α−

i,1φ
[n,i+1,j ]
k + α−

i,2φ
[n,i+2,j ]
k , for ζ(j ) < 0,

(39)
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then, the finite-difference scheme can be written as

(B[n,i] + ζ(j )α
±
i,0)φ[n+1,i,j ]

k = B[n,i]�
[n,i,j ]
k − ζ(j )

(
α±

i,1φ
[n+1,i∓1,j ]
k + α±

i,2φ
[n+1,i∓2,j ]
k

)
. (40)

C. Process of numerical computation

If we assume that the initial state is a local equilibrium, p̂11 = p̂22 and T̂tr = T̂int = p̂11/ρ̂ hold.
We first choose an appropriate initial density distribution ρ̂[0,i]. Then, we determine the initial
distributions of v̂1, p̂11, p̂22, T̂tr , and T̂int using the above relations and the conservation of mass
and momentum, Eq. (25a), as follows:

v̂
[0,i]
1 = v̂−/ρ̂[0,i], p̂

[0,i]
11 = p̂

[0,i]
22 = 1 + 2v̂−

(
v̂− − v̂

[0,i]
1

)
, T̂

[0,i]
tr = T̂

[0,i]
int = p̂

[0,i]
11 /ρ̂[0,i]. (41)

Suppose that the macroscopic quantities h[n,i] (h = ρ̂, v̂1, p̂11, p̂22, T̂tr , T̂int) are known at all the
grid points x(i). Then, the physical quantities at the (n + 1)th step are obtained by the following
process:

(i) Obtain B[n,i] and �
[n,i,j ]
k (k = 1, 2, 3) at each grid point x(i) and ζ(j ).

(ii) For each j for which ζ(j ) > 0, obtain φ
[n+1,−Nn,j ]
k (k = 1, 2, 3) using the boundary condition at

upstream infinity and then φ
[n+1,i,j ]
k using the finite-difference scheme successively for i = −Nn + 1,

−Nn + 2, . . . , Np.

(iii) For each j for which ζ(j ) < 0, obtain φ
[n+1,Np,j ]
k (k = 1, 2, 3) using the boundary condition

at downstream infinity and then φ
[n+1,i,j ]
k using the finite-difference scheme successively for i =

Np − 1, Np − 2, . . . ,−Nn.
(iv) For j for which ζ(j ) = 0, let φ

[n+1,i,j ]
k = �

[n,i,j ]
k (k = 1, 2, 3).

(v) Obtain the macroscopic quantities h[n+1,i] at each grid point x(i) by integrating the obtained
φ

[n+1,i,j ]
k numerically (using the Simpson rule).

We repeat the above process until the solution converges.

D. Results of numerical analysis

1. Parameter setting

We first explain our parameter setting. In the following, we set the upstream temperature T− as
293 K. If we consider upstream Mach numbers M− = 1.2 to 5, then, the downstream temperature
T+ becomes 331 to 1699 K for δ = 2 (γ = 7/5), 321 to 1313 K for δ = 4 (γ = 9/7), and 315 to
1092 K for δ = 6 (γ = 11/9). We consider this temperature range.

In the present paper, we concentrate on the CO2 gas and present the result only for it though the
computation has also been performed for the N2 gas. According to the data about cp and γ given
in Refs. [35–38], γ is not constant but depends on the temperature. Therefore, if we are based on
the relation (1), δ should depend on the temperature. From the data in Refs. [35–38] and Eq. (1),
we find that δ ≈ 4 at 300 K, 5 at 400 K, 6 at 550 K, 7 at 700 K, and 8 at 1000 K. Since the ES
model that we are using has a constant δ, the computation will be performed with a fixed value
δ = 4 that corresponds to the upstream temperature. We may also set the values of δ according to
the downstream temperature. In order to see the effect of different setting of δ, we will also carry out
some computations for other values of δ.

The data of the viscosity μ and the thermal conductivity κ of the CO2 gas from Refs. [35–39]
agree reasonably well, so that we take Ref. [35] as our reference. If we try to fit the data of μ and κ

in Ref. [35] with the least squares method assuming the power-law dependence on the temperature,
we have

μ(T ) = μ(293 K) × (T/293 K)0.84, κ(T ) = κ(293 K) × (T/293 K)1.2. (42)

However, since the ES model gives a common temperature dependence for μ and κ [cf. Eq. (13)], we
cannot take into account the different power shown in Eq. (42). Therefore, we make an intermediate
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FIG. 2. Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200, 500,
1000, and 2000. (a) Profiles for −200 � x1 � 3600; (b) profiles for −20 � x1 � 100. The red curves indicate
ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for μb/μ = 100, the dashed
lines for μb/μ = 200, the dot-dashed lines for μb/μ = 500, the dot-dot-dashed lines for μb/μ = 1000, and
the dotted lines for μb/μ = 2000. In panel (b), the black dotted lines indicate the profiles of ρ̌, v̌, and Ť for
μb/μ = ∞.

choice μ, κ ∝ T , i.e., Ac(T ) ∝ T 0, which is reasonably good for T � 400 K, except in the last part
of Sec. IV D 2 where the comparison with Ref. [14] is made.

According to Ref. [35], the Prandtl number Pr decreases monotonically with the temperature:
Pr = 0.761 (293 K), 0.745 (373 K), 0.735 (473 K), and 0.720 (973 K). Since Pr of the ES model is
independent of the temperature, we basically fix Pr as Pr = 0.761. This looks reasonable because
the variation of Pr with the temperature is not large. According to Refs. [28,29], the ratio of the bulk
viscosity μb to the viscosity μ is large: μb/μ ≈ 103 to 2 × 103 (Ref. [28], 293 K) and μb/μ = 3922
(Ref. [29], 296.3 K). According to Ref. [29], μb/μ decreases rapidly as the temperature increases.
From Fig. 13 in Ref. [29], we obtain the following values: μb/μ ≈ 2400 at 400 K, 1000 at 600 K,
600 at 800 K, 400 at 1000 K, and 200 at 1300 K. In the present computation, we vary μb/μ from
100 to 2000. It should be mentioned that the effect of the bulk viscosity on nonequilibrium CO2 gas
flows has been studied in Ref. [40].

In summary, we assume basically that δ = 4 (γ = 9/7), Ac(T ) = const, Pr = 0.761, and μb/μ =
100 to 2000 (the computation is also carried out for 10 � μb/μ < 100, but the result will not be
shown in the present paper). The parameters ν and θ are chosen accordingly [cf. Eq. (13)]. In the
present paper, we call the gas with these properties the pseudo-CO2gas and regard it as the real CO2

gas when μb/μ = 1000 to 2000.

2. Numerical results

We show the results for pseudo-CO2 gas with large μb/μ including the real CO2 gas (i.e., pseudo-
CO2 gas with μb/μ = 1000 to 2000). In the following, we show the profiles of the density ρ, the flow
velocity v1 (the X1 component), and the temperatures T , Ttr , and Tint normalized in the conventional
way, that is,

ρ̌ = ρ − ρ−
ρ+ − ρ−

, v̌ = v1 − v+
v− − v+

, Ť = T − T−
T+ − T−

, Ťtr = Ttr − T−
T+ − T−

, Ťint = Tint − T−
T+ − T−

. (43)

We start with M− = 5 and decrease M− down to M− = 1.05.

(i) Case of M− = 5: Figure 2 shows the profiles of ρ̌, v̌, and Ť at M− = 5 for pseudo-CO2

gases with μb/μ = 100, 200, 500, 1000, and 2000. Figure 2(b) is a magnified figure of Fig. 2(a)
in the range −20 � x1 (= X1/l−) � 100. The red curves indicate ρ̌, the green curves v̌, and the
blue curves Ť ; the solid lines indicate μb/μ = 100, the dashed lines μb/μ = 200, the dot-dashed
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Ť

FIG. 3. Profiles of Ťtr , Ťint , and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200, 500,
1000, and 2000. (a) Profiles for −200 � x1 � 3600, (b) profiles for −20 � x1 � 100. The red curves indicate
Ťtr , the green curves Ťint , and the blue curves Ť . See the caption of Fig. 2 about the types of lines. In panel (b),
the black dotted lines indicate the profiles of Ťtr , Ťint , and Ť for μb/μ = ∞.

lines μb/μ = 500, the dot-dot-dashed lines μb/μ = 1000, and the dotted lines μb/μ = 2000. In
Fig. 2(b), we also show by the black dotted lines the profiles of ρ̌, v̌, and Ť when μb/μ = ∞.
Note that in this case the downstream condition is different from that for finite μb/μ and is given
by the Rankine-Hugoniot relations for μb/μ = ∞ [Eq. (A20) (note that Ttr− = T− in the present
problem) or (26)]. In this figure and the following Figs. 3–6, x1 = 0 is set at the position where the
density is equal to the average of the upstream and downstream values when μb/μ = ∞, that is,
ρ̂ = (1 + ρ̂∗∗)/2 [cf. Eq. (26a)]. The profiles are of type C, consisting of a thin front layer and a thick
rear layer. As μb/μ increases, the thickness of the rear layer increases and reaches over 3000 mean
free paths (l−), whereas the profiles of the thin front layer are not affected by μb/μ and coincide with
the shock profiles for μb/μ = ∞. This indicates that the thin front layer corresponds to the shock
wave for μb/μ = ∞, and the jump caused by this layer is given by the Rankine-Hugoniot relations
for μb/μ = ∞. For any large but finite value of μb/μ, ρ̌ and Ť approach 1, and v̌ approaches 0
as x1 → ∞. However, for any fixed x1, the values of ρ̌, v̌, and Ť approach, as μb/μ → ∞, the
respective values corresponding to the downstream state of the shock wave for μb/μ = ∞.

Figure 3 shows the profiles of Ťtr , Ťint, and Ť corresponding to Fig. 2. Here, the red curves indicate
Ťtr , the green curves Ťint, and the blue curves Ť . As in Fig. 2(b), the black dotted lines indicate the
profiles of Ťtr , Ťint, and Ť for μb/μ = ∞. The thin front layer gives a significant overshoot of Ťtr .
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FIG. 4. Profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and μb/μ =
100, 200, 500, 1000, and 2000. (a) Profiles for −200 � x1 � 3600; (b) profiles for −20 � x1 � 100. The red
curves indicate p̂11 − p̂, the green curves p̂22 − p̂, and the blue curves −q̂1. See the caption of Fig. 2 about
the types of lines. In panel (b), the black dotted lines indicate the profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 for
μb/μ = ∞.
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FIG. 5. Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200, 500,
1000, and 2000 in the new coordinate y1. (a) Profiles for −0.2 � y1 � 1; (b) profiles for −0.06 � y1 � 0.06.
The red curves indicate ρ̌, the green curves v̌ and the blue curves Ť . See the caption of Fig. 2 about the types
of lines.

Figure 4 shows the profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1. The q̂1 is nonzero only in the thin front
layer and is not affected by μb/μ, and p̂11 = p̂22 holds almost whole range of the thick rear layer.

Here, we introduce the new space coordinate y1 whose length scale of variation is l−/θ , i.e.,

y1 = (2/
√

π )θx1 = (2/
√

π )θ (X1/l−), (44)

which is expected to describe the slow variation occurring in the thick rear layer when μb/μ 
 1
(θ � 1). In Fig. 5, we show the profiles of ρ̌, v̌, and Ť , corresponding to Fig. 2, as the functions of
y1. Figure 5(b) is a magnified figure of Fig. 5(a). As one can see, the curves for μb/μ = 100, 200,
500, 1000, and 2000 coincide perfectly in the thick rear layer. Using this new coordinate y1, we will
derive a set of macroscopic equations that can describe the slow relaxation over the thick rear layer
in Sec. V.

Figure 6 shows the effect of the internal degrees of freedom δ in the case of M− = 5 and μb/μ =
1000. The figure corresponds to Fig. 2, and the red, green, and blue curves indicate ρ̌, v̌, and Ť ,
respectively. In the figure, the solid lines indicate δ = 3, the dashed lines δ = 4, the dot-dashed lines
δ = 5, and the dot-dot-dashed lines δ = 8. The difference in δ changes the profile of ρ̌ significantly.
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Ť

(b)
x1

ρ̌
,
v̌
,
Ť

FIG. 6. Profiles of ρ̌, v̌, and Ť at M− = 5 for Pr = 0.761, Ac = const, μb/μ = 1000, and δ = 3, 4, 5, and
8. (a) Profiles for −100 � x1 � 1800; (b) profiles for −14 � x1 � 20. The red curves indicate ρ̌, the green
curves v̌, and the blue curves Ť . The solid lines indicate the profiles for δ = 3, the dashed lines for δ = 4, the
dot-dashed lines for δ = 5, and the dot-dot-dashed lines for δ = 8.
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Ť

FIG. 7. Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200, 500,
1000, and 2000. (a) Profiles for −1000 � x1 � 24 000; (b) profiles for −100 � x1 � 2000. The red curves
indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for μb/μ = 100, the
dashed lines for μb/μ = 200, the dot-dashed lines for μb/μ = 500, the dot-dot-dashed lines for μb/μ = 1000,
and the dotted lines for μb/μ = 2000. In panel (b), the black dotted lines indicate the profiles of ρ̌, v̌, and Ť

for μb/μ = ∞.

(ii) Case of M− = 1.2: In Figs. 7–11, we show the profiles for a smaller upstream Mach number
M− = 1.2. Figures 7–11 correspond to Figs. 2–6, respectively. In these figures, x1 = 0 is set in the
same way as Figs. 2–6. The profile of the density is close to that of the temperature, and the values
of p̂11 − p̂, p̂22 − p̂, and −q̂1 are small. These profiles are also of type C. However, the jumps due
to the thin front layer is smaller compared with the case of M− = 5. For μb/μ = 2000, the thick
rear layer extends over 20 000 mean free paths.

(iii) Case of M− = 1.138 . . .: This case corresponds to M̃− = 1, where M̃− = v−/
√

5RT−/3 is
a parameter playing the role of the upstream Mach number in the Rankine-Hugoniot relations for
μb/μ = ∞ [Eq. (A20) withTtr− = T− or (26)]. Figure 12 shows the profiles of ρ̌, v̌, and Ť , and Fig. 13
those of Ťtr and Ťint. Figures 12(b) and 13(b) are, respectively, the magnified figures of Figs. 12(a)
and 13(a). In the figures, x1 = 0 is set at the position where ρ̌ = 0.05 (i.e., ρ̂ = 0.95 + 0.05ρ̂+). The
profiles do not show the double layer structure, but the thickness of the shock increases as μb/μ

becomes large, as in the case of M− = 5 and 1.2. Except Ťint, the profiles start abruptly from the
upstream uniform state, though the approach of the profiles to the downstream uniform state is slow
and smooth. Therefore, the profiles except for Ťint are not symmetric with respect to the centers
of the respective profiles, and we can say that the profiles in this case are of type B. As we will

0 1000 2000
0

0.2

0.4

0.6

0.8

1

0 10000 20000
0

0.2

0.4

0.6

0.8

1

(a)
x1

Ť
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FIG. 8. Profiles of Ťtr , Ťint , and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200,
500, 1000, and 2000. (a) Profiles for −1000 � x1 � 24 000, (b) profiles for −100 � x1 � 2000. The red curves
indicate Ťtr , the green curves Ťint , and the blue curves Ť . See the caption of Fig. 7 about the types of lines. In
panel (b), the black dotted lines indicate the profiles of Ťtr , Ťint , and Ť for μb/μ = ∞.
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FIG. 9. Profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and μb/μ =
100, 200, 500, 1000, and 2000. (a) Profiles for −1000 � x1 � 24 000; (b) profiles for −100 � x1 � 2000. The
red curves indicate p̂11 − p̂, the green curves p̂22 − p̂, and the blue curves −q̂1. See the caption of Fig. 7 about
the types of lines. In panel (b), the black dotted lines indicate the profiles of p̂11 − p̂, p̂22 − p̂, and −q̂1 for
μb/μ = ∞.

see in Sec. V A, the leading-order asymptotic solution for large μb/μ (the slowly varying solution)
gives the profiles that start suddenly from the upstream uniform state and thus exhibit a corner when
M̃− = 1. This is the reason why we chose the case M̃− = 1 as a typical type-B profile.

(iv) Case of M− = 1.05: Finally, we show the profiles of ρ̌, v̌, and Ť for M− = 1.05 in Fig. 14.
Figure 14(b) is a magnified figure of Fig. 14(a). In the figure, x1 = 0 is set at the position where
ρ̌ = 1/2 [i.e., ρ̂ = (1 + ρ̂+)/2]. The profiles, which are almost symmetric with respect to the centers
of respective profiles, correspond to type-A profile. The thickness of the shock increases with the
increase of μb/μ and reaches over 50 000 mean free paths for μb/μ = 2000.

In this way, the transition of the profiles from type A to type C at Mach numbers rather close
to 1, which was predicted by the extended thermodynamics [14], is also observed in the present
computation based on the ES model. The data for the numerical analysis, such as the numbers of the
grid points and the accuracy tests, are given in Appendixes B 2 and B 3.

In the rest of this subsection, we compare our result with that of Ref. [14]. Here, we reset
the parameters according to this reference. In Ref. [14], cp, cv , and thus γ are functions of T

(thermally perfect gas), whereas in the present ES model, they do not depend on T (calorically
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FIG. 10. Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200, 500,
1000, and 2000 in the new coordinate y1. (a) Profiles for −0.5 � y1 � 8; (b) profiles for −0.12 � y1 � 0.2.
The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . See the caption of Fig. 7 for the types of
lines.
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FIG. 11. Profiles of ρ̌, v̌, and Ť at M− = 1.2 for Pr = 0.761, Ac = const, μb/μ = 1000, and δ = 3, 4, and
5. (a) Profiles for −1000 � x1 � 12000; (b) profiles for −60 � x1 � 240. The red curves indicate ρ̌, the green
curves v̌, and the blue curves Ť . The solid lines indicate the profiles for δ = 3, the dashed lines for δ = 4, and
the dot-dashed lines for δ = 5.

perfect gas). Therefore, it is not possible to make a perfect comparison. Nevertheless, we will try the
best comparison. In Ref. [14], the (shear) viscosity μ, the bulk viscosity μb (ν in Ref. [14]), and the
thermal conductivity κ are expressed as (Eq. (7) in Ref. [14]),

μ = pτS, μb =
(

2

3
− R

cv

)
pτ�, κ =

(
1 + cv

R

)
Rpτq, (45)

where τ�, τS , and τq are the relaxation times for the dynamic pressure, the shear stress, and the
heat flux, respectively. It is also assumed that μ ∝ T n, μb ∝ T n, and κ ∝ T ncv(T )/R (Eq. (14) in
Ref. [14]). Assuming that γ (T ) = const = γ0 in Eq. (15) in Ref. [14], we obtain

τ� = τ�(ρ0, T0)
ρ0

ρ

(
T0

T

)1−n

, τS = τS(ρ0, T0)
ρ0

ρ

(
T0

T

)1−n

, τq = τq(ρ0, T0)
ρ0

ρ

(
T0

T

)1−n

. (46)

Then, we have the following relations:

δ = 2cv

R
− 3, Pr = τS(ρ0, T0)

τq(ρ0, T0)
,

μb

μ
=
(

2

3
− R

cv

)
τ�(ρ0, T0)

τS(ρ0, T0)
. (47)
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FIG. 12. Profiles of ρ̌, v̌, and Ť at M− = 1.138 . . . (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const, and
μb/μ = 100, 200, 500, 1000, and 2000. (a) Profiles for −2000 � x1 � 28 000; (b) profiles for −1000 � x1 �
4000. The red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles
for μb/μ = 100, the dashed lines for μb/μ = 200, the dot-dashed lines for μb/μ = 500, the dot-dot-dashed
lines for μb/μ = 1000, and the dotted lines for μb/μ = 2000.
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Ť
tr
,
Ť
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FIG. 13. Profiles of Ťtr and Ťint at M− = 1.138 . . . (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const, and μb/μ =
100, 200, 500, 1000, and 2000. (a) Profiles for −2000 � x1 � 28 000; (b) profiles for −1000 � x1 � 4000.
The red curves indicate Ťtr , and the green curves Ťint . See the caption of Fig. 12 about the types of lines.

In Ref. [14], the following values are used: cv/R = 3.45, τS(ρ0, T0) = 1.6 × 10−9 s, τq(ρ0, T0) =
2.2 × 10−9 s, and τ�(ρ0, T0) = 2.2 × 10−5 s, so that we have δ = 3.9, Pr = 0.73, and μb/μ = 5.2 ×
103. This leads to the following values of the parameters ν and θ in the ES model: ν = −0.3698 . . .

and θ = 9.926 . . . × 10−5. In addition, since n = 0.935 is assumed in Ref. [14], we let Âc = T̂ 0.065.
The comparison is made with this parameter setting.

Figure 15 shows the comparison between Fig. 6 in Ref. [14] and the present computation for
M− = 1.47. Only the profiles of ρ̂, v̂1 (v̂ in the figure), and T̂ are compared. These figures are
taken from Fig. 6 in Ref. [14], where the black solid lines indicate the result based on the extended
thermodynamics, the dashed lines that based on the Navier-Stokes Fourier theory, and the circles
in the profile of ρ̂ the experimental result in Ref. [19] (see the caption of Fig. 6 in Ref. [14]). Our
results are overdrawn by colored lines. Here, x̂ is the coordinate used in Ref. [14], which is related
to our x1 as follows:

x̂ = x1

(
8

π

δ + 3

δ + 5

)1/2
τq

τ�

= x1

(
8

π

δ + 3

δ + 5

)1/2

θ. (48)

That is, x̂ has the same length scale as y1 introduced in Eq. (44). In the magnified figures, we have
shifted our results slightly to make two results coincide. The figures show very good agreement
between the results based on the extended thermodynamics and our results except that there is a very
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Ť

(b)
x1

ρ̌
,
v̌
,
Ť

FIG. 14. Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100, 200,
500, 1000, and 2000. (a) Profiles for −40 000 � x1 � 60 000; (b) profiles for −10 000 � x1 � 10 000. The
red curves indicate ρ̌, the green curves v̌, and the blue curves Ť . The solid lines indicate the profiles for
μb/μ = 100, the dashed lines for μb/μ = 200, the dot-dashed lines for μb/μ = 500, the dot-dot-dashed lines
for μb/μ = 1000, and the dotted lines for μb/μ = 2000.
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FIG. 15. Comparison between the profiles in Ref. [14] and those in the present computation at M− = 1.47.
The figure is a reproduction of a part of Fig. 6 in Ref. [14] (courtesy of S. Taniguchi): The solid lines indicate the
result based on the extended thermodynamics, the dashed lines that based on the Navier-Stokes Fourier theory,
and the circles in the profile of ρ̂ the experimental result in Ref. [19] (see the caption of Fig. 6 in Ref. [14]).
The present result is overdrawn by colored lines: The red line is for ρ̂, the green line for v̂1 (denoted by v̂ in the
figure according to Ref. [14]), and the blue line for T̂ .

slight difference in the downstream uniform state. This is due to the fact that when γ depends on T ,
the downstream conditions are not the same as those given by the Rankine-Hugoniot relations (2).

V. ASYMPTOTIC ANALYSIS FOR LARGE μb/μ

A. Slowly varying solution and shock profile

The numerical results in Sec. IV D suggest that the thick layer behind the thin layer of type-C
profile for large μb/μ (i.e., small θ ) may be described by a slowly varying solution whose length
scale of variation is of the order 1/θ . Although the results are not shown in Sec. IV D, the replot
of the curves in Figs. 12–14 in terms of the variable y1 [Eq. (44)] shows that the profiles of each
macroscopic quantity for large μb/μ fall on a single curve for respective M−, as the profiles of the
thick rear layer in Figs. 5(a) and 10(a). Therefore, we expect that the slowly varying solution may
also describe the whole profiles of types A and B. In order to obtain the slowly varying solution, we
need to introduce the new space coordinates yi contracted by the small parameter θ , i.e.,

yi = 2√
π

θxi. (49)

If we assume that f = f (y1, ζ , Ê), then Eq. (16) becomes

θζ1
∂f̂

∂y1
= Âc(T̂ )ρ̂(Ĝ − f̂ ). (50)
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We analyze this equation for θ � 1 by a Hilbert-type expansion in θ , i.e.,

f̂ = f̂ (0) + f̂ (1)θ + f̂ (2)θ2 + · · · . (51)

Correspondingly, the macroscopic quantities ρ̂, v̂i , p̂ij , . . ., which we denote by ĥ, are expanded as

ĥ = ĥ(0) + ĥ(1)θ + ĥ(2)θ2 + · · · . (52)

We leave the details of the analysis in Appendix C, where the three-dimensional version of Eq. (50)
[Eq. (C2)] is analyzed. As the result of the analysis, the macroscopic equations that describe
the leading-order quantities ρ̂(0), v̂

(0)
i , T̂

(0)
tr , and T̂

(0)
int of the expansion Eq. (52) are obtained, i.e.,

Eqs. (C34a) and (C34b) and two equations out of Eqs. (C34c), (C40), and (C45).
Let us consider the one-dimensional case assuming that ∂/∂y2 = ∂/∂y3 = 0 and v̂

(0)
2 = v̂

(0)
3 = 0

and omit the superscript (0) for brevity. If we choose Eqs. (C34) and (C45) as the governing equations,
these equations reduce to the following system:

d

dy1
(ρ̂v̂1) = 0, (53a)

d

dy1

(
T̂tr

v̂1
+ 2v̂1

)
= 0, (53b)

d

dy1

(
v̂2

1 + 5

2
T̂tr + δ

2
T̂int

)
= 0, (53c)

v̂1
dT̂int

dy1
= 3

3 + δ
Âc(T̂ )ρ̂(T̂tr − T̂int), (53d)

where the relation (C41), i.e.,

T̂ = 3T̂tr + δT̂int

3 + δ
, (54)

has been used except that T̂ is still kept in Âc(T̂ ). We note here that (ρ̂, v̂1, T̂tr, T̂int) are equal to
(1, v̂−, 1, 1) at upstream infinity and to (ρ̂+, v̂+, T̂+, T̂+) at downstream infinity, and they are related
by the dimensionless Rankine-Hugoniot relations (24) or the original conservation laws

ρ̂+v̂+ = v̂−,
T̂+
v̂+

+ 2v̂+ = 1

v̂−
+ 2v̂−, v̂2

+ + 5 + δ

2
T̂+ = v̂2

− + 5 + δ

2
, (55)

which are the dimensionless version of Eq. (A11).
It follows from Eqs. (53a)–(53c) that

ρ̂v̂1 = c1,
T̂tr

v̂1
+ 2v̂1 = c2, v̂2

1 + 5

2
T̂tr + δ

2
T̂int = c3, (56)

where c1, c2, and c3 are constants, or

ρ̂ = c1

v̂1
, T̂tr = v̂1(c2 − 2v̂1), T̂int = 2

δ

(
c3 − 5

2
c2v̂1 + 4v̂2

1

)
. (57)
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The substitution of Eq. (57) into Eq. (53d) with Eq. (54) gives the following equation for v̂1:

v̂2
1

(
5

16
c2 − v̂1

)
dv̂1

dy1
= 3(4 + δ)

8(3 + δ)
c1Âc(T̂ )

[
v̂2

1 − 5 + δ

2(4 + δ)
c2v̂1 + c3

4 + δ

]
, (58a)

T̂ = 2

3 + δ

(
v̂2

1 − c2v̂1 + c3
)
. (58b)

In the case of the type-C profile, the slowly varying solution should be applied to the downstream of the
thin front layer, so that c1, c2, and c3 in Eq. (56) are determined from the downstream condition as c1 =
ρ̂+v̂+, c2 = (T̂+/v̂+) + 2v̂+, and c3 = v̂2

+ + [(5 + δ)/2]T̂+. However, these downstream quantities
are expressed in terms of the upstream quantities by Eq. (55). Therefore, we can express c1, c2, and
c3 using the upstream quantities as

c1 = v̂−, c2 = 1

v̂−
+ 2v̂−, c3 = v̂2

− + 5 + δ

2
. (59)

Using these relations and the ratio of specific heats γ = (5 + δ)/(3 + δ), we can transform Eq. (58)
as follows:

v̂2
1(v̂∗ − v̂1)

dv̂1

dy1
= −3(γ + 1)

16
v̂−Âc(T̂ )(v̂− − v̂1)(v̂1 − v̂+), (60a)

T̂ (v̂1) = 1 + (γ − 1)(v̂1 − v̂−)

(
v̂1 − 1 + v̂2

−
v̂−

)
, (60b)

where v̂∗ and v̂+ (downstream velocity) are expressed in terms of v̂− as

v̂∗ = 5

16

1 + 2v̂2
−

v̂−
, v̂+ = (γ − 1)v̂2

− + γ

(γ + 1)v̂−
. (61)

Let us consider the integration of Eq. (60), with an initial condition v̂1 = v̂0 at y1 = y0, from
y1 = y0 to ∞. When v̂1 < v̂∗ and v̂1 ∈ (v̂+, v̂−) (note that v̂+ < v̂−), dv̂1/dy1 is negative from
Eq. (60). This range of v̂1 is not empty because v̂+ < v̂∗ for γ < 5/3 and M− > 1. This can be
shown easily from the relation

v̂∗
v̂+

= 5

16
(γ + 1)

2v̂2
− + 1

(γ − 1)v̂2− + γ
= 5

8

γ + 1

γ

γM2
− + 1

(γ − 1)M2− + 2
. (62)

Therefore, if the initial value v̂0 satisfies v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), the solution v̂1 monotonically
decreases as y1 increases and approaches v̂+, which is an equilibrium point of v̂1 where dv̂1/dy1

vanishes. This means that, with an appropriate choice of the initial value v̂0, the solution of Eq. (60)
is expected to describe the velocity profile in the downstream range y1 ∈ [y0,∞) of a shock wave.
Once the solution v̂1 is obtained from Eq. (60), other quantities are obtained from Eq. (57). That is,

ρ̂(v̂1) = v̂−
v̂1

, T̂tr(v̂1) = 1 + 2(v̂− − v̂1)

(
v̂1 − 1

2v̂−

)
, (63a)

T̂int(v̂1) = 1 + 8

δ
(v̂1 − v̂−)(v̂1 − v̂∗∗), (63b)

where v̂∗∗ is the dimensionless downstream velocity of the shock wave when θ = 0, which is defined
by Eq. (26a) and is written in terms of v̂− as v̂∗∗ = (2v̂2

− + 5)/8v̂−. Equation (60) with the initial
condition v̂1(y0) = v̂0 can be solved analytically. More specifically, v̂1 is obtained as the inverse
function of the following function y1(v̂1):

y1(v̂1) − y0 = 16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2(v̂∗ − u)

Âc(T̂ (u))(v̂− − u)(u − v̂+)
du. (64)
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Moreover, the integration can be carried out explicitly for special forms of Âc(T̂ ), such as Âc(T̂ ) = 1,√
T̂ , and T̂ . The results are given in Appendix D.
Finally, we discuss the possible choices of the initial value v̂0 and the relation between the resulting

solution v̂1 [and Eq. (63)] and the profiles of types A, B, and C. Here, we note that M̃− < M− holds
(see the end of Appendix A 3):

(i) Case of M̃− < 1 < M−:
Since M̃− = √

6/5v̂−, it follows from Eq. (61) that v̂− < v̂∗. Therefore, the admissible range of
the initial value v̂0, i.e., v̂0 < v̂∗ and v̂0 ∈ (v̂+, v̂−), reduces to just v̂0 ∈ (v̂+, v̂−). That is, we can
take v̂0 as almost v̂−, i.e., v̂0 = v̂− − 0. Therefore, the solution v̂1 is expected to describe the whole
profile of the velocity. Let us consider this point in more detail. We consider Eq. (64) for a fixed
value of v̂1 in the middle of the profile, v̂+ < v̂1 < v̂−. Then, we have the following estimate:

y1(v̂1) − y0 > Cy(v̂1)
∫ v̂0

v̂1

1

v̂− − u
du = Cy(v̂1)[− ln(v̂− − v̂0) + ln(v̂− − v̂1)], (65)

where

Cy(v̂1) = 16

3(γ + 1)v̂−

v̂2
1(v̂∗ − v̂0)

maxv̂1�u�v̂0 [Âc(T̂ (u))] (v̂0 − v̂+)
> 0. (66)

As the initial value v̂0 approaches the upstream velocity v̂−, the coordinate y1(v̂1), which expresses
the coordinate y1 inside the shock profile, diverges to +∞. To locate the shock profile in a more
comfortable range with finite y1, we need to shift the coordinate, or take the initial position y0 as −∞.
Theoretically, if we assume that v̂0 → v̂− at y1 → −∞, we obtain the whole profile of v̂1, changing
from v̂− to v̂+, in a range of finite y1. Correspondingly, ρ̂ changes from ρ̂(v̂−) = 1 to ρ̂(v̂+) = ρ̂+,
T̂tr changes from T̂tr(v̂−) = 1 to T̂tr(v̂+) = T̂+, and T̂int changes from T̂int(v̂−) = 1 to T̂int(v̂+) = T̂+.
This solution corresponds to the whole profile of type A.

(ii) Case of M̃− = 1:
In this case, it follows from Eq. (61) that v̂∗ = v̂− = √

5/6. Therefore, the admissible range of
the initial value v̂0 is still v̂0 ∈ (v̂+, v̂−). However, Eq. (64) reduces to

y1(v̂1) − y0 = 16

3(γ + 1)v̂−

∫ v̂0

v̂1

u2

Âc(T̂ (u))(u − v̂+)
du. (67)

Since the integrand does not have a singularity at u = v̂−, the integral takes a finite value at v̂0 = v̂−
for a fixed value of v̂1 in the middle of the profile, v̂+ < v̂1 < v̂−. This means that y0 can be a finite
value, say y0 = 0, and the velocity profile locates in a range with finite y1. Therefore, the solution
v̂1 can describe the whole velocity profile v̂− → v̂+ in the range y1 ∈ [y0,∞). From Eq. (60), we
observe that

dv̂1

dy1

∣∣∣∣
y1=y0

= −3(γ + 1)

16
Âc(1)

v̂− − v̂+
v̂−

< 0. (68)

This means that the profile of the velocity suddenly start at y1 = y0 with a finite gradient and
approaches v̂+ as y1 → ∞. In other words, the velocity profile exhibits a corner at y1 = y0. From
Eq. (63a), it follows that

dρ̂

dy1

∣∣∣∣
y1=y0

= − 1

v̂−

dv̂1

dy1

∣∣∣∣
y1=y0

> 0,
dT̂tr

dy1

∣∣∣∣∣
y1=y0

= −2

(
v̂− − 1

2v̂−

)
dv̂1

dy1

∣∣∣∣
y1=y0

> 0. (69)

Therefore, profiles of ρ̂ and T̂tr show the same behavior. However, from Eq. (63b), we have

dT̂int

dy1

∣∣∣∣∣
y1=y0

= 8

δ
(v̂− − v̂∗∗)

dv̂1

dy1

∣∣∣∣
y1=y0

= 0, (70)
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because v̂∗∗ = v̂− = √
5/6 [Eq. (26a)]. Therefore, the profile of T̂int does not exhibit a corner at

y1 = y0. These results are consistent with the numerical solution in Sec. IV D 2 (see Sec. V B). This
solution corresponds to the type-B profile.

(iii) Case of M̃− > 1:
Because v̂∗ < v̂− in this case, the admissible range for the initial value reduces to v̂0 ∈ (v̂+, v̂∗).

Here, we should note that v̂+ < v̂∗∗ < v̂∗ holds. Therefore, we can take v̂∗∗, which is the
dimensionless downstream velocity of the shock wave when θ = 0 [Eq. (26a)], as the initial value
v̂0. Then, the solution v̂1 describes the monotonic decrease from v̂∗∗ to v̂+ as y1 varies from y0 to ∞.
Correspondingly, ρ̂ changes from ρ̂(v̂∗∗) = ρ̂∗∗ to ρ̂(v̂+) = ρ̂+, T̂tr changes from T̂tr(v̂∗∗) = T̂∗∗
to T̂tr(v̂+) = T̂+, and T̂int changes from T̂int(v̂∗∗) = 1 to T̂int(v̂+) = T̂+, where ρ̂∗∗ and T̂∗∗ are,
respectively, the values of ρ̂ and T̂tr downstream of the shock wave with θ = 0 [Eq. (26)]. This
corresponds to the thick rear layer of the type-C profile. To be more specific, we replace the thin
front layer with a jump satisfying the Rankine-Hugoniot relations for θ = 0 and the thick layer with
the solution corresponding to v̂1 obtained here. In this way, we can describe the type-C profile by
the slowly varying solution.

In summary, the slowly varying solution, i.e., v̂1 obtained from Eq. (64) and the corresponding
ρ̂, T̂tr , and T̂int in Eq. (63), can successfully describe the type-A profile when M̃− < 1 < M−, the
type-B profile when M̃− = 1, and the type-C profile, with the help of the Rankine-Hugoniot relations
for θ = 0 [Eq. (26) or (A20) with T̂tr− = T̂−], when M̃− > 1.

In Ref. [30], the shock-wave structure of a polyatomic gas is investigated by a set of macroscopic
equations that is derived by the extended thermodynamics [31] or from the Boltzmann equation
by an appropriate moment closure [31,32] (see also Ref. [30]). In this Boltzmann equation, the
internal modes are modeled by a single continuous variable [22] as in the ES model used here. The
macroscopic equations expressed in terms of the slowly varying variable y1 in Eq. (44) are essentially
the same as our equations (53). It should also be mentioned that a system of macroscopic equations
corresponding to a slowly varying kinetic solution has been obtained to describe the structure of
a shock wave in a gas mixture with slow chemical reactions in Ref. [41], where the profiles are
classified according to the parameters.

B. Comparison with numerical results

In this subsection, we compare the slowly varying solution with the numerical solutions.
The pseudo-CO2 gas with μb/μ = 100 and 1000 gives θ = 5.00... × 10−3 and 5.00... × 10−4,
respectively, which are quite small. Therefore, we expect from its derivation that the leading-order
slowly varying solution obtained in Sec. V A describes the shock profile accurately. To confirm this
statement, we consider the case of μb/μ = 100, for which the leading-order solution should be less
accurate than the case of μb/μ = 1000, and make some comparisons. In Figs. 16–19 below, x1 = 0
is set in the same way as in Figs. 2, 7, 12, and 14, respectively, for the numerical solution. Then,
the profiles obtained by the slowly varying solution is shifted in such a way that the point at which
ρ̌ = 0.5 coincides with that of the numerical solution.

Figure 16 shows the profiles of ρ̌, v̌, and Ť at M− = 5 and for μb/μ = 100. Figure 16(b)
is a magnified figure of Fig. 16(a). The colored lines show the numerical solution obtained in
Sec. IV D 2: the red line indicates ρ̌, the green line v̌, and the blue line Ť . The black dot-dashed
line indicates the profile of the thick rear layer obtained on the basis of the Rankine-Hugoniot
relations for μb/μ = ∞ [Eq. (A20) with T̂Tr− = T̂−] and the slowly varying solution corresponding
to Eq. (64) in the case of M̃− > 1 (see Sec. V A). In Fig. 16(b), the numerical result for μb/μ = ∞
is also shown by the black dashed line. As one can see, the slowly varying solution describes
perfectly the profiles in the thick rear layer. Figure 17 shows the profiles at M− = 1.2 and for
μb/μ = 100, where the colors and types of the lines are the same as Fig. 16. In this case, the profiles
of the rear layer given by the slowly varying solution deviates slightly from the numerical solution.
However, we can say that the agreement is still good. Figures 16 and 17 correspond to type-C
profile.
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FIG. 16. Comparison between the profiles based on the slowly varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 5 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100 are shown in
the figure. (a) Profiles for −40 � x1 � 200; (b) profiles for −20 � x1 � 60. The red line indicates ρ̌, the green
line v̌, and the blue line Ť of the numerical solution. The black dot-dashed line indicates the corresponding
profiles obtained on the basis of the slowly varying solution. In panel (b), the numerical solution of the ES
model for μb/μ = ∞ is also shown by the black dashed line.

The comparison of the profiles at M− = 1.138... (M̃− = 1) and for μb/μ = 100 is made in Fig. 18.
As in Figs. 16 and 17, Fig. 18(b) is a magnified figure. Note that the scale of v̌ is shown on the right
side in Fig. 18(b). In this case, the slowly varying solution based on Eq. (64) gives a profile that
starts suddenly with a corner, as shown by the dot-dashed lines in Fig. 18(b). We may call this case
strict type B. It agrees with the numerical solution on the whole, though there is a visible difference
in the magnified figure, Fig. 18(b). The numerical solution gives profiles that start smoothly without
a corner. However, as μb/μ becomes large, say 1000, the start of the profiles becomes sharper, and
the difference between the numerical and slowly varying solutions becomes invisible.

Figure 19 shows the comparison of the profiles at M− = 1.05 and for μb/μ = 100. In this case,
the agreement between the numerical and slowly varying solutions is good even in the magnified
Fig. 19(b). This corresponds to type-A profile.

In this subsection, we compared the numerical and slowly varying solutions for the pseudo-CO2

gas with a smaller μb/μ, i.e., μb/μ = 100, and confirmed the agreement. It should be emphasized
that we have much better agreement for the real CO2 gas with μb/μ of the order of 1000.
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FIG. 17. Comparison between the profiles based on the slowly varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 1.2 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100 are shown
in the figure. (a) Profiles for −100 � x1 � 1200; (b) profiles for −40 � x1 � 200. See the caption of Fig. 16.
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FIG. 18. Comparison between the profiles based on the slowly varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 1.138... (M̃− = 1) for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100
are shown in the figure. (a) Profiles for −200 � x1 � 1800; (b) profiles for −160 � x1 � 160. The red line
indicates ρ̌, the green line v̌, and the blue line Ť of the numerical solution. The black dot-dashed line indicates
the corresponding profiles obtained on the basis of the slowly varying solution.

VI. CONCLUDING REMARKS

In the present study, we investigated the structure of a standing shock wave in a polyatomic gas
with a large bulk viscosity on the basis of the polyatomic version of the ES model for the Boltzmann
equation. It is known that the CO2 gas has a large value of the ratio of the bulk viscosity to the viscosity
(μb/μ), which is of the order of 1000. Therefore, we considered a pseudo-CO2 gas with the same
properties as the CO2 gas except that μb/μ takes arbitrary values and investigated its behavior as
μb/μ increases up to 2000 to understand the properties of the shock profiles when μb/μ is large.
The study was motivated by the recent results based on the extended thermodynamics [14–16].

We first carried out direct numerical computations of the ES model and obtained the profiles of
the macroscopic quantities inside the shock wave accurately for the pseudo-CO2 gas and the real
CO2 gas, i.e., the pseudo-CO2 gas with the real value of μb/μ (Sec. IV). In this step, we were able
to reproduce the type-A, B, and C profiles defined in Ref. [14] (Fig. 1) at relatively small upstream
Mach numbers (i.e., for small M− − 1) for the CO2 gas. Here, the type-A profile is a profile almost
symmetric with respect to the center for each macroscopic quantities, the type-B profile is the profile
that is nonsymmetric and has a corner upstream, and the type-C profile is the profile consisting of
a thin upstream layer with a sharp change and a thick downstream layer with a slow change. We
obtained the type-C profile also for higher upstream Mach numbers, which is consistent with the
result in Ref. [16] based on the nonlinear extended thermodynamics. In addition, we observed that
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FIG. 19. Comparison between the profiles based on the slowly varying solution and those of numerical
solution. Profiles of ρ̌, v̌, and Ť at M− = 1.05 for δ = 4, Pr = 0.761, Ac = const, and μb/μ = 100 are shown
in the figure. (a) Profiles for −2500 � x1 � 3000; (b) profiles for −200 � x1 � 200. See the caption of Fig. 18.
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as the ratio μb/μ increases, the thin front layer in the type-C profile does not change, whereas the
thickness of the thick rear layer increases indefinitely. In the limit when μb/μ → ∞, the shock wave
reduces to the thin upstream layer only and its downstream state approaches a uniform equilibrium
state satisfying the different Rankine-Hugoniot relations [Eq. (A20)] that hold when μb/μ = ∞.

Then, motivated by the numerical results, we tried to describe the behavior of the thick rear layer
of the type-C profile by a slowly varying solution of the ES model, the length scale of which is of
the order of μb/μ (or the inverse of the parameter θ appearing in the ES model) (Sec. V). Carrying
out an asymptotic analysis for small θ (or large μb/μ) using a Hilbert-type expansion, we derived
a simple set of ordinary differential equations for the macroscopic quantities, which can be solved
analytically. We showed that the type-C profile can be described by this slowly varying solution
correctly if its upstream condition is set to be the downstream condition of the Rankine-Hugoniot
relations forμb/μ = ∞. This is a kind of revival of the Bethe-Teller theory [17] discussed in Ref. [14].
In addition, we showed that the slowly varying solution can also describe the entire type-A and B
profiles correctly.

In this study, we assumed that the ratio μb/μ is large (1000 to 2000) for the CO2 gas according
to the literature [28,29]. However, there are some doubts about it, e.g., Ref. [42]. This discrepancy
should be an important subject to be investigated. Nevertheless, the slowly varying solution derived
here should give a good approximation even if μb/μ is much smaller, say, of the order of 10, such
as the hydrogen gas for which μb/μ ≈ 30 [28,29].

In the present paper, we have restricted ourselves to the structure of the plane shock wave. However,
the macroscopic equations corresponding to the slowly varying solution have been derived for the
general three-dimensional case. Therefore, they can be applied easily to the structure of a curved
shock wave in a polyatomic gas with large bulk viscosity.

Finally, we comment on possible extensions of the present work. The present study is fully
based on the ES model, not on the original Boltzmann equation. However, in order to describe the
complicated process of energy exchange during collisions and relaxation processes, one needs to
introduce some phenomenological models [22,43] even in the Boltzmann equation. Nevertheless,
the extension of the present study to such Boltzmann models would be an important problem to
be tackled. Another possible extension is to investigate the shock-wave structure for a mixture of
polyatomic gases (containing CO2) by the use of a Boltzmann-type model (e.g., Ref. [44]) or a
Bhatnager-Gross-Krook (BGK)–type model (e.g, [45]) for polyatomic gas mixtures. In the present
study, we restricted ourselves to a calorically perfect (or polytropic) gas, for which the specific heat
at constant pressure and that at constant volume are constants. The extension of the present study
to a thermally perfect (or nonpolytropic) gas with the specific heats depending on the temperature
would also be possible if one uses appropriate existing models, such as the Boltzmann-type models
in Ref. [22,44] and the BGK-type models in Ref. [45].
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APPENDIX A: SOME PROPERTIES OF THE ES MODEL

1. Moments of Gaussian

We first calculate moments of the Gaussian (6b). Let us consider the following moments: With
i, j = 1, 2, 3,

I0[G] =
∫∫ ∞

0
GdEdξ , (A1a)

023401-25



SHINGO KOSUGE AND KAZUO AOKI

Ii[G] =
∫∫ ∞

0
ξiGdEdξ =

∫∫ ∞

0
(ξi − vi)GdEdξ + viI0[G], (A1b)

I4[G] =
∫∫ ∞

0
EGdEdξ , (A1c)

Iij [G] =
∫∫ ∞

0
ξiξjGdEdξ =

∫∫ ∞

0
(ξi − vi)(ξj − vj )GdEdξ + vj Ii[G] + viIj [G] − vivj I0[G].

(A1d)

If we let xi = (ξi − vi)/
√

2 and y = E/RTrel, the Gaussian G [Eq. (6b)] is expressed as

G = ρyδ/2−1

(2π )3/2[det(T)]1/2RTrel�(δ/2)
exp(−t xT−1x − y). (A2)

In this subsection, bold-faced letters indicate column vectors; for instance, x is the column vector with
components x1, x2, and x3, and t x is its transpose, i.e., t x = [x1, x2, x3]. Let us denote the eigenvalues
of T−1 by λ(i) (i = 1, 2, 3), where λ(i) > 0 because T is positive definite, and the orthogonal matrix
that diagonalizes T−1 by P, i.e.,

tPT−1P = diag [λ(1), λ(2), λ(3)], (A3)

where diag [ ] indicates a diagonal matrix. Then, we have det(T) = [det(T−1)]−1 = (λ(1)λ(2)λ(3))−1.
If we introduce the column vector c with components c1, c2, and c3 by x = Pc and another column
vector z with components z1 = (λ(1))1/2c1, z2 = (λ(2))1/2c2, and z3 = (λ(3))1/2c3, then we have

t xT−1x = t ctPT−1Pc =
3∑

i=1

λ(i)c2
i = |z|2. (A4)

Therefore, the Gaussian G and ξi − vi are expressed in the following form:

G = ρyδ/2−1

(2π )3/2(λ(1)λ(2)λ(3))−1/2RTrel�(δ/2)
exp(−|z|2 − y), (A5a)

ξi − vi =
√

2 xi =
√

2 (P)ij cj =
3∑

j=1

(2/λ(j ))1/2(P)ij zj . (A5b)

Let us change the integration variables from (E, ξ ) to (y, z) in Eqs. (A1). Then, the domain of
integration becomes from 0 to ∞ for y and the whole space for z, and the relation dEdξ =
2
√

2RTrel(λ(1)λ(2)λ(3))−1/2dyd z holds, where d z = dz1dz2dz3. Thus, we obtain the following
expressions:

I0[G] = ρ

π3/2�(δ/2)

∫∫ ∞

0
yδ/2−1 exp(−|z|2 − y)dyd z = ρ, (A6a)

Ii[G] − viI0[G] = ρ

π3/2�(δ/2)

3∑
j=1

(2/λ(j ))1/2(P)ij

∫∫ ∞

0
yδ/2−1zj exp(−|z|2 − y)dyd z = 0,

(A6b)

I4[G] = ρRTrel

π3/2�(δ/2)

∫∫ ∞

0
yδ/2 exp(−|z|2 − y)dyd z = ρ

δRTrel

2
, (A6c)

Iij [G] − vivj I0[G] = 2ρ

π3/2�(δ/2)

3∑
k,l=1

(P)ik(P)j l(λ
(k)λ(l))−1/2

∫∫ ∞

0
yδ/2−1zkzl exp(−|z|2 − y)dyd z
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= ρ

3∑
k,l=1

(P)ik(P)j l(λ
(k)λ(l))−1/2δkl = ρ

3∑
k=1

(λ(k))−1(P)ik(P)jk. (A6d)

Taking the inverse of tPT−1P = diag [λ(1), λ(2), λ(3)] and multiplying by P from the left and by tP
from the right, we have T = P diag [1/λ(1), 1/λ(2), 1/λ(3)] tP, or (T)ij = ∑3

k=1(λ(k))−1(P)ik(P)jk .
Therefore, the last line of Eq. (A6d) becomes ρ (T)ij .

In summary, we have the following expressions of the moments of the Gaussian:

I0[G] = ρ, Ii[G] = ρvi, I4[G] = ρ
δRTrel

2
, (A7a)

Iij [G] = ρ (T)ij + ρvivj , Ikk[G] = 3(1 − θ )ρRTtr + 3θρRT + ρv2
k , (A7b)

1

2
Ikk[G] + I4[G] = 3 + δ

2
ρRT + 1

2
ρv2

k . (A7c)

2. Conservation laws

From Eqs. (6d)–(6j), the following relations hold:

I0[f ] = ρ, Ii[f ] = ρvi, I4[f ] = ρ
δRTint

2
, (A8a)

Iij [f ] = pij + ρvivj , Ikk[f ] = 3ρRTtr + ρv2
k , (A8b)

1

2
Ikk[f ] + I4[f ] = 3 + δ

2
ρRT + 1

2
ρv2

k . (A8c)

Equations (A7) and (A8) immediately show that Eq. (11) holds and verify the fact that Q(f ) = 0
and f = feq are equivalent [see the paragraph containing Eq. (10)].

Multiplying Eq. (5) by 1, ξi , and ξ 2
k /2 + E and integrating the resulting equations with respect to

E from 0 to ∞ and with respect to ξ over its whole space, we obtain, from Eq. (11), the following
relations:

∂

∂X1

∫∫ ∞

0
ξ1f dEdξ = ∂

∂X1
(ρv1) = 0, (A9a)

∂

∂X1

∫∫ ∞

0
ξ1ξif dEdξ = ∂

∂X1
(p1i + ρv1vi) = 0, (A9b)

∂

∂X1

∫∫ ∞

0
ξ1

(
1

2
ξ 2
k + E

)
f dEdξ = ∂

∂X1

[
q1 + p1kvk + v1

(
3 + δ

2
p + 1

2
ρv2

k

)]
= 0. (A9c)

That is, we obtain the following conservation laws:

ρv1 = const, p1i + ρv1vi = const, (A10a)

q1 + p1kvk + v1

(
3 + δ

2
p + 1

2
ρv2

k

)
= const. (A10b)

If we apply these relations to the equilibrium states at the upstream and downstream infinities, we
have

ρ−v− = ρ+v+, p− + ρ−v2
− = p+ + ρ+v2

+, (A11a)

v−

(
5 + δ

2
p− + 1

2
ρ−v2

−

)
= v+

(
5 + δ

2
p+ + 1

2
ρ+v2

+

)
, (A11b)

from which the Rankine-Hugoniot relations (2) follow.
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3. Case of θ = 0

In the case of θ = 0, i.e., μb/μ = ∞, Eq. (6j) gives Trel = Tint, so that Eqs. (6b) and (6c) reduce
respectively to

G = ρEδ/2−1

(2π )3/2[det(T)]1/2(RTint)δ/2�(δ/2)
exp

(
−1

2
(ξi − vi)(T−1)ij (ξj − vj ) − E

RTint

)
, (A12a)

(T)ij = (1 − ν)RTtrδij + νpij /ρ. (A12b)

In this case, it follows from Eqs. (A7a) and (A8a) that I4[G] − I4[f ] = ∫∫∞
0 E(G − f )dEdξ = 0.

Therefore, the relation (11) is replaced by∫∫ ∞

0
φrQ(g)dEdξ = 0, (A13)

where φr (r = 0, ..., 5) are the new collision invariants, i.e.,

φ0 = 1, φi = ξi (i = 1, 2, 3), φ4 = 1
2 |ξ |2, φ5 = E . (A14)

Correspondingly, in place of Eq. (A10), the following four conservation laws hold:

ρv1 = const, p1i + ρv1vi = const, (A15a)

(qtr)1 + p1kvk + v1

(
3

2
ρRTtr + 1

2
ρv2

k

)
= const, (A15b)

(qint)1 + v1
δ

2
ρRTint = const, (A15c)

where

(qtr)i = 1

2

∫∫ ∞

0
(ξi − vi)(ξk − vk)2f dEdξ , (A16a)

(qint)i =
∫∫ ∞

0
(ξi − vi)Ef dEdξ . (A16b)

In addition, it is easy to show that the local equilibrium distribution feq is given by

feq = ρEδ/2−1

(2πRTtr)3/2(RTint)δ/2�(δ/2)
exp

(
−|ξ − v|2

2RTtr
− E

RTint

)
, (A17)

instead of Eq. (10).
The form of the local equilibrium distribution in Eq. (A17) indicates that the equilibrium state

at upstream infinity is determined by specifying ρ−, v−, Ttr−, and Tint− and that at downstream
infinity by specifying ρ+, v+, Ttr+, and Tint+, where Ttr− and Tint− are the translational and internal
temperatures at upstream infinity, and Ttr+ and Tint+ are those at downstream infinity. That is, we can
impose the following conditions at upstream and downstream infinities:

f = ρ−Eδ/2−1

(2πRTtr−)3/2(RTint−)δ/2�(δ/2)
exp

(
− (ξ1 − v−)2 + ξ 2

2 + ξ 2
3

2RTtr−
− E

RTint−

)
, (X1 → −∞),

(A18a)

f = ρ+Eδ/2−1

(2πRTtr+)3/2(RTint+)δ/2�(δ/2)
exp

(
− (ξ1 − v+)2 + ξ 2

2 + ξ 2
3

2RTtr+
− E

RTint+

)
, (X1 → ∞).

(A18b)
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If we apply Eq. (A15) to upstream and downstream infinities, we have

ρ−v− = ρ+v+, ρ−RTtr− + ρ−v2
− = ρ+RTtr+ + ρ+v2

+, (A19a)

v−

(
5

2
ρ−RTtr− + 1

2
ρ−v2

−

)
= v+

(
5

2
ρ+RTtr+ + 1

2
ρ+v2

+

)
, (A19b)

v−
δ

2
ρ−RTint− = v+

δ

2
ρ+RTint+. (A19c)

The first and last equations show that Tint− = Tint+. On the other hand, Eqs. (A19a) and (A19b) are
the same as Eqs. (A11a) and (A11b) with δ = 0 (or γ = 5/3) if Ttr is regarded as the temperature
T . Therefore, the Rankine-Hugoniot relations for θ = 0 follow immediately from Eq. (2), that is,

ρ+ = 4M̃2
−

M̃2− + 3
ρ−, v+ = M̃2

− + 3

4M̃2−
v−, (A20a)

Ttr+ = (5M̃2
− − 1)(M̃2

− + 3)

16M̃2−
Ttr−, Tint+ = Tint−, (A20b)

M̃+ =
(

M̃2
− + 3

5M̃2− − 1

)1/2

, (A20c)

where

M̃∓ = v∓√
5RTtr∓/3

. (A21)

Here, M̃− plays the role of the upstream Mach number, so that M̃− > 1 if there is a standing shock.
It is noted that when Ttr− = T−, M̃− < M− holds because M̃−/M− = √

3γ /5 and γ < 5/3.

APPENDIX B: SUPPLEMENTARY DATA FOR NUMERICAL ANALYSIS

Since the profiles of types A, B, and C are very different, we need different grid systems depending
on the types of the profile. In particular, for type C, use should be made of a grid system in x1 that
concentrates inside the thin front layer and cover the wide range of the thick rear layer and one in ζ1 that
covers the high T̂tr behind the thin front layer. Because the jump due to the thin front layer corresponds
to the jump given by the Rankine-Hugoniot relations for μb/μ = ∞ (cf. Secs. IV D 2 and V A), we
need to take into account the information about the downstream condition of this Rankine-Hugoniot
relations in the grid systems. For this purpose, we use the dimensionless downstream density ρ̂∗∗,
velocity v̂∗∗, and temperature T̂∗∗ defined by Eq. (26).

1. Grid systems

For the x1 coordinate, the range of which has been limited to −Dn � x1 � Dp, we use the grid
points x(i) concentrated near x1 = 0 based on functions containing pth power and qth power of x1,
i.e.,

x(i) = Dn

1 + a

[
i

Nn

+ a

(
i

Nn

)p ]
, x(−i) = −x(i), (i = 0, 1, . . . , Nn), (B1a)

x(i) = Dn + Dp − Dn

1 + b

[
i − Nn

Np − Nn

+ b

(
i − Nn

Np − Nn

)q ]
, (i = Nn + 1, Nn + 2, . . . , Np). (B1b)

This grid system is prepared to capture the type-C profile composed of a thin front layer with a sharp
change and a thick rear layer with slow relaxation: Equation (B1a) is for the thin front layer, and
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Eq. (B1b) is for the thick rear layer. With Eq. (B1), the grid interval di = x(i) − x(i−1) becomes

d1 ≈ Dn

(1 + a)Nn

, dNn
≈ d1(1 + ap), (B2a)

dNn+1 ≈ Dp − Dn

(1 + b)(Np − Nn)
, dNp

≈ dNn+1(1 + bq). (B2b)

We first choose Dn and Dp (>Dn). For Eq. (B1a), we determine Nn and a based on the minimum
interval d1 and the ratio dNn

/d1 [Eq. (B2a)] and choose the growth rate p. For Eq. (B1b), we determine
Np and b based on the condition dNn+1 ≈ dNn

and the ratio dNp
/dNn+1 [Eq. (B2b)] and choose the

growth rate q.
For the molecular velocity ζ1, whose range has been limited to −Zn � ζ1 � Zp, we use the grid

points that are suitable for the bimodal distribution based on the upstream equilibrium distribution
(33a) centered at ζ1 = v̂− and the downstream equilibrium distribution (33b) centered at ζ1 = v̂+
(<v̂−). More specifically, we use a uniform grid interval for v̂+ � ζ1 � v̂− and nonuniform grid
intervals suitable to describe the half-range distribution of Eq. (33a) [or Eq. (33b)] for v̂− � ζ1 � Zp

(or −Zn � ζ1 � v̂+). The explicit expression of the grid points ζ(j ) is as follows:

ζ(j ) = v̂+ − ζ ∗∗
(2Mn−j ), (j = 0,1, . . . ,2Mn), (B3a)

ζ(j ) = v̂+ + (v̂− − v̂+)
j − 2Mn

2M0
, (j = 2Mn + 1, . . . ,2Mn + 2M0), (B3b)

ζ(j ) = v̂− + ζ ∗
(j−2Mn−2M0), (j = 2Mn + 2M0 + 1, . . . ,2M), (B3c)

where ζ ∗
(j ) and ζ ∗∗

(j ) are auxiliary grid systems defined below. Equation (B3a) with 2Mn + 1 grid
points is for −Zn � ζ1 � v̂+, Eq. (B3b) with 2M0 grid points is for v̂+ � ζ1 � v̂−, and Eq. (B3c)
with 2M − 2(Mn + M0) grid points is for v̂− � ζ1 � Zp. The auxiliary system ζ ∗

(j ) is defined by

ζ ∗
(j ) = Z

1 + c

[
j

2M̃p

+ c

(
j

2M̃p

)r ]
, (j = 0,1, . . . ,2M̃p), (B4)

with appropriate constants c, r , Z, and M̃p. This is a grid system for the right half of the shifted
distribution, Eq. (33a) with v̂− = 0, in the limited interval 0 � ζ1 � Z and gives the grid interval
δ∗
j = ζ ∗

(j ) − ζ ∗
(j−1) as follows:

δ∗
1 ≈ Z

2(1 + c)M̃p

, δ∗
2M̃p

≈ δ∗
1 (1 + cr). (B5)

We choose the number of the grid points in Eq. (B3c) [2M − 2(Mn + M0)] larger than that in Eq. (B4),
i.e., M − (Mn + M0) � M̃p. The auxiliary system ζ ∗∗

(j ) is defined by

ζ ∗∗
(j ) = Z

√
τ

1 + c

[
j

2Mn

+ c

(
j

2Mn

)r ]
, (j = 0,1, . . . ,2Mn), (B6a)

τ =
{

max(T̂+, T̂∗∗), (M̃− > 1),

T̂+, (M̃− � 1),
(B6b)

where Mn is chosen to be the minimum integer such that Mn � M̃p

√
τ , and the constants c, r , and

Z are common to ζ ∗
(j ). The T̂∗∗ in Eq. (B6b) is the downstream value of T̂tr for the shock wave with

μb/μ = ∞, and M̃− is the parameter playing the role of the upstream Mach number for such a shock
wave [see Eq. (26b)]. This is basically a grid system for the right half of the shifted distribution,
Eq. (33b) with v̂+ = 0, in the limited interval 0 � ζ1 � Z

√
T̂+. However, to capture the possible

significant overshoot of T̂tr in type-C profiles, the choice of τ in Eq. (B6b) is introduced (note that
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M̃− > 1 corresponds to type-C profile). This ζ ∗∗
(j ) is used in Eq. (B3a) after being reflected and shifted.

We choose the number of grid points (i.e., Mn, M0, and M) in such a way that the minimum and
maximum of the grid intervals in ζ ∗

(j ) are more or less the same as those in ζ ∗∗
(j ) and that the uniform

interval for v̂+ � ζ1 � v̂− is approximately the same as the minimum interval in ζ ∗
(j ) (or ζ ∗∗

(j )).

2. Data for numerical analysis

a. Convergence of iteration

If the computation can be carried out without any error, the shock wave stops somewhere when
the solution has converged. However, because of the small error in the practical computation, the
shock wave exhibits a small shift at each iteration step even after the profile has converged. We obtain
the numerical solution whose shift is small enough compared with the numerical error contained in
the solution.

Let us define the location of the shock wave xs by the point that satisfies

ρ̂(xs) =

⎧⎪⎨⎪⎩
(1 + ρ̂∗∗)/2, (M̃− > 1, i.e., type C),

0.95 + 0.05ρ̂+, (M̃− = 1,, i.e., type B),

(1 + ρ̂+)/2, (M̃− < 1, i.e., type A),

(B7)

where the expression for M̃− = 1 is equivalent to ρ̌ = 0.05. Let h stand for the macroscopic quantities
ρ̂, v̂1, p̂11, p̂22, T̂tr , and T̂int. If we denote the position of the shock wave at the nth iteration step by
x[n]

s and the macroscopic quantities h at the grid point x(i) at the nth step by h[n,i], then the relative
position of the grid point x(i) with respect to the shock location is x(i) − x[n]

s .
The convergence is judged by comparing, at each r steps, h[kr,i] and h[(k−1)r,i] (k = 1, 2, . . .).

In this process, we need to compare them at the points whose relative positions with respect to
the shock location are the same. We first obtain x[kr]

s from ρ̂[kr,i] by the spline interpolation, and
x[(k−1)r,i]

s from ρ̂[(k−1)r,i] by the same. Then, we interpolate h[kr,i] to obtain the value at the point

x(i) − x[(k−1)r]
s + x[kr]

s , which we denote by ˜h[kr,i], and compare it with h[(k−1)r,i]. If the following
inequality

max
i

∣∣∣∣∣ ˜h[kr,i] − h[(k−1)r,i]

h− − h+

∣∣∣∣∣ < ε, (h = ρ̂, v̂1, p̂11, p̂22, T̂tr, T̂int), (B8)

holds with a given small ε, we judge that the solution has converged. Here, h− and h+ are the values
of h at upstream infinity and downstream infinity, respectively.

If we judge that the convergence has been attained at the nth step, we shift the solution in such a way
that x[n]

s becomes 0 and repeat the iteration process with the shifted solution as the initial condition
until the convergence is attained. We repeat this process several times to obtain the solution that
satisfies xs = 0 within the error of the computation.

In all the computations, we have set r = 10 and ε = 10−8.

b. Data for grid systems in x1

For the grid system in x1 defined by Eq. (B1), the parameters a, p, b, and q were set to be
a = 3, p = 3, b = 1, and q = 2 for all the computations. Then, the number of grid points Np in
the downstream side is determined by the range of computation Dn, the number of grid points Nn

in the upstream side, and the range of computation Dp in the downstream side from the condition
dNn+1 ≈ dNn

.
Depending on M−, we used the grid systems (M1) to (M4) in Table I. In (M1) and (M2),

Np increases with μb/μ (when μb/μ is finite), so that the minimum and maximum intervals are
unchanged: In (M1), Np = 404 (μb/μ = 10), 820 (100), and 5320 (1000), and (d1, dNn

, dNp
) ≈

(0.050, 0.50, 1.5); and in (M2), Np = 404 (μb/μ = 10), 920 (100), and 6320 (1000), and
(d1, dNn

, dNp
) ≈ (0.25, 2.5, 7.5). On the other hand, in (M4), Np = 520 is kept constant, and the
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TABLE I. Grid systems in x1.

Grid system M− or M̃− Dn Nn Dp

(M1) M− = 5 80 400 max(5μb/μ,84)a

(M2) M− = 1.2 400 400 max(30μb/μ,420)b

(M3) M̃− = 1 max(400,2μb/μ) 400 max(40μb/μ,420)
(M4) M− = 1.05 100μb/μ 500 120μb/μ

(M1′) M− = 5 64 320 max(4μb/μ,68)
(M1′′) M− = 5 80 320 max(5μb/μ,84)
(M2′) M− = 1.2 320 320 max(24μb/μ,336)
(M2′′) M− = 1.2 400 320 max(30μb/μ,420)

aDp = 84 for μb/μ = ∞.
bDp = 420 for μb/μ = ∞.

grid intervals are proportional to μb/μ, so that (d1, dNn
, dNp

) ≈ (0.050μb/μ, 0.50μb/μ, 1.5μb/μ).
In (M3), the number of grid points as well as the grid intervals change with μb/μ: Np = 404 and
(d1, dNn

, dNp
) ≈ (0.25, 2.5, 6.9) for μb/μ = 10, Np = 1120 and (d1, dNn

, dNp
) ≈ (0.25, 2.5, 7.5)

for μb/μ = 100, and Np = 1920 and (d1, dNn
, dNp

) ≈ (0.0013μb/μ, 0.012μb/μ, 0.037μb/μ) for
μb/μ � 200.

For M− = 5 and 1.2, we also used systems (M1′) and (M2′) (Table I) in which the ranges of
computation are 80% of those of (M1) and (M2), respectively, and systems (M1′′) and (M2′′) (Table I)
in which the numbers of grid points are 80% of (M1) and (M2), respectively, for comparison.

c. Data for grid systems in ζ1

The parameters c and r in the auxiliary system ζ ∗
(j ) [Eq. (B4)] and ζ ∗∗

(j ) [Eq. (B6)] were set to be
c = 3 and r = 3 for all the computation. As described at the end of Appendix B 1, if we give the
width Z and the number of grid points M̃p in ζ ∗

(i), M0 and Mn are determined. We determine M from
the condition

ζ(2M) ≈ max(v̂− + Z, v̂+ + Z
√

τ ), (B9)

where τ is defined by Eq. (B6b). It should be noted that M0, Mn, and M depend on δ and M− as well
as Z and M̃p.

We used the following two grid systems (Z1) and (Z2):

(Z1) Z = 5, M̃p = 50, (Z2) Z = 6, M̃p = 150.

The system (Z1) is for M− = 5 and (Z2) for M− � 1.2. In Table II, we show the numbers of grid
points Mn, M0, and M together with the minimum and maximum values of the grid interval δj

(=ζ(j ) − ζ(j−1)) and those of ζ(j ) when the internal degrees of freedom δ = 4.
For M− = 5 and 1.2, we also used systems (Z1′) and (Z2′) in which the ranges of computation

are 80% of those of (Z1) and (Z2), respectively, and systems (Z1′′) and (Z2′′) in which the numbers

TABLE II. Data for the grid system in ζ1 when the internal degrees of freedom δ = 4.

M− Mn M0 M (δ2Mn+1,δ2M ) (ζ(0),ζ(2M))

5 132 135 332 (0.012,0.20) (−12.5,13.9)
1.2 157 26 334 (0.0049,0.050) (−5.6,7.1)
1.138 . . . (M̃− = 1) 155 19 325 (0.0048,0.050) (−5.5,7.0)
1.05 152 7 310 (0.0049,0.050) (−5.3,6.9)
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of grid points are 80% of (Z1) and (Z2), respectively, for comparison. That is,

(Z1′) Z = 4, M̃p = 40, (Z1′′) Z = 5, M̃p = 40,

(Z2′) Z = 4.8, M̃p = 120, (Z2′′) Z = 6, M̃p = 120.

3. Accuracy of computation

In this subsection, we denote by h[i] and φ
[i,j ]
k the values of the macroscopic quantities h (h = ρ̂,

v̂1, p̂11, p̂22, T̂tr , T̂int, and their polynomials) and the marginal velocity distribution functions φk

(k = 1, 2, 3) at the grid points after the solution has converged.

a. Comparison of the results based on different grid systems

We carried out computations with different grid systems for M− = 5 and 1.2, δ = 4, and μb/μ =
10, 100, and 1000 and confirmed that the results are close each other. We compare the reference result
of a macroscopic quantity h[i]

∗ with the result based on a different grid system h[i]. We first shift h[i]
∗

in such a way that its shock-wave location coincides with that of the solution h[i] and then interpolate
h[i]

∗ at the grid points of h[i]. Denoting the interpolated result by h[i]
∗ anew, we obtain the following D:

D = max
h

(
max

i

∣∣∣∣h[i] − h[i]
∗

h− − h+

∣∣∣∣), (B10)

where the maximum with respect to h means the maximum over the six macroscopic quantities ρ̂,
v̂1, p̂11, p̂22, T̂tr , and T̂int.

For M− = 5, we regard the result based on (M1, Z1) as the reference solution and compare it with
the results based on (M1′, Z1), (M1′′, Z1), (M1, Z1′), and (M1, Z1′′). The values of D are as follows:
D = 2.4 × 10−5 for (M1′, Z1), 3.5 × 10−4 for (M1′′, Z1), 8.3 × 10−5 for (M1, Z1′), and 7.0 × 10−6

for (M1, Z1′′). For M− = 1.2, we regard the result based on (M2, Z2) as the reference solution
and compare it with the results based on (M2′, Z2), (M2′′, Z2), (M2, Z2′), and (M2, Z2′′). The
values of D are as follows: D = 2.9 × 10−5 for (M2′, Z2), 4.8 × 10−5 for (M2′′, Z2), 3.2 × 10−6

for (M2, Z2′), and 2.3 × 10−7 for (M2, Z2′′).

b. Conservation laws and others

In order to check the conservation laws, we compute the following C1, C2, and C3:

C1 = max
i

|[(ρ̂v̂1)[i] − v̂−]/v̂−|,

C2 = max
i

∣∣[(p̂11 + 2ρ̂v̂2
1

)[i] − (1 + 2v̂2
−)
]/

(1 + 2v̂2
−)
∣∣,

C3 = max
i

|(ê[i] − ê−)/ê−|, (B11)

where

ê = q̂1 + p̂11v̂1 + v̂1

(
3 + δ

2
p̂ + ρ̂v̂2

1

)
, ê− = v̂−

(
5 + δ

2
+ v̂2

−

)
,

and let C = max(C1, C2, C3).
Next, as a measure of the closeness of the solution to the equilibrium values at the edges of the

ranges of the computation in x1, we compute the following D− and D+:

D− = max
h

(
max

−Dn�x(i)�−0.95Dn

|(h[i] − h−)/(h+ − h−)|
)

,

D+ = max
h

(
max

0.95Dp�x(i)�Dp

|(h[i] − h+)/(h+ − h−)|
)

. (B12)

Here, the maximum with respect to h is the same as in Eq. (B10).
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The maximum values of C, D−, and D+ over the all computations (for all computations for dif-
ferent μb/μ and δ) are as follows: (C,D−,D+) = (3.6 × 10−5, 1.6 × 10−7, 4.8 × 10−5) for M− =
5; (C,D−,D+) = (9.2 × 10−6, 3.4 × 10−8, 2.2 × 10−5) for M− = 1.2; (C,D−,D+) = (2.8 ×
10−6, 2.9 × 10−6, 2.8 × 10−5) for M̃− = 1; and (C,D−,D+) = (2.1 × 10−6, 8.1 × 10−6, 5.8 ×
10−5) for M− = 1.05.

Finally, we show the magnitude of the marginal velocity distribution function φk (k = 1, 2, 3) at
the edges of the computational range in ζ1. Let Dζ denote

Dζ = max
k,i

(∣∣φ[i,0]
k

∣∣, ∣∣φ[i,2M]
k

∣∣). (B13)

For M− = 5, Dζ = 4.2 × 10−10 [except (Z1′)] and 8.4 × 10−7 [(Z1′)]; for M− = 1.2, Dζ = 1.1 ×
10−15 [except (Z2′)] and 2.2 × 10−10 [(Z2′)]; and for M̃− = 1 and M− = 1.05, Dζ < 7.1 × 10−16.

APPENDIX C: DERIVATION OF THE MACROSCOPIC EQUATIONS

In this Appendix, we consider the case of large ratio μb/μ (or small θ ) and obtain the slowly
varying solution of Eq. (16) whose length scale of variation is of the order of 1/θ . Although
our original problem is spatially one dimensional, we consider the more general spatially three-
dimensional case where f = f (Xi, ξi,E) or f̂ = f̂ (xi, ζi, Ê) on the basis of the ES model,

ζi

∂f̂

∂xi

= 2√
π

Q̂(f̂ ), (C1)

in place of Eq. (16). In this case, the parameters ρ−, T−, and p− in Eq. (15) should be interpreted as
the reference density, temperature, and pressure, and Eqs. (17)–(19) are valid as they stand.

1. Hilbert expansion

Let us introduce a new space coordinates yi = (2/
√

π )θxi whose length scale of variation is of
O(1/θ ). Then, Eq. (C1) becomes

θζi

∂f̂

∂yi

= Âc(T̂ )ρ̂(Ĝ − f̂ ). (C2)

Assuming that θ � 1, we expand f̂ as a power series in θ :

f̂ = f̂ (0) + f̂ (1)θ + f̂ (2)θ2 + · · · . (C3)

Correspondingly, the macroscopic quantities ρ̂, v̂i , p̂ij , . . ., which are represented by ĥ, are expanded
as

ĥ = ĥ(0) + ĥ(1)θ + ĥ(2)θ2 + · · · . (C4)

The expressions of ĥ(k) (k = 0, 1, ...) in terms of f̂ (l) (l = 0, 1, ...) are obtained by a straightforward
calculation in the following form:

ρ̂(k) =
∫∫ ∞

0
f̂ (k)dÊdζ (k = 0, 1, 2, . . .), (C5)

ρ̂(0)v̂
(0)
i =

∫∫ ∞

0
ζi f̂

(0)dÊdζ , ρ̂(0)v̂
(1)
i =

∫∫ ∞

0
ζi f̂

(1)dÊdζ − ρ̂(1)v̂
(0)
i , . . . , (C6)

p̂
(0)
ij = 2

∫∫ ∞

0

(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)
f̂ (0)dÊdζ , (C7a)

p̂
(1)
ij = 2

∫∫ ∞

0

(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)
f̂ (1)dÊdζ , . . . , (C7b)
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ρ̂(0)T̂
(0)

tr = (
p̂

(0)
11 + p̂

(0)
22 + p̂

(0)
33

)/
3, ρ̂(0)T̂

(1)
tr = (

p̂
(1)
11 + p̂

(1)
22 + p̂

(1)
33

)/
3 − ρ̂(1)T̂

(0)
tr , . . . , (C8)

ρ̂(0)T̂
(0)

int = 2

δ

∫∫ ∞

0
Ê f̂ (0)dÊdζ , ρ̂(0)T̂

(1)
int = 2

δ

∫∫ ∞

0
Ê f̂ (1)dÊdζ − ρ̂(1)T̂

(0)
int , . . . , (C9)

T̂ (k) = 3T̂
(k)

tr + δT̂
(k)

int

3 + δ
, (k = 0, 1, 2, . . .), (C10)

T̂
(0)

rel = T̂
(0)

int , (C11a)

T̂
(k)

rel = T̂
(k)

int + (
T̂ (k−1) − T̂

(k−1)
int

) = T̂
(k)

int + 3

3 + δ

(
T̂

(k−1)
tr − T̂

(k−1)
int

)
, (k = 1, 2, . . .). (C11b)

Consequently, Âc(T̂ ) and Ĝ are also expanded, i.e.,

Âc(T̂ ) = Â(0)
c + Â(1)

c θ + Â(2)
c θ2 + · · · , (C12a)

Ĝ = Ĝ(0) + Ĝ(1)θ + Ĝ(2)θ2 + · · · . (C12b)

Here

Â(0)
c = (Âc)θ=0 = Âc(T̂ (0)), (C13a)

Â(1)
c =

(dÂc

dθ

)
θ=0

=
(dÂc

dT̂

dT̂

dθ

)
θ=0

=
(dÂc

dT̂

)
T̂ =T̂ (0)

T̂ (1), . . . , (C13b)

Ĝ(0) = Ĝ|θ=0

= ρ̂(0)Êδ/2−1

π3/2([det(T̂)](0))1/2
(
T̂

(0)
rel

)δ/2
�(δ/2)

exp

(
−(ζi − v̂

(0)
i

)
(T̂−1)(0)

ij

(
ζj − v̂

(0)
j

)− Ê
T̂

(0)
rel

)
, (C13c)

Ĝ(1) =
(dĜ

dθ

)
θ=0

=
(
Ĝ d ln Ĝ

dθ

)
θ=0

= Ĝ(0)�(1), . . . , (C13d)

where

�(1) = ρ̂(1)

ρ̂(0)
− 1

2

[det(T̂)](1)

[det(T̂)](0)
+ T̂

(1)
rel

T̂
(0)

rel

(
Ê

T̂
(0)

rel

− δ

2

)
− (

ζi − v̂
(0)
i

)
(T̂−1)(1)

ij

(
ζj − v̂

(0)
j

)
+ v̂

(1)
i (T̂−1)(0)

ij

(
ζj − v̂

(0)
j

)+ (
ζi − v̂

(0)
i

)
(T̂−1)(0)

ij v̂
(1)
j . (C14)

In Eqs. (C13c) and (C14), T̂(k), (T̂−1)(k), and [det(T̂)](k) (k = 0 and 1) are the coefficients of the
expansions of T̂, T̂−1, and det(T̂):

T̂ = T̂(0) + T̂(1)θ + · · · , (C15a)

T̂−1 = (T̂−1)(0) + (T̂−1)(1)θ + · · · , (C15b)

det(T̂) = [det(T̂)](0) + [det(T̂)](1)θ + · · · , (C15c)

and are obtained as follows.
Let us write the (i,j ) component of T̂ as

(T̂)ij = (1 − θ )�ij + θT̂ δij , �ij = (1 − ν)T̂trδij + νp̂ij /ρ̂. (C16)

Since �ij is expanded as

�ij = �
(0)
ij + �

(1)
ij θ + · · · , (C17)
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with

�
(0)
ij = (1 − ν)T̂ (0)

tr δij + νp̂
(0)
ij /ρ̂(0), (C18a)

�
(1)
ij = (1 − ν)T̂ (1)

tr δij + ν
(
p̂

(1)
ij − ρ̂(1)p̂

(0)
ij

/
ρ̂(0)

)/
ρ̂(0), . . . , (C18b)

the (i,j ) components of the coefficients of the expansion of T̂ [Eq. (C15a)] are obtained as follows:

(T̂(0))ij = �
(0)
ij , (T̂(k))ij = �

(k)
ij + (

T̂ (k−1)δij − �
(k−1)
ij

)
, (k = 1, 2, . . .). (C19)

Next, we consider the relation T̂T̂−1 = E, where E is the 3 × 3 unit matrix. Substituting the
expansions of T̂ and T̂−1 [Eqs. (C15a) and (C15b)] into this relation, we immediately have

T̂(0)(T̂−1)(0) = E, T̂(0)(T̂−1)(1) + T̂(1)(T̂−1)(0) = O, . . . , (C20)

where O is the 3 × 3 zero matrix. That is, we have the following relations:

(T̂−1)(0) = (T̂(0))−1, (T̂−1)(1) = −(T̂(0))−1T̂(1)(T̂(0))−1, . . . . (C21)

Finally, the coefficients of the expansion of det(T̂) [Eq. (C15c)] can be obtained as follows:

[det(T̂)](0) = det(T̂)|θ=0 = det(T̂(0)), (C22a)

[det(T̂)](1) = d det(T̂)

dθ

∣∣∣
θ=0

= det

⎡⎢⎣(T̂(1))11 (T̂(0))12 (T̂(0))13

(T̂(1))21 (T̂(0))22 (T̂(0))23

(T̂(1))31 (T̂(0))32 (T̂(0))33

⎤⎥⎦+ det

⎡⎢⎣(T̂(0))11 (T̂(1))12 (T̂(0))13

(T̂(0))21 (T̂(1))22 (T̂(0))23

(T̂(0))31 (T̂(1))32 (T̂(0))33

⎤⎥⎦

+ det

⎡⎢⎣(T̂(0))11 (T̂(0))12 (T̂(1))13

(T̂(0))21 (T̂(0))22 (T̂(1))23

(T̂(0))31 (T̂(0))32 (T̂(1))33

⎤⎥⎦,

. . . . (C22b)

If we use Eqs. (C3), (C4), and (C12) in Eq. (C2) and equate the terms of the same power of θ , we
obtain

f̂ (0) = Ĝ(0), (C23a)

f̂ (1) = Ĝ(1) − 1

Â
(0)
c ρ̂(0)

ζi

∂f̂ (0)

∂yi

,

. . . . (C23b)

Equations (C23a) and (C23b) are, respectively, the integral equations for f̂ (0) and f̂ (1). The
conservation property (21) indicates that∫∫ ∞

0
ϕ̂r (Ĝ(n) − f̂ (n))dÊdζ = 0, (n = 0, 1, 2, . . .), (C24)

holds, where ϕ̂r (r = 0, ..., 4) are the dimensionless collision invariants given in Eq. (22). Equation
(C24) with n = 1 gives the compatibility condition of Eq. (C23b), i.e.,

∫∫ ∞

0

⎛⎜⎝ ζj

ζiζj

(ζ 2
k + Ê)ζj

⎞⎟⎠∂f̂ (0)

∂yj

dÊdζ = 0. (C25)
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a. Zeroth-order solution

Equations (C13c) and (C23a) and the relations T̂
(0)

rel = T̂
(0)

int [Eq. (C11a)], (T̂−1)(0) = (T̂(0))−1

[Eq. (C21)], and [det(T̂)](0) = det(T̂(0)) [Eq. (C22a)] give the following f̂ (0):

f̂ (0) = ρ̂(0)Êδ/2−1

π3/2[det(T̂(0))]1/2
(
T̂

(0)
int

)δ/2
�(δ/2)

exp

(
−(ζi − v̂

(0)
i

)
[(T̂(0))−1]ij

(
ζj − v̂

(0)
j

)− Ê
T̂

(0)
int

)
.

(C26)

If we calculate p̂
(0)
ij using Eqs. (C26) and (C7a), we have

p̂
(0)
ij = ρ̂(0)(T̂(0))ij = (1 − ν)ρ̂(0)T̂

(0)
tr δij + νp̂

(0)
ij . (C27)

Since ν = 1, we obtain

p̂
(0)
ij = ρ̂(0)T̂

(0)
tr δij . (C28)

In consequence, we obtain the following (T̂(0))ij and thus f̂ (0):

(T̂(0))ij = T̂
(0)

tr δij , (C29)

f̂ (0) = ρ̂(0)Êδ/2−1(
πT̂

(0)
tr

)3/2(
T̂

(0)
int

)δ/2
�(δ/2)

exp

(
−
(
ζk − v̂

(0)
k

)2

T̂
(0)

tr

− Ê
T̂

(0)
int

)
. (C30)

Here, ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int are unknown functions, the equation for which will be derived in

Appendix C 2. Equation (C30) is the dimensionless local equilibrium distribution for θ = 0 [cf.
Eq. (A17)].

b. First-order solution

From Eq. (C23b), the first-order solution is expressed as

f̂ (1) = f̂ (0)�(1) − 1

Â
(0)
c ρ̂(0)

ζi

∂f̂ (0)

∂yi

. (C31)

From the zeroth-order result and Eqs. (C19), (C21), and (C22b), we have the following expressions:

(T̂(1))ij = [
T̂

(1)
tr + (

T̂ (0) − T̂
(0)

tr

)]
δij + ν

1

ρ̂(0)

(
p̂

(1)
ij − 1

3
p̂

(1)
kk δij

)
, (C32a)

(T̂−1)(1) = − 1(
T̂

(0)
tr

)2 T̂(1), [det(T̂)](1) = (
T̂

(0)
tr

)2
tr(T̂(1)), (C32b)

where tr(T̂(1)) indicates the trace of T̂(1). With these relations, �(1) in Eq. (C14) is transformed into
the following form:

�(1) = ρ̂(1)

ρ̂(0)
− tr(T̂(1))

2T̂
(0)

tr

+ T̂
(1)

rel

T̂
(0)

int

(
Ê

T̂
(0)

int

− δ

2

)
+ (T̂(1))ij

(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)(
T̂

(0)
tr

)2 + 2

(
ζj − v̂

(0)
j

)
v̂

(1)
j

T̂
(0)

tr

= ρ̂(1)

ρ̂(0)
+ 2

(
ζj − v̂

(0)
j

)
v̂

(1)
j

T̂
(0)

tr

+ tr(T̂(1))

3T̂
(0)

tr

[(
ζk − v̂

(0)
k

)2

T̂
(0)

tr

− 3

2

]
+ T̂

(1)
rel

T̂
(0)

int

(
Ê

T̂
(0)

int

− δ

2

)

+
[

(T̂(1))ij − 1

3
tr(T̂(1))δij

](
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)(
T̂

(0)
tr

)2
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= ρ̂(1)

ρ̂(0)
+ 2

(
ζj − v̂

(0)
j

)
v̂

(1)
j

T̂
(0)

tr

+ 1

T̂
(0)

tr

[
T̂

(1)
tr + (

T̂ (0) − T̂
(0)

tr

)][(ζk − v̂
(0)
k

)2

T̂
(0)

tr

− 3

2

]

+ 1

T̂
(0)

int

[
T̂

(1)
int + (

T̂ (0) − T̂
(0)

int

)]( Ê
T̂

(0)
int

− δ

2

)

+ ν
1

ρ̂(0)T̂
(0)

tr

(
p̂

(1)
ij − 1

3
p̂

(1)
kk δij

)(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)
T̂

(0)
tr

. (C33)

2. Macroscopic equations

By using Eq. (C30) in the compatibility condition (C25), we obtain the following five equations
containing six functions ρ̂(0), v̂

(0)
j , T̂

(0)
tr , and T̂

(0)
int :

∂

∂yj

(
ρ̂(0)v̂

(0)
j

) = 0, (C34a)

∂

∂yj

(
1

2
ρ̂(0)T̂

(0)
tr δij + ρ̂(0)v̂

(0)
i v̂

(0)
j

)
= 0, (C34b)

∂

∂yj

[
ρ̂(0)v̂

(0)
j

(
v̂

(0)
k

)2 + ρ̂(0)v̂
(0)
j

5T̂
(0)

tr + δT̂
(0)

int

2

]
= 0. (C34c)

Therefore, we need one more equation to close the system, which will be obtained in the following
process.

In addition to the zeroth-order variables ρ̂(0), v̂
(0)
j , T̂

(0)
tr , and T̂

(0)
int , the first-order solution f̂ (1)

contains the first-order variables ρ̂(1), v̂
(1)
i , p̂

(1)
ij , T̂

(1)
tr , and T̂

(1)
int . If we calculate ρ̂(1) and v̂

(1)
j using

Eqs. (C31), (C33), (C5), and (C6) and taking Eq. (C25) into account, we obtain the trivial result, i.e.,
ρ̂(1) = ρ̂(1) and v̂

(1)
i = v̂

(1)
i .

Now, let us calculate p̂
(1)
ij from Eq. (C7b), that is,

p̂
(1)
ij = 2

∫∫ ∞

0

(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)
f̂ (1)dÊdζ

= 2
∫∫ ∞

0

(
ζi − v̂

(0)
i

)(
ζj − v̂

(0)
j

)(
f̂ (0)�(1) − 1

Â
(0)
c ρ̂(0)

ζk

∂f̂ (0)

∂yk

)
dÊdζ . (C35)

The calculation of the term containing �(1) is straightforward. The term containing ∂f̂ (0)/∂yk can be
calculated conveniently as follows. Let ci = ζi − v̂

(0)
i and write (ζi − v̂

(0)
i )(ζj − v̂

(0)
j )ζk∂f̂ (0)/∂yk as

cicj ζk

∂f̂ (0)

∂yk

= cicj ck

∂f̂ (0)

∂yk

+ v̂
(0)
k cicj

∂f̂ (0)

∂yk

= ∂

∂yk

(cicj ckf̂
(0)) + ∂v̂

(0)
i

∂yk

cj ckf̂
(0) + ci

∂v̂
(0)
j

∂yk

ckf̂
(0) + cicj

∂v̂
(0)
k

∂yk

f̂ (0)

+ v̂
(0)
k

∂

∂yk

(cicj f̂
(0)) + v̂

(0)
k

∂v̂
(0)
i

∂yk

cj f̂
(0) + v̂

(0)
k ci

∂v̂
(0)
j

∂yk

f̂ (0). (C36)

Taking into account the relations∫∫ ∞

0
ci f̂

(0)dÊdζ =
∫∫ ∞

0
cicj ckf̂

(0)dÊdζ = 0,

∫∫ ∞

0
cicj f̂

(0)dÊdζ = 1

2
ρ̂(0)T̂

(0)
tr δij , (C37)
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we can immediately integrate Eq. (C36) to obtain

2
∫∫ ∞

0
cicj ζk

∂f̂ (0)

∂yk

dÊdζ = ρ̂(0)T̂
(0)

tr

(
∂v̂

(0)
i

∂yj

+ ∂v̂
(0)
j

∂yi

+ ∂v̂
(0)
k

∂yk

δij

)
+ v̂

(0)
k

∂

∂yk

(
ρ̂(0)T̂

(0)
tr

)
δij . (C38)

As the result, Eq. (C35) leads to the following expression of p̂
(1)
ij :

p̂
(1)
ij = (

ρ̂(0)T̂
(1)

tr + ρ̂(1)T̂
(0)

tr

)
δij + 1

1 − ν
ρ̂(0)

(
T̂ (0) − T̂

(0)
tr

)
δij

− 1

1 − ν

T̂
(0)

tr

Â
(0)
c

(
∂v̂

(0)
i

∂yj

+ ∂v̂
(0)
j

∂yi

+ ∂v̂
(0)
k

∂yk

δij

)
− 1

1 − ν

v̂
(0)
k

Â
(0)
c ρ̂(0)

∂

∂yk

(
ρ̂(0)T̂

(0)
tr

)
δij . (C39)

In this way, we obtain the expression of p̂
(1)
ij in terms of ρ̂(1) and T̂

(1)
tr and the zeroth-order quantities.

Next, let us calculate T̂
(1)

tr from Eq. (C8), i.e., ρ̂(0)T̂
(1)

tr + ρ̂(1)T̂
(0)

tr = (1/3)p̂(1)
kk . If we calculate p̂

(1)
kk

by contracting Eq. (C39) and using it in this relation, the term ρ̂(0)T̂
(1)

tr + ρ̂(1)T̂
(0)

tr is canceled, and
we are left with the following relation:

v̂
(0)
k

∂T̂
(0)

tr

∂yk

= Â(0)
c ρ̂(0)

(
T̂ (0) − T̂

(0)
tr

)− 2

3
T̂

(0)
tr

∂v̂
(0)
k

∂yk

, (C40)

where use has been made of Eq. (C34a). Because of the relations

Â(0)
c = Âc(T̂ (0)), T̂ (0) = 3T̂

(0)
tr + δT̂

(0)
int

3 + δ
, (C41)

Eq. (C40) is an equation containing only the zeroth-order quantities ρ̂(0), v̂(0)
i , T̂ (0)

tr , and T̂
(0)

int . Therefore,
it can be the equation to be added to Eq. (C34) to form a closed set.

Finally, we calculate T̂
(1)

int from Eq. (C9), i.e.,

ρ̂(0)T̂
(1)

int + ρ̂(1)T̂
(0)

int = 2

δ

∫∫ ∞

0
Ê f̂ (1)dÊdζ = 2

δ

∫∫ ∞

0
Ê
(

f̂ (0)�(1) − 1

Â
(0)
c ρ̂(0)

ζk

∂f̂ (0)

∂yk

)
dÊdζ .

(C42)

Again, the calculation of the term containing �(1) is straightforward. From the fact that
the term Êζk(∂f̂ (0)/∂yk) can be transformed into Ê(∂ckf̂

(0)/∂yk) + Ê(∂v̂
(0)
k f̂ (0)/∂yk) and that∫ ∫∞

0 Êckf̂
(0)dÊdζ = 0 and

∫ ∫∞
0 Ê f̂ (0)dÊdζ = (δ/2)ρ̂(0)T̂

(0)
int hold, we immediately have

2

δ

∫∫ ∞

0
Êζk

∂f̂ (0)

∂yk

dÊdζ = ∂

∂yk

(
v̂

(0)
k ρ̂(0)T̂

(0)
int

)
. (C43)

Then, Eq. (C42) becomes

ρ̂(0)T̂
(1)

int + ρ̂(1)T̂
(0)

int = ρ̂(1)T̂
(0)

int + ρ̂(0)T̂
(1)

int + ρ̂(0)
(
T̂ (0) − T̂

(0)
int

)− 1

Â
(0)
c ρ̂(0)

∂

∂yk

(
v̂

(0)
k ρ̂(0)T̂

(0)
int

)
, (C44)

which gives, with the help of Eq. (C34a),

v̂
(0)
k

∂T̂
(0)

int

∂yk

= Â(0)
c ρ̂(0)

(
T̂ (0) − T̂

(0)
int

)
. (C45)

From Eq. (C41), this is also an equation containing ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int , which can be another

candidate of the equation to be added to Eq. (C34) to form a closed set.
Here, we should note the fact that we can recover Eq. (C34c) by adding Eq. (C40) ×3ρ̂(0)

and Eq. (C45) ×δρ̂(0). Therefore, only two equations out of Eqs. (C34c), (C40), and (C45) are
independent.
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In summary, the zeroth-order quantities ρ̂(0), v̂
(0)
i , T̂

(0)
tr , and T̂

(0)
int are governed by Eqs. (C34a) and

(C34b) and two equations out of Eqs. (C34c), (C40), and (C45). This scheme should also work in the
higher order. For instance, from the compatibility condition for the equation for f̂ (2), we obtain the
counterparts of Eq. (C34) for the first-order variables ρ̂(1), v̂

(1)
i , T̂

(1)
tr , and T̂

(1)
int . Then, by calculating

T̂
(2)

tr and T̂
(2)

int with f̂ (2), we derive the two counterparts of Eqs. (C40) and (C45) for the first-order
variables. We use the counterparts of Eqs. (C34a) and (C34b) and choose two from the counterparts
of Eqs. (C34c), (C40), and (C45) to have a closed set for ρ̂(1), v̂

(1)
i , T̂

(1)
tr , and T̂

(1)
int .

It should be remarked that Eqs. (C34) and (C40) [or (C45)] are essentially the same as the
macroscopic equations for six macroscopic variables derived in [31,32] if the slowly varying variables
corresponding toyi [Eq. (49)] are used in the latter equations. These equations, which are not restricted
to slowly varying solutions, are obtained by the theory of extended thermodynamics [31] or by an
appropriate moment closure based on kinetic theory [31,32]. On the other hand, Eqs. (C34) and (C40)
[or (C45)], which are restricted to slowly varying solutions, are derived without any moment-closure
assumption. We should also mention that the macroscopic equations for six macroscopic variables
have been extended to the case of a thermally perfect (or nonpolytropic) gas for which the specific
heats at constant pressure and at constant volume are both temperature dependent [46].

APPENDIX D: INTEGRAL IN EQ. (64)

In this Appendix, we summarize the explicit form of the indefinite integral of the integral in
Eq. (64) for Âc(T̂ ) = 1, T̂ , and

√
T̂ .

Case of Âc(T̂ ) = 1:∫
u2(v̂∗ − u)

(v̂− − u)(u − v̂+)
du = 1

2
u2 + Au + B ln(v̂− − u) + C ln(u − v̂+), (D1a)

A = v̂− + v̂+ − v̂∗, B = v̂2
−(v̂− − v̂∗)

v̂− − v̂+
, C = v̂2

+(v̂∗ − v̂+)

v̂− − v̂+
. (D1b)

Case of Âc(T̂ ) = T̂ :

(γ − 1)
∫

u2(v̂∗ − u)

T̂ (u)(v̂− − u)(u − v̂+)
du

= A ln(v̂− − u) + B ln(u − v̂+) + C ln((u − α)2 + β2) + D

β
tan−1 u − α

β
, (D2a)

α = 8

5
v̂∗, β =

√
1

γ − 1
− 1

4v̂2−
, (D2b)

A = v̂2
−(v̂− − v̂∗)

(v̂− − v̂+)[(v̂− − α)2 + β2]
, B = v̂2

+(v̂∗ − v̂+)

(v̂− − v̂+)[(v̂+ − α)2 + β2]
, (D2c)

C = 1

2
(1 − A − B), D = (α2 + β2)

(
A

v̂−
+ B

v̂+

)
+ 2αC. (D2d)

Case of Âc(T̂ ) =
√

T̂ :√
γ − 1

∫
u2(v̂∗ − u)√

T̂ (u)(v̂− − u)(u − v̂+)
du

= A(ln |t − tA+| − ln |t − tA−|) + B(ln |t − tB+| − ln |t − tB−|) + C(ln |t + 1| − ln |t − 1|)

+β

(
1

t + 1
− 1

t − 1

)
, (D3a)
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t =
√

(u − α)2 + β2 − β

u − α
, α = 8

5
v̂∗, β =

√
1

γ − 1
− 1

4v̂2−
, (D3b)

tA± = 1

v̂− − α
[−β ±

√
(v̂− − α)2 + β2], tB± = 1

v̂+ − α
[−β ±

√
(v̂+ − α)2 + β2], (D3c)

A = v̂2
−(v̂− − v̂∗)

(v̂− − v̂+)
√

(v̂− − α)2 + β2
, B = v̂2

+(v̂∗ − v̂+)

(v̂− − v̂+)
√

(v̂+ − α)2 + β2
, (D3d)

C = v̂− + v̂+ + 3

5
v̂∗. (D3e)
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[21] M. Pavić, T. Ruggeri, and S. Simić, Maximum entropy principle for rarefied polyatomic gases, Phys. A
(Amsterdam, Neth.) 392, 1302 (2013).

[22] J.-F. Bourgat, L. Desvillettes, P. Le Tallec, and B. Perthame, Microreversible collisions for polyatomic
gases and Boltzmann’s theorem, Eur. J. Mech. B 13, 237 (1994).

[23] S. Kosuge, K. Aoki, and T. Goto, Shock wave structure in polyatomic gases: Numerical analysis using a
model Boltzmann equation, in Thirtieth International Symposium on Rarefied Gas Dynamics, edited by
A. Ketsdever and H. Struchtrup, AIP Conf. Proc. No. 1786 (AIP, New York, 2016), p. 180004.

[24] L. H. Holway Jr., New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9, 1658
(1966).

[25] P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation
with small Prandtl number, Eur. J. Mech. B 19, 813 (2000).

[26] S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Continuum Mech.
Thermodyn. 20, 489 (2009).

[27] C. Cercignani and M. Lampis, On the H-theorem for polyatomic gases, J. Stat. Phys. 26, 795 (1981).
[28] G. Emanuel, Bulk viscosity of a dilute polyatomic gas, Phys. Fluids A 2, 2252 (1990).
[29] M. S. Cramer, Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids 24, 066102 (2012).
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