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Viscoplastic squeeze flow between two identical infinite circular cylinders

A. R. Koblitz,1,* S. Lovett,2 and N. Nikiforakis1

1Department of Physics, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
2Schlumberger Gould Research Centre, High Cross, Madingley Road, Cambridge CB3 0EL, United Kingdom

(Received 11 October 2017; published 28 February 2018)

Direct numerical simulations of closely interacting infinite circular cylinders in a
Bingham fluid are presented, and results compared to asymptotic solutions based on
lubrication theory in the gap. Unlike for a Newtonian fluid, the macroscopic flow outside
of the gap between the cylinders is shown to have a large effect on the pressure profile
within the gap and the resulting lubrication force on the cylinders. The presented results
indicate that the asymptotic lubrication solution can be used to predict the lubrication
pressure only if the surrounding viscoplastic matrix is yielded by a macroscopic flow.
This has implications for the use of subgrid-scale lubrication models in simulations of
noncolloidal particulate suspensions in viscoplastic fluids.
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I. INTRODUCTION

Complex fluids are ubiquitous in natural and industrial processes, from food processing, to lava
or debris flows, to oil and gas applications. The mechanical behavior of these fluids arises from the
microstructure of the fluid, for example, emulsion droplets and clays in drilling muds or polymer
chains in viscoelastic fluids. When noncolloidal particles much larger than the fluid microstructure
are added, the system can be thought of as a particulate suspension in a complex (continuum) fluid.
Examples of these types of systems include fresh concrete and debris flows [1]. The hydrodynamic
interaction between particles affects the suspension bulk properties and dynamics and is of great
interest. In the case of a Newtonian fluid, analytical solutions exist for slow flow past spheres and
cylinders [2,3] and the squeeze flow between them using asymptotic analysis. Viscoplastic fluids, of
interest to this work, are characterized by a discontinuous nonlinear constitutive equation thereby
introducing additional complexities when analytical solutions are sought.

So far, studies on interacting spheres and cylinders in viscoplastic flows have largely focused on
drag and pressure drop (in the case of flow past arrays) of collinear arrangements, aligned either
parallel or perpendicular to the flow [4–10]. Numerical studies using the Bingham constitutive law
have been found to be in good agreement with experimental work using Carbopol 940 gels, developing
drag correlations and stability criteria (with respect to sedimentation) [4,7,9,10]. Viscoplastic squeeze
flow between coaxial cylindrical disks has been studied analytically for both planar [11] and
axisymmetric [12,13] configurations. The configuration of collinearly approaching bodies in a
viscoplastic flow has received only cursory attention in numerical studies, e.g., Refs. [8,9], with
no examination of the interstitial squeeze flow.

This study therefore examines the two-dimensional squeeze flow between two approaching infinite
circular cylinders in a Bingham viscoplastic fluid by direct numerical simulation. The configuration
studied is such that the gap between the two cylinders is small (1% of the cylinder radius). We
also make use of the asymptotic analysis by Balmforth [14] to compute leading order lubrication
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solutions for the squeeze flow between two approaching cylinders in a Bingham fluid. We compare
the analytical and numerical solutions and demonstrate that in a quasiunconfined system the squeeze
flow is greatly affected by flow external to the gap, but that the asymptotic solution may be recovered
under certain flow conditions in the wider domain. This is contrary to the Newtonian equivalent and
has implications on using the viscoplastic lubrication force approximation as a subgrid-scale model
in coarse simulation techniques.

The paper is organized as follows. In Sec. II we present the problem of interest and briefly
describe the solution strategy employed for the direct numerical simulations and the lubrication theory
calculations. In Sec. III we present direct numerical simulations of the quasiunconfined system. These
are compared to simulations of the domain restricted to the gap only and to the asymptotic solutions
from lubrication theory. These comparisons demonstrate the influence of the wider flow field on
the lubrication pressure. In Sec. IV we discuss the results and the implications for subgrid-scale
modeling.

II. MATHEMATICAL FORMULATION AND SOLUTION

We consider the slow, steady flow of an incompressible viscoplastic fluid around two rigid, infinite
circular cylinders. The fluid has velocity û(x̂), pressure p̂(x̂), and a symmetric total stress tensor
τ̂ − p̂δ, where variables with a hat are dimensional. In the absence of inertia, the conservation of
mass is

∂û

∂x̂
+ ∂v̂

∂ŷ
= 0, (1)

and the conservation of momentum is

∂τ̂xx

∂x̂
+ ∂τ̂xy

∂ŷ
− ∂p̂

∂x̂
= 0, (2)

∂τ̂yx

∂x̂
+ ∂τ̂yy

∂ŷ
− ∂p̂

∂ŷ
= 0. (3)

As a constitutive law we use the Bingham model

τ̂ij =
(

2η̂ + τ̂Y

ˆ̇γ

)
ˆ̇γij if τ̂ > τ̂Y ,

ˆ̇γij = 0 if τ̂ � τ̂Y ,
(4)

where τ̂Y and η̂ are the yield stress and the plastic viscosity of the fluid, respectively, ˆ̇γij is the rate
of strain tensor associated with the velocity field, and

ˆ̇γij = 1

2

(
∂ûi

∂x̂j

+ ∂ûj

∂x̂i

)
, ˆ̇γ =

√
1

2
ˆ̇γij

ˆ̇γij , τ̂ =
√

1

2
τ̂ij τ̂ij . (5)

The problem geometries are depicted in Fig. 1, where the inset highlights the portion of the system
considered in the analytical investigation. Aligning the system midplane in a Cartesian coordinate
system the two cylinders are placed with their centers located at (−H/2 − D/2,0) and (H/2 +
D/2,0), where H is the minimum separation distance and D the cylinder diameter. The computational
domain for the whole system has dimensions 10 D × 5 D, which is sufficiently large for the cylinders
to be essentially unconfined: waning stresses away from the moving cylinders lead to the formation
of a yield envelope in the immediate vicinity of the cylinders, outside of which the fluid forms a
rigid plug attached to the domain walls. Because the fluid in the far field is unyielded for the range
of yield stresses explored in this study, we set no-slip boundaries at y ± 2.5 D and pressure inlets
and outlets at x ± 5 D. The cylinders have a constant relative approach velocity of V .
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FIG. 1. Schematic showing the problem geometry for the entire flow system (�1) investigated through
numerical methods and the reduced system (�2) investigated with both analytical and numerical methods.

A. Large-scale nondimensionalization

Choosing a velocity scale of V , length scale of D, shear rate scale of V/D, and stress scale of
η̂V /D, we obtain the dimensionless equations

∂u

∂x
+ ∂v

∂y
= 0, (6)

∂τxx

∂x
+ ∂τxy

∂y
− ∂p

∂x
= 0, (7)

∂τyx

∂x
+ ∂τyy

∂y
− ∂p

∂y
= 0, (8)

τij =
(

2 + Bn

γ̇

)
γ̇ij if τ > Bn,

γ̇ij = 0 if τ � Bn,
(9)

where

Bn := τ̂Y D

η̂V
(10)

is a Bingham number for the macroscopic flow external to the gap.

B. Computational method

We numerically compute the solution of equations (6)–(9) for two approaching cylinders with
a small gap size (H/R = 0.01 where R ≡ D/2 is the cylinder radius), and calculate the resulting
forces on the cylinders. To handle the disparate length scales of this problem in a computationally
efficient manner we use the method of overset grids (also called overlapping, overlaid or Chimera
grids) in a finite difference framework to discretize the domain. This method and grid generation
algorithm is discussed in detail in Chesshire and Henshaw [15], Henshaw [16], and Koblitz et al.
[17], where its efficacy for particulate flow simulations was demonstrated. Briefly, the overset grid
method represents a complex domain using multiple body-fitted curvilinear grids that are allowed to
overlap while being logically rectangular. The overlapping aspect brings flexibility and efficiency to
grid generation, which is beneficial for moving body problems. Here, since the cylinders are static,
the chief benefit of the overset grid method is that the grids can be locally refined near the gap while
keeping the grids logically rectangular. The resultant linear systems are solved using the MUMPS
library [18], a massively parallel direct linear solver. We use meshes with a minimum of 15 points
across the narrowest part of the gap and cluster grid points near the cylinder surfaces and wider gap
region by stretching the constituent grids.

023301-3



A. R. KOBLITZ, S. LOVETT, AND N. NIKIFORAKIS

Applying a standard finite difference method to equations (6)–(9) is not straightforward, due to
the nondifferentiable plastic dissipation term. A straightforward way of dealing with this numerical
difficulty is to regularize Eq. (9) by removing the singularity at γ̇ = 0. This approach has been
used in studies of viscoplastic flows past bluff bodies; see Refs. [19–21]. However this can yield
inaccurate results, especially for lubrication-type flows or if flow stability or finite-time stoppage are
of critical interest [22–24]. Instead, we use an iterative method based on the variational form of the
Bingham problem, established by Duvaut and Lions [25], which forms the basis for the widely used
augmented Lagrangian (AL) first proposed by Glowinski [26]. This formulation is commonly known
as ALG2 and is used extensively in the literature (see Muravleva [11], Chaparian and Frigaard [27],
Yu and Wachs [8] and references therein), so we do not give details here. For its solution we use the
Uzawa-type algorithm of Olshanskii [28] and Muravleva and Olshanskii [29].

C. Lubrication flow in the gap

The problem shown in the inset of Fig. 1, i.e., the narrow gap between two symmetric surfaces
approaching with relative speed V , has an asymptotic solution due to Balmforth [14], if the gap H

is small compared to the cylinder radius R. In this section we give an overview of this solution;
in Sec. III we will compare this to fully numerical solutions both in the restricted domain (inset
of Fig. 1) and in the full domain. Note that this section considers a nondimensionalization of the
governing equations appropriate to the gap scale; the nondimensionalization given previously in
Sec. II A is appropriate for the macroscopic flow. We take x to be the coordinate across the gap and
y the coordinate along the gap, consistent with the setup shown in Fig. 1.

We write û ≡ (û,v̂) and without loss of generality

τ̂ ≡
(

σ̂ ψ̂

ψ̂ −σ̂

)
. (11)

Following the approach in Ref. [14], variables are scaled as

x = x̂/H, y = ŷ/L, u = û/U , v = v̂/(U/ε), p = p̂/P, (12)

where ε ≡ H/L is a small parameter. This implies the scaled continuity equation is

∂u

∂x
+ ∂v

∂y
= 0. (13)

The stress scale is chosen as τ = τ̂ /(εP), which implies

∂p

∂x
= ε

∂σ

∂x
+ ε2 ∂ψ

∂y
,

∂p

∂y
= ∂ψ

∂x
+ ε

∂σ

∂y
, (14)

so that the main force balance [to O(ε)] is between the axial pressure gradient and transverse shear
stress gradient. Strain rates are scaled by (U/ε)/H, giving

γ̇ =
√

1

4

(
ε2

∂u

∂y
+ ∂v

∂x

)2

+ ε2

(
∂u

∂x

)2

. (15)

The above scaling implies in the yielded regions

τij =
(

2η̂U
ε2PH + τ̂Y

εP γ̇

)
γ̇ij . (16)

The velocity scale is set by the motion of the cylinders as U := V , and therefore the pressure scale
is chosen as

P := η̂V

ε2H . (17)
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We additionally fix the characteristic length and gap scales as L = R and H = H , respectively. This
gives the scaled constitutive equation as

τij =
(

2 + B∗

γ̇

)
γ̇ij if τ > B∗,

γ̇ij = 0 if τ � B∗,
(18)

where

B∗ := τ̂Y

εP (19)

is a Bingham number for the squeeze flow in the gap. Note that B∗/Bn = ε2/2; the squeeze flow
“sees” a much lower Bingham number than the macroscopic flow around the cylinders.

1. Leading-order solution

The components of the shear rate tensor are

ψ ≡ γ̇xy = 1

2

(
ε2 ∂u

∂y
+ ∂v

∂x

)
, (20)

σ ≡ γ̇xx = ε
∂u

∂x
. (21)

Therefore, discarding terms of O(ε), the shear rate magnitude is

γ̇ = 1

2

∣∣∣∣∂v

∂x

∣∣∣∣, (22)

and in the fully yielded part of the flow ψ � σ . Equation (18) is used to write

ψ = ∂v

∂x
+ B∗ sgn

(
∂v

∂x

)
, (23)

and the main force balance reduces to
∂p

∂x
= 0 ⇒ p = p(y),

∂p

∂y
= ∂ψ

∂x
⇒ ψ = x

∂p

∂y
, (24)

the constant vanishing by symmetry, meaning that the pressure gradient is, to leading order, constant
across the gap and balanced along the gap by the transverse shear stress. Exploiting the symmetry of
the configuration, in the quadrant x > 0, y > 0 we must then have v > 0, ∂v

∂x
< 0, and so from the

main force balance and constitutive law we find the velocity profile across the gap

∂v

∂x
= x

∂p

∂y
+ B∗, (25)

which may be integrated to give

v =
{− 1

2
∂p

∂y

(
1
h

− x
)(

1
2h − 2X + x

)
, X < x � 1

2h(y)

− 1
2

∂p

∂y

(
1
2h − X

)2
, 0 � x � X,

(26)

where X ≡ B∗/| ∂p

∂y
| is the plug boundary location, and we have used a no-slip boundary condition at

the cylinder surface, located at x = 1
2h(y). The continuity equation and boundary conditions imply

a flow rate constraint

∂

∂y

∫ 1
2 h

− 1
2 h

v dx = 1, (27)
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which, when evaluated using the velocity solution, gives a cubic equation for the pressure gradient
∂p

∂y
(y):

− 1

12

∂p

∂y
(h + X)(h − 2X)2 = y. (28)

It can be shown that the plug in the region |x| < X undergoes O(ε) plastic flow, which is not
present in the above asymptotic solution. This may be recovered by keeping terms O(ε) and is
sometimes referred to as a pseudoplug; it does not change the equation for the pressure gradient to
leading order [14].

For two converging cylinders the nondimensional separation distance is

h(y) = 1 + 2

ε
(1 −

√
1 − y2), 0 � |y| < 1. (29)

We numerically evaluate Eq. (28) to compute ∂p

∂y
(y) and thence p(y), with an additional ambient

pressure constraint outside the disks enforced as p(1) = 0. The leading-order lubrication force is
then numerically computed as 2

∫ 1
0 p dy.

D. Flow field diagnostics

In order to classify the structure of the numerically calculated flow fields we make use of an
invariant measure of the velocity gradient tensor that gives an indication of the relative strength of
the shear rate tensor and vorticity field [30]

Q = −1

2

∂ûi

∂x̂j

∂ûj

∂x̂i

= −1

2

(
ˆ̇γij

ˆ̇γij − 1

2
ω̂2

)
, (30)

where ω̂ is the vorticity. We use the normalized form of (30)


 =
ˆ̇γij

ˆ̇γij − 1/2(ω̂2)
ˆ̇γij

ˆ̇γij + 1/2(ω̂2)
, (31)

such that values of 
 = −1,0,1 correspond to flow dominated by rotation, shear, and strain,
respectively [31].

The rate of working the fluid, ˆ̇W , is calculated by integrating the rate of viscous dissipation,
�̂ = τ̂ij

ˆ̇γij , over a suitable control volume

ˆ̇W (�) =
∫

�−VC

τ̂ij
ˆ̇γij dV, (32)

where VC is the volume occupied by the cylinders. This is scaled by the force on the cylinders and
the closing velocity, W = FV , while the viscous dissipation is scaled using a characteristic energy
density scale E = ηV 2/H2.

III. RESULTS

We investigate the squeeze flow between two infinite circular cylinders in three different cases
based on the setup shown in Fig. 1. Nondimensionalization is as described in Sec. II A. The external
Bingham number Bn is varied between 0 and 2000 in all cases, with the minimum separation distance
kept constant at 0.01 nondimensional units (1% of the cylinder radius), resulting in a gap Bingham
number B∗ range of 0 to 0.1.

Two cases use the full computational domain, labeled as �1 in Fig. 1, with differing far field
boundary conditions. The quiescent case (meaning here that the flow is zero outside a finite yield
envelope) has velocity outlets at the vertical domain boundaries, imposing an ambient pressure of
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FIG. 2. Velocity magnitude plots for increasing Bn (left to right) with quiescent conditions (top row) and
macroscopic shear rate γ̇ = 5 (bottom row).

p = 0. No-slip and no-penetration conditions are imposed on the horizontal domain boundaries,
allowing the cylinders to be surrounded by a bounded yielded region enclosed by a yield envelope.

The shear flow case considers the same geometry as the quiescent case but with the introduction of
a macroscopic flow to raise the stress above the material yield stress in the far field, thus removing the
yield envelope. This is done by imposing wall velocities ±Uw on the horizontal domain boundaries,
resulting in a macroscopic shear rate of γ̇ = 5.

Finally, we consider the reduced domain labeled as �2 in Fig. 1, including only the gap between the
cylinders. No-slip and no-penetration conditions are applied on the cylinder surfaces, and symmetry
conditions at x = ±1 in a similar manner to Frigaard and Ryan [32] and Muravleva [11].

We begin in Sec. III A with a detailed description of the flow field kinematics for the two-cylinder
system using the DNS results in the full computational domain. We then investigate the validity
of the small gap approximation used to develop a leading order viscoplastic lubrication solution
in Sec. III B. Following this we compare pressure profiles along the the axis of symmetry, and the
resultant normal force exerted on the cylinders, to solutions from viscoplastic lubrication theory in
Sec. III C. Finally, we investigate viscous dissipation in the system in Sec. III D.

A. Flow field kinematics

Figure 2 shows a binary yielded-unyielded mask in gray overlaid on color maps of the velocity
magnitude for the quiescent and sheared systems, with the Bingham number increasing from left to
right. The unyielded regions are identified as areas where the second invariant of the shear stress
falls below the yield stress, plus some small constant which we take as 0.1% of the yield stress.

The top row in Fig. 2 corresponds to the quiescent case, where for Bn � 50 classical features of
moving bodies in yield stress fluids can be seen: unyielded caps on the stagnation points, unyielded
plugs in the equatorial planes of the cylinders, and a yield envelope fully surrounding the two-cylinder
system [19,27,33–36]. As the Bingham number increases the unyielded stagnation caps and the
equatorial plugs grow while the yield envelope shrinks.

The bottom row of Fig. 2 corresponds to the shear flow case, where the background shear flow
has noticeably changed the yield surface features: stagnation points have shifted, leading to two caps
on the rear of the cylinders, placed symmetrically about the longitudinal axis, and one on the front
of each cylinder. The equatorial plugs are no longer present, but two unattached plugs have formed
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FIG. 3. Pressure contours for the two-cylinder system in macroscopic shear flow (left) and quiescent (right)
with Bn = 1000.

in the gap openings, placed asymmetrically about the longitudinal axis. For Bn > 50 central plugs
can be seen fore and aft of the two cylinder system.

Figure 3 show contour plots of the pressure field for a quiescent (right panel) and shear flow
(left panel) case at Bn = 1000, with the contours drawn at the same levels in both panels. The
quiescent case shows a pressure drop from the gap to the rear stagnation cap, with roughly equally
spaced isocontours along shear layers attached to the cylinder surfaces and along the yield envelope
boundary. In contrast, the shear flow case shows a rapid pressure decay along the gap with a more
uniform pressure field outside of the gap.

B. Small gap approximation

In Sec. II C a lubrication approximation was constructed which has, to leading order, pressure
constant across the gap. This approximation relies on the gap being small, namely, ε � 1, which is
satisfied at the gap center. However, since the approaching surfaces are elliptic [see Eq. (29)], this
condition will be violated towards the gap exit.

We investigate the validity of this constant pressure solution by examining the ratio of the pressure
at the gap center to that at the surface of the cylinder as a function of the local gap width. In the
left panel of Fig. 4 we plot this gap-to-surface pressure ratio against the normalized gap width as a
function of y as markers for Bn = 0−2000 (B∗ = 0−0.01).

For all cases, the gap-to-surface pressure ratio slowly decreases towards the gap exit, but is
above 0.8 until approximately ĥ(ŷ)/L > 0.1. In the Newtonian case, the pressure ratio then rapidly
decreases away from the gap center, becoming negligible at the gap exit. All viscoplastic cases show
similar behavior to one another (as indicated by the marker overlap in the left panel of Fig. 4). The
gap-to-surface pressure ratio remains close to unity close to the gap center before slowly decreasing.
Unlike for the Newtonian case, no rapid decrease is found when ĥ(ŷ)/L > 0.1, and as a result the
gap-to-surface pressure remains above 0.8 further along the gap for the viscoplastic cases.

The right panel of Fig. 4 shows the pressure distributions over the entire cylinder surface, with
the gap center located at θ = 0 and the gap exits at θ = (−π/2,π/2), for the limiting quiescent and
shear flow cases. The Newtonian surface pressure distributions of the quiescent and shear flow cases
overlap, showing a peak at the gap center and a rapid decay towards the exits. For the high yield
stress cases, the pressure distributions of the quiescent and shear flow cases are broadly similar, both
showing a pressure peak in the gap center. However, towards the gap exit the pressure decays more
slowly for the quiescent case than for the shear flow case.

In isolation, the left panel of Fig. 4 shows that the leading-order solution with constant pressure
across the gap, presented in Sec. II C, is valid for only a small portion of the gap between the
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(a) (b)

FIG. 4. Left: Ratio of center line pressure to surface pressure as a function of the local gap width for Bn = 0
(circles), 50 (diamonds), 500 (crosses), 1000 (triangles), and 2000 (squares). Right: Pressure distributions over
the entire cylinder surface for the limiting Bn = 0 and Bn = 2000 quiescent flow cases as a function of angle
away from the gap center.

approaching cylinders, particularly in the absence of a yield stress. However, from the surface pressure
distributions in the right panel of Fig. 4 it is clear that the overwhelming contribution to the lubrication
force comes from a narrow band in the gap, where the gap-to-surface pressure ratio is above 0.9 for
all cases. Therefore we expect the leading-order solution to capture the lubrication force to a good
approximation.

C. Pressure profiles in the gap

Figure 5 presents pressure profiles through the center of the gap, i.e., along the axis of symmetry.
The direct numerical simulation (DNS) in the reduced domain gives a pressure profile in excellent
agreement with the DNS of the full system in the macroscopic shear flow. Both these cases are in
good agreement with the asymptotic solution from lubrication theory: peak pressures in the center of
the gap match well for the full Bn range explored. At higher Bn, the DNS pressures of the shear flow
and reduced domain cases remain in agreement but decay more slowly than the asymptotic solution
as the gap widens up; this is where the lubrication approximation no longer holds.

The pressure profiles for the DNS of the full system in the quiescent case are markedly different
to the asymptotic solution for Bn > 50: higher peak pressures and slower pressure decay are evident,
as is an exit pressure significantly higher than the ambient pressure (which is 0).

The relative change in peak pressure and pressure decay for increasing Bn discussed above is
evident in the surface pressure distribution shown in Fig. 4. Moreover, it is evident that the pressure
contribution outside of the nominal gap region is negligible. Note that for Bn = 2000 the pressure
profiles look somewhat similar in magnitude between the quiescent and sheared cases. In fact their
integrals differ by about a factor of two, implying a factor of two difference in the repulsive force;
this is discussed next.

Figure 6 presents stacked area plots of the total drag force exerted on a cylinder, decomposed
into pressure and viscous contributions. From the left panel it is clear that the force on the cylinders
in quiescent fluid is dramatically underestimated when the lubrication flow in the gap is considered
in isolation. Both viscous and pressure contributions increase with Bn, but the viscous contribution
remains small compared to that of the pressure. Discounting the viscous friction, the pressure alone—
which remains localized to the gap—causes a more than twofold increase in the drag force over the
predictions from lubrication theory. However, when a macroscopic shear flow is added (the right
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(a) (b)

(c) (d)

FIG. 5. Pressure profile along the gap center line for quiescent (diamonds), sheared (circles), and
reduced domain (square) systems with viscoplastic lubrication solution overlayed (solid line) with Bn =
50, 500, 1000, 2000 in plots (a) through (d), respectively.

panel in Fig. 6), the total drag force is close to the asymptotic solution. This mirrors the trend found
in the pressure profiles in Fig. 5.

Figure 7 shows local shear rates, γ̇local, for both the sheared and quiescent cases for the full range
of Bn. We define the local shear rate as an average over a H × 2H area in the center of the gap. The
dramatic increase in pressure and drag force is not reflected in the local shear rate: the local shear
rates in the quiescent and sheared cases remain in close agreement throughout the Bn range explored.
From this we can conclude that the macroscopic flow does not affect the velocity field in the gap.

(a) (b)

FIG. 6. Stacked area plots of the total drag force on a cylinder as a function of Bn for (a) quiescent and (b)
shear flow background conditions. Overlaid are the predictions from viscoplastic lubrication theory (squares).
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FIG. 7. Local shear rates in the gap center for quiescent (squares) and sheared (diamonds) systems for
Bn = 0, 50, 500, 1000, 2000.

The above computations were also performed with a macroscopic shear rate one order of magnitude
higher, showing no appreciable differences in the pressure and force results discussed above.

D. Viscous dissipation

The left panel of Fig. 8 shows a color map of log10(γ̇ ) in a quiescent case, while the right panel
shows a contour plot of the normalized second invariant of the velocity gradient tensor, indicating
where the fluid is irrotational (red), rotational (blue), and being sheared (green), with the yield surface

FIG. 8. (a) Color map of log10(γ̇ ) and (b) normalized second invariants of the velocity gradient tensor with
unyielded areas masked in gray with Bn = 1000 (quiescent case).
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FIG. 9. Left: rate of mechanical dissipation per unit 
. Right: stacked area plot showing the rate of work
done by viscous dissipation in the shear and plastic regions, scaled by W = FV , with markers indicating the
power required to move the cylinders with the approach velocity (diamonds), the total viscous dissipation in the
system (dashed line), the viscous dissipation in the gap region of the full system (squares), and the total viscous
dissipation in the reduced system (triangles).

overlaid. As expected, the plugs either side of the cylinders undergo rigid body rotation. Strain rates
are highest in the thin shear layers along the cylinder surface, along the yield envelope wall, and
surrounding the jet of fluid squeezed out of the gap. Strain-dominated regions are found in the core
of the fluid jet squeezed out of the gap, and in the regions between the rotating plugs and the yield
envelope. The strain rate in these plastic flow regions is orders of magnitude lower than in the adjacent
shear layers.

We turn now to the energy dissipation in the fluid. The left panel of Fig. 9 shows the rate
of mechanical dissipation as a function of the topology parameter 
. As would be expected, no
dissipation occurs in the regions undergoing rigid body rotation (
 = −1). Some dissipation is
evident in the irrotational regions (
 = 1) at high Bingham numbers, and this is attributed to
pseudoplug regions where the flow is held close to the yield stress [37].

In all cases the dissipation is highest in regions of shear, peaking at 
 = 0. While the rate of
mechanical dissipation decreases monotonically as the flow becomes rotationally dominated, for
Bn > 0 as the flow becomes dominated by strain there exists a second, small peak in dissipation
which decays slowly as 
 approaches 1.

The right panel of Fig. 9 shows the rate of work done on the fluid in different regions and flow
structures for the full and reduced systems, as well as the power required to move the cylinders
with the set approach velocity. Shear regions and plastic regions have been defined as areas where
−1/3 � 
 � 1/3 and 
 > 1/3, respectively [31]. While the dissipation in plastic flow is small
compared to that in shear flow, it still forms a significant source of viscous dissipation outside of
the gap area due to the size of the plastic flow regions (see Fig. 8). Finally, the rate of work done
in the gap region is very similar for both the full (�1) and reduced (�2) domains. This shows that
the excess drag force on the cylinders in the full domain compared to lubrication theory [Fig. 6(a)]
arises from energy dissipation external to the gap.

IV. CONCLUSIONS

In this paper we have presented results on the squeeze flow between two infinite circular cylinders
in a Bingham fluid, which we use as a simple model for the flow of noncolloidal particles in a
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viscoplastic fluid. Understanding this flow is essential to building models of the large-scale flow of
such suspensions. Although the calculations presented here have been two-dimensional, we expect
similar phenomena will occur in three dimensions (where the particles would be spheres).

In Sec. III we presented results from three numerical experiments: two modeling the approaching
cylinders within a quiescent and a sheared fluid, and one modeling just the gap between the
approaching cylinders, removing any external influence. We showed that unlike for a Newtonian
fluid, the macroscopic flow external to the gap has a large effect on the lubrication forces felt by two
cylinders in near contact. In a quiescent Bingham fluid, the lubrication forces were approximately
double those predicted by viscoplastic lubrication theory, but were still caused primarily by the
localized high lubrication pressure in the gap, as for a Newtonian fluid. The high lubrication pressure
compared to theory is due to the enclosing yield envelope which forms around the two particle system
and causes a recirculating flow, introducing significant viscous dissipation into the system. Most of
the extra viscous dissipation occurs in shear layers along the cylinder surface and yield envelope
walls, although at high Bingham numbers the contribution from plastic flow regions near the yield
envelope becomes appreciable.

Introducing a macroscopic shear flow or modeling just the gap area between the cylinders gave
nearly identical results and agreed closely with the predictions from lubrication theory. We conclude
that the background shear flow acts to eliminate the yield envelope in the macroscopic flow around
the particles. This in turn removes the recirculating flow and complex flow structures, where large
sources of viscous dissipation in the quiescent case appear, and hence lowers the lubrication pressure
and resulting lubrication force. The resulting pressure profiles in the gap are well described by
lubrication theory local to the gap. The results indicate that the macroscopic shear rate does not
appreciably affect the velocity field in the narrow gap region. This conclusion is insensitive to the
exact macroscopic shear rate used, provided the yield envelope is removed.

The above implies that lubrication force models using an effective viscosity based on the local
shear rate (such as the approach used for shear-thinning fluids in Vázquez-Quesada et al. [38]) may
not be accurate for viscoplastic fluids. Instead, we suggest the use of subgrid-scale lubrication force
models based on viscoplastic lubrication theory, with the understanding that they may become invalid
in regions without a macroscopic stress above the yield stress, i.e., where particles become confined
by their own yield envelopes. This will allow for a large range of validity, for example, in simulations
of the type considered in Refs. [38,39] among others, where a dense suspension is subject to shear,
and a subgrid-scale lubrication force model is needed due to the close particle-particle approaches.
However, in other cases, for example, dilute particulate suspensions sedimenting in a quiescent fluid,
we have shown in this paper that a subgrid-scale lubrication force model based solely on lubrication
theory in the gap may not be appropriate. Until a more sophisticated subgrid-scale model is developed,
the only current option is DNS computations with sufficiently high resolution in the interparticle gaps.
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