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We present a study of Taylor dispersion in premixed combustion and use it to clarify
fundamental issues related to flame propagation in a flow field. In particular, simple
analytical formulas are derived for variable density laminar flames with arbitrary Lewis
number Le providing clear answers to important questions arising in turbulent combustion,
when these questions are posed for the case of one-scale laminar parallel flows. Exploiting,
in the context of a laminar Poiseuille flow model, a thick flame distinguished asymptotic
limit for which the flow amplitude is large with the Reynolds number Re fixed, three
main contributions are made. First, a link is established between Taylor dispersion [G.
Taylor, Proc. R. Soc. London Ser. A 219, 186 (1953)] and Damköhler’s second hypothesis
[G. Damköhler, Ber. Bunsen. Phys. Chem. 46, 601 (1940)] by describing analytically the
enhancement of the effective propagation speed UT due to small flow scales. More precisely,
it is shown that Damköhler’s hypothesis is only partially correct for one-scale parallel
laminar flows. Specifically, while the increase in UT due to the flow is shown to be directly
associated with the increase in the effective diffusivity as suggested by Damköhler, our
results imply that UT ∼ Re (for Re � 1) rather than UT ∼ √

Re, as implied by Damköhler’s
hypothesis. Second, it is demonstrated analytically and confirmed numerically that, when
UT is plotted versus the flow amplitude for fixed values of Re, the curve levels off to a
constant value depending on Re. We may refer to this effect as the laminar bending effect
as it mimics a similar bending effect known in turbulent combustion. Third, somewhat
surprising implications associated with the dependence of UT and of the effective Lewis
number Leeff on the flow are reported. For example, Leeff is found to vary from Le to Le−1

as Re varies from small to large values. Also, UT is found to be a monotonically increasing
function of Re if Le <

√
2 and a nonmonotonic function if Le >

√
2.
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I. INTRODUCTION

In 1953, the British physicist G.I. Taylor published an influential paper describing the enhancement
of diffusion processes by a shear flow [1], a phenomenon later termed Taylor dispersion. This
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has generated to date thousands of publications in various areas involving transport phenomena.
Surprisingly, until recently [2], none of these publications appeared in the field of combustion.

In 1940, the German chemist G. Damköhler postulated two hypotheses which have largely shaped
current views on the propagation of premixed flames in turbulent flow fields [3]. According to
Damköhler’s first hypothesis, the large scales in the flow merely increase the flame surface area by
wrinkling it, without affecting its local normal propagation speed. According to Damköhler’s second
hypothesis, the small scales in the flow do not cause any significant flame wrinkling but do increase
the normal propagation speed (and flame thickness). However, unlike the first hypothesis, the second
one is more questionable as argued by Williams [4], most notably as far as theoretical or analytical
work is concerned, in what he calls the “high-intensity, small-scale regime.” Notwithstanding these
limitations, a few studies can be found in the literature, which lend partial support to this hypothesis,
e.g., [5–10].

In this paper, we will establish a link between Taylor dispersion and Damköhler’s second
hypothesis in the context of laminar parallel flows. In this simple context, we will assess the validity
of Damköhler’s hypothesis and clarify related issues, inspired by practically important fundamental
questions which arise in turbulent combustion. Clear analytical answers to these questions, even
when posed for the simplest laminar flows, are desirable but largely unavailable in the literature. In
this paper, we will therefore attempt to answer such questions based on the derivation of analytical
formulas for flame propagation described by a meaningful laminar flow model accounting for variable
density and preferential diffusion effects. The derivation will be facilitated by the adoption of a
distinguished asymptotic limit which may be viewed as a specific case of what we termed more
broadly the thick flame asymptotic limit in previous work. The latter was first introduced theoretically
by Daou et al. [7] and is relevant for situations where the flame can be considered thick compared
to the typical scale of the system, such as for flames propagating in narrow channels [11]. Since
its introduction, the thick flame asymptotic limit has been adopted in studies by various workers
and has gained some popularity partially due to an emerging interest in micropower generation
using combustion [12]. Several aspects of thick flames have thus been investigated to date including
the effect of heat loss and preferential diffusion [7,11,13], the effect of gas expansion [2,14,15],
and flame stability [16,17]. The reader is referred to these publications and references therein for a
proper account regarding these aspects. The focus of this paper is different however; in particular, the
effect of heat loss, which is particularly relevant for thick flames and which we explored in previous
publications [7,11,18], will not be accounted for. The focus is mainly on three important questions,
particularly relevant in turbulent combustion, which are posed and answered herein for flames in a
laminar parallel one-scale flow.

The first question is related to the examination of Damköhler’s second hypothesis and its link to
Taylor dispersion, as discussed above.

The second question is related to the so-called bending effect of the turbulent burning velocity
UT , the effective burning velocity of a premixed flame in a turbulent flow, when plotted versus
the flow turbulence intensity u′. This effect, shown in Fig. 1, has received considerable historical
attention [19] and continues to be a topic of interest [26]. Although there seems to be no agreed
upon definition of the bending effect, this generally refers to the fact, observed experimentally, that
the turbulent burning velocity increases slower than linearly for high turbulence intensity [19,27].
In this paper, we will take it to mean the leveling off or the presence of a horizontal asymptote in
the curve obtained by plotting UT ≡ ST /SL versus u′/SL for a fixed valued of the Reynolds number
as suggested by the (smoothed) experimental data in Fig. 1; here SL refers to the laminar burning
velocity (the dimensional speed of a planar flame whose thickness will be denoted by δL) and ST

the dimensional turbulent burning velocity. We will examine the validity of the bending effect, using
mostly an analytical approach within an adiabatic laminar flow model in which the scaled amplitude
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FIG. 1. Comparison between theoretical and experimental predictions of the (scaled) turbulent burning
velocity ST /SL (UT in our notation) as a function of the (scaled) turbulent intensity u′/SL (A in our notation)
[19]. Theoretical studies (carried out in the thin flame limit) include those of Bray [20] with zero heat release
and large (density ratio = 7) heat release, Anand and Pope [21] with zero and infinite heat release, Yakhot
[22], Sivashinsky [23], and Gouldin [24] with ReL = 1,000; experimental values are from Bradley [25] for
ReL = 1000. Where ReL is not specified, predictions are independent of ReL. Here ST is the turbulent flame
speed, SL the laminar flame speed, u′ the turbulent intensity, and ReL the turbulent Reynolds number (Re in our
notation). (This figure is reproduced from [19] with permission from the publisher.)

A ≡ Â/SL will be identified with u′/SL; here Â refers to the dimensional1 flow amplitude. We will
demonstrate that our minimalist model is able to reproduce the bending effect as defined above
without the need to include additional effects such as heat losses. On the other hand, the model is not
expected to reproduce the practically important phenomenon of total flame extinction which may
occur for very large values of A (or u′), as this is known indeed to require the inclusion of heat losses
[19–29].

The third question is related to the characterization of the effective Lewis number in turbulent
combustion. This controversial question, discussed in [30], concerns whether the effective Lewis
number tends to one for large values of u′, as argued in [6], or further deviates from one, as argued
in [31]. We will provide a clear and somewhat surprising answer to this question posed within our
laminar flow model based on a simple analytical formula to be derived.

1Throughout the text, when the same letter is used to describe a quantity in its dimensional and nondimensional
forms, a circumflex is used to indicate the dimensional form.
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2h
unburned burned

δL

Â > 0

FIG. 2. Premixed flame (with thickness δL) propagating in a channel of height 2h against a flow of amplitude
Â. The main parameter is ε = h/δL.

The results of the paper generate precise conclusions, extending those given in the abstract,
which are based on transparent analytical formulas and which are also supported by an extensive
set of numerical calculations. These conclusions, pertaining to our unidirectional one-scale flow
model, provide definite insight into the fundamental question of flame-flow interaction for simple
laminar flows. It is hoped, however, that they may also provide, in particular if incorporated in
semianalytical cascade-renormalization theories such as in [23,32], some understanding of premixed
flame propagation in more complex (turbulent) flows. No claim is made, however, that our results
may be applied, without further investigations, outside the precise laminar-flow context in which
they are derived and in particular to turbulent combustion. For a discussion of the issues and the
progress in the vast field of turbulent combustion, the reader is referred to monographs such as [33]
or specialized reviews such as [34].

The presentation is structured as follows. We begin in Sec. II by formulating a nondimensional
model based on a scaling similar to that used in lubrication theory in fluid mechanics [35]. The scaling
used (as well as some of the notation) has significant differences from our previous publications
[2,7,11]. This results in nondimensional equations which are more transparent for the asymptotic
treatment used in the present paper. In Sec. III, an asymptotic model is derived that is valid for
arbitrary Lewis number. Analytical solutions and useful explicit formulas are obtained in Sec. IV. A
discussion of the implication of the findings is given in Sec. V.

II. FORMULATION

We consider a flame propagating in a channel of half-width h against a Poiseuille flow of
amplitude Â as represented in Fig. 2. We will use a Cartesian coordinate system with x as a
longitudinal coordinate and y as a transverse coordinate. The velocity field will be denoted by
(u,v), the hydrodynamic pressure by p, and the density by ρ. We will scale x by δL and y by
h, where δL represents the thickness of a planar flame in the reactive mixture (whose laminar
burning speed will be denoted by SL). Also, we will scale u by Â, v by εÂ, ρ by ρ̂u, and
p by μÂδL/h2; here ε = h/δL is the inverse of the nondimensional flame thickness, ρ̂u is the
(dimensional) density in the unburned mixture, and μ is the dynamic viscosity which is assumed
constant. We note that the scales for the longitudinal and transverse velocity components are chosen
so as to ensure a balance of terms in the continuity equation, while the scale for pressure is
chosen so as to ensure a balance between transverse viscous diffusion and the longitudinal pressure
gradient.
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In a frame of reference attached to the flame front, the nondimensional governing equations are
then given by

∂

∂x
[ρ(u + U )] + ∂

∂y
[ρv] = 0, (1)

ε Re

{
∂

∂x
[ρ(u + U )u] + ∂

∂y
[ρvu]

}
= −∂p

∂x
+ ∂2u

∂y2
+ ε2 ∂2u

∂x2
, (2)

ε3Re

{
∂

∂x
[ρ(u + U )v] + ∂

∂y
[ρvv]

}
= −∂p

∂y
+ ε2 ∂2v

∂y2
+ ε4 ∂2v

∂x2
, (3)

ε Pe

{
∂

∂x
[ρ(u + U )θ ] + ∂

∂y
[ρvθ ]

}
= ∂2θ

∂y2
+ ε2 ∂2θ

∂x2
+ ε2ω, (4)

ε Pe

{
∂

∂x
[ρ(u + U )yF ] + ∂

∂y
[ρvyF ]

}
= 1

Le

(
∂2yF

∂y2
+ ε2 ∂2yF

∂x2

)
− ε2ω, (5)

ρ =
(

1 + α

1 − α
θ

)−1

, (6)

ω = β2

2 Le(1 − α)
ρyF exp

(
β(θ − 1)

1 + α(θ − 1)

)
(7)

and are subject to the boundary conditions

∂θ

∂y
= ∂yF

∂y
= ∂u

∂y
= v = ∂p

∂y
= 0 at y = 0, (8)

∂θ

∂y
= ∂yF

∂y
= u = v = 0 at y = 1, (9)

θ = 0, yF = 1, u = 1 − y2, v = 0 as x → −∞, (10)

θ = 1, yF = 0, ux = vx = p = 0 as x → ∞. (11)

We have assumed that (traveling-wave) solutions to the problem are sought in the upper half domain
0 < y < 1, that symmetry conditions apply at y = 0, and that the walls, located at y = −1 and
y = 1, are rigid and adiabatic. In the equations above, U is an eigenvalue representing the flame
propagation speed in the negative x direction with respect to the channel’s walls, with U > 0
indicating propagation to the left. Also, we note that the pressure p appearing in (2) and (3) is in fact
a modified nondimensional pressure pm in which an unimportant viscous term has been absorbed.2

Furthermore, the flame is modeled by a single chemical reaction whose rate ω̂ follows an Arrhenius
law with preexponential factor B and activation temperature E/R such that

fuel ⇒ product + q, ω̂ = ρ̂BYF exp

(
− E

RT

)
.

Here q is the heat release per unit mass of the fuel (assumed to be deficient), YF the fuel mass fraction,
and T temperature. The latter are used to define the scaled mass fraction yF , the scaled temperature

2Specifically, pm is obtained by nondimensionalization of the modified pressure p̂m ≡ p̂ − μ

3 ∇ · v; in this
expression all terms are dimensional, with p̂ being the hydrodynamic pressure and v the velocity field.
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θ , and the Zeldovich number β, given by

yF = YF

YFu

, θ = T − Tu

Tad − Tu

, β = E(Tad − Tu)

RT 2
ad

,

where Tad = Tu + qYFu/cp is the adiabatic flame temperature (cp being the mixture’s heat capacity,
assumed constant). We note that the subscript u is used (throughout) to indicate values in the unburned
mixture (as x → −∞); similarly, when used, the subscript b indicates values in the burned mixture
(as x → ∞).

Furthermore, the main nondimensional parameters appearing in the equations are defined by

ε = h

δL

, Pe = hÂ

DT,u

= εA, Re = Pe

Pr
, Le = DT

DF

,

respectively, the flow scale, the Péclet number, the Reynolds number, and the Lewis number. For
convenience, the Prandtl number Pr = ν/DT (with ν being the kinematic viscosity) will be taken
equal to one, so that Pe and Re may be used interchangeably. In the expressions above we have used
the fact that δL ≡ DT u/SL. Given that the density is variable, with dimensional values equal to ρ̂u

in the unburned gas (where θ = 0) and ρ̂b in the burned gas (where θ = 1), it is important to note
the adoptions of the following definitions and assumptions:

ρ = ρ̂

ρ̂u

, α ≡ ρ̂u − ρ̂b

ρ̂u

, ρ̂DT = const, ρ̂DF = const. (12)

Therefore, the heat and mass diffusion coefficients DT and DF depend on density (and therefore on
temperature) but their ratio, the Lewis number Le, does not. Of course, we have also adopted the
perfect gas equation of state ρ̂T = const = ρ̂uTu, which is Eq. (6), when written in nondimensional
form. Finally, we record for later reference the expression (for β � 1) of the laminar flame speed

SL =
√

2(1 − α)

β2
LeDT,uBe−E/RTad . (13)

We are now ready to tackle the problem. Our main aim is to determine the effective propagation
speed UT , defined as the flux of fuel per unit cross section normalized by ρ̂uSL. On averaging3 the
continuity equation (1) (i.e., on integrating it with respect to y from 0 to 1) and due to our choice of
scales, we have

ρ(u + U ) ≡ ε

Pe
UT = U + 2

3
. (14)

Before proceeding to the asymptotic analysis which is the main focus of the paper, a short comment
on the numerical results which will also be included is in order. We note that, in general, the problem
given by Eqs. (1)–(11) must be solved numerically. In this paper, such numerical solutions are
obtained using the method described in [2,36,37], which we have tested extensively in several
combustion applications. Briefly, the set of equations is solved using the finite-element package
COMSOL MULTIPHYSICS on a nonuniform grid of triangular elements, with particular refinement
around the reaction zone. The results are tested to ensure that they are not dependent on the mesh.
All calculations are performed for β = 10, Pr = 1, Le = 1, and α = 0.85, unless otherwise stated.
Constant density results refer to the results of calculations where the density and flow velocities
are fixed to be ρ = 1, u = 1 − y2, and v = 0. In this case, only Eqs. (4) and (5) require numerical
solution. When computed numerically, the effective propagation speed UT is normalized by the
propagation speed of the planar premixed flame, which is also computed numerically. The effective
Lewis number Leeff is calculated from numerical results as the average ratio between the flame

3We use common notation such that θ ≡ ∫ 1
0 θ dy and θ ′ ≡ θ − θ .
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thickness and the mass fraction thickness and is normalized to be equal to the Lewis number at
Pe = 0. Using the method of [30], for each y the flame thickness is defined as the distance between
the point where θ = 0.9 and the point where θ = 0.331; the mass fraction thickness is defined as the
distance between the point where yF = 0.669 and the point where yF = 0.1.

III. ASYMPTOTIC ANALYSIS

In this section, our aim is to reduce the problem to a one-dimensional one. As a preliminary step,
we record that the average temperature θ̄ (x) and the average mass fraction yF (x) are governed by

UT θ̄x + Pe

ε

∂

∂x
[ρ(u + U )θ ′] = θ̄xx + ω(θ̄ ,yF ) + Tsm, (15)

UT yFx + Pe

ε

∂

∂x
[ρ(u + U )y ′

F ] = yFxx

Le
− ω(θ̄ ,yF ) + Tsm. (16)

In obtaining these equations, we have anticipated, as we will confirm and explain below, that the
fluctuation θ ′ and y ′

F are small compared to θ̄ and yF , respectively, and we have denoted by Tsm

small terms, of quadratic order in θ ′ and y ′
F . More precisely, the equations are obtained by averaging

Eqs. (4) and (5), which yields

ε Pe
∂

∂x
[ρ(u + U )θ] = ε2 d2θ̄

dx2
+ ε2ω(θ,yF ),

ε Pe
∂

∂x
[ρ(u + U )yF ] = ε2

Le

d2yF

dx2
− ε2ω(θ,yF )

on using the boundary conditions (8) and (9) at y = 0 and y = 1. Equations (15) and (16) then follow
on substituting θ = θ̄ + θ ′ and yF = yF + y ′

F into the preceding expressions and using (14) along
with

ω(θ,yF ) = ω(θ̄ ,yF ) + O(θ ′2) + O(y ′
F

2) + O(θ ′y ′
F ),

which is obtained from a Taylor expansion of ω(θ,yF ) = ω(θ̄ + θ ′,yF + y ′
F ) for small values of θ ′

and y ′
F .

In Eqs. (15) and (16), we need an approximation for ρ(u + U )θ ′ and ρ(u + U )y ′
F where U =

− 2
3 + ε

PeUT on account of (14). To this end, we need to consider some asymptotic limits involving
the parameters ε and εPe under which the problem is tractable. This typically requires, as known
in lubrication theory, that both parameters be small [35]. Motivated by our intention to explain the
bending effect in Fig. 1 (which is obtained for fixed values of Re), we will consider the distinguished
limit ε → 0 with Pe = O(1), equivalent to A → ∞ with Re = O(1), although other distinguished
limits are possible. In this limit, we introduce expansions of the form

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · .

To leading order, we then find

∂

∂x

[
ρ0

(
u0 − 2

3

)]
+ ∂

∂y
[ρ0v0] = 0, (17)

∂p0

∂x
= ∂2u0

∂y2
, (18)

∂p0

∂y
= 0,

∂2θ0

∂y2
= 0,

∂2yF0

∂y2
= 0. (19)

023201-7



JOEL DAOU, PHILIP PEARCE, AND FAISAL AL-MALKI

Equations (19) imply, when used with the boundary condition (8) and Eq. (6), that

p0 = p0(x), θ0 = θ0(x), yF0 = yF0(x), ρ0 = ρ0(x).

Equation (18) may then be integrated with respect to y, which yields, on applying the boundary
conditions (8) and (9) at y = 0 and y = 1,

u0 = −1

2

dp0

dx
(1 − y2).

In this expression, which implies that u0 = − 1
3dp0/dx, the function dp0/dx is as yet unknown but

can be determined by using (17) after averaging it, as is classically done in lubrication theory; hence

∂

∂x

[
ρ0

(
u0 − 2

3

)]
= 0 ⇒ ρ0

(
u0 − 2

3

)
= const = 0,

where an integration constant has been set to zero by using the boundary condition (10) as x → −∞.
Therefore, u0 = 2/3 and dp0/dx = −2, which fully specifies u0. Equation (17) can now be reused,
along with the boundary condition (8) or (9), to determine v0. We thus find

u0 = 1 − y2, v0 = − 1

ρ0

dρ0

dx

(
y

3
− y3

3

)
.

To next order O(ε) we obtain

Peρ0

(
u0 − 2

3

)
dθ0

dx
= ∂2θ1

∂y2
,

Pe Leρ0

(
u0 − 2

3

)
dyF0

dx
= ∂2yF1

∂y2
,

which follows from Eqs. (4) and (5) and the fact that U ∼ −2/3 implied by (14). Integrating with
respect to y twice then yields

θ1 = Peρ0
dθ0

dx

(
y2

6
− y4

12

)
+ θ̌1(x),

yF1 = Pe Leρ0
dyF0

dx

(
y2

6
− y4

12

)
+ y̌F1(x),

where θ̌1(x) and y̌F1(x) are integration functions. We now compute θ ′ ≡ θ − θ̄ and y ′
F ≡ yF − yF ,

θ ′ = [θ0(x) + εθ1 + · · · ] − [θ0(x) + εθ̄1 + · · · ] = ε(θ1 − θ̄1) + · · · ,

hence

θ ′ = ε Peρ0
dθ0

dx

(
y2

6
− y4

12
− 7

180

)
+ · · · .

Similarly,

y ′
F = ε Pe Leρ0

dyF0

dx

(
y2

6
− y4

12
− 7

180

)
+ · · · .

We note that these expressions confirm that the fluctuation θ ′ and y ′
F , which are O(εPe), are indeed

small in the limit considered, as anticipated above. Physically, this means that the curved flame of
Fig. 2 is in fact weakly curved (or almost planar) in the thick flame asymptotic limit considered.
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We can now evaluate the second terms in Eqs. (15) and (16):

ρ(u + U )θ ′ ∼ ε Peρ2
0
dθ0

dx

(
u0 − 2

3

)(
y2

6
− y4

12
− 7

180

)

= −γ∗ε Peρ2
0
dθ0

dx
where γ∗ = 8

945
.

Similarly,

ρ(u + U )y ′
F ∼ −γ∗ε Pe Leρ2

0
dyF0

dx
.

With these terms evaluated, the one-dimensional equations (15) and (16) are now fully specified to
leading order.

To summarize, in the limit ε → 0 with Pe = O(1), the problem can be reduced to a one-
dimensional problem for the leading-order temperature and mass fractions θ ∼ θ0(x) ∼ θ (x) and
yF ∼ yF0(x) ∼ yF (x). Dropping the subscript 0 and the overbar, we arrive at a one-dimensional
eigenboundary value problem

UT

dθ

dx
= d

dx

[
(1 + γ∗Pe2ρ2)

dθ

dx

]
+ ω, (20a)

UT

dyF

dx
= 1

Le

d

dx

[
(1 + γ∗Pe2Le2ρ2)

dyF

dx

]
− ω, (20b)

θ = 0, yF = 1 as x → −∞, (20c)

θ = 1, yF = 0 as x → +∞, (20d)

where the functions ρ = ρ(θ ) and ω = ω(θ,yF ) are given by (6) and (7).
The problem corresponds to a planar premixed flame with effective thermal diffusion coefficient

DT, eff and mass diffusion coefficients DF, eff given by

DT, eff = DT

(
1 + γ∗Pe2 ρ̂2

ρ̂2
u

)
, (21)

DF, eff = DF

(
1 + γ∗Pe2Le2 ρ̂2

ρ̂2
u

)
. (22)

This is an important result because, in addition to providing a rational reduction of the two-
dimensional problem to a one-dimensional one, it corresponds to a generalized form (accounting
for variable density and Lewis number effects) of the effective diffusion coefficients found in the
nonreactive Taylor dispersion problem.

Before turning to the solution of the problem and a discussion of the findings, we close this section
by a few useful preliminary remarks. Specifically, we note that the ratios DT, eff/DT , DF, eff/DF , and
DT, eff/DF, eff depend on the local temperature θ , since ρ ≡ ρ̂/ρ̂u is a function of θ given by (12).
The latter ratio defines a θ -dependent effective local Lewis number, say, Le′ = DT, eff/DF, eff. The
value of Le′ at θ = 1 (where ρ = 1 − α), which we denote by Leeff, is crucial for the determination
of the propagation speed as we will demonstrate. It is given by

Leeff

Le
= 1 + γ Pe2

1 + γ Pe2Le2 , (23)

where

γ = γ∗(1 − α)2 = 8
945 (1 − α)2. (24)
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Similarly, we record for later reference the values of the effective mass and heat diffusivity
corresponding to θ = 1, which according to (21) and (22) are given by

DT, eff = DT (1 + γ Pe2) (θ = 1), (25)

DF, eff = DF (1 + γ Pe2Le2) (θ = 1). (26)

IV. SOLUTION FOR LARGE ACTIVATION ENERGY β → ∞
In the asymptotic limit β → ∞, the problem (20) may be solved analytically following a familiar

methodology. In this limit, a thin reaction zone of thickness O(β−1) is indeed expected, located at
x = 0, say, separating two outer zones known as the preheat zone (x < 0) and the burned gas zone
(x > 0). In the outer zones the reaction rate can be set to zero. This leads to a simple outer solution
in the burned gas, namely,

θouter = 1, youter
F = 0 (x > 0). (27)

In the unburned gas, a fully explicit outer solution is more difficult to obtain, especially for yF .
However, for the determination of UT , the explicit solutions are not needed and first integrals are
sufficient as they provide matching conditions for the inner problem which allows determination of
UT . The first integrals in question, which are easily obtained by integrating (20a) and (20b) in the
unburned gas (x < 0) after setting ω = 0 and taking into account boundary conditions (20c), are

UT θouter − (1 + γ∗Pe2ρ2)
dθouter

dx
= 0, (28)

UT youter
F − 1

Le
(1 + γ∗Pe2Le2ρ2)

dyouter
F

dx
= UT . (29)

We turn now to the inner solution by introducing an inner variable X and inner expansions by

X = x

β−1
, θ inner ∼ 1 + �1(X)

β
, y inner

F ∼ F 1(X)

β
.

The inner problem to leading order is then given by

�1
XX + 
F 1 exp(�1) = 0, (30)

1

Leeff
F 1

XX − 
F 1 exp(�1) = 0, (31)

�1 = 0, F 1 = 0 as X → +∞, (32)

�1 = UT X

1 + γ Pe2 , F 1 = −LeUT X

1 + γ Pe2Le2 as X → −∞, (33)

where Leeff is given by (23) and


 ≡ 1

2 Le(1 + γ Pe2)
. (34)

We note that conditions (32) and (33) follow from the matching requirement(
θ inner,y inner

F

)
(X → ±∞) = (θouter,youter

F )(x → 0±).

Indeed, the zeroth-order matching is ensured by requiring θouter(0±) = 1 and youter
F (0±) = 0. The

first-order matching for θ is ensured by requiring �1(X) = θouter
x (0±)X as X → ±∞ and using (27)

and (28) to evaluate θouter
x (0±). The first-order matching for yF is obtained similarly.
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The inner problem can now be simplified further, by noting that F 1 = −Leeff�
1 identically; this

is seen by adding (30) to (31) and using (32). Eliminating F 1, the inner problem becomes

�1
XX = 
 Leeff�

1 exp(�1), (35)

�1(X → −∞) = UT X

1 + γ Pe2 , �1(X → ∞) = 0. (36)

Now UT can be found by integrating Eq. (35) subject to boundary conditions (36). Multiplying (30)
by �1

X and integrating with respect to X from X = −∞ to X = +∞ yields[(
�1

X

)2

2

]X=+∞

X=−∞
= 
 Leeff

∫ �1(+∞)

�1(−∞)
�1 exp(�1)d�1.

Thus, using (36) and evaluating the integral, we obtain

U 2
T

(1 + γ Pe2)2
= 
 Leeff. (37)

Hence, referring to (23) and (34), we have

UT = 1 + γ Pe2

(1 + γ Pe2Le2)1/2
, (38)

where γ is a number given by (24). Equation (38) gives the effective flame speed UT , to leading
order, in terms of Le and Pe in the limits ε → 0 and β → ∞, with Pe = O(1). For a unit Lewis
number, (38) implies that

UT =
√

1 + γ Pe2 (Le = 1), (39)

in agreement with the result of [2].

V. IMPLICATIONS OF THE FINDINGS AND CONCLUSIONS

We now discuss the key implications of the results, with the main focus being on answering
the questions raised in Sec. I. We emphasize, once again, that these questions, which are inspired
from turbulent combustion, are posed and answered for the specific context of premixed flames in
a laminar one-scale parallel flow. Any extrapolation to more complex flow situations is beyond the
scope of this investigation.

A. Bending effect

Referring to the notation of Sec. II, our limit ε → 0 with Pe = O(1) is seen to be equivalent
to A → ∞ with Re fixed. Thus our results show that the bending effect, exhibited in Fig. 1 when
UT (the turbulent burning velocity ST scaled by SL) is plotted versus u′/SL for fixed Re, is also
exhibited by laminar premixed flames. We may therefore refer to this effect as the laminar bending
effect. Indeed, the bending effect is associated with the apparent existence of a horizontal asymptote
in the experimental curve in Fig. 1 and the laminar bending effect is associated with the existence
of a finite value of UT , given by (38), in our asymptotic limit A → ∞ with Pe fixed. Therefore,
the laminar bending effect observed in our analytical study shows parallels with the bending effect
observed for turbulent premixed flames. Our analytical observation of the laminar bending effect
has also been consolidated by extensive numerical calculations, in both the constant density case
and the variable density case. For illustration, Fig. 3, where UT is plotted against A, exhibits the
bending effect for A → ∞ and Re fixed (solid curves). Parenthetically, we make the following three
observations pertaining to these fixed-Re solid curves. First, we note the interesting nonmonotonic
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FIG. 3. Propagation speed UT versus the flow amplitude A of a Poiseuille flow for fixed values of Re (solid
curves) or fixed values of δ ≡ ε−1 (dashed curves). Results of constant density numerical calculations are shown,
except for the solid red curve labeled “Variable density,” which shows variable density calculations for fixed
Re = 50.

behavior of UT versus A, with UT attaining a maximum for a finite value of A. Second, we note that
the asymptotic value of UT as A → ∞ in the variable density case is less than the corresponding
value in the constant density case; this is consistent with formulas (24) and (39). Third, we note
that in the variable density case UT does not tend to unity (the normalized planar flame speed) as
A → 0, but rather to a higher value; this is because a planar solution does not exist in this case and
the flame is necessarily curved unless the no-slip boundary condition at the wall is replaced by the
less physically realistic slip boundary condition [37].

Returning to the bending effect, it is important to point out that this effect is not found to depend
qualitatively on the form of the one-scale parallel flow and has also been observed for other flows
[36]. Note, however, that the distinguished limit A → ∞ with Re fixed is essential to this conclusion
and that other limits may lead to a different behavior; for example, the limit A → ∞ with ε fixed
exhibits an apparently linear behavior (dashed curves in Fig. 3). Comparison between Figs. 1 and 3
shows striking similarities and suggests perhaps that a possible reason for the failing of previous
theories to explain the experimentally observed bending effect may well be their lack of adoption of
the proper distinguished limit. Most previous theories have indeed adopted the thin flame or large
flow scale assumption, ε � 1, while our distinguished limit requires the thick flame or small flow
scale assumption, ε � 1. We may therefore conclude that, at least for parallel flows, the bending
effect cannot be explained without allowing small scales.

B. Damköhler’s second hypothesis

This brings us to the next important point, namely, that formulas (38) and (39) pertain to small
flow scales and directly relate, as we will elaborate below, the increase in the propagation speed to
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the increase in the effective diffusivity. This increase is therefore in line with the ideas put forward
by Damköhler [3] in what is commonly referred to as Damköhler’s second hypothesis [27]. Our
formulas establish, in the simple context of one-scale parallel flows, a direct link between Taylor
dispersion and Damköhler’s second hypothesis. Furthermore, the formulas may also serve in this
context as a means to test the validity of this hypothesis. This latter point was touched upon in [7]
and later in [2,18], but the explicit influence of the Lewis number exhibited by (39) seems to be a
significant feature revealed by this study with implications discussed in the next two sections. In
fact, in his original seminal contribution [3] Damköhler did not consider Lewis number effects on
the basis that all diffusivities are practically equal in usual gas mixtures.

To make the discussion more concrete, it is worth noting that Damköhler’s second hypothesis
may be stated as

UT ∼
√

Re, (40)

where UT ≡ ST /SL is the scaled turbulent flame speed and Re ≡ u′l/ν the (turbulent) Reynolds
number given in terms of the turbulence intensityu′, the turbulence (integral) scale l, and the kinematic
viscosity ν. Damköhler arrived at this simple formula by making essentially two arguments. His
first argument is that the turbulent flame speed ST = √

Deff/τ , where Deff is an effective (turbulent)
diffusivity and τ the same chemical time which enters the laminar flame speed formula SL = √

DT /τ

[see, e.g., (13)]. This first argument implies of course that

UT ≡ ST

SL

=
√

Deff

DT

. (41)

His second argument is that in a gas all diffusivities are of the same order of magnitude DT ∼ DF ∼ ν

and when the flow is turbulent any effective diffusivity may be estimated by Deff ∼ u′l. This argument
implies that

Deff

DT

= Re (42)

and immediately leads, when used together with (40), to (41).
We are now ready to assess the applicability of Damköhler’s second hypothesis to parallel one-

scale flows. Specifically, our findings demonstrate that the hypothesis is only partially correct, in
that Damköhler’s first argument leading to (41) is correct but his second argument leading to (42)
is not. This is most clearly seen in the Le = 1 case (the only case considered by Damköhler) for
which the effective propagation speed UT is given by formula (39). This formula clearly satisfies
(41) provided Deff is identified with DT, eff given by (25). There is a clear disagreement however
between our expression for the effective diffusivity (25) and Damköhler’s expression (42), resulting
in a significant disagreement between our expression for UT , given by (39), and his, given by (40).
For example, making no distinctions between Pe and Re and assuming Re � 1, our formula implies
that UT ∼ Re, which is to be compared to Damköhler’s formula UT ∼ √

Re.
With these precise conclusions, based on our analytical findings, we close our discussion on the

applicability of Damköhler’s second hypothesis in our well defined one-dimensional flow context.
It is worth pointing out, however, that experimental evidence [19] and direct numerical simulations
[9] seem to indicate that Damköhler’s formula is qualitatively correct in turbulent flows; this suggest
that flows more complex than the one used here are necessary for the formula to apply. We will not
attempt herein to extrapolate the discussion of our conclusions to such more complex and realistic
flows as this will involve some speculations which are beyond the scope of this study.

C. Dependence of the effective Lewis number on the flow

Another interesting aspect we address now is the dependence of the effective Lewis number on the
flow, for a mixture with an arbitrary Lewis number. The reader is referred to [34] for a scholarly review
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Le < 1 (Le = 0.75)

Le > 1 (Le = 1.25)

Le = 1
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FIG. 4. Effective Lewis number Leeff versus the scaled Péclet number Pes ≡ Pe(1 − α) for fixed values
of Le. Solid lines denote analytical results from Eq. (23). Circles and squares denote numerical results for
Le = 0.75 and Le = 1.25, respectively, computed in the constant density approximation (where Pes = Pe) and
for fixed ε = 0.01.

on Lewis number effects in turbulent combustion. Here our objective is more limited and addresses
the question, discussed in [30], whether the effective Lewis number tends to one for large values of
u′, as argued in [6], or further deviates from one, as argued in [31]. This controversial question has
a clear answer in our well defined framework. Specifically, the dependence of the effective Lewis
number on the parallel flow is given by the simple formula (23). This formula leads to a striking and
unexpected behavior, which is illustrated in Fig. 4, where Leeff is plotted versus the scaled Péclet
number Pes ≡ Pe(1 − α). Specifically, Leeff varies from Le to Le−1 as Pe varies from zero to large
values. Thus a mixture whose Lewis number Le < 1 sees its effective Lewis number increase with
increasing Pe, so Leeff > 1 for large Pe. Similarly, a mixture whose Lewis number Le > 1 sees its
effective Lewis number decrease, so Leeff < 1 for large Pe. The dependence of the effective Lewis
number on the flow is therefore a different and somewhat counterintuitive result. The result is readily
explained as being a direct consequence of Taylor dispersion applied simultaneously to heat and
mass diffusions in a nonunit Lewis number mixture; specifically, it follows from the definition of
the effective Lewis number as the ratio DT, eff/DF, eff and from Taylor dispersion formulas for DT, eff

and DF, eff given by (21) and (22). The relationship between Leeff and Pes is confirmed, at least
qualitatively, by a few numerical simulations which are also reported in Fig. 4. In these simulations,
Leeff is computed as outlined at the end of Sec. II following the method of [30], where the difficulties
in estimating Leeff numerically are discussed. In view of these difficulties, the quantitative agreement
between the asymptotic and numerical results exhibited in Fig. 4 is reasonable.

It is worth noting that the dependence of Leeff on the flow has significant influence on UT , as
described in the following section. It is also anticipated to be an important factor to consider when
studying the stability of a (thick) flame propagating against a flow between two parallel plates as
in a Hele-Shaw cell [38–40]; the exploration of this specialized topic within a generalization of the
current analytical approach is left for future investigation.

023201-14



TAYLOR DISPERSION IN PREMIXED COMBUSTION: …

UT

Pes

Le <
√

2

Le >
√

2

FIG. 5. Propagation speed UT versus the scaled Péclet number Pes ≡ Pe(1 − α) for fixed values of Le
(Le = 1 and Le = 1.7). Solid lines denote analytical results from Eq. (38). Circles and squares denote numerical
results for Le = 1 and Le = 1.7, respectively, computed in the constant density approximation (where Pes = Pe)
and for fixed ε = 0.01.

D. Dependence of UT on the Péclet and Lewis numbers

Formula (38) for UT leads to another surprising behavior shown in Fig. 5. Specifically, for a fixed
value of Le, UT is found to be a monotonically increasing function of Pe if Le <

√
2. On the other

hand, if Le >
√

2, a nonmonotonic behavior is obtained as Pe is increased, corresponding to an initial
decrease of UT , which is followed by an increase. These dependences of UT on Pe are confirmed
by our numerical results (Fig. 5). At this point, one may wonder why UT has the specific functional
form given in (38), including the square root in the denominator, and why this form is a consequence
of Taylor dispersion. The answer is quite simple, if one examines the formula for the planar flame
speed (13) which, along with (12), implies that

SL =
√

D2
T ,b

DF,b

τ−1 ∝ DT,b

D
1/2
F,b

. (43)

Here τ is a characteristic chemical time given by

τ = ρ̂2
u

ρ̂2
b

β2

2B
eE/RTad

and DT,b and DF,b refer to the values of the thermal and mass diffusivities in the burned gas (where
θ = 1 and hence ρ = 1 − α). Then replacing these diffusivities by their effective values given by
Taylor dispersion formulas (25) and (26) applicable at θ = 1 (where DT = DT,b and DF = DF,b)
provides the dimensional form of the effective propagation speed ST . In other words, ST can be
obtained from SL by replacing the diffusion coefficients (evaluated at the reaction zone or the burned
gas) in (43) by their effective values given by (25) and (26). This results in an expression for UT ≡
ST /SL given by formula (38). This formula therefore quantifies the enhancement of the propagation
speed due to small flow scales for mixtures with arbitrary Lewis numbers in our one-dimensional
flow model. In such context, it provides an accurate description of such enhancement anticipated by
heuristic arguments encapsulated by Damköhler’s second hypothesis.
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