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It is well known that the spanwise rotation in turbulent channel flow alters the mean
velocity distribution to a linear law. In the present work, we have studied the higher-
order moments of the streamwise fluctuations in a turbulent channel flow with spanwise
rotation. Our results show that in a significant part of the channel the 2p-order moments,
raised by the power 1/p with p = 1,2, . . . ,6, also follow linear behavior according to
〈(u′+)2p〉1/p = ap(y/h) + bp . Here, u′+ is the streamwise velocity fluctuation normalized
by the global friction velocity, h is the channel half width, and bp and ap are the intercept
and the slope, respectively, which vary with Reynolds and rotation numbers. The linear
regions can be extended by introducing a self-similar scaling, that is, 2p-order moments
as a function of 2q-order moments. The slopes in the self-similar scaling ap/a1 do not
reveal sub-Gaussian behavior as in nonrotating wall-bounded flows, but rather Gaussian or
super-Gaussian behaviors.
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Wall-bounded turbulence is ubiquitous in nature as well as engineering applications, and it has
been studied extensively. In wall-bounded turbulence without separations or system rotation, the
most well-known feature is the universal logarithmic relation between the mean streamwise velocity
and the distance to the wall (y) in the inertial region [1–3], that is,

〈u〉/uτ ≡ 〈u〉+ = 1

κ
ln

(
uτy

ν

)
+ C.

Here, uτ = √
τw/ρ is the friction velocity based on the wall friction stress τw and the fluid density ρ,

ν is the kinematic viscosity, κ is the von Kármán constant, and C is the intercept of the logarithmic
law, which is also a constant at high Reynolds number. Many experimental and numerical studies of
turbulent boundary layer, turbulent pipe flow, and turbulent channel flows have shown evidence of
the above logarithmic law (see the reviews [4–6], and references therein).
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In addition to the mean streamwise velocity, the velocity fluctuations are very important quantities
for wall-bounded turbulence, and another logarithmic behavior, motivated by the “attached eddy
hypothesis” [7–9], was reported for the variance of the streamwise velocity fluctuations in the inertial
region [5,10–14], 〈

(u′+)2
〉 = B1 − A1 ln(y/δ).

Here, u′+ = (u − 〈u〉)/uτ is the normalized streamwise velocity fluctuation, δ is the outer length
scale, which is half of the channel width for a channel flow, the radius for a pipe flow, or the boundary
layer thickness for a boundary layer flow. A1 ≈ 1.25 is the Townsend-Perry constant [5,10,12–15]
while B1 is a parameter which depends on flow conditions and geometry. More recently, Meneveau
and Marusic [16] found that the pth root of the 2p-order moments of the streamwise velocity
fluctuations also follow a generalized logarithmic law,

〈(u′+)2p〉1/p = Bp − Ap ln(y/δ) = Dp(Reτ ) − Ap ln(y+), (1)

where y+ = y/lν = yuτ /ν is the wall distance in viscous units, Reτ = uτ δ/ν is the friction Reynolds
number, Dp = Bp + Ap ln Reτ is a Reynolds-number-dependent offset, and Ap is the slope of the
logarithmic law. They reported that the slopes Ap, which are lower than the Gaussian prediction
A1[(2p − 1)!!]1/p, appear quite insensitive to the Reynolds number, suggesting the existence of
universal behavior in wall-bounded turbulence. This generalized logarithmic law for high-order
moments can also be explained by the attached eddy hypothesis, assuming that the eddy population
density is inversely proportional to the wall distance while the length scales of the eddies are directly
proportional to the wall distance [16–18]. Furthermore, by using this attached eddy hypothesis, other
logarithmic scalings of generalized high-order two-point correlations can be motivated. These were
confirmed for turbulent boundary layer [18,19]. These logarithmic scalings can also be predicted
using momentum generating functions [20,21] and have been observed in large-eddy simulation
[22]. Generalized high-order statistics can be used as a diagnostic tool in numerical simulations as
well as experimental measurements [23,24].

Wall-bounded turbulence with system rotation is of great interest to engineering applications,
geophysics, as well as astrophysics. As one typical well-defined canonical flow problem, turbulent
channel flow subject to spanwise rotation has attracted a lot of attention from theoretical, experimental
and numerical points of view [25–46]. It is generally accepted for a spanwise-rotating turbulent
channel flow (RTCF) that turbulence is augmented in the part of the channel where the mean flow
vorticity has an opposite sign to the system rotation (anticyclonic rotation), while it is suppressed in the
other part where the two quantities are of the same sign (cyclonic rotation). Spanwise rotation alters
the flow structures and flow statistics strongly in turbulent channel flow, and the most famous result
concerns the mean velocity profile. In RTCF, the mean velocity exhibits a linear profile with a slope
dU/dy ≈ 2� (here,U is the mean streamwise velocity and� is the spanwise angular velocity), which
implies a nearly zero absolute mean vorticity. This linear mean velocity profile was first reported
in the experimental results by Johnston et al. [25], and then verified by others by experiments and
numerical simulations. Recently, Xia et al. [42] reported other linear profiles in RTCF by using their
direct numerical simulation (DNS) results at low friction Reynolds number Reτ = 180 (Reτ = uτ δ/ν

with uτ being the global friction velocity and ν being the kinematic viscosity), such as the Reynolds
shear stress and the production of turbulent kinetic energy. The newly reported linear profiles were
verified by Brethouwer [46] in DNS at higher Reynolds numbers.

Although RTCF has been intensively studied, very few results are reported on high-order statistics.
In this Rapid Communication, the high-order moments of streamwise fluctuations will be studied
using DNS data from Xia et al. [42] and Brethouwer [46]. It is interesting to see that these high-order
moments also follow linear behaviors in a certain part of the channel although the Reynolds number
is quite low. The dependence of the slopes on rotation and Reynolds numbers will also be discussed.

The present work is based on an analysis of the DNS data presented in Refs. [42,46]. Figure 1
shows the profiles of 〈(u′+)2〉 for different cases. In the DNS of Ref. [42] Reτ was kept constant
and the bulk Reynolds number Reb = Ubδ/ν, where Ub is the bulk mean velocity, varies with the
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FIG. 1. Profiles of 〈(u′+)2〉. (a) results at Reτ = 180; (b) results at Reb = 10 000; (c) results at Reb = 20 000,
and (d) results at Reb = 31 600. The data are from Ref. [42] (a) and Ref. [46] (b)–(d). The thin solid lines show
linear profiles with different slopes.

rotation rate, whereas in the DNS of [46] it was the other way around. When we refer to data from
the first source we mention therefore Reτ , whereas when we refer to data from the second source we
mention Reb. Tables with Reτ together with Reb, Roτ = 2�δ/uτ and Ro = 2�δ/Ub are given in
both Refs. [42,46]. At lower Reynolds number cases as shown in Fig. 1(a), where the global friction
Reynolds number is fixed at Reτ = 180, 〈(u′+)2〉 decays with increasing rotation number Roτ on the
unstable pressure side. Away from the wall on the pressure side, a linear relation

〈(u′+)2〉 = a1(y/h) + b1 (2)

can be identified for all five Roτ . This is within the region where the mean velocity profile displays
a linear slope. However, the slopes at different Roτ are not the same, but vary slightly. At higher
Reynolds numbers, as displayed in Figs. 1(b)–1(d), where the bulk Reynolds numbers are fixed at
Reb = 10 000, 20 000, and 31 600, respectively, 〈(u′+)2〉 also has a linear slope away from the wall
on the pressure side for all cases. The slopes vary more apparently than at lower Reynolds numbers.
The linear slopes a1 of 〈(u′+)2〉 are plotted as function of Ro and Roτ in Fig. 2. It is seen that a1 first
decreases with Ro or Roτ and then increases with Ro or Roτ at all Reynolds numbers considered. At
lower Reynolds numbers, a1 is above −1 and varies slowly with Ro. At higher Reynolds numbers,
a1 varies considerably with Ro, from a value around −0.8 at Ro = 0.45 to a value around −1.5
at Ro = 0.9 and 1.2 for Reb � 20 000. Note that in the DNS of Ref. [46] with a constant Reb,
Reτ � 180 for Reb = 5000 and Ro � 1.2, whereas in all other DNS from that source Reτ > 180.
From the figure, we can infer that the slope varies more strongly with Ro at higher Reynolds numbers.
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FIG. 2. Slopes a1 for the linear fitting of 〈(u′+)2〉 as a function of (a) Ro and (b) Roτ . “X180” refers to the
data from Ref. [42] at Reτ = 180, while “B5k,” “B10k,” “B20k,” and “B31k” refer to the data from Ref. [46]
at Reb = 5000, 10 000, 20 000, and 31 600, respectively.

In nonrotating wall-bounded turbulence, the higher-order moments follow the same logarithmic
behavior as the variance of the streamwise fluctuations 〈(u′+)2〉. In the present work, we have
demonstrated that 〈(u′+)2〉 follows a linear law at different Reynolds and rotation numbers. Now,
we are going to show that the higher-order moments also follow a linear behavior. Figures 3(a) and
4(a) show the profiles of 〈(u′+)2p〉1/p for p = 1, . . . ,6 at Reτ = 180, Roτ = 22, and Reb = 31 600,
Ro = 1.2, respectively, the latter case corresponding to Reτ = 562 and Roτ = 67. The linear fitting

〈(u′+)2p〉1/p = ap(y/h) + bp (3)

is also shown in the figure. The corresponding fitting coefficients ap and bp and the adjusted R square
for p = 1, . . . ,6 are listed in Tables I and II, respectively. It is clearly seen that linear profiles can
be discerned for 〈(u′+)2p〉1/p with p = 1, . . . ,6 on the pressure side, again in the region where the
mean velocity profile displays a linear slope. The higher-order moments of the two other velocity
components (not shown) do not display a linear slope. In order to show more clearly how well is this
linear fitting, the relative error of the linear fittings, which is defined as

ε = (〈(u′+)2p〉1/p − [ap(y/h) + bp])/〈(u′+)2p〉1/p = 1 − [ap(y/h) + bp]/〈(u′+)2p〉1/p, (4)
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FIG. 3. (a) Profiles of 〈(u′+)2p〉1/p and their linear fittings 〈(u′+)2p〉1/p = ap(y/h) + bp for p = 1 to 6. U+

is also plotted to show the linear region for mean velocity (black solid line). (b) Relative error of the linear fitting
1 − [ap(y/h) + bp]/〈(u′+)2p〉1/p for p = 1 to 6. The data is from Ref. [42] at Roτ = 22 and fitting coefficients
are listed in Table I. Inset in (b) shows the zoomed-in behavior for p = 1 to 4.
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FIG. 4. (a) Profiles of 〈(u′+)2p〉1/p and their linear fittings 〈(u′+)2p〉1/p = ap(y/h) + bp for p = 1 to 6. U+

is also plotted to show the linear region for mean velocity (black solid line). (b) Relative error of the linear fitting
1 − [ap(y/h) + bp]/〈(u′+)2p〉1/p for p = 1 to 6. The data is from Ref. [46] at Reb = 31 600 and Ro = 1.2. Inset
in (b) shows the zoomed-in behavior for p = 1 to 4.

is depicted in Figs. 3(b) and 4(b). It shows that the relative errors of these linear fittings are quite
low; they are within 5% in the region −0.7 � y/h � 0 for most cases, which demonstrates the
present good linear fittings. This is consistent with the adjusted R-square values listed in Tables I
and II, which are larger than 0.94 for p = 1 to 6. It is seen in Figs. 3 and 4 that larger deviations
exist for higher-order moments with p � 5; for lower-order moments with p � 4 the deviations are
much smaller. In order to show the good fittings for lower-order moments, the relative errors for
p = 1, . . . ,4 are enlarged in the insets shown in Figs. 3(b) and 4(b). For the lower Reynolds number
case, the relative errors are 3%, while in the higher Reynolds number case the errors are within 1%
for p � 4. We may infer that the linear behavior is more apparent at high Reynolds numbers.

Figures 3(a) and 4(a) also include the mean velocity profiles U+. This shows that the linear region
for 〈(u′+)2p〉1/p is smaller than the linear region for the mean velocity profile. This is in contrast to the
nonrotating cases. In wall-bounded turbulence without system rotation, Marusic et al. [14] identified
the logarithmic law for the mean velocity and 〈(u′+)2〉 within the range 3Re1/2

τ < y+ < 0.15 Reτ ,
while Meneveau and Marusic [16] found in the range y+ > 400 and y/δ < 0.3 (δ is the boundary
layer thickness) a fit to the logarithmic laws for 〈(u′+)2p〉1/p. Stevens et al. [22], on the other hand, used
the range 0.04 ≤ y/δ ≤ 0.23 to fit their large-eddy simulation data for 〈(u′+)2p〉1/p to the logarithmic
laws. In other words, in wall-bounded turbulence without system rotation, the logarithmic regions for
the mean velocity and 〈(u′+)2p〉1/p match and are within y/δ < 0.3. In contrast, in spanwise-rotating
turbulent channel flow, the linear profile for the mean velocity is quite wide (its extent is wider than
0.5h in some cases), while the linear regions for 〈(u′+)2p〉1/p are much narrower. Furthermore, the
extent of the region with these linear profiles depends on the Reynolds and rotation numbers.

In order to further verify the linear regions, plots of 〈(u′+)2p〉1/p against 〈(u′+)2〉 and 〈(u′+)6〉1/3

for p = 1 to 6 at Reb = 31 600 and Ro = 1.2 are depicted in Fig. 5. From Eq. (3), it is easy to obtain

TABLE I. Linear fitting information for the case with Roτ = 22 from Ref. [42]. The fitting region is
−0.5691 � y/h � 0.

y = apx + bp p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

ap −0.6736 −1.188 −1.682 −2.158 −2.637 −3.176
bp 0.5843 1.244 2.099 3.135 4.342 5.703
Adjusted R square 0.9978 0.9954 0.9923 0.9921 0.9890 0.9417
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TABLE II. Linear fitting information for the case with Ro = 1.2 and Reb = 31 600 from Ref. [46]. The
fitting region is −0.6984 � y/h � −0.0123.

y = apx + bp p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

ap −1.500 −2.680 −3.889 −5.065 −6.174 −7.286
bp 0.4405 1.054 1.985 3.296 5.035 7.206
Adjusted R square 0.9995 0.9998 0.9998 0.9991 0.9939 0.9616

a relation between 〈(u′+)2p〉1/p and 〈(u′+)2q〉1/q ,

〈(u′+)2p〉1/p = ap

aq

〈(u′+)2q〉1/q + aqbp − apbq

aq

, (5)

where q is a positive integer that differs from p. This relation implies that a linear region can also
be identified in the plot of 〈(u′+)2p〉1/p against 〈(u′+)2q〉1/q with the slope being ap/aq . A similar
relation between high-order moments and mean velocity profiles was proposed by Örlü et al. [24] as a
diagnostic scaling. It is apparent from Fig. 5 that linear regions can be obtained for 〈(u′+)2p〉1/p against
〈(u′+)2〉 and 〈(u′+)6〉1/3 for p = 1 to 6 with slopes ap/a1 and ap/a3, respectively. More importantly,
the linear regions with this new self-similar scaling are wider than the original ones with high-order
moments profiles as a function of the wall distance, whose extent is marked by the two vertical
dash-dotted lines in Fig. 5. Yang et al. [21] showed that the power-law scaling of the momentum
generation functions (MGFs) for the streamwise velocity fluctuations can be extended to include the
bulk and viscosity-affected regions 30 < y+, y < δ if the data were interpreted with a self-similar
scaling of the MGFs as a function of one reference value, implying extended self-similarity [47–53].
Accordingly, our results also reveal extended self-similarity.

In fact, for wall-bounded turbulent flows without system rotation, we can also derive a self-similar
scaling from Eq. (1)

〈(u′+)2p〉1/p = Ap

Aq

〈
(u′+)2q

〉1/q + AqBp − ApBq

Aq

, (6)

which has the same form as Eq. (5). That is, the self-similar scaling of 〈(u′+)2p〉1/p as a function
of 〈(u′+)2q〉1/q follows a linear law with the slope Ap/Aq in nonrotating wall-bounded turbulence,
although 〈(u′+)2p〉1/p itself exhibits a logarithmic law. Specifically, if we set q = 1, then the slope
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FIG. 5. (a) Plot of 〈(u′+)2p〉1/p against 〈(u′+)2〉 for p = 1 to 6. The solid lines indicate the slopes ap/a1. (b)
Plot of 〈(u′+)2p〉1/p against 〈(u′+)6〉1/3 for p = 1 to 6. The solid lines indicate the slopes ap/a3, while the vertical
dash-dotted lines show the bounds of the linear regions depicted in Fig. 4 with −0.6984 � y/h � −0.0123.
The data is from Ref. [46] at Reb = 31 600 and Ro = 1.2.
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FIG. 6. Slopes of the self-scaling ap/a1 at different Reynolds number and rotation number. (a) Reb = 20 000
and (b) Reb = 31 600. The Gaussian values are also shown for comparison.

becomes Ap/A1. As shown by Meneveau and Marusic [16], if the streamwise fluctuations have a
Gaussian behavior, then Ap/A1 = [(2p − 1)!!]1/p. However, in the wall-bounded turbulent flows
without system rotation, the streamwise fluctuations display sub-Gaussian statistics and the slope
Ap/A1 falls below the Gaussian values [(2p − 1)!!]1/p. In spanwise-rotating turbulent channel flows,
the system rotation complicates the flow statistics. In Fig. 6, the self-scaling slopes ap/a1 at Reb =
20 000 and 31 600 are shown with reference to Gaussian values. Different from the nonrotating cases,
the statistics are no longer sub-Gaussian for most cases considered, but approximately Gaussian or
super-Gaussian. However, there is no clear agreement for the results at the two Reb, implying that
we cannot draw strong conclusions regarding the Gaussian or super-Gaussian behavior.

As presented above, the attached eddy hypothesis can be used to predict the logarithmic scaling
of the single-point high-order moments of the streamwise velocity fluctuations in wall-bounded
turbulent flows without system rotation. Brethouwer [46] found evidence that attached eddies also
populate spanwise-rotating channel flow at lower rotation rates, but at higher rotation rates (e.g., Ro �
0.9 and Reb = 20 000), they appear much less prominent. Therefore, we cannot use the attached eddy
hypothesis to explain the linear profiles observed in spanwise-rotating channel flows. Nevertheless,
if we adopted the attached eddy hypothesis but assumed that the eddy population density is constant
in a certain region, it would lead to a linear profile for the even-order moments of the streamwise
velocity fluctuations. However, a constant eddy population is very unlikely, therefore, this proposition
is unlikely to give the correct physical explanation. As for the zero-absolute-mean-vorticity region
of the mean velocity profile, more work needs to be done to find a proper physical explanation.

In conclusion, we studied the high-order moments of the streamwise fluctuations in spanwise-
rotating turbulent channel flows. Our results showed that the high-order moments follow linear laws
like the mean streamwise velocity. The linear regions for the higher-order moments are narrower
than that for the mean velocity, but the linear regions can be extended if a self-similar scaling is used.
Furthermore, our analysis showed that the flow statistics are no longer sub-Gaussian if the system
rotates about the spanwise direction, but are approximately Gaussian or super-Gaussian. However,
the Reynolds numbers studied are quite low. Data at higher Reynolds numbers should be used to
further investigate the Reynolds and rotation number effect. Further studies are also required to find
a proper physical explanation for the observed scaling behaviors.
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