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We investigate the evolution of passive scalar statistics in a spatially developing turbulence
using direct numerical simulation. Turbulence is generated by a square grid element, which
is heated continuously, and the passive scalar is temperature. The square element is the
fundamental building block for both regular and fractal grids. We trace the dominant
mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation
along the bar and grid-element centerlines. The scalar-variance is generated predominantly
by the action of the mean scalar gradient behind the bar and is transported laterally
by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation
(proportional to the scalar-gradient variance) is produced primarily by the compression of
the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution
of mean velocity and scalar fields is negligible. Close to the grid element the scalar
spectrum exhibits a well-defined —5/3 power-law, even though the basic premises of the
Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly
intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet
number is small). At this location, the PDF of scalar gradient production is only slightly
skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the
compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed
stronger than the vorticity vector by turbulent strain rate throughout the grid-element
centerline. However, the alignment of the former changes much earlier in space than that
of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element
centerline compared to the turbulent kinetic energy dissipation. The universal alignment
behavior of the scalar-gradient vector is found far downstream, although the local Reynolds
and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.

DOI: 10.1103/PhysRevFluids.3.014612

I. INTRODUCTION

A passive scalar is transported by the flow but does not react back, i.e., it does not influence
the carrier flow. Examples include small variations of temperature and pollutant concentration.
Understanding the statistical behavior of scalar fluctuations and their gradients is important from
both the application as well as the fundamental points of view. Most of the industrial processes (for
instance, heat exchange, mixing, combustion) involve the transport of scalar by a turbulent flow.
Similarly, understanding of micromixing, and thus arriving at an effective mixing model, requires
knowledge of the fluctuating scalar gradients [1]. The study of passive scalar is also fundamental
to the understanding of turbulence itself. Numerous studies on various aspects of scalar turbulence
have appeared in the literature and are reviewed in Refs. [2-9].

The dynamics of passive scalar turbulence have been explored theoretically [10,11], experimen-
tally [1,12—15], and numerically [16-21] for various flow configurations. Some flows have shear
(jets or wakes), and some are shear-free (grid turbulence). In most shear-free flows, a mean scalar
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gradient is imposed at the inlet [22-26], but there are also studies where the grid is heated [12,27,28].
It is important to stress that almost all of the previous studies of shear-free scalar turbulence are
either experiments carried out rather far downstream of the grid, or periodic box direct numerical
simulations with an imposed mean scalar gradient. Thus, they have analyzed mostly the scalar
properties in turbulence, which is designed to be close to homogeneous isotropic turbulence (HIT).

The last decade has witnessed an interest in turbulent flows generated by fractal grids. Since the
work of Seoud and Vassilicos [29], many studies have focused on the turbulent flow generated by
multiscale or fractal grids [30-32]. Recently, Valente and Vassilicos [33], Zhou et al. [34-36], and
Paul ef al. [37] have shown that the turbulence generated by a single square grid element shares
similarities with that generated by a fractal square grid. In both flows, there is an extended turbulent
production region followed by a decay region. The production region is characterized by increasing
turbulent intensity, which decays farther downstream. Previous experimental and numerical studies
of Refs. [37-40] have shown that the dynamics of velocity gradients in the near-grid region are
different from the HIT case. In particular, the velocity spectrum has a —5/3 power-law slope even in
the near-grid region where the turbulence is highly inhomogeneous and developing. In that region,
the O-R diagrams (where Q and R are the second and third invariants of the velocity gradient tensor)
are not developed, and strain dominates enstrophy.

Previous works have demonstrated significantly increased turbulent scalar fluxes in the cross-
stream direction in the lee of a fractal grid, and proposed a mechanism to explain this behavior
[41-45]. To the best of authors’ knowledge, there are no comprehensive studies on the dynamical
evolution of scalar-variance and scalar gradients in turbulence generated by fractal or single square
grids.

The central aim of this paper is not only to study the statistical behavior of scalar gradients, but
also to investigate their relationship with velocity gradients. The turbulence is generated by a single
square grid element which is heated continuously, and the passive scalar is temperature. The present
work complements the previous study of the authors on the evolution of velocity gradients in a
turbulent flow generated by the same geometry [37]. The scalar gradient analysis aims to answer the
following five questions:

(1) How are the large- and small-scale terms of scalar turbulence generated and transported in this
spatially developing turbulence? We identify the dominant mechanisms responsible for the transport
of these quantities in Sec. I1I.

(2) Itis sometimes believed that the evolution of scalar dissipation is similar to that of the mean
enstrophy of fluctuations [46]. Do these quantities indeed behave similarly in the examined flow?
We report on the similarities and differences along the grid-element and bar centerlines in Secs. III B
and VI. In Sec. V we explain the observed trends by probing more deeply into the production of
these quantities due to turbulent stretching and compressing by the strain rate.

(3) Does the —5/3 power-law slope of the scalar spectrum appear in the inhomogeneous, near
grid-element region? Previous studies have established that for HIT the —5/3 slope appears over a
wider range of frequencies than the velocity spectrum (refer to the review in Ref. [6]). It is not clear
if this is also true when the scalar field is highly inhomogeneous and developing. We explore this
question in Sec. IV.

(4) If indeed there is a power-law in the scalar spectrum in the near grid element region, how
do the small-scale scalar dynamics correlate with the scalar cascade? The stretching of the vorticity
vector is believed to be closely associated with the energy cascade in turbulent flows. The equivalent
process in the scalar cascade is the stretching and compressing of the passive scalar-gradient vector.
In Sec. V we correlate the behavior of scalar small-scale terms with the —5/3 power-law slope of
the scalar spectra.

(5) How do the scalar spectrum and the scalar gradient dynamics evolve from the near grid-
element region to the far downstream? Since the turbulence is developing, the dynamics of scalar
gradients are also expected to vary, and we study this evolution throughout this paper.

The rest of the paper is organized as follows. The next section provides the details of the numerical
setup. The budgets of large- and small-scale quantities (scalar-variance and dissipation, respectively)
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FIG. 1. Sketch of the computational domain: (a) front view, (b) side view at plane z/#, = 0 (sketches not
to scale).

are discussed in Sec. I1I. Then we analyze the scalar spectrain Sec. IV and the relation with small-scale
stretching and compressing (Sec. V). The evolution of scalar-variance and turbulent kinetic energy
dissipation rates are analyzed in Sec. VI. Finally, we summarize the main conclusions in Sec. VII.

II. NUMERICAL METHOD AND COMPUTATIONAL PARAMETERS

Throughout the paper, the instantaneous, mean, and fluctuating velocity fields are denoted as u],
U;, and u; respectively (where i = 1,2,3). The corresponding variables for pressure and temperature
are p*, P, p, and T*, (T*), T. Throughout the paper, the brackets () are used to represent the
time-averaging operation. The continuity, momentum, and scalar conservation equations are written
as

o (1)
8x,~ -
du dut 1 9p* 3%u;
gt = oy S 2)
ot 7 9x; 0 0x; dx;0x;
oT*  ,OT* 9°T*
at / 8)Cj 8XjBXj

where p,v,« are the density, kinematic viscosity, and thermal diffusivity of the fluid, respectively.

These equations are solved using the in-house parallel solver, Pantarhei. The solver is based on
unstructured finite volume discretization in a collocated variable arrangement. The convective and
diffusive spatial terms are discretized using the second-order central-differencing scheme, while the
second-order backward scheme is employed for time advancement. The code is parallelized using
the PETSc libraries [47]. More details about the solver can be found in Refs. [37,48-50].

The front view of the computational domain in the y-z plane is depicted in Fig. 1(a). The origin of
the coordinate system is located at the center of the element. The bar has lateral thickness 7o = 43 mm,
length Ly = 229 mm, and streamwise thickness 6 mm. The blockage ratio is 20%. A characteristic
wake interaction length scale, defined as x* = L% /to (refer to Ref. [30]), is used to normalize the
streamwise distance downstream of the grid element. A side view of the computational domain at
plane z/t, = 0, with details on the size of the domain and type of boundaries, is shown in Fig. 1(b) .

Uniform velocity and temperature profiles are prescribed at the inlet (Uy, and T, respectively),
and a convective boundary condition is imposed at the outlet. All lateral boundaries are periodic. On
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FIG. 2. Contours of (a) instantaneous temperature and (b) mean temperature fields. The isocontours range
from 1 to 1.5 T. The white dotted line in (b) is the isoline of normalized mean vorticity vector magnitude
({J@*|)to/ Us) of 0.18. The black dotted-dashed line is the centerline of the grid element, and the bar centerline
is represented by a pink dotted-dashed line.

the grid-element surface, a no-slip condition is applied for velocity and uniform heat flux (g,,) for
temperature. The Reynolds number based on the the free-stream velocity Uy, and the bar length L is
Re;, = 2650, while based on the lateral thickness #; is Re;, = 500. The Prandtl number, Pr = v/c,
is 0.71.

The same mesh employed in our previous study [37] is also used for this paper. It was shown in
Ref. [37] that the ratio of a characteristic mesh size to the Kolmogorov length scale is less than 1
throughout the computational domain. Since Pr < 1, the Obukhov-Corrsin scale noc[noc = nPr=3/4

where n = (V3 /€)% is the Kolmogorov length scale and €, = 2v(s;;s;;) where s;; = %(g% + %)
is the turbulent strain rate] is larger than the Kolmogorov length scale. Therefore, the mesh resolution
is finer for the scalar field compared to the velocity field. At worst, the mesh resolution is 0.637oc in
the whole domain. More details about the mesh and the numerical setup are presented in Ref. [37].

The validation of the solver against experiments for one-point velocity and velocity-gradient
statistics is presented in Ref. [37]. We rely upon this validation for the present study since there are

no experiments available for the scalar field.

III. BALANCE OF TRANSPORT EQUATIONS

In this section we investigate the dynamics and transport mechanisms of large and small scales of
scalar turbulence. The large-scale terms are characterized by fluctuations and the small-scale terms
by fluctuation gradients [51]. scalar-variance is considered a large-scale term while scalar-gradient
variance is a small-scale term. The transport equations of these quantities are studied along the bar
and grid-element centerlines because of the different dynamics prevalent at these two locations.

The scalar field under consideration is visualized first. Contours of the instantaneous scalar field
are depicted in Fig. 2(a). The scalar is being injected into the wake by heating the grid element.
Vorticity is produced at the walls and shed into the wake. Both scalar and vorticity have therefore
initially the same length scale. For the time instant shown in the figure, the scalar wakes behind the
bars start meeting at x/x* ~ 0.4. As shown later, the scalar wakes meet at x /x* ~ (0.2 on average,
which is similar to the location reported in Ref. [37] for the meeting of vortical wakes.

The time-averaged scalar field is shown in Fig. 2(b). The isoline of normalized mean vorticity
vector magnitude is superimposed in order to compare the spreading rate of vorticity and scalar
wakes. The two rates are similar, as expected [52]. A mean recirculation region forms behind the
bars, and its length is approximately 3.7¢y (or 0.13x*). The scalar is trapped inside this region, leading
to high values in the centerline [depicted as a small circular red area behind the bars in Fig. 2(b)].
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FIG. 3. (a) Evolution of scalar-variance and turbulent kinetic energy along the bar centerline; (b) evolution

of budget terms of scalar-variance along the bar centerline. All terms are normalized by Us T2 /fo.

A. Scalar-variance balance
The transport equation of scalar-variance %(Tz) can be written as (refer to Ref. [52])

172 172 * Lir?
T i oo BN S PO (L Cheh

ot a i ij an an 8)Cj Xj 8)Cj

Cy G, € T, D,

where C, is the mean flow convection, G, is the production by mean scalar gradient, €, is the
scalar dissipation, T, is the transport by turbulent fluctuations, and D, is the molecular diffusion.
The transient term in the left-hand side is 0, as only time-averaged quantities are considered. Note

AT AT
dx; 0x;

that €, is proportional to the scalar-gradient variance ( ), the proportionality constant being the

thermal diffusivity, «.

Figure 3(a) presents the evolutions of scalar-variance and turbulent kinetic energy along the bar
centerline. The scalar-variance increases from x = 0 till the end of the mean recirculation region (i.e.,
x = 0.13x*) and then decays downstream. This trend is very similar to the evolution of the turbulent
kinetic energy, but the scalar-variance decays slightly faster. The dynamics of scalar-variance is
further analyzed through the evolution of the budget terms [Fig. 3(b)]. Close to the bar, the mean
scalar gradients generate scalar-variance, which is transported by the mean flow. The production and
transport terms increase until the end of the mean recirculation region, while they are balanced by the
turbulent transport and dissipation terms. Downstream of the mean recirculation region, the gradient
production and mean transport decrease. After x/x* & 0.5, the turbulent transport term becomes
negligible, and the scalar-variance decays due to dissipation while it is carried by the mean flow.

We now turn our attention to the evolution of scalar-variance and turbulent kinetic energy along
the grid-element centerline [Fig. 4(a)]. Although the variation of these quantities was very similar
behind the bars as demonstrated in Fig. 3(a), they exhibit intriguing differences along the grid-element
centerline. First, the scalar-variance is negligible for x/x* < 0.2, but the kinetic energy is clearly
not. The latter is generated by the work done by pressure [37], a mechanism which is absent for
the scalar-variance. More specifically, the presence of vortex shedding behind the bars generates
a fluctuating pressure field that correlates with the velocity in the grid-element centerline, making

a(u;

the generation term —T_p) for kinetic energy dominant in the lee of the grid. Second, the onset
J

of scalar-variance decay occurs upstream compared to that of the turbulent kinetic energy. While
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FIG. 4. (a) Evolution of scalar-variance and turbulent kinetic energy along the grid-element centerline;
(b) evolution of budget terms of scalar-variance along the grid-element centerline. All terms are normalized by
UsT?2 /1y. The transport due to fluctuations of the turbulent kinetic energy is also shown.

the turbulent kinetic energy starts decaying around x/x* ~ 0.5, the decay of scalar-variance starts
around 0.4. Comparing Figs. 3(a) and 4(a), it is interesting that the variations of scalar-variance
and turbulent kinetic energy are qualitatively similar, with both quantities reaching a peak value
at exactly the same location along the bar centerline, but along the grid-element centerline, their
behavior is markedly different. They peak at different locations, and the decay rate of scalar-variance
is significantly faster compared to that of the turbulent kinetic energy.

The budget terms, shown in Fig. 4(b), provide insight into the evolution of scalar-variance along
the grid-element centerline. The first term that becomes active is the turbulent transport term,
T, = —%j (%u j T?). The two lateral directions (j = 2,3) make the largest contribution to this term,
indicating that the scalar-variance, which was produced by the mean scalar gradients near the bar,
is brought to the grid-element centerline through the lateral motion of the bar wakes. The average
meeting point of the thermal wakes is x/x* & 0.2, and this marks the location of rapid growth of
turbulent transport (and consequently scalar-variance). The turbulent transport term is balanced by
the mean convection and dissipation. Turbulent transport becomes negligible around x /x* ~ 0.5.
Farther downstream, the scalar-variance is carried by the mean flow while it is dissipated.

The differences in the decay rate of turbulence kinetic energy and dissipation have been studied
before, but mainly for homogeneous isotropic turbulence [12,53,54]. Theoretical analysis shows
that, if the spectra of kinetic energy and scalar peak at wave numbers that are of the same order,
the exponents of the decay equation are similar (values 1.38 and 1.48 are reported in Ref. [54]). If,
however, the scalar is injected at a much larger wave number, then the instantaneous decay rate of
scalar-variance is much larger compared to the aforementioned values. Such a behavior was observed
in Ref. [12] on heated grid experiments, and a theoretical explanation was proposed in Ref. [54].
The (initially small) temperature integral scale grows to approach the velocity integral scale, and
during this time larger decay rates are predicted. It is unlikely that this explanation is valid also for
our case. First, the anomalous behavior was measured when the scalar was introduced by placing a
heated parallel array of fine wires (a mandolin) downstream of the unheated grid. This results in the
scalar and velocity spectra to have different spectral peaks, but in our case vorticity and scalar are
both injected at the grid location. Second, the measurements of Ref. [12] were carried out far from
the grid (at location 80 times the grid size, as mentioned in their Fig. 15), while our analysis focuses
very close to the grid.
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FIG. 5. (a) Evolution of scalar-gradient variance and enstrophy along the bar centerline; (b) evolution of
budget terms of scalar-gradient variance along the bar centerline. All terms are normalized by U, T2 /1.

In the present case, the budget analysis reveals that the evolution of scalar-variance along the
grid-element centerline is controlled by two terms: turbulent transport and dissipation. Although
the turbulent transport of turbulent kinetic energy [also shown in Fig. 4(b)] and that of scalar-
variance reach a peak value around x /x* & 0.3, their evolution downstream of x/x* &~ 0.3 differs.
In particular, the turbulent transport of of scalar-variance is negligible after x /x* ~ 0.45, while that
of kinetic energy persists farther downstream. It is interesting to notice that the spatial shape of the
two turbulent transport terms shares many similarities with the shape of scalar-variance and kinetic
energy. To get a more detailed picture of scalar dynamics for our configuration, in the next section
we examine the evolution of scalar-gradient variance.

B. Scalar-gradient variance balance

This subsection focuses on the evolution of the small-scale term, the scalar-gradient variance
(GiG;), where G; = % As mentioned earlier, the scalar dissipation €, is proportional to this term.

Denoting the gradient of instantaneous scalar (i.e., mean plus fluctuation) as G} = I the

ax; °
transport equation can be written as (see Ref. [55])

2((1GiGi) _ -0, 2UGOD ) (390) {6 Y 30) (6,65 —(Gs6
—

at T dx; ax; "o [\ 9x; ax;
Pg
Cs Gg aG Ba
1 0 o 92 dG; 0G;
—>7—(GiGju;)+= (GiGi) —a{ ——), (5)
28)Cj 28Xj8)€j 8)Cj 8)Cj
T D¢ €G

where Cg is the convection by mean flow, G and B¢ are the production terms by mean scalar
and velocity gradient, respectively, o is the mixed production, Pg is the production by turbulent
stretching and compression, T is transport by turbulent fluctuations, Dy is the diffusion, and ¢ is
the dissipation.

The evolution of scalar-gradient variance along the bar centerline is presented in Fig. 5(a). It is
very similar to that of the mean enstrophy, also shown in the figure, with values reaching a peak
at the end of the mean recirculation region and then monotonically decaying farther downstream.
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FIG. 6. (a) Evolution of scalar-gradient variance and enstrophy along the grid-element centerline;
(b) evolution of budget terms of scalar-gradient variance along the grid-element centerline. All the terms are
normalized by U, T2 /13.

The corresponding budget terms, shown in Fig. 5(b), reveal that the growth of (G;G;) is due to the
stretching and compression of the gradient vector G; by the fluctuating strain field (term Pg). This
is balanced by the dissipation throughout the bar centerline, while the contribution of all the other
terms is negligible. In the field experiments of Ref. [1], the contribution of mean fields (both velocity
and scalar) to the generation of small scales was also found to be negligible.

The spatial evolution of scalar-gradient variance and mean enstrophy, however, differ along the
grid-element centerline. As expected, the scalar-gradient variance is negligible in the region upstream
the meeting of the wakes. It starts increasing at x /x* ~ 0.2 until x /x* & 0.4, and the growth is faster
than that of enstrophy [Fig. 6(a)]. Also decay starts earlier compared to enstrophy; this difference is
further discussed in Sec. VI.

The budgets along the grid-element centerline are plotted in Fig. 6(b). The first term to initiate
the growth of (G;G;) is the turbulent transport term; this is similar to scalar-variance. Once scalar
gradients appear in the centerline, the background strain, which is mainly due to pressure Hessian and
turbulent transport [37], activates the production stretching and compression term Pg, which takes
over and becomes the main growth mechanism. The two production terms are balanced by mean
convection and dissipation. After x/x* ~ 0.4, the mean convection and production are balanced by
turbulent transport and dissipation. Far downstream, the transport terms (both mean and turbulent)
become negligible, and only the production and dissipation terms remain that balance each other. A
more detailed analysis of the production due to stretching and compression is presented in Sec. V.

IV. SPECTRUM OF THE FLUCTUATING SCALAR

Results are presented only along the grid-element centerline. As demonstrated in Sec. III B, the
scalar and turbulent kinetic energy dissipation evolve differently along the grid-element centerline,
and both intermittent as well as fully turbulent regions exist [see Fig. 2(a)]. As will be shown in this
study, scalar gradient dynamics also exhibit intriguing behavior along the grid-element centerline.

The values of the Taylor-scale Reynolds number (Re; ) and the Corrsin-scale Péclet number (Pe; )
at different stations are provided in Table I. Note the low values of Re; and Pe; .. Such values allow
for very well resolved numerical simulation and long time integration, both of which are conducive to
the statistical convergence of second and third order correlations as well as good balance of transport
equations. In the following we assess whether turbulence properties that are found for high Reynolds
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TABLE 1. Values of Pe;, and Re, at different locations along the grid-element centerline. Here Re, =
& (”‘3#’) where A is the Taylor microscale defined as A = /%k"“") and Pe;, = %T (”’3—”” where A7 is the

Corrsin microscale, defined as A = 6‘"2—:2).

x/x* 0.1 0.25 0.35 0.5 0.75 0.95
Pe;r 5.21 12.31 19.45 25.6 24.71 23.89
Re, 10.21 22.01 34.49 37.58 39.12 33.12

and Péclet number flows can be also detected in flows with low values of these parameters. To this
end, we analyze the scalar spectra along the grid-element centerline.

References [10,11] extended the phenomenology of Kolmogorov [56] to the scalar field and
developed what is known as Kolmogorov-Obukhov-Corrsin (KOC) theory. It is concerned with
locally HIT at very high Reynolds and Péclet numbers. One of its main predictions when Pr < 1 is
that a range of wave numbers exists where the scalar spectrum (E77) takes the form

Err(c) = Cerey e ™ (6)

where C,7 is the Obukhov-Corrsin constant and « is the wave number. It is important to stress that
the claim of KOC theory is that E77 (k) ~ « /3 is applicable only to fully developed HIT at high
Re; and Pe;,.

The computed and compensated spectra at different locations along the grid-element centerline
are illustrated in Fig. 7. At x /x* = 0.25, where the velocity spectrum was reported to exhibita —5/3
slope for the first time along the grid-element centerline (refer to Ref. [37]), the scalar spectrum
has a well-defined —5/3 slope for about a decade of frequencies [see the compensated spectra for
x/x* =0.25 in Fig. 7(b)]. It is indeed surprising that such a well-defined power-law appears at a
location where the local Re, and Pe;, numbers are too low for an inertial subrange to exist. In fact,
Re; is only 22.01 and Pe;r is a mere 12.31 (see Table I). Due to these very small values and the
developing nature of the turbulence, the scalar spectrum is not at all expected to have any power-law
scaling at this location. Yet the spectrum does exhibit a definite —5/3 power-law slope for just under
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FIG. 7. (a) Spectra of the fluctuating scalar at different locations along the grid-element centerline;
(b) compensated spectra plotted in linear-logarithmic axes at the same locations. The dotted lines in (a) indicate
the —5/3 slope, and in (b) they represent a constant value of E77(fty/Us)*/>.
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FIG. 8. PDF of scalar gradient production at different locations along the grid-element centerline:
(@) x/x* =0.25, (b) x/x* = 0.5, (c) x/x* = 0.95.

a decade of frequencies. Note also that x /x* = 0.25 is the location where the fluctuating scalar and
its gradients have just been brought to the grid-element centerline by the turbulent transport from
the bar wakes (see Sec. III).

The power-law behavior observed in the near-grid-element region is not related to the KOC
theory. The relationship between the small scales of scalar and the well-defined —5/3 power-law
slope is further analyzed in Sec. V. Note that this is the first study that reports a well-defined —5/3
power-law in the scalar spectrum for a flow characterized by intermittent switching between turbulent
and potential flow region at such low overall Re, and Pe,, numbers.

The scalar spectra in the more homogeneous decay region are also plotted in Figs. 7(a) and 7(b).
The frequency range of —5/3 slope appears to be decreasing in these locations compared to that of
the near-grid-element region. This is consistent with the observations made for the velocity spectra
in Ref. [37]. At these fully turbulent locations, Ref. [37] reported that the velocity spectra have
power-law slope defined only for a limited range of frequencies. The scalar spectra however have
a more clearly defined power-law for a wider range of frequencies. This observation has also been
reported in the literature on heated grid fully developed homogeneous turbulence, but for high Re;
and Pe; 7 values [12,27]. The —5/3 range of scalar spectra with respect to velocity spectra is also
reported in Ref. [57].

V. EIGENCONTRIBUTIONS OF STRAIN RATE TO THE SCALAR GRADIENT PRODUCTION

In this section, we explore further the relation of small scales with the spectra. To this end, the
stretching and compressing of the scalar-gradient vector, —G;s;; G j, which is the main production
term of scalar dissipation is analyzed. This term can be written as

—GisijGj = —|GI*11 cos’(G,e1) — |G|* 22 cos*(G,e2) — |G A3 cos*(Ge3), (7

where G is the scalar-gradient vector, while A; and e; (where i = 1,2,3) are the strain-rate eigenvalues
and eigenvectors, respectively. Equation (7) shows that the production of scalar dissipation depends
on the strain-rate eigenvalues and the alignment between the scalar-gradient vector and the strain-rate
eigenvectors. The statistical behavior of the production term is discussed first, followed by an analysis
of the contribution of the individual eigenvalues and eigenvectors.

The PDFs of scalar gradient production are plotted at different locations in Fig. 8. The PDFs
are skewed towards positive at all stations. The positive value of —(G;s;;G;) > 0 is considered a
universal behavior of small-scale scalar turbulence [1,21,51,58-60]. The same behavior is observed
also here, at locations where the local Re;, is very small and the flow is intermittent.

Table II records the values of production term normalized by the product (sz)l/ - (s js,-j)l/ 2
and (G?) = (G;G;). This ratio initially increases rapidly from x/x* ~ 0.2 to 0.35. This increase
shows that —(G;s;; G ;) increases faster than the product (G*)(s?) "2 Farther downstream, the ratio
decreases gradually. This is because (s?) increases slightly in this region (i.e., from x = 0.35x* to
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TABLE II. Values of normalized stretching and compressing at different locations along the grid-element
centerline.

x/x* 0.1 0.25 0.35 0.5 0.75 0.95

—(G1s;;G ;) /(G (s?)"? - 0.11 0.195 0.19 0.18 0.17

0.5x*; see Fig. 10 of Ref. [37]). Far downstream the ratio again decreases slowly, ascertaining that the
decay of —(G;s;;G ;) is similar to that of (G2) and (s2)"/*. Therefore, the growth of —(G;s;;G ) is
faster than (s2)'/*(G?), while its decay is similar to that of (s2)"/*(G?2). The reason for this behavior
will become clearer later in this section.

A. The role of strain-rate eigenvalues in scalar gradient production

The strain-rate eigenvalues are ordered as A; > A, > A3. The incompressibility constraint implies
that Ay + A, + A3 = 0. The largest strain-rate eigenvalue is always positive (i.e., A; > 0), and the
third eigenvalue is always negative (i.e., A3 < 0). The intermediate eigenvalue can be either positive
or negative. For many turbulent flows, the intermediate eigenvalue is positive on average, and this is
one of the universal properties of small-scale turbulence [16,39,61,62]. These strain-rate eigenvalues
influence the scalar gradient production as indicated in Eq. (7) (refer also to Ref. [1]). It is known from
Ref. [37] that in the grid-element centerline region 0.25 < x/x* < 1, the PDF of the intermediate
strain-rate eigenvalue is skewed positive resulting in two stretching directions and one compressive
direction. More statistics of the normalized strain-rate eigenvalues are provided in Table III. The
normalized values of (Xiz) (where i = 1,2,3) remain remarkably constant, while the normalized
values of (A;) and ()@) increase and ()f? ) and (A3) values decrease. The downstream evolution of
(M), (A%), and ()\%) remains insensitive to any kind of normalization, although the PDF of 1, showed
remarkable difference from the near-grid element to the decay regions as reported in Ref. [37]. In
Table III, the values from an atmospheric boundary layer field experiment [63] are also provided.
Although the Reynolds number of the field experiment is too large (Re; A~ 10%), the computed values
of normalized mean strain-rate eigenvalues are surprisingly close, in particular for (A;) and (7).

We turn now our attention to the contribution of the strain-rate eigenvalues on the scalar
gradient production. Figure 9 shows the joint probability distribution (JPDF) between the strain-rate
eigenvalues and the scalar gradient production. The analysis is carried out at two stations along the
grid-element centerline: (1) at x /x* = 0.25 located in the near-grid-element region [Figs. 9(a)-9(c)]

TABLE III. Values of normalized eigenvalues of strain-rate tensor at different locations along the grid-
element centerline. The values are compared against the field experiments of Ref. [1].

Quantity: x /x* 0.1 0.25 0.35 0.5 0.75 0.95 Field experiment

(Al)/<s2)% - 0.40 0.48 0.54 0.55 0.56 0.53
1

(A2)/(s%)? - 0.09 0.09 0.12 0.13 0.13 0.09
1

(A3)/(s%)? - —0.49 —-0.57 —0.66 —0.68 —0.69 —0.62

(A /(s?) - 0.36 0.38 0.37 0.36 0.36 0.4

(A3)/(s%) - 0.05 0.05 0.05 0.05 0.05 0.04

(A2)/(s?) - 0.59 0.57 0.58 0.59 0.59 0.56
3

(A3 /(s%)? - 0.74 0.43 0.32 0.28 0.28 0.48
3

(A3)/(s%)2 - 0.05 0.02 0.02 0.05 0.05 0.01
3

(A3)/(s%)2 - —1.57 —0.86 —0.66 —0.60 —0.60 —0.73
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FIG. 9. JPDF of eigenvalues of strain-rate tensor against the scalar gradient production: (a)—(c) at x/x* =
0.25 (near-grid-element inhomogeneous region), (d)—(f) at x /x* = 0.95 (decay region). The isocontours range
from 10! to 10",

and (2) atx/x* = 0.95located in the far-downstream decay region [Figs. 9(d)-9(f)]. Figures 9(d)-9(f)
also look similar to those reported in Gulitski et al. [63] (see Fig. 16 of their paper) for the atmospheric
boundary layer. It is evident from Fig. 9 that the extensive A; and compressive A3 strain-rate
eigenvalues are positive and negative, respectively, while the tendency for the intermediate strain-rate
eigenvalue A, to skew towards positive is apparent in both the near-grid element and far-downstream
regions.

The preference for the positive scalar gradient production is marginal only at a location where
the scalar spectrum exhibits the best —5/3 power-law slope. Since stretching and compression are
believed to have a close relationship with the scalar cascade, it might be intuitive to expect a stronger
preference for the production term of scalar gradients, but in reality that does not occur. This indicates
that the stretching and compression process of scalar gradients may not be the most fundamental
process behind the —5/3 power-law slope. This is further ascertained in Figs. 9(d)-9(f) where the
production of scalar gradient is strongly preferred (as evident from the asymmetry in the JPDF with
respect to —G;s;;G;/(G;s;;G ;) = 0), yet the spectrum at this location has a power-law defined for
a more narrow range of frequencies than that of the near-grid-element region. Figures 9(d)-9(f) also
reveal that there is a correlation between the strain-rate eigenvalues and the positive skewness of
scalar gradient production in the homogeneous decay region.

B. The role of geometrical alignments in scalar gradient production

The other factor that affects the production of scalar gradient, the geometrical alignments [refer
to Eq. (7)], is analyzed in this subsection. These alignments were first reported in Ref. [16] for
a periodic homogeneous isotropic turbulence. It was observed that the fluctuating scalar-gradient
vector aligns with the compressive strain-rate eigenvector, and it is perpendicular to the intermediate
strain-rate eigenvector. The extensive strain-rate eigenvector aligns 45° with the fluctuating scalar-
gradient vector. These observations were also verified in subsequent studies of Refs. [1,17,21]. These
alignment properties are also considered universal characteristics of small-scale scalar turbulence.
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FIG. 10. PDF of cosine of the angle between scalar-gradient vector and strain-rate eigenvectors at different
locations along the grid-element centerline: (a) x /x* = 0.25, (b) x /x* = 0.35, (c) x/x* = 0.5. The dotted lines
in (c) are the results from Ref. [21].

The PDFs of the absolute value of the cosine of the angle between the fluctuating scalar-gradient
vector and the strain-rate eigenvectors are plotted for different grid-element centerline locations
in Fig. 10. The alignment behavior at x/x* = 0.25 and 0.35 is shown in Figs. 10(a) and 10(b),
respectively. The scalar-gradient vector aligns with the compressive strain-rate eigenvector but is
normal to the other two eigenvectors. This is not the universal alignment behavior reported in the
previous studies [1,17,21]. Note that at the same locations the alignment behavior of vorticity was
also found in Ref. [37] to be anomalous; the vorticity vector aligned with both the extensive and
intermediate strain-rate eigenvectors. Note also that the alignment of the compressive strain-rate
eigenvector with the scalar-gradient vector becomes stronger from x/x* = 0.25 to 0.35 giving a
possible answer as to why the scalar-gradient-variance increase in the region 0.2 < x/x* < 0.35
[refer to Fig. 6(a)]. The alignment behavior for the region 0.2 < x/x* < 0.35 agrees with the results
of Ref. [60], which reported that strain-dominated regions strengthen the alignment of the scalar-
gradient vector with the compressive strain-rate eigenvector. The alignment behavior after x /x* ~
0.4 starts to exhibit the universal trend reported in the literature as the PDFs in Fig. 10(c), plotted for
x/x* = 0.5, are very similar to the results of Ref. [21]. This universal alignment behavior prevails
throughout the decay region although the values of Pe;, and Re, are significantly low.

Unlike the alignment behavior of the fluctuating scalar-gradient vector with the strain-rate
eigenvectors that changes along the grid-element centerline, the alignment with the fluctuating
vorticity vector remains the same as noted in Fig. 11(a). The figure also shows that homogeneity in

1 1 1 1 1 1 1 1 1 1 1 1
(0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
|cos(G, )| |cos(G,0)] |cos(G,0)]|

(a) (b) (c)

FIG. 11. (a) PDF of cosine of the angle between fluctuating scalar gradient and vorticity vectors at different
locations along the grid-element centerline; (b), (¢c) comparison between alignments of instantaneous versus
fluctuating scalar gradient and vorticity vectors at (b) x/x* = 0.25, (c) x/x* = 0.5.
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FIG. 12. PDF of eigencontribution to scalar gradient production at different locations along the grid-element
centerline: (a) x/x* = 0.25, (b) x/x* = 0.5, (c) x/x* = 0.95.

fluctuating vorticity statistics is attained only in the downstream of x/x* & 0.35. The fluctuating
scalar-gradient vector aligns perpendicular to the vorticity vector throughout the grid-element
centerline. This result closely follows the mathematical fact that the instantaneous scalar product
between vorticity and scalar-gradient vectors is a Lagrangian inviscid invariant. We also noted
some difference between instantaneous and fluctuating alignment characteristics of scalar-gradient
and vorticity vectors only in the inhomogeneous region where the mean gradients are strong [see
Fig. 11(b)]. On the other hand, the alignments results of instantaneous and fluctuating scalar-gradient
and vorticity vectors are nearly similar in the homogeneous region starting from x /x* ~ 0.5 as shown
in Fig. 11(c).

C. The combined effects of strain-rate eigenvalues and eigenvectors to scalar gradient production

The combined effect of strain-rate eigenvalues and eigenvectors on the scalar gradient production
is plotted in Fig. 12. At x/x* = 0.25, where the scalar-gradient variance has just started to develop
and the scalar spectrum has the best-defined —5/3 power-law slope, the production of scalar gradient
is predominantly due to the compressive strain-rate eigenvalue and eigenvector as only the PDF of
—|G|*A3 cos?(G,e3) is skewed to the positive. A similar finding was reported in Ref. [1] but for a
homogeneous isotropic turbulence. Therefore, the small scales of scalar are due to compressing of
fluid elements, although the small scales of velocity fluctuation are due to vortex stretching. As a
novelty, this study takes this result one step further and shows that this compressing of fluid elements
is mostly associated with the strain-rate eigenvectors for the developing inhomogeneous turbulence.
In the decay region, some portion of the PDF of — |G|2A2 cos2(G,ep) is in the positive x axis, but the
overall contribution is negative.

The observations noted in Fig. 12 are further analyzed through the mean values of individual
components of the eigencontribution to the scalar gradient production (see Table IV). The values
of (|G|*A; cos’(G,ep)) and (|G|*A, cos’(G,e;)) are negative, and the only positive component is
(IG|*A3 cos*(G,e3)). This observation ascertains that the production of scalar gradient is due to
the compressive action of strain-rate eigenvalues and eigenvectors [1]. The mean eigencontribution
values are compared against the very high Reynolds number field experiments of Ref. [1]. Although

TABLE IV. Contribution of strain-rate eigenvalues to scalar gradient production. The values are compared
with the field experiments of Ref. [1].

Quantity: x /x* 0.1 0.25 0.35 0.5 0.75 0.95 Field experiment
(IGI*A1 cos*(G,e1))/(Gsi;G ;) - -0.18 -031 -0.27 —-025 —-0.22 —0.64
(1G22 cos*(G,e2)) /(Gisi;G ;) - -0.03 —-0.04 -0.04 —-0.04 —-0.04 —0.05
(IG*A3 cos*(G,e3)) /(G:si;G ;) - 1.21 1.35 1.31 1.29 1.26 1.69
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FIG. 13. Evolution of turbulent kinetic energy and scalar-variance dissipations along (a) the bar centerline
and (b) the grid-element centerline. (c) Evolution of the time-averaged quantities y and Y (defined in the text)
along the grid-element centerline.

the values of (|G|?A; cos®(G,ez)) and (|G|*A;3 cos?(G,e3)) are closer to the literature values, the
values of (|G|?A; cos*(G,e;)) show some significant discrepancy. Recall that the present simulation
is carried out for a low Reynolds number, and the observed discrepancy could well be a Reynolds
number effect.

Concerning the evolution of (|G|>A3 cos?(G,e3)) with respect to —(G;s; ;G j), it can be noted that
the behavior of these two terms are similar; both terms increase from x /x* = 0.2 to 0.4, and then they
decay gradually. Noting from Table III that the values of (A3) decrease from x = 0.25x* to 0.4x7,
the rapid increase of —(G;s;;G ;) compared to (G;G;) and (s;;s;;) is the result of rapid increase in
the strong alignment between the compressive strain-rate eigenvector and the scalar-gradient vector.
In simple terms, the asymmetric evolution of —(G;s;;G ;) compared to (G;G;) and (s;;s;;) is the
result of asymmetric evolution of the alignment behavior between the strain-rate eigenvector and the
scalar-gradient vector.

VI. STRETCHING OF THE VORTICITY VECTOR VERSUS STRETCHING
OF A PASSIVE VECTOR

The aim of this final section is to provide an explanation as to why the scalar dissipation
(e, = a(G;G;)) starts decaying earlier along the grid-element centerline compared to kinetic energy
dissipation (v{w; w;)), as demonstrated in Fig. 6(a). The dissipation quantities are sometimes believed
to have similar behavior [46], and the relationship is given as (G;G;)"/? = C(w;w;)"/*Pr'/?, where
C is a constant that depends on the flow conditions. In periodic box simulation, Ref. [19] found that
this relation is very well satisfied, with a value of constant C close to 2.

The spatial evolution of these two dissipation rates along the bar and the grid-element centerlines
is plotted in Figs. 13(a) and 13(b), respectively. The relationship (G;G;)'/? ~ (w;w;)/*Pr'/? is
valid only along the bar centerline and for x/x* > 0.6 on the grid-element centerline. Indeed,
Fig. 13(a) demonstrates that the qualitative behavior of the two dissipation profiles is similar along
the bar centerline, with values peaking at the same position. The value of the constant C in the
current simulation is approximately 0.2. At the grid-element centerline, however, the onset of scalar
dissipation decay occurs earlier than the decay of kinetic energy dissipation [see Figs. 13(b) and
6(a)]. A similar behavior between the dissipation rates of kinetic energy and scalar-variance is also
reported in Refs. [53,54].

In order to provide an explanation for the aforementioned behavior, we explore below in more
detail the turbulent stretching and compression of the vorticity and the scalar-gradient vectors. This
is motivated by the fact that the dominant production terms are —G;s;; G ; and w;s;;;, respectively.
As noted in Ref. [51], the vorticity vector and turbulent strain rate are coupled. It can be seen from
the governing equations of enstrophy (w;w;) and strain product (s;;s;;) [refer to Egs. (5.4) and (5.7)
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FIG. 14. PDF of scalar gradient production rate and enstrophy production rate at different locations along
the grid-element centerline: (a) x/x* = 0.25, (b) x/x* = 0.5, (¢) x/x* = 0.95.

in Ref. [37]] that the vortex stretching and compression term appears in both equations: as a source
term for enstrophy and a sink for strain product. This means that the growth of enstrophy reduces
the strain rate and thus weakening the stretching and compression, which eventually leads to the
enstrophy damping. On the other hand, the stretching of the scalar-gradient vector is determined
by strain only (i.e., does not react back). It is thus expected that the statistics of the stretching and
compression of the two vectors will be different.

In Ref. [64], the normalized stretching and compression rates of vorticity and scalar gradient

were defined as x = % and Y = % The variation of x and Y along the different

grid-element centerline is shown in Fig. 13(c). Clearly, the stretching and compression rate of the
passive vector is stronger than that of the vorticity vector throughout the grid-element centerline (see
Fig. 14). The dominance of passive vector stretching and compression over the vorticity vector was
first reported in Ref. [64]. The current results, however, cannot be directly compared with [64], as
the latter considers “frozen” passive vectors that satisfy the continuity equation. For the distinction
between the two types of passive vectors refer to Ref. [51].

The reason for the observed difference lies in the two-way coupling between strain and vorticity.
When the mean enstrophy increases in the region of 0.2 < x/x* < 0.5 [see Fig. 8(a) of Ref. [37]],
the stretching of vorticity also increases in this region, but this increase weakens the strain-rate
magnitude (because the stretching and compression term acts as a sink for the strain), which in turn
reduces the strength of vortex stretching and compression (that depends on the strain magnitude).
This can explain why the stretching and compression rate of vorticity vector is smaller than that of a
passive vector. Although the comparison of stretching and compression rates between the vorticity
vector and the scalar-gradient vector confirms the validity of Ohkitani’s observation for the current
case, it cannot explain why the onset of scalar-variance dissipation decay occurs much earlier along
the grid-element centerline.

Figure 13(c) demonstrates that the growth of both x and Y is suddenly hampered. This occurs
earlier for the passive scalar field compared to the vorticity field. What is the process that suddenly
impedes the growth of stretching and compression rates? It is intuitive that this process should be
related to the stretching and compression term. Indeed, as shown in the next paragraph, the decay
of scalar dissipation starts earlier than that of the kinetic energy dissipation due to the difference
in alignments between the scalar-gradient vector and the strain-rate eigenvector. The production
of the two dissipation quantities depends on the strain-rate eigenvalues and the alignment of the
eigenvectors with the vorticity and scalar-gradient vector [Eq. (7)]. Since the strain-rate eigenvalues
appear in the same way in both production terms, the difference in evolution should originate from
the geometrical alignments.

For the kinetic energy dissipation, the extensive and intermediate eigenvectors aid the growth of
(w;w;) (see Fig. 20 of Ref. [37]). On the other hand, as reported in many studies (and confirmed
in Fig. 12), the growth of (G;G;) occurs predominantly due to the compressive eigenvector.
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This is because, as was noticed earlier, the extensive eigenvector has a negative effect on the
growth of scalar-gradient variance, and the intermediate eigenvector aligns perpendicular to the
scalar-gradient vector. The vorticity vector aligns with both the extensive and intermediate eigenvec-
tors in the region 0.2 < x/x* < 0.5, and thus acting as a main agent to increase (w;®;) in that region
(see Fig. 22 of Ref. [37]). If (G;G;) has to increase in 0.2 < x/x* < 0.5, then the scalar-gradient
vector is expected to align only with the compressive eigenvector. Yet such an alignment behavior is
noticed only in the region 0.2 < x /x* < 0.4 where the extensive and intermediate eigenvectors align
perpendicular to the scalar-gradient vector, and thus they do not hamper the growth of scalar-gradient
variance due to the compressive eigenvector. When the extensive strain-rate eigenvector aligns 45°
to the scalar-gradient vector (i.e., after x /x* > 0.4), the negative effect due to this alignment on the
scalar-gradient variance is felt in the form of decreasing the scalar-gradient variance. Comparing
the alignment behavior of the scalar-gradient vector with that of the vorticity vector, it is observed
that the vorticity vector changes its alignment behavior later along the grid-element centerline (it
occurs only after x/x* = 0.5) than that of the scalar-gradient vector. Thus, the delayed change in
alignment behavior of vorticity vector causes the scalar-variance dissipation to decay earlier along
the grid-element centerline than the turbulent kinetic energy dissipation.

VII. CONCLUSIONS

This paper presents a statistical analysis of a passive scalar (in the form of temperature) injected
into a spatially developing turbulence. The turbulence is generated by a single square grid element
which is heated continuously. The main objective of this study was to seek answers to the five
questions raised in Sec. I. The answers for those questions are given below:

(1) The large-scale quantity (scalar-variance) is generated mainly behind the bars due to the
action of mean scalar gradients. It is then laterally transported to the grid-element centerline through
turbulent transport due to the intermittent meeting of the bar wakes (external intermittency). The
mean velocity and scalar fields have a minimal effect on the production of the small-scale quantity
(scalar-gradient variance, proportional to scalar dissipation), even behind the grid-element bars.
Instead, this is produced by the turbulent strain rate via the stretching and compressing process. This
study has shown that the production of scalar dissipation is due to compressive action of strain rate,
while it is the stretching action that produces the kinetic energy dissipation.

(2) Although the evolution of scalar dissipation is similar to the turbulent kinetic energy
dissipation along the bar-centerline, they behave differently along the grid-element centerline. The
different alignment behavior of the scalar-gradient vector and the vorticity vector with the strain-rate
eigenvectors explains why the scalar dissipation decays much earlier along the grid-element centerline
than that of the turbulent kinetic energy dissipation.

(3) The scalar spectrum is observed to exhibit the best —5/3 power-law slope in the near-grid-
element region. This slope occurs even in the highly intermittent, non-Gaussian and inhomogeneous
region where the local Re; and Pe are significantly low.

(4) The —5/3 slope in the scalar spectrum is most clearly observed in the regions where the
small-scale terms of scalar have just started developing. The scalar spectrum has a well-defined —5/3
power-law slope for at least a decade of frequencies in the locations where the strength of stretching
and compressing of scalar gradient by strain rate is weak. On the other hand, in the locations where
the stretching and compressing strength is high, the frequency range becomes narrower. Hence,
the stretching and compressing process of scalar gradients by strain rate (equivalent to the vortex
stretching process in velocity field) is not necessarily the cause of the —5/3 power-law behavior.

(5) Moving from the near-grid-element centerline region to far downstream, it is noted that the
—5/3 slope in the scalar spectrum slowly erodes, and the alignment between the scalar-gradient
vector and the strain-rate eigenvector morphs into the universal alignment behavior reported in the
literature.
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