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A persistent problem in wall-bounded large-eddy simulations (LES) with Dirichlet no-slip
boundary conditions is that the near-wall streamwise velocity fluctuations are overpredicted,
while those in the wall-normal and spanwise directions are underpredicted. The problem
may become particularly pronounced when the near-wall region is underresolved. The
prediction of the fluctuations is known to improve for wall-modeled LES, where the no-slip
boundary condition at the wall is typically replaced by Neumann and no-transpiration
conditions for the wall-parallel and wall-normal velocities, respectively. However, the
turbulence intensity peaks are sensitive to the grid resolution and the prediction may
degrade when the grid is refined. In the present study, a physical explanation of this
phenomena is offered in terms of the behavior of the near-wall streaks. We also show
that further improvements are achieved by introducing a Robin (slip) boundary condition
with transpiration instead of the Neumann condition. By using a slip condition, the inner
energy production peak is damped, and the blocking effect of the wall is relaxed such that the
splatting of eddies at the wall is mitigated. As a consequence, the slip boundary condition
provides an accurate and consistent prediction of the turbulence intensities regardless of the
near-wall resolution.

DOI: 10.1103/PhysRevFluids.3.014610

I. INTRODUCTION

Accurate prediction of turbulence intensities is of great importance in both external and internal
flows. In the former, they are directly related to the noise signature around airframe components [1,2].
In particle laden flows, turbulence intensities are important for prediction of particle trajectories
in the vicinity of the walls and hence to capture correctly the turbophoretic effect [3,4]. Despite
its relevance, it has been observed in large-eddy simulations (LES) that the near-wall streamwise
velocity fluctuations are overpredicted, while those in the wall-normal and spanwise directions are
underpredicted. The problem is particularly aggravated when the near-wall region is not well resolved
and is usually alleviated by refining the grid [5,6]. However, the near-wall resolution requirements to
accurately compute the boundary layer are estimated to scale as Re9/5, where Re is the characteristic
Reynolds number of the problem [7]. A more recent study by Choi and Moin [8] using more accurate
correlations for the skin friction coefficients concluded that the cost is ∼Re13/7, which is still far
too expensive for many practical problems despite the improvement compared to the Re37/14 scaling
required for direct numerical simulation (DNS).

Some recent works to improve the prediction of first-order statistics in coarse LES are based
on the Reynolds-averaged Navier-Stokes (RANS) equations, such as the constrained LES [9] and
explicit algebraic models [6], among others. However, these approaches rely on empirical parameters,
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which may be not applicable across different flow configurations. Other works, such as the integral
length-scale approximation models [10], have focused on modifying the LES eddy viscosity model
with moderate improvements on first-order statistics. These approaches reduce substantially the grid
resolution requirements, although the cost is still expected to scale as Re13/7.

Another approach is to fully model the near-wall flow such that only the large-scale motions
in the outer region of the boundary layer are resolved. In this case, the grid point requirements
for wall-modeled LES scale at most linearly with the Reynolds number [8]. Several strategies for
modeling the near-wall region have been explored in the past, and most of them are effectively
applied by replacing the no-slip boundary condition in the wall-parallel directions by a Neumann
condition. This is motivated by the observation that with the no-slip condition, most subgrid scale
models do not provide the correct stress at the wall when the near-wall layer is not resolved by
the grid [11]. When the no-slip condition is replaced by the Neumann boundary condition, the
prediction of the near-wall velocity fluctuations is known to improve considerably, although this
has been observed only for near-wall resolutions coarse enough to avoid the near-wall region where
turbulence intensity peaks [12–15]. No physical explanation of the mechanisms involved has been
provided yet. In canonical flows, the first grid point can be chosen to bypass the near wall peaks.
However, this requires a priori knowledge of the local Reynolds number, which is not always available
for arbitrary flow configurations. The problem becomes particularly relevant when dealing with flows
over geometrically complex surfaces, where the resolution to avoid the turbulence intensity peaks
near the wall is unknown.

Examples of the most popular and well-known wall models using the Neumann boundary
condition are the traditional wall-stress models (or approximate boundary conditions), where the
wall stress is computed using either the law of the wall [16–18], the solution obtained by solving
a simplified version of the boundary layer equations close to the wall, or the RANS equations
[12,14,19,20]. The reader is referred to [21–24] for a more comprehensive review of wall-modeled
LES. In all of the wall models presented above, the no-transpiration condition was still maintained
in the wall-normal velocity, and only recently this has been replaced by a transpiration boundary
condition as in Ref. [25].

In the present study, we investigate the physical mechanisms behind the improved prediction of
the near-wall velocity fluctuations in an LES of turbulent channel flow. For this purpose, we analyze
three different boundary conditions, i.e., Dirichlet no-slip, Neumann with no transpiration (traditional
wall models), and Robin boundary condition (slip boundary condition with transpiration). A physical
explanation of the improvements are given in terms of the streak breakup and the suppression of
spurious splat [26] formation when transpiration is allowed.

The paper is organized as follows. In Sec. II, we introduce the boundary conditions used and
describe the numerical experiments in our analysis. In Sec. III, we study the physical mechanisms
involved in the prediction of the near-wall velocity fluctuations. Finally, a summary and conclusions
are offered in Sec. IV.

II. NUMERICAL SETUP

A. Boundary conditions

We describe the three different boundary conditions used in the present work for a channel
flow configuration. The Dirichlet no-slip boundary condition is defined as ūi |w = 0, where the
indices i = 1,2,3 denote the three spatial directions represented by x1, x2, and x3, which are the
streamwise, wall-normal, and spanwise directions, respectively. The flow velocities are denoted by
ui , ¯(·) represents the resolved field in LES, and (·)|w indicates quantities evaluated at the wall. The
Neumann boundary condition without transpiration is defined as

∂ū1

∂n
= α, ū2 = 0,

∂ū3

∂n
= 0, (1)
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FIG. 1. Sketch of the slip boundary condition with transpiration (ū2|w �= 0) for a flat wall.

where n is the wall-normal direction and α is a prescribed value described in Sec. II B.
We define the slip boundary condition with transpiration as

ūi |w = li
∂ūi

∂n

∣∣∣∣
w

+ vi, i = 1,2,3, (2)

where repeated indices do not imply summation. We define li to be the slip lengths and vi the
slip velocities. In general, both the slip lengths and velocities are functions of space and time. A
slip boundary condition similar to Eq. (2) has been used by Bose and Moin [25] in the context of
wall-modeled LES, together with a dynamic procedure for determination of the local slip length free
of any a priori specified coefficients. A sketch of the slip boundary condition for a flat wall is given
in Fig. 1.

It should be noted that the choice of li and vi must comply with the symmetries of the flow and
the impermeability constraint of the wall on average. In particular, for a channel flow configuration,
the slip boundary condition should satisfy

〈ūi〉|w =
〈
li

∂ūi

∂x2

∣∣∣∣
w

〉
+ 〈vi〉 = 0, i = 2,3, (3)

where 〈·〉 denotes average in homogeneous directions and time. In the present study, we will consider
li constants and vi = 0 for i = 1,2,3. These constraints are consistent with Eq. (3), since 〈ūi〉|w = 0
and 〈∂ūi/∂x2〉|w = 0 for i = 2,3. We have set v1 = 0 without loss of generality, since its average
effect can be absorbed by moving the frame of reference at constant uniform velocity. Then, a
consistent slip boundary condition for the channel can be written as

ūi |w = li
∂ūi

∂x2

∣∣∣∣
w

, (4)

which is the form used in the remainder of the paper.

B. Numerical experiments

We perform a set of plane turbulent channel LESs. The simulations are computed with a staggered
second-order finite difference [27] and a fractional-step method [28] with a third-order Runge-Kutta
time-advancing scheme [29]. The dynamic Smagorinsky model is used as the subgrid scale model
[30,31]. Periodic boundary conditions are imposed in the streamwise and spanwise directions. The
size of the channel is 2πδ × 2δ × πδ in the streamwise, wall-normal, and spanwise directions,
respectively, where δ is the channel half-height. It has been shown that this domain size is large
enough to accurately predict one-point turbulence statistics for friction Reynolds number Reτ up to
4200 [32]. The grid resolutions for this set of cases are chosen to be comparable to those found in
the literature [5].

At the wall, three different boundary conditions as described in Sec. II A are applied: the no-slip
boundary condition, the Neumann boundary condition without transpiration, and the slip boundary
condition with transpiration. The channel was driven by imposing a constant mean pressure gradient
and all cases were run for at least 100δ/uτ after transients, where uτ is the friction velocity. For the
Neumann condition, α in Eq. (1) was adjusted to match the target Reτ at each time step. The same
was done for the slip case by modifying the slip lengths (see [33] for details). We have adopted the
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TABLE I. Tabulated list of cases. The case name is given in the first column, where the first two uppercase
letters indicate the boundary condition used: no-slip (NS), Neumann (NE), and slip (SL). The middle number
is Reτ for Reτ = 550,2000. The lowercase letter is used to denote the stretching of the grid: stretched (s) and
uniform (u). The last number indicates N1,2,3, the number of grid points which are the same in all three directions.
Here �2 is the wall-normal grid size at the wall. The relative intensity of the peaks for u′

1 at xmax
2 for LES with

respect to DNS is given in the sixth column. The value of xmax
2 is the maximum of x

max ,LES
2 and x

max ,DNS
2 , where

x
max ,LES/DNS
2 is the location of maximum value of u′

1 for LES and DNS, respectively. The symbols for each case
are used in the subsequent plots.

Case Reτ N1,2,3 �+
2 �2/δ

〈u′2
1 (xmax

2 )〉1/2

〈u′2
1DNS(xmax

2 )〉1/2 Symbols

NS550s32 550 32 1.41 2.6 × 10−3 1.75 × (blue)
NS550s64 550 64 0.64 1.2 × 10−3 1.24 � (green)
NS2000s64 2000 64 2.35 1.2 × 10−3 1.90 © (red)
NS550u32 550 32 34.2 6.25 × 10−2 1.07 � (green)
NE550u32 550 32 34.2 6.25 × 10−2 1.15 	 (magenta)
SL550u32 550 32 34.2 6.25 × 10−2 1.00 + (red)

simplification of imposing the correct mean component of the wall stress, which has been shown by
Lee et al. [13] to be sufficient for prediction of low-order turbulence statistics in channel flow for the
Neumann boundary condition. We have also performed a similar test for the slip boundary condition
as a function of time, and the resulting statistics are similar to the ones obtained using a constant
mean wall stress.

The details of the simulations are given in Table I. The table is divided in two blocks. The first
block is used to assess whether the problem under investigation scales in inner or outer units. The
second block serves to evaluate the effect of different boundary conditions. The results are compared
with DNS data at the corresponding Reynolds number from Del Álamo et al. [34] and Hoyas and
Jiménez [35].

III. RESULTS AND DISCUSSION

A. Scaling of the problem

An example of the over- and underestimation of the turbulence intensities is shown in Figs. 2(a)
and 2(b). The relative intensity of the peaks for u′

1 with respect to DNS is given in Table I, where (·)′
denotes the root-mean-square (rms) of the fluctuations.

The first question is to assess whether the grid requirements to address this problem scales in
outer or inner units for no-slip LES. As demonstrated in Fig. 2(a), the resolution used in the case
NS550s32 (Reτ = 550) results in large peaks for the streamwise rms velocity fluctuations, whereas
doubling the number of grid points in each direction (NS550s64) improves the prediction noticeably
[Fig. 2(c)]. The result worsens again by increasing the Reynolds number from Reτ = 550 to 2000
while maintaining the finer grid resolution [NS2000s64, Fig. 2(d)]. This suggests that, for the no-slip
boundary condition, the problem is independent of the outer-layer eddies and the required near-wall
grid to avoid under- or overpredictions scales in wall units.

B. Effect of the streak breakup

The cause of the problem is analyzed in Figs. 3 and 4, which show instantaneous snapshots and
the autocorrelations of u′

1 at x+
2 ≈ 15 for a selection of the cases from Table I. The results reveal that

when the peaks are not well predicted (case NS550s32), as in Figs. 3(a) and 4(a), the associated flow
is dominated by streamwise streaks several times longer than those of the DNSs. This is consistent
with observations in Refs. [6,36,37]. On the other hand, the lengths of the streaks developed in the
flow when increasing the resolution [case NS550s64, Fig. 4(b)] or introducing the slip boundary
condition [case SL550u32, Figs. 3(b) and 4(c)] are comparable to those from DNSs. Although not
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FIG. 2. The rms velocity fluctuations for NS550s32 in the (a) streamwise and (b) spanwise (top) and
wall-normal (bottom) directions. Also shown are the streamwise rms velocity fluctuations for (c) NS550s64
and (d) NS2000s64. The symbols are as in Table I. Dashed lines are DNS data at the corresponding Reynolds
number.

shown, the Neumann boundary condition (NE550u32) yields results similar to those observed for
the slip case. Note that the improvement achieved with the Neumann or slip boundary condition
does not increase the computational cost of the simulation since grid refinement was not required,
in contrast to the improvements attained using the no-slip boundary condition in Fig. 2(c).

FIG. 3. Instantaneous snapshots of the streamwise velocity component at x+
2 ≈ 15 for (a) NS550s32 and

(b) SL550u32.
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FIG. 4. Autocorrelations of the streamwise velocity component at x+
2 ≈ 15 for (a) NS550s32, (b) NS550s64,

(c) SL550u32, and (d) NS550u32. The upper half of the autocorrelation is for LES and the lower half for DNS.
Contour lines are for positive correlations of 5% and 35% of the maximum (black) and negative correlations of
2% and 7% of the maximum (red).

The interpretation from the previous results is that, in the case of no-slip, the near-wall dynamics
are altered in such a way that the streaks are unable to follow their natural cycle of meandering
and breakup [38,39], which manifests itself in the flow by a strong u′

1 and reduced u′
2 and u′

3.
Other investigations on drag reduction have reported a similar behavior in the turbulence intensities
by controlling the near-wall streaks [40] or by adding a stochastic forcing term to break up the
large-scale structures [41,42].

The previous interpretation is further supported by the improved intensities (Fig. 5) and shorter
streamwise streaks [Fig. 4(d)] in the case NS550u32, where the first interior grid point is such that
the streaks below x+

2 ≈ 15 are bypassed while maintaining the no-slip boundary condition. A more
systematic analysis of the effect of the first grid point is shown in Fig. 6(a), where the grid is stretched
in order to modify �x2 at the wall. For coarse resolutions with �x+

2 > 15, the overprediction of u′
1 is

mitigated for all boundary conditions. By stretching the grid such that �x2 is finer at the wall, only the
slip boundary condition provides good predictions of the streamwise turbulence intensities regardless
of the grid resolution, whereas the results from the no-slip and Neumann boundary conditions degrade
for �x+

2 < 15. As an example, the streamwise rms velocities for the most stretched grid are shown
in Fig. 6(b). Note that despite the good prediction of the no-slip case for resolutions with �x+

2 > 15,
this is not a practical solution as the no-slip condition cannot be used in context of wall-modeled
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FIG. 5. The rms (a) streamwise and (b) spanwise (top) and wall-normal (bottom) velocity fluctuations for
cases NS550u32, NE550u32, and SL550u32. Symbols as in Table I. Dashed line is DNS.

LES. Another important remark is that in most wall-modeled LES, the Neumann boundary condition
has been used on canonical flows such as channel or boundary layer flows, where the near-wall grid
resolution is usually chosen to satisfy�x+

2 > 15. Our analysis is relevant for those flow configurations
where the local Reynolds number is not known a priori and hence the first grid point may lie in the
region �x+

2 < 15. Finally, the results in Fig. 6(a) highlight the fact that providing the perfect wall
model (correct mean wall stress) is not enough for good prediction of the turbulence intensities at
all resolutions and the intensities also depend on the form of the boundary condition.

According to the previous results, both Neumann and slip boundary conditions improve the predic-
tion of the turbulence intensities by avoiding the formation of long streaks; however, the mechanisms
involved are different for each case. To analyze in more detail these mechanisms, the production
P , pressure strain �, and turbulent diffusion T components of the streamwise turbulence intensity
budget are plotted in Figs. 7(a)–7(c). The choice of these quantities is motivated by the fact that the
energy source for u′2

1 is given by the production term, while the transfer of energy to the u′2
2 and
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FIG. 6. (a) Relative intensity of the peaks at xmax
2 for u′

1 with respect to DNS as a function of �x2 at the wall,
where xmax

2 is as defined in Table I. (b) Streamwise rms velocities for the most stretched mesh with �x+
2 = 1.41.

Symbols are no-slip, × (blue); Neumann, 	 (magenta); and slip, + (red) boundary conditions.
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FIG. 7. (a) Average production 〈P〉, (b) pressure strain 〈�〉, and (c) turbulent diffusion 〈T 〉 for the
streamwise turbulence intensity budget and (d) 〈P + T 〉/〈�〉 for NS550s32, NS550s64, NE550u32, and
SL550u32. Symbols are as in Table I. The dashed line is DNS.

u′2
3 components is provided through the streamwise pressure-strain correlation [43]. The turbulent

diffusion term is also included since it is used to explain the improvements with the Neumann
boundary condition at coarse near-wall grid resolutions.

In all cases, the magnitude of the pressure strain is underestimated, and moderate improvements
appear by refining the grid or using either the Neumann or slip boundary condition. Regarding the
production, the no-slip cases are characterized by a strong near-wall peak. On the contrary, this peak
is absent for cases with slip, where most of the production is concentrated far from the wall. Similar
results are observed for all slip cases shown in Fig. 6(a). In the case of the Neumann boundary
condition, the strong near-wall maximum in the production term is still present but is compensated
by the turbulent diffusion term, which transports the excess energy away from the wall. This is
only the case when the near-wall resolution bypasses the near-wall peaks. For Neumann cases with
�x+

2 < 15 in Fig. 6(a), the magnitude of the turbulent diffusion term is reduced near the wall, while
the strong peak in the production term persists (not shown).

The above results are consistent with the streak lengths observed in Fig. 4 and it could be
hypothesized that the excess of P + T intensifies the streaks (stronger u′

1) while the lack of pressure
strain reduces the distribution of the energy to the other two velocity components (weaker u′

2 and
u′

3). This is further supported by the results in Fig. 7(d), which shows that the ratio 〈P + T 〉/〈�〉
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approaches the DNS value for those cases where the under- and overshoots of the rms velocity
fluctuations are less pronounced.

C. Wall blocking effect

An additional cause of the problem may be attributed to the formation of splats due to the blocking
effect of the wall. Splats are local regions of stagnation point flow resulting from fluid impinging on
a wall and have been investigated in Ref. [26]. Here we study the effect of the splats on the turbulence
intensities by comparing the cases NE550u32 (Neumann boundary condition with no transpiration)
and SL550u32 (slip boundary condition with transpiration). The resulting rms velocity fluctuations
are plotted in Fig. 5. Note that ū′

2 is not zero at the wall for the slip case due to transpiration. Although
not shown, for coarser grid resolutions, the required slip lengths to match the target Reτ are larger,
which leads to a larger variability in the transpiration velocities as well. As the grid is refined, the
slip length (and hence ū′

2) approaches zero. The results in Fig. 5 show that the blocking effect of
the wall intensifies the splats, increasing the wall-parallel turbulence intensities (u′

1 and u′
3) near the

wall. Compared to the traditional Neumann condition, better predictions of the streamwise velocity
fluctuations are obtained when transpiration is allowed due to the local nonzero ū2 which reduces
the formation of splats.

IV. CONCLUSION

In this study, we have investigated the classic over- and underprediction of the rms velocity
fluctuations close to the wall, which has been a persistent problem for LES with poor near-wall
resolution. We have performed a set of LESs of turbulent channel flow in order to provide a physical
explanation in terms of streak breakup and splat formation near the wall.

We have shown that in LES with no-slip boundary condition at the wall, the problem of over- or
underprediction of turbulence intensities is independent of the the outer layer dynamics. The required
near-wall resolution scales in wall units, making the no-slip boundary condition impractical at high
Reynolds numbers. Wall-modeled LES is the most feasible approach compared to wall-resolved
LES or DNS, as the required grid resolution scales at most linearly with Reynolds number. In
wall-modeled LES, the no-slip boundary condition is typically replaced by a Neumann condition
without transpiration, which is known to alleviate the problem when the near-wall resolution is such
that the near-wall peaks are not resolved. We have shown that further improvements can be obtained by
using a slip boundary condition with transpiration. Furthermore, contrary to the Neumann boundary
condition, the prediction of the turbulence intensities is independent of the near-wall resolution. This
is advantageous in flows over complex geometries, where the local Reynolds number of the flow is
not known and the grid resolution cannot be judiciously chosen a priori. The consistent prediction of
the slip boundary condition also provides a more monotonic convergence towards the DNS solution
with grid refinement.

Our investigation reveals that the reason for the inaccurate predictions of the turbulence intensities
can be traced back to the inability of the streaks to follow the natural dynamic cycle of meandering
and breakup, which results in stronger streamwise fluctuations and weaker crossflow intensities. The
Neumann boundary condition (for coarse near-wall grid resolutions) and the slip condition (for all
grid resolutions investigated) avoid the energy pileup in u′

1 by reducing the production of streamwise
turbulence intensity, which in turn compensates for the underestimated redistribution of energy to u′

2
and u′

3. As a consequence, the ratio 〈P + T 〉/〈�〉 becomes closer to the DNS value for those cases
with improved predictions. Further improvements are obtained by using the slip with transpiration
and can be attributed to the suppression of splats by relaxing the blocking effect of the wall.

ACKNOWLEDGMENT

This work was supported by NASA under the Transformative Aeronautics Concepts Program
(Grant No. UNIX15AU93A).

014610-9



H. J. BAE, A. LOZANO-DURÁN, S. T. BOSE, AND P. MOIN

[1] M. M. Choudhari and M. R. Khorrami, Effect of three-dimensional shear-layer structures on slat cove
unsteadiness, AIAA J. 45, 2174 (2007).

[2] Y. Zhang, H. Chen, K. Wang, and M. Wang, Aeroacoustic prediction of a multi-element airfoil using
wall-modeled large-eddy simulation, AIAA J. 55, 4219 (2017).

[3] S. Balachandar and J. K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech. 42, 111
(2010).

[4] M. Caporaloni, F. Tampieri, F. Trombetti, and O. Vittori, Transfer of particles in nonisotropic air turbulence,
J. Atmos. Sci. 32, 565 (1975).

[5] J. Meyers and P. Sagaut, Is plane-channel flow a friendly case for the testing of large-eddy simulation
subgrid-scale models? Phys. Fluids 19, 048105 (2007).

[6] A. Rasam, G. Brethouwer, P. Schlatter, Q. Li, and A. V. Johansson, Effects of modelling, resolution and
anisotropy of subgrid-scales on large eddy simulations of channel flow, J. Turbul. 12, N10 (2011).

[7] D. R. Chapman, Computational aerodynamics development and outlook, AIAA J. 17, 1293 (1979).
[8] H. Choi and P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited,

Phys. Fluids 24, 011702 (2012).
[9] S. Chen, Z. Xia, S. Pei, J. Wang, Y. Yang, Z. Xiao, and Y. Shi, Reynolds-stress-constrained large-eddy

simulation of wall-bounded turbulent flows, J. Fluid Mech. 703, 1 (2012).
[10] A. Rouhi, U. Piomelli, and B. J. Geurts, Dynamic subfilter-scale stress model for large-eddy simulations,

Phys. Rev. Fluids 1, 044401 (2016).
[11] J. Jiménez and R. D. Moser, Large-eddy simulations: Where are we and what can we expect? AIAA J. 38,

605 (2000).
[12] D. Chung and D. I. Pullin, Large-eddy simulation and wall modelling of turbulent channel flow, J. Fluid

Mech. 631, 281 (2009).
[13] J. Lee, M. Cho, and H. Choi, Large eddy simulations of turbulent channel and boundary layer flows at

high Reynolds number with mean wall shear stress boundary condition, Phys. Fluids 25, 110808 (2013).
[14] G. I. Park and P. Moin, An improved dynamic non-equilibrium wall-model for large eddy simulation,

Phys. Fluids 26, 015108 (2014).
[15] G. I. Park and P. Moin, Space-time characteristics of wall-pressure and wall shear-stress fluctuations in

wall-modeled large eddy simulation, Phys. Rev. Fluids 1, 024404 (2016).
[16] J. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,

J. Fluid Mech. 41, 453 (2006).
[17] U. Piomelli, J. Ferziger, P. Moin, and J. Kim, New approximate boundary conditions for large eddy

simulations of wall-bounded flows, Phys. Fluids A 1, 1061 (1989).
[18] U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels

and annuli, J. Comput. Phys. 18, 376 (1975).
[19] E. Balaras, C. Benocci, and U. Piomelli, Two-layer approximate boundary conditions for large-eddy

simulations, AIAA J. 34, 1111 (1996).
[20] S. Kawai and J. Larsson, Wall-modeling in large eddy simulation: Length scales, grid resolution, and

accuracy, Phys. Fluids 24, 015105 (2012).
[21] W. H. Cabot and P. Moin, Approximate wall boundary conditions in the large-eddy simulation of high

Reynolds number flow, Flow Turbul. Combust. 63, 269 (2000).
[22] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno, Large eddy simulation with modeled wall-stress:

Recent progress and future directions, Mech. Eng. Rev. 3, 15 (2016).
[23] U. Piomelli and E. Balaras, Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech. 34, 349

(2002).
[24] S. T. Bose and G. I. Park, Wall-modeled large-eddy simulation for complex turbulent flows, Annu. Rev.

Fluid Mech. 50, 535 (2018).
[25] S. T. Bose and P. Moin, A dynamic slip boundary condition for wall-modeled large-eddy simulation,

Phys. Fluids 26, 015104 (2014).
[26] B. Perot and P. Moin, Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall

turbulence, J. Fluid Mech. 295, 199 (2006).
[27] P. Orlandi, Fluid Flow Phenomena: A Numerical Toolkit (Springer, Berlin, 2000).

014610-10

https://doi.org/10.2514/1.24812
https://doi.org/10.2514/1.24812
https://doi.org/10.2514/1.24812
https://doi.org/10.2514/1.24812
https://doi.org/10.2514/1.J055853
https://doi.org/10.2514/1.J055853
https://doi.org/10.2514/1.J055853
https://doi.org/10.2514/1.J055853
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1146/annurev.fluid.010908.165243
https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
https://doi.org/10.1063/1.2722422
https://doi.org/10.1063/1.2722422
https://doi.org/10.1063/1.2722422
https://doi.org/10.1063/1.2722422
https://doi.org/10.1080/14685248.2010.541920
https://doi.org/10.1080/14685248.2010.541920
https://doi.org/10.1080/14685248.2010.541920
https://doi.org/10.1080/14685248.2010.541920
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311
https://doi.org/10.2514/3.61311
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.1063/1.3676783
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.1017/jfm.2012.150
https://doi.org/10.1103/PhysRevFluids.1.044401
https://doi.org/10.1103/PhysRevFluids.1.044401
https://doi.org/10.1103/PhysRevFluids.1.044401
https://doi.org/10.1103/PhysRevFluids.1.044401
https://doi.org/10.2514/2.1031
https://doi.org/10.2514/2.1031
https://doi.org/10.2514/2.1031
https://doi.org/10.2514/2.1031
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1017/S0022112009006867
https://doi.org/10.1063/1.4819342
https://doi.org/10.1063/1.4819342
https://doi.org/10.1063/1.4819342
https://doi.org/10.1063/1.4819342
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1063/1.4861069
https://doi.org/10.1103/PhysRevFluids.1.024404
https://doi.org/10.1103/PhysRevFluids.1.024404
https://doi.org/10.1103/PhysRevFluids.1.024404
https://doi.org/10.1103/PhysRevFluids.1.024404
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1017/S0022112070000691
https://doi.org/10.1063/1.857397
https://doi.org/10.1063/1.857397
https://doi.org/10.1063/1.857397
https://doi.org/10.1063/1.857397
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.1016/0021-9991(75)90093-5
https://doi.org/10.2514/3.13200
https://doi.org/10.2514/3.13200
https://doi.org/10.2514/3.13200
https://doi.org/10.2514/3.13200
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1063/1.3678331
https://doi.org/10.1023/A:1009958917113
https://doi.org/10.1023/A:1009958917113
https://doi.org/10.1023/A:1009958917113
https://doi.org/10.1023/A:1009958917113
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev.fluid.34.082901.144919
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1146/annurev-fluid-122316-045241
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1063/1.4849535
https://doi.org/10.1017/S0022112095001935
https://doi.org/10.1017/S0022112095001935
https://doi.org/10.1017/S0022112095001935
https://doi.org/10.1017/S0022112095001935


TURBULENCE INTENSITIES IN LARGE-EDDY …

[28] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations,
J. Comput. Phys. 59, 308 (1985).

[29] A. A. Wray, Minimal-storage time advancement schemes for spectral methods, NASA Ames Research
Center report, 1990 (unpublished).

[30] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model,
Phys. Fluids A 3, 1760 (1991).

[31] D. K. Lilly, A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A 4, 633
(1992).

[32] A. Lozano-Durán and J. Jiménez, Effect of the computational domain on direct simulations of turbulent
channels up to Reτ = 4200, Phys. Fluids 26, 011702 (2014).

[33] H. J. Bae, A. Lozano-Durán, and P. Moin, Investigation of the slip boundary condition in wall-modeled
LES, Stanford University Center for Turbulence Research Annual Research Briefs 2016, 74 (2016).

[34] J. C. DelÁlamo, J. Jiménez, P. Zandonade, and R. D. Moser, Scaling of the energy spectra of turbulent
channels, J. Fluid Mech. 500, 135 (2004).

[35] S. Hoyas and J. Jiménez, Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003,
Phys. Fluids 18, 011702 (2006).

[36] J. S. Baggett, On the feasibility of merging LES with RANS for the near-wall region of attached turbulent
flows, Stanford University Center for Turbulence Research Annual Research Briefs 1998, 267 (1998).

[37] J. Weatheritt, R. Sandberg, and A. Lozano-Durán, Reynolds stress structures in the hybrid RANS/LES of
a planar channel, J. Phys.: Conf. Ser. 708, 012008 (2016).

[38] J. Jiménez and A. Pinelli, The autonomous cycle of near-wall turbulence, J. Fluid Mech. 389, 335 (1999).
[39] F. Waleffe, J. Kim, and J. M. Hamilton, Turbulent Shear Flows 8 (Springer, Berlin, 1993), pp. 37–49.
[40] M. J. Walsh, Riblets as a viscous drag reduction technique, AIAA J. 21, 485 (1983).
[41] P. J. Mason and D. J. Thomson, Stochastic backscatter in large-eddy simulations of boundary layers,

J. Fluid Mech. 242, 51 (2006).
[42] U. Piomelli, E. Balaras, H. Pasinato, K. D. Squires, and P. R. Spalart, The inner-outer layer interface in

large-eddy simulations with wall-layer models, Int. J. Heat Fluid Flow 24, 538 (2003).
[43] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).

014610-11

https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1016/0021-9991(85)90148-2
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.857955
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.858280
https://doi.org/10.1063/1.4862918
https://doi.org/10.1063/1.4862918
https://doi.org/10.1063/1.4862918
https://doi.org/10.1063/1.4862918
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1017/S002211200300733X
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1063/1.2162185
https://doi.org/10.1088/1742-6596/708/1/012008
https://doi.org/10.1088/1742-6596/708/1/012008
https://doi.org/10.1088/1742-6596/708/1/012008
https://doi.org/10.1088/1742-6596/708/1/012008
https://doi.org/10.1017/S0022112099005066
https://doi.org/10.1017/S0022112099005066
https://doi.org/10.1017/S0022112099005066
https://doi.org/10.1017/S0022112099005066
https://doi.org/10.2514/3.60126
https://doi.org/10.2514/3.60126
https://doi.org/10.2514/3.60126
https://doi.org/10.2514/3.60126
https://doi.org/10.1017/S0022112092002271
https://doi.org/10.1017/S0022112092002271
https://doi.org/10.1017/S0022112092002271
https://doi.org/10.1017/S0022112092002271
https://doi.org/10.1016/S0142-727X(03)00048-1
https://doi.org/10.1016/S0142-727X(03)00048-1
https://doi.org/10.1016/S0142-727X(03)00048-1
https://doi.org/10.1016/S0142-727X(03)00048-1



