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Direct numerical simulations of turbulent boundary layers over longitudinal surface
roughness are performed to investigate the impact of the surface roughness on the mean flow
characteristics related to counter-rotating large-scale secondary flows. By systematically
changing the two parameters of the pitch (P) and width (S) for roughness elements in
the ranges of 0.57 � P/δ � 2.39 and 0.15 � S/δ � 1.12, where δ is the boundary layer
thickness, we find that the size of the secondary flow in each case is mostly determined by the
value of P−S, i.e., the valley width, over the ridge-type roughness. However, the strength
of the secondary flows on the cross-stream plane relative to the flow is increased when the
value of P increases or when the value of S decreases. In addition to the secondary flows,
additional tertiary and quaternary flows are observed both above the roughness crest and in
the valley as the values of P and S increase further. Based on an analysis using the turbulent
kinetic energy transport equation, it is shown that the secondary flow over the ridge-type
roughness is both driven and sustained by the anisotropy of turbulence, consistent with
previous observations of a turbulent boundary layer over strip-type roughness [Anderson
et al., J. Fluid Mech. 768, 316 (2015)]. Careful inspection of the turbulent kinetic energy
budget reveals that the opposite rotational sense of the secondary flow between the ridge-
and strip-type roughness elements is primarily attributed to the local imbalance of energy
budget created by the strong turbulent transport term over the ridge-type roughness. The
active transport of the kinetic energy over the ridge-type roughness is closely associated with
the upward deflection of spanwise motions in the valley, mostly due to the roughness edge.
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I. INTRODUCTION

Streamwise flow circulation or swirling motion normal to the primary flow, commonly called a
“secondary flow,” is one of the most widely observed flow phenomena. When a secondary flow is
superimposed on a primary flow, the flow is characterized by helical motion about the streamwise
axis, leading to a significant enhancement of flow mixing throughout the entire boundary layer.
From the early history of fluid dynamics, the underlying physics of secondary flows in numerous
flow types have been studied because these factors have a strong impact on the main flow, even
with a relatively small magnitude of circulating motion. Nikuradse [1] was the first to observe a
mean secondary flow motion and related streamwise mean velocity distribution in an experiment
on a turbulent duct flow with a non-circular cross-section. Prandtl [2] suggested a comprehensive
classification of secondary flows depending on the generation mechanism: the first kind of secondary
flow is created by a pressure gradient or centrifugal force, which results from the curvature of the
flow path, and the second kind of secondary flow is generated by the anisotropy of turbulence. In
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contrast to the first kind, which can occur in either a laminar or a turbulent flow through an inviscid
generation mechanism, secondary flows of the second kind necessitate the presence of turbulence by
definition. With regard to the second kind of secondary flow, Hinze [3,4] and Perkins [5] suggested
formation mechanism of secondary flow in turbulent flows using turbulent kinetic energy (tke) and
mean streamwise vorticity transport equations.

Significant efforts have been devoted to reveal the characteristics of secondary flows in turbulent
flows with spanwise heterogeneous surface conditions [6–10]. In an experimental study of turbulent
open channel flows with strip- and ridge-type roughness, Wang & Cheng [10] showed secondary
flows are generated over spanwise heterogeneous surface condition for both types of roughness. In
their experiment, strip- and ridge-type roughness were distinguished based on the roughness height
over an elevated (high-drag) region; e.g., a small elevation compared to a recessed (low-drag) region
denoted strip-type roughness and a large elevation was ridge-type roughness. They found that the
rotational sense of the generated secondary flow is affected by the roughness type. In addition,
Willingham et al. [6] performed large-eddy simulations (LESs) of turbulent boundary layers (TBLs)
over spanwise-alternating high and low roughness virtually reproduced by the spanwise variation of
wall shear stress imposed over a flat plate (e.g., strip-type roughness). When the spacing between the
elements with high roughness elements was fixed, decreasing the width of the high roughness (or
increasing the height ratio between high- and low-roughness) increased the imposed wall stresses on
the high-roughness significantly, resulting in an enhancement of the transverse mixing. Recently, an
experimental study by Vanderwel & Ganapathisubramani [9] of a TBL over ridge-type longitudinal
roughness elements examined the effects of the size and strength of a secondary flow when the
spanwise spacing between the roughness elements was varied but with fixed roughness widths and
heights. Although the secondary flow was confined in the vicinity of the roughness for a small
spacing, the size and strength of the secondary flow were increased with an increase of the spacing
until the roughness spacing was comparable to the boundary layer thickness. In addition, as the
spacing increased beyond the boundary layer thickness, a tertiary flow was formed in the valley,
whose size and strength were smaller than that of the existing secondary flow.

Furthermore, Barros & Christensen [7] and Mejia-Alvarez & Christensen [8] investigated the
spatial relevance of secondary flows with regard to spanwise heterogeneity of the mean flow and
turbulent Reynolds stresses. In a TBL on a replica of a damaged turbine blade, which featured
multiscale complex roughness, they showed that the ensemble-averaged streamwise velocity has
spanwise heterogeneity in the form of a spanwise-alternating “low momentum pathway” (LMP)
and “high momentum pathway” (HMP). These localized momentum pathways were consistently
flanked by the streamwise counter-rotating circulation of a secondary flow. In those studies, the
secondary flow exhibited wall-normal diverging motion (a positive wall-normal velocity) in the
region of the LMPs, by which the low momentum from the wall was transported toward the outer
region. In contrast, converging motion (a negative wall-normal velocity) was observed at the regions
of HMPs, leading to the convection of higher momentum toward the wall. In regions of LMPs, the
turbulent kinetic energy and Reynolds shear stress were dramatically enhanced. Following work by
Willingham et al. [6], a LES study by Anderson et al. [11] reported that the downward motion of
secondary flows in HMP regions is created by the realization of the advective velocity of tke, which
is necessary for global energy conservation. This result indicated that the emergence of a secondary
flow in a TBL with spanwise heterogeneous surface condition is due to Prandtl’s second kind.

Although LMPs (or HMPs) are closely associated with upward (or downward) motion regardless
of a strip- or ridge-type roughness element in a turbulent flow [6,9,12], a careful review of previous
studies suggests that spanwise locations for LMPs and HMPs and the associated rotational sense of
the secondary flow are significantly influenced by the type of roughness. For the strip-type roughness,
the formation of HMPs with converging motion was observed in regions of higher drag [6–8,10–12].
However, for the ridge type of roughness, HMPs with downward motion were found in region with
lower drag regions (e.g., recessed regions). For the rotational directions and associated spanwise
locations of LMPs and HMPs, Willingham et al. [6] argued that because a region with locally higher
drag pulls the momentum toward the wall, local thinning of the boundary layer with a HMP is
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created at the region with a higher drag region. For instances of ridge-type roughness, Vanderwel &
Ganapathisubramani [9] and Wang & Cheng [10] suggested that the occurrence of HMPs in recessed
regions is induced because higher momentum is more easily observed in recessed regions due to
the absence or the reduced blockage effect of the main flow. Thus, the dynamics of secondary flow
formation and the spatial features of mean flows over ridge-type roughness may differ from those
over strip-type roughness.

It is worth mentioning previous research on the dynamics of secondary flows in turbulent
flows induced by spanwise heterogeneous surface conditions. An experimental study by Vermaas
et al. [13] investigated the streamwise developing spanwise momentum exchange process over a
longitudinal surface composed of smooth and rough (strip-type) walls. In the initial stage of a rough
wall, spanwise motions associated with mixing from a decelerating flow over the rough wall to an
accelerating flow over the smooth wall were mainly caused by the mass transfer. However, as the
flow moved downstream, the amount of mass transfer decreased due to the adaptation of the flow
to the surface conditions, while lateral momentum transfers were sustained by secondary flows. In
a turbulent flow over a super-hydrophobic surface (SHS), it was reported that spanwise variation
of the wall shear stress, consisting of regions of high and low drag with a no-slip surface and a
shear-free surface, generates a secondary flow [14,15]. Although downward motion was observed
over the no-slip region with a large width of the no-slip region, the sense of rotation of the secondary
flow over the no-slip region was reversed for a small width. Stroh et al. [14] and Türk et al. [15]
attributed the change of the rotational sense of the secondary flow to the formation of a tertiary flow
with a rotational direction opposite to that of the existing secondary flow. For a turbulent flow with
riblets, Goldstein & Tuan [16] performed a numerical experiment to provide an alternative way of
explaining the formation of a secondary flow. They applied only a spanwise no-slip condition on a
single fin (riblet) and showed that the damping of spanwise motion at the side wall of the fin plays
an important role in generating a secondary flow by deflecting the cross-flow near the wall in an
upward direction. The importance of cross-flow deflection during the formation of a secondary flow
over ridge-type roughness was also reported in Wang & Cheng [10].

In the present study, direct numerical simulations (DNSs) of TBLs over longitudinal surface
roughness are conducted to investigate the impact of the surface roughness on the mean flow char-
acteristics related to secondary flows. In particular, a special focus is on the origin of the distinctive
rotational sense of the secondary flow depending on the type of roughness elements, e.g., ridge-
and/or strip-type roughness. To impose ridge-type roughness with an abrupt spanwise transition of
the roughness elevation in the flow, longitudinal roughness elements with a height (H) of H/θin = 1.5
are periodically arranged in the spanwise direction while varying the two parameters of the spacing (P)
and roughness width (S) in the corresponding ranges of 12 � P/θin � 48 and 3 � S/θin � 24, where
θin is the inlet momentum thickness. The range of the Reynolds numbers used is Reθ = 300 ∼ 900.
We examine the spatial development of a secondary flow to clarify how the secondary flow is created
along the streamwise direction after a step change from a smooth wall to a rough wall. Furthermore,
the spatial characteristics of the sizes and strengths of secondary flows in equilibrium are investigated
to identify the important parameters determining the characteristics of TBLs over ridge-type
roughness. Finally, the energy budget terms in the tke transport equation are analyzed to reveal
the formation mechanism of secondary flows in TBLs over longitudinal surface roughness, and the
results are compared with previous findings pertaining to strip-type roughness elements to examine
the origin of the opposite sense of rotation between the ridge- and strip-type roughness elements.

II. NUMERICAL METHOD

For an incompressible flow, the nondimensional governing equations are

∂ui

∂t
+ ∂uiuj

∂xj

= − ∂p

∂xi

+ 1

Re

∂2ui

∂xj ∂xj

+ fi and (1)

∂ui
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= 0, (2)
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FIG. 1. Schematic of a turbulent boundary layer with longitudinal surface roughness. Roughness elements
with height H and width S are periodically arranged in the spanwise direction with pitch P. A step change from
a smooth to a rough surface occurs at 80θin downstream from the inlet, which is defined as x/θin = 0.

where xi denotes the Cartesian coordinates and ui represents the corresponding velocity components.
All variables are nondimensionalized by the free-stream velocity (U∞) and the momentum thickness
at the inlet (θin). The Reynolds number is defined as Reθ = U∞θ/ν, where ν is the kinematic
viscosity. All terms are resolved with the Crank-Nicolson method in time and by the central difference
scheme in space with a staggered mesh. The equations are integrated over time using the fractional
step method along with the implicit velocity decoupling procedure [17]. Block LU decomposition
based on approximate factorization is applied to achieve both velocity-pressure decoupling and
additional decoupling of the intermediate velocity components. In this approach, decoupled velocity
components are solved without iteration, reducing the computation time significantly. The immersed
boundary method using discrete forcing is used to describe longitudinal roughness elements with
Cartesian coordinates and a rectangular domain [18]. For the discrete forcing method, the desired
value of the velocity is directly imposed on the boundary without any dynamical process and is
calculated from the velocity components, which is explicitly updated from the previous time step.
The desired velocity is estimated based on nearby forcing point through the appropriate second-order
linear and bilinear interpolations.

A schematic of a TBL over the longitudinal surface roughness is shown in Fig. 1. The notation
adopted is such that x, y and z denote the streamwise, wall-normal and spanwise coordinates,
respectively, while u, v and w denote the corresponding streamwise, wall-normal and spanwise
velocity components. The longitudinal roughness elements of the pitch (P) and width (S) are
periodically arranged in the spanwise direction with a fixed height of H. In the present study, nine
simulations in total for rough-wall TBLs with varying P and S values are conducted to examine the
effects of the parameters on secondary flows and the TBL flow over a smooth wall is calculated
for comparison. The corresponding domain sizes and mesh resolutions are summarized in Table I.
The simulation names in the first column in Table I indicate the pitch spacing (P) between the

TABLE I. Computational details for the simulations.

Reθin Nx, Ny,Nz Lx/θin, Ly/θin, Lz/θin �x+ �y+
min �z+ �tU∞/θin

Smooth 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P12S3 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P12S6 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P24S3 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P24S6 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P24S12 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P48S3 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P48S6 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P48S12 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
P48S24 300 2049, 150, 513 768, 60, 96 6.0 0.2 3.0 0.3
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longitudinal surface roughness and the roughness width (S); for example, P12S3 denotes the case of
a TBL flow with longitudinal roughness with P/θin = 12 and S/θin = 3. The values of P and the
width S are selected to cover a wide range of roughness spacings (0.57 � P/δ � 2.39) and widths
(0.15 � S/δ � 1.12) in a state of equilibrium. Although not shown here, a grid sensitivity study
with doubled streamwise and spanwise resolutions for computational feasibility indicated that the
influence of mesh resolution is negligible since difference in the maximum value of the wall shear
stress between the present resolution and the doubled resolution is less than 2%. The domain size
employed here is confirmed to be adequate based on the convergence of the two-point correlations
to zero for half of the present domain in the streamwise and spanwise directions. In addition, direct
comparison of DNS data between the current domain and doubled spanwise domain size suggests that
there is little influence on the computational domain size for investigating the spatial characteristics
of secondary flows. A non-uniform grid distribution is employed in the wall-normal direction using
a hyperbolic tangent function, and uniform grid distributions are used in both the streamwise and
spanwise directions. A no-slip boundary condition is imposed at the solid wall and the free-stream
velocity (u = U∞) and shear free conditions (∂v/∂y = ∂w/∂y = 0) are specified as boundary
conditions on the top surface of the computational domain. A periodic boundary condition is applied
in the spanwise direction. Because the boundary layer develops spatially in the downstream direction,
an auxiliary simulation is carried out to acquire time-dependent inflow data (Reθ = 300) for the inlet
boundary condition [19]. Although not shown here, turbulence statistics were compared with the DNS
data of Spalart [20] at Reθ = 300 to ascertain the reliability and the accuracy of the inflow data [21].
At the domain exit, a convective boundary condition is used, as (∂u/∂t) + c(∂u/∂x) = 0, where c is
the local bulk velocity. To avoid generating a rough wall inflow, the longitudinal roughness elements
are placed at the position of 80θin downstream from the inlet (Fig. 1); thus, the surface condition
changes abruptly from a smooth to a rough wall at this location, which is defined as x/θin = 0.

To determine the turbulent statistics over the spanwise heterogeneous surface roughness, a phase-
averaging technique is employed with temporal averaging in the present study. The phase- and
temporal-averaged mean quantities are denoted by brackets, 〈 〉, and the velocity fluctuations (ui

′)
are defined from the phase-averaged values: ui

′ = ui − 〈ui〉. In addition, spatial averaging of 〈ui〉
in the spanwise direction is adopted to estimate the spatial mean (e.g., 〈ui〉z). Capital letters indicate
temporal and spatially averaged statistics (e.g., Ui = 〈ui〉z), and the superscript + indicates the
quantities normalized by the friction velocity (Uτ ). The sampling time duration was 60 000θin/U∞,
which is sufficient to allow particles to travel more than 50 times through the streamwise dimension
at the bulk velocity.

III. RESULTS AND DISCUSSION

A. Self-preservation of the rough wall turbulent boundary layer

Because a TBL flow spatially develops in the streamwise direction with a step change from a
smooth to a rough wall, it is important to consider where a new equilibrium state with a self-preserving
form is established. Perry et al. [22] and Smalley et al. [23] suggested conditions for self-preservation
in a rough wall TBL that the boundary layer thickness should increase linearly along the streamwise
direction and that the friction velocity should be mostly constant along the streamwise direction. To
determine self-preservation in a rough wall TBL, the spatially averaged skin-frictional drag (Cf ),
form drag (Pd ) and friction velocity normalized by the free-stream velocity (Uτ/U∞) with an increase
of P are shown in Fig. 2 with a fixed value of S. The data of a smooth wall is included for comparison.
In Fig. 2(a), the values of Cf over the rough walls are larger than those of the smooth wall due to
an increase in the surface area caused by the introduction of roughness elements. In particular, an
inspection of the spanwise variation of wall shear stress reveals that most of the increase in the wall
shear stress occurs at the side walls and roughness edge (not shown here). As the value of P decreases,
the values of Cf increase due to the larger number of roughness elements with a decrease of P. In
Fig. 2(b), the value of Pd over the longitudinal surface roughness is nearly zero along the streamwise
direction, except for a region near the roughness step change. The normalized friction velocity
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FIG. 2. Variations of the spanwise-averaged (a) skin-friction drag (Cf ), (b) form the drag (Pd ) and (c)
friction velocity (Uτ/U∞) along the downstream direction.

(Uτ/U∞) in Fig. 2(c) exhibits a trend similar to that of Cf with an increase in P, as the contribution
to the total drag is completely from Cf under the present roughness configuration. The values of
Uτ/U∞ for all P converge to the range of 0.050 ∼ 0.062 for conditions in which x/θin > 220. These
values of Uτ/U∞ are much smaller than those of TBL flows with a transverse rod [24] and cube [21]
despite the fact that the roughness heights are identical (H/θin = 1.5). Although the width of the
surface roughness in Fig. 2 is fixed at S/θin = 3, the overall trend of the statistics is not affected by
an increase of S (not shown here).

Figure 3 shows the streamwise variation of the boundary layer thickness (δ/θin), displacement
thickness (δ∗/θin), momentum thickness (θ/θin) and shape parameter (H) as the value of P is varied.
In Fig. 3(a), δ increases almost linearly along the streamwise direction after the roughness step
change. Although there is slight downward shift of δ with an increase of x/θin, δ is less sensitive
to variations of P and S. Compared to the variation of δ, δ∗ in Fig. 3(b) displays higher values for

FIG. 3. Variations of the spanwise-averaged (a) boundary layer thickness (δ/θin), (b) displacement thickness
(δ∗/θin), (c) momentum thickness (θ/θin) and (d) shape parameter (H) along the downstream direction.
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FIG. 4. Variations of the spanwise-averaged mean velocity defect profiles along the downstream direction
for P12S3.

the rough walls than that over the smooth wall due to the large mean velocity loss caused by the
roughness element. In addition, as the value of P increases, the rate of increase for δ∗ is lowered
due to the presence of a wide valley. On the other hand, the effect of P is negligible on the variation
of θ in Fig. 3(c), because the large velocity defect is compensated with a large velocity gradient. In
Fig. 3(d), the shape factor, H (= δ∗/θ ), which provides a useful means of characterizing the state of
the development of the boundary layer, increases significantly near the roughness step change owing
to flow separation and gradually converges with an increase of x/θin.

In addition to the boundary layer parameters, the establishment of self-preservation in TBL flows
over the surface roughness is examined using profiles of the spanwise-averaged mean velocity defect
and Reynolds stresses. Figure 4 shows the streamwise variation of the mean velocity defect profiles for
P12S3 in the outer coordinates. The profiles become well collapsed at approximately x/θin > 220.
Furthermore, the profiles of the Reynolds stresses along the streamwise direction for P12S3 in
Fig. 5 exhibit good agreement in the outer layer (y/δ > 0.4) after x/θin = 220, suggesting the
establishment of a self-preservation form. In Fig. 5(a), although the peak values of the streamwise
Reynolds normal stress near the step change (x/θin � 50) are found to be far from the wall, those
in the equilibrium state (x/θin > 220) are observed slightly above the roughness height (H/δ =
0.07 ∼ 0.09) regardless of the streamwise location due to large disturbance effect of the roughness
edge on the upcoming main flow. Near the step change, strong impingement of the flow to the
roughness, creating three-dimensional random disturbances, contributes to the generation of a large
amount of turbulent energy in the outer layer. As the flow moves along the downstream direction,
the wall-normal locations become closer to the wall for the peaks of the Reynolds stresses due to
the increase of the boundary layer thickness. In addition, the increase of the near-wall peaks for the
Reynolds normal and shear stresses when moving downstream is induced by the decrease of the
friction velocity (and most likely the Reynolds number effect).

Although the self-preservation of the TBL over the roughness for P12S3 is shown to be achieved
at approximately x/θin > 220 based on the boundary layer parameters (Figs. 2 and 3) and turbulent
statistics (Figs. 4 and 5), a closer analysis of the statistics with respect to the values of P and S in Fig. 6
suggests that the streamwise location for the establishment of the self-preservation of TBL flows
over the surface roughness is significantly affected by the value of P. Here, the equilibrium locations
(xeq) for all P and S are estimated using a procedure identical to that of P12S3 above. Because the
longitudinal surface with a large value of P is characterized by significant spanwise heterogeneity of
surface condition, resulting in strong random disturbances emanating from the interaction between
the near-wall structures and the roughness, the transitional effects of the step change persist for an
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FIG. 5. Variation of the turbulent Reynolds stresses along the streamwise direction for P12S3. The line
symbols are identical to those in Fig. 4.

extended period in the downstream direction with an increase of P. The little influence of the value
of S on the streamwise distance required to achieve a state of equilibrium at a fixed value of P is
expected, as the number of roughness edges, which is important to characterize the flow, is identical
at a fixed value of P, while the value of S is varied. Compared to previous findings (xeq � 20δo) for
TBLs over rod [24] and cube roughness [21], new fully developed rough wall profiles are formed
beyond an initial boundary layer thickness (δo) of approximately 23 ∼ 30 in the downstream direction.
The slightly longer streamwise distance in the present configuration may be due to relatively smaller
initial boundary layer thickness for the longitudinal surface roughness than those for the rod and
cube roughness elements, although the roughness height (H/δ) in the present study is larger.

FIG. 6. Streamwise locations required to achieve new equilibrium states after a step change with increases
of P and S, normalized by the inlet momentum thickness (θin).
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B. Spatial development of a secondary flow

Before analyzing the characteristics of secondary flows in TBLs over rough walls, the spatial
development of a secondary flow in a TBL flow over a longitudinal surface roughness for P12S3
is examined in Fig. 7 using isosurfaces of the phase-averaged mean-signed swirling strength

FIG. 7. (a) Isosurfaces of the phase-averaged mean-signed swirling strength (〈Λci〉θin/U∞) for P12S3,
showing the formation of a secondary flow throughout the entire turbulent boundary layer with a longitudinal
roughness element. Red and blue represent positive and negative values, respectively, and the contour levels are
10% of the maximum and minimum values at x/θin = 250. The aspect ratio in each direction is (4:1:1). In (b–e),
subplots of 〈Λci〉δ/U∞ in (a) are drawn on the yz planes with vectors constructed using the phased-averaged
mean wall-normal (〈v〉/U∞) and spanwise velocities (〈w〉/U∞): (b) x/θin = 16, (c) 50, (d) 100 and (e) 300.
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(〈Λci〉θin/U∞). Here, the signed swirl strength Λci(=λciωx |ωx |) is computed using the streamwise
vorticity ωx and the swirling strength λci , which is defined as the imaginary part of the complex
conjugate eigenvalue of the local velocity gradient tensor on the yz plane [25]. The contour levels
are 10% of the maximum and minimum values at x/θin = 250, where the secondary flow reaches
an equilibrium state and only one quarter of the computational domain in the spanwise direction is
drawn for brevity. In Fig. 7(a), it is clear that the secondary flows spatially develop in the streamwise
direction and that two pairs of secondary flow patterns are present in the downstream region of the
TBL over the longitudinal surface roughness, occupying the entire boundary layer. In Figs. 7(b)–7(e),
subplots of the mean-signed swirling strength with vectors of the phase-averaged mean wall-normal
and spanwise velocities on the yz planes provide useful information about how the secondary flows
are generated near the step change and developed in the downstream direction. In Fig. 7(b), three
types of streamwise vortex pairs are observed near the step change (x/θin = 16): one vortex pair
with the smallest size in the vicinity of the roughness edge, another vortex pair with the largest size
in the valley and the third vortex pair, i.e., streamwise vortices of secondary flow, created slightly
away from the square edge of the roughness element. The size of the streamwise vortices in the
valley is the largest because the main flow, which directly impinges on the roughness element at the
location of the step change, creates strong spanwise motions towards the valley. However, as shown
in Figs. 7(c) and 7(d), the size and strength of the streamwise vortices in the valley decrease as the
flow moves downstream because the spanwise motions originating from the impingement of the flow
are gradually reduced in the streamwise direction.

On the other hand, the counter-rotating vortex pair of secondary flows begins to form at either
side of the roughness element in Fig. 7(a) and the size of the secondary flow at x/θin = 16 is
smaller than the streamwise vortices in the valley, with weaker strength as well. However, as the flow
travels downstream, the volume occupied by the secondary flow increases both in the wall-normal
and spanwise directions, indicating that the size of the secondary flow increases in the streamwise
direction. Furthermore, the cross-plane view of the secondary flow with an increase of x/θin in
Fig. 7 shows that the strength of the secondary flow also increases in the downstream direction
with enhanced spanwise motion toward the roughness in the valley. Note that this spanwise motion
associated with the secondary flow is distinct from the spanwise motion observed in the valley due to
the impingement of the main flow near the step change [Fig. 7(b)]. The increased spanwise motion
for the secondary flow in the valley is deflected by the side wall of the roughness element and creates
upwelling motion above the roughness crest. This process of forming the streamwise circulating
motion is continuously observed as the secondary flow grows in the streamwise direction. Although
the spatial characteristics (i.e., size and strength) of a secondary flow are changed significantly near
the step change due to presence of the flow impingement, there is little influence of the step change
after about x/θin = 250, suggesting that the secondary flow is at an equilibrium state, consistent with
the observation for the self-preservation of the boundary layer parameters, velocity defect profiles
and Reynolds stress profiles in Figs. 4 and 5.

At the equilibrium state [Fig. 7(e)], the counter-rotating streamwise vortices of the secondary
flow are predominant in the rough wall TBL. The strong spanwise motions pointing toward each
side of the roughness element occupies the entire valley, and the diverging and converging motions
observed at elevated and recessed regions, respectively, affect the main flow up to the region for which
y/δ = 0.65. The maximum magnitude of the velocities related to the secondary flow on the yz plane
is found at the roughness edge irrespective of the streamwise location. The rotational direction of the
secondary flow is consistent with previous finding over ridge-type roughness [9,10]. In addition, the
presence of small vortices near the roughness edge is consistent with the observation of Vanderwel
& Ganapathisubramani [9]. The small vortices in Fig. 7 are continuously observed at the crest edge
regardless of the streamwise location, and the strength of the vortices is always greater than that of the
secondary flow due to increased velocity gradient at the roughness edge, although the influence of the
vortices on the main flow is negligible. Consistent with the findings in the study of Vermaas et al. [13],
spanwise motions from a high-drag region (a decelerating flow) to a low-drag region (an accelerating
flow) are generated near the roughness step change and are reduced as the flow moves downstream.
However, these spanwise motions in the present study are diminished along the streamwise direction,
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although those motions over strip-type roughness are sustained due to the generation of a secondary
flow with a rotational sense, identical to the spanwise motions near the step change.

C. Spatial characteristics of secondary flows

Figures 8 and 9 show the contours of the phase-averaged mean signed swirling strength
(〈Λci〉δ/U∞) with vectors constructed using the phased-averaged mean wall-normal (〈v〉/U∞) and
spanwise velocities (〈w〉/U∞) at regions in equilibrium, x/θin = 512, as P and S vary in the

FIG. 8. Contours of the phase-averaged mean-signed swirling strength (〈Λci〉δ/U∞) with vectors con-
structed using the phased-averaged mean wall-normal (〈v〉/U∞) and spanwise velocities (〈w〉/U∞) as P
and S vary: (a) P12S3 (P/δ = 0.58, S/δ = 0.14), (b) P24S3 (P/δ = 1.18, S/δ = 0.15), (c) P12S6 (P/δ =
0.57, S/δ = 0.27), (d) P24S6 (P/δ = 1.18, S/δ = 0.29) and (e) P24S12 (P/δ = 1.17, S/δ = 0.59). On the
right in each figure, the phase-averaged mean spanwise velocity (〈w〉/U∞) is drawn, with line contours of
〈w〉/U∞ = 0.001 (solid line) and −0.001 (dashed line) included. The data are extracted in the equilibrium
region (x/θin = 512) for each flow and the vectors are uniformly distributed for clarity.
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FIG. 9. Identical to those in Fig. 8 but for (a) P48S3 (P/δ = 2.39, S/δ = 0.15) and (b) P48S24 (P/δ = 2.39,
S/δ = 1.12). The data are extracted in the equilibrium region (x/θin = 512).

corresponding ranges of 12 � P/θin � 48 and 3 � S/θin � 24. In addition, the contours of the
phase-averaged mean spanwise velocity (〈w〉/U∞) are illustrated on the right in each plot. The
boundary layer thickness at the equilibrium location is approximately δ/θin = 20.5 ± 0.8, while P
and S vary. In Fig. 8, the presence of secondary flows at the either side of the roughness element is
evident for all cases, and the rotational sense of the secondary flows is described as upward motion
over the crest and downward motion in the valley, regardless of the values of P and S. Although
the Reynolds number is low in the present study, the rotational sense of the secondary flow is
consistent with the findings of an experimental study by Vanderwel & Ganapathisubramani [9] at a
high Reynolds number. Furthermore, the pitch spacing between the roughness elements (P/δ � 0.5)
is large enough in all cases to induce a large-scale secondary flow over a rough-wall TBL flow [9],
and the generated secondary flows affect the mean flow above y/δ � 0.5.

Although flows with a wide range of P and S values show the generation of the secondary flows
over ridge-type roughness, the sizes and strengths of the secondary flows are influenced by the values
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of P and S. As the value of S is fixed in Fig. 8, the size of the secondary flows increases with an increase
of P, consistent with the observation in Vanderwel & Ganapathisubramani [9]. However, when the
value of P is fixed, increasing the value of S leads to a decrease in the size of the secondary flow.
Consistent variation of the size of the secondary flow is shown in the velocity contours of 〈w〉/U∞.
However, for P12S3 shown in Fig. 8(a), a larger secondary flow is formed compared to that of P12S6
in Fig. 8(c) despite the fact that the values of P are similar (P/δ ≈ 0.58). In addition, although the
value of P is sufficiently large for P24S12 (P/δ = 1.17, S/δ = 0.58) to create a large-scale secondary
flow [9], a relatively small size of the secondary flow for P24S12 is observed, as shown in Fig. 8(e).
In Fig. 8, because the case for P12S6 with the smallest valley width (P−S) exhibits the smallest
size of the secondary flow with influence up to y/δ = 0.5 [Fig. 8(c)] and the case of P24S3 with the
largest value of P−S shows the largest secondary flow with influence over y/δ > 0.9 [Fig. 8(b)], it
is reasonable to conclude that the valley width (P−S) is an important parameter in the determination
of the size of the secondary flow over the present ridge-type roughness.

However, the P48S3 case in Fig. 9(a) suggests that the size of the secondary flow does not
continuously increase as the value of P−S increases, and the size is similar to that for P24S3,
suggesting that the growth of the secondary flow is limited when the value of P−S exceeds a certain
level. The observation that the influence of the secondary flows for P24S3 and P48S3 exists in the
range of −0.5 � z/δ � 0.5 indicates that the secondary flow grows in the spanwise direction until
its size is comparable to the boundary layer thickness. The importance of the valley width (P−S)
with regard to the size of the secondary flow is predictable, because the limited valley width restricts
the spanwise motions toward the roughness elements to induce the secondary flow. For strip-type
roughness, the size of the secondary flow was reported to be proportional to the value of P [6,10]. In
addition, for ridge-type roughness with a gradual spanwise change in the bed elevation, the size of the
secondary flow is mostly influenced by the value of P [10]. Because strip-type roughness elements
do not significantly restrict spanwise motions towards the roughness, contrary to the longitudinal
roughness elements, the value of P plays a critical role in determining the sizes of secondary flows.

Willingham et al. [6] reported that the strength of the secondary flow is negatively proportional to
the width of a high-drag region in TBLs over strip-type roughness based on the maximum magnitude
of 〈Λci〉. However, as the value of P/θin(=12) is fixed, as shown in Fig. 8, the maximum magnitude
of 〈Λci〉δ/U∞ shows slight increase with an increase in S (as indicated by the color). In addition, the
maximum magnitude of 〈Λci〉δ/U∞ for P/θin = 24 is reduced with an increase of S for S/θin < 6,
increasing again for S/θin > 6. In addition to the inconsistent trend of the strength of the secondary
flow noted above, the use of the local magnitude as a means of quantifying the strength of the
secondary flow may hinder the broader influence of the secondary flow on the mean flow. Thus,
as an alternative approach for assessing the strengths of secondary flows, we consider the mean
spanwise velocity field on the cross-plane relative to the flow, similar to an earlier study by Wang
& Cheng [10]. As the value of S is fixed in Fig. 8, the strength of 〈w〉/U∞ is intensified with an
increase of P, consistent with the findings of Vanderwel & Ganapathisubramani [9] for TBLs with
the ridge-type roughness. In addition, when the value of P is fixed, as shown in Fig. 8, the strength of
the secondary flow increases with a reduction of S, similar to the observation of Willingham et al. [6]
in TBLs with strip-type roughness. However, the further increase of P (P48S3) in Fig. 9(a) shows that
the strength of the secondary flow does not continuously increase with an increase of P, compared
to that for P24S3 [Fig. 8(b)], although the smaller value of S for P48S3 relative to that for P48S24
in Fig. 9 exhibits the presence of a stronger secondary flow. The limited increase in the strength
of the secondary flow for a sufficiently large P is most likely associated with the variation of the
size of the secondary flow. In Fig. 8, the strength of the secondary flow also appears to be related
to the valley width (P−S) at a fixed value of P; e.g., the strength decreases as the value of P−S
decreases, consistent with the variation of the size of the secondary flow. However, a comparison
of the secondary flows between P12S3 and P24S12 [Figs. 8(a) and 8(e)] shows that even when the
value of P−S for P24S12 is larger, a stronger secondary flow arises for P12S3.

In Figs. 8 and 9, it is clear that the spatial characteristics for additional mean streamwise vortices
are also affected by the values of P and S. Over the roughness crest, a tertiary flow is shown to be
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created as a result of the accumulation of the secondary flow with an increase of S, regardless of the
value of P. In addition, the size and strength of the tertiary flow are enhanced with a further increase
of S. Wang & Cheng [10] explained that because spanwise motions toward the roughness element
in the valley are sharply deflected upward by the side wall, the induced upward motions at either
end of the crest lead to the generation of a tertiary flow with a secondary flow over the crest, with
the rotational sense of the tertiary flow opposite to the adjacent secondary flow. However, although
strong deflections of the spanwise motions are observed for cases with small values of S [Figs. 8(a)
and 8(b)], a tertiary flow is not created due to the absence of enough space to make room for the
generation of a tertiary flow over the crest. For the cases with S/θin = 6 [Figs. 8(c) and 8(d)], a
tertiary flow based on a vector plot is clearly observed (see the enlarged view in Fig. 8). In addition
to the tertiary flow over the roughness crest, an additional tertiary flow is observed in the valley in
Figs. 8 and 9. Because the strength of the secondary flow decreases with an increase of S due to the
limited spanwise extent for the valley, the tertiary flow in the valley is also weakened. As shown
in Fig. 9(b), with a sufficiently large value of S, a quaternary flow created by the induction of the
tertiary flow is observed in the middle of the roughness crest based on the 〈Λci〉 contours, although
the velocity vectors for the quaternary flow are not clear in the enlarged view in Fig. 9. However,
because the strength of the tertiary flow in the valley is weaker than that above the roughness crest,
clear identification of a quaternary flow in the valley is more difficult [Fig. 9(b)]. For the strip-type
roughness, a tertiary flow has not been reported even for large values of P and S due to the relatively
weak deflection of the spanwise upward motions [6,10]. In addition, Although Türk et al. [15] and
Stroh et al. [14] reported that the rotational sense of the secondary flow is reversed by the formation
of a strong tertiary flow with sufficiently large P and S values over SHSs, the rotational sense over
the ridge-type roughness is invariant with respect to the values of P and S due to the emergence of a
weak tertiary flow caused by the induction of the secondary flow.

Figure 10 shows the contours of the phase-averaged mean streamwise velocity (〈v〉/U∞) with
vectors constructed using the phased-averaged mean wall-normal (〈v〉/U∞) and spanwise velocities
(〈w〉/U∞) as P and S vary. The data are extracted in the equilibrium region (x/θin = 512) for each

FIG. 10. Contours of the phase-averaged mean streamwise velocity (〈u〉/U∞) with vectors constructed
using the phased-averaged mean wall-normal (〈v〉/U∞) and spanwise velocities (〈w〉/U∞) while varying P and
S: (a) P12S3, (b) P12S6, (c) P24S3, (d) P24S6 and (e) P24S12. The data are extracted in the equilibrium region
(x/θin = 512) for each flow and the vectors are uniformly distributed for clarity.
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FIG. 11. Contours of the wall-normal gradient of phase-averaged mean streamwise velocity (∂〈u〉/∂y)
normalized by U∞/θin as P and S vary: (a) P12S3, (b) P12S6, (c) P24S3, (d) P24S6 and (e) P24S12. The data
are extracted in the equilibrium region (x/θin = 512). In each figure, the spanwise variation for the wall-normal
gradient of the phase-averaged mean streamwise velocity at the wall (∂〈u〉/∂y)w is included (green line). The
label for (∂〈u〉/∂y)w is plotted in the right-hand side of the figures.

flow. In the figures, spanwise heterogeneity of the streamwise velocity is clearly observed, and the
spatial pattern is very similar to that in the previous experimental observation of the ridge-type
roughness [9,10]. In addition, except for the cases with sufficiently large values of P and S, the
occurrence of the upward (downward) motion in the region for the LMP (HMP) is consistent with
the previous findings [6,7,9,12] irrespective of the type of roughness. However, the rotational direction
of the secondary flows over the ridge-type roughness is opposite to that in earlier observations over
strip-type roughness [6,10,11]. In a flow with an isolated riblet, Goldstein and Tuan [16] showed that
the secondary flow in the spanwise heterogeneous surface condition determines the distortion of the
mean flow heterogeneity of the streamwise velocity, whereas Vanderwel & Ganapathisubramani [9]
reported that the retardation of the flow by the surface roughness creates mean flow heterogeneity in
the spanwise direction. In contrast to the contours shown in Figs. 10(a)–10(d), the velocity contour
in Fig. 10(e) for P24S12 indicates that the streamwise velocity pattern above the roughness crest is
slightly distorted downward with a downwelling motion, although upward distortion is continuously
expected above the roughness crest. Because distortion of the velocity is mainly induced by the
presence of the tertiary flow, the secondary flow, which leads to the generation of the tertiary flow
over the crest, plays an important role in the generation of the mean flow heterogeneity of the
streamwise velocity in the TBLs with the ridge-type roughness. It is noted that although the contour
of the streamwise velocity above the crest is distorted downward for P24S12, LMPs are still observed
over the crest with the downward motion.

To determine the rotational sense of the secondary flow and spanwise locations for LMPs and
HMPs, previous studies emphasized the importance of spanwise heterogeneity of the wall shear
stress imposed by the roughness [6,9,10,12]. In Fig. 11, contours for the wall-normal gradient of
phase-averaged mean streamwise velocity (∂〈u〉/∂y) normalized by U∞/θin are plotted as P and S
vary. In each figure, the spanwise variation for the wall-normal gradient of the phase-averaged mean
streamwise velocity at the wall (∂〈u〉/∂y)w is included (green line). Large values of the wall shear
stress are observed both over the roughness crest and in the valley, and the maximum values of the
wall shear stress always occur at the crest ends, even when the values of P and S are sufficiently
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large. On the contrary, small values of the wall shear stress are observed at the bottom wall (near the
roughness). The inconsistent behavior of the wall-normal motions at the large drag region with the
strip-type roughness (Figs. 7–10), suggests that the generation of the secondary flow over ridge-type
roughness is not simply due to the downward motions at this region created by large values of the
wall shear stress. The presence of greater wall shear stress on the crest than that in the valley is
consistent with earlier results for flows with riblets [16].

D. Formation mechanism of secondary flows over ridge-type roughness

The previous sections show that the rotational sense of a secondary flow for the ridge-type
roughness is opposite to the rotational sense for the strip-type roughness [7,10–13]. To examine
the physical mechanism driving the secondary flow for the ridge-type roughness, we analyze the
Reynolds-averaged tke transport equation, similar to the procedure used by Hinze [3] and Anderson
et al. [11]. The Reynolds-averaged tke transport equation is as follows:

C1,k + C2,k + C3,k = Pk − εk + Tk + Dk + Πk, (3)

where C1,k = 〈u〉 ∂k
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. For a turbulent flow over spanwise heterogeneous
surface roughness, local imbalance of the terms on the right-hand side (RHS) of Eq. (3) is expected
on the cross-stream plane; thus, the advection of tke is naturally derived to achieve a local balance
between the left- and right-hand sides of Eq. (3) such that the turbulence-poor fluid is transported to
a region with high production, whereas the turbulence-rich fluid is transported outward the region.
The derived advective velocity is presented as the mean streamwise circulation of a secondary flow
in a turbulent flow [3].

Before continuing, the spatial distributions of the Reynolds stresses for the ridge-type roughness
(for P12S3) are investigated, as shown in Fig. 12. In Fig. 12(a), the contour of the streamwise Reynolds
normal stress, 〈u′u′〉, which contributes to the spatial distribution of tke with a large magnitude, shows
that 〈u′u′〉 has large positive values over the roughness crest due to the high drag of the elevated
surface (Fig. 11), with two maximum peaks of 〈u′u′〉 observed at the either edge of the roughness. The
spanwise gradient of 〈u′u′〉 in the direction from the valley to the roughness element near the spanwise
step change is positive. However, because slightly large values of 〈u′u′〉 (white color) are also found
in the valley due to the no-slip surface on the bottom wall, the spanwise gradient of 〈u′u′〉 in the
direction from the valley to the roughness element is negative in this region. The spatial distributions
for the wall-normal, 〈v′v′〉, and spanwise Reynolds stresses, 〈w′w′〉, in Figs. 12(b) and 12(c) indicate
that large values of 〈v′v′〉 and 〈w′w′〉 occur above the roughness crest and that the magnitude of
〈w′w′〉 is greater than that of 〈v′v′〉. The occurrence of the maximum 〈w′w′〉 over the crest, where
the mean spanwise velocity is zero [Fig. 8(a)], indicates that the instantaneous spanwise velocity
from the valley is vigorously deflected across the crest, leading to enhanced spanwise fluctuations
above the crest. In Figs. 12(d) and 12(e), the contour of 〈u′v′〉 reaches its maximum value over the
crest, although 〈u′w′〉 with an opposite sign is enhanced at either side of the roughness elements with
a symmetric pattern with respect to the center of the roughness element. Contrary to 〈u′v′〉 and 〈u′w′〉,
which are intensified by the large value of u′, 〈v′w′〉 in Fig. 12(f) is less organized in space with a low
strength, suggesting less impact on the anisotropy of the Reynolds stresses. The distributions of the
Reynolds stresses over the ridge-type roughness are in good agreement with previous experimental
results by Vanderwel & Ganapathisubramani [9].

To investigate the local imbalance of the RHS in the Reynolds-averaged tke transport equation,
all budget terms in the RHS of Eq. (3) and sums of the budget terms are analyzed for P12S3 (left) and
P24S12 (right) in Figs. 13 and 14. For P12S3, a high rate of production for tke is observed over the
roughness crest and in the valley, and the maximum value of Pk is located slightly away from the either
edge of the roughness element [Fig. 13(a)]. The distribution of Pk similar to the contours of ∂〈u〉/∂y
and 〈u′u′〉 in Fig. 11(a) and Fig. 12(a) indicates that significant contribution of Pk comes from both
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FIG. 12. Contours of the Reynolds stresses for P12S3 normalized by U 2
∞: (a) 〈u′u′〉, (b) 〈v′v′〉, (c) 〈w′w′〉,

(d) 〈u′v′〉, (e) 〈u′w′〉 and (f) 〈v′w′〉. The data are extracted in the equilibrium region (x/θin = 512).

terms. Although the distribution of −εk is similar to that of Pk , the magnitude of Pk is stronger slightly
above the wall, resulting in a local imbalance between production and dissipation [Fig. 14(a)], similar
to the previous observation over strip-type roughness [11]. However, contrary to the previous finding
of Anderson et al. [11], it is obvious that the turbulent transport term, Tk , and the viscous diffusion
term, Dk , significantly contribute to the local imbalance of the RHS in Eq. (3) over ridge-type
roughness. In Figs. 13(e) and 13(g), the values of Tk and Dk are positive on the bottom of the no-slip
surface and negative slightly away the wall. Compared to Dk , confined close to the wall, a relatively
large value ofTk is observed up toy/δ < 0.6 for all spanwise locations. In Fig. 13(i), the strength of the
velocity pressure-gradient term Πk is relatively small, showing little influence on the energy budget
tke over the ridge-type roughness, similar to that over strip-type roughness. Compared to the contour
of Pk − εk [Fig. 14(a)], the distinctive contour pattern of Pk − εk + Tk + Dk + Πk in Fig. 14(c)
supports the contention that the sum of Tk + Dk + Πk in Fig. 14(e) is important in the determination
of the advection of tke on the yz plane. In Figs. 14(c) and 14(e), the negative transport rates of
Tk + Dk + Πk exceed the positive values of Pk − εk over the crest and the positive transport rates in
the valley exceed the negative values of Pk − εk . In Figs. 13 and 14, the overall spatial distributions
of the tke budget terms and sums of the budget terms for P24S12 are similar to those for P12S3,
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FIG. 13. Contours of budget terms for the turbulent kinetic energy: (a, b) production term, Pk , (c, d)
dissipation term,−εk , (e, f) turbulent transport term, Tk , (g, h) viscous diffusion term, Dk , and (i, j) velocity
pressure-gradient term, Πk . (a, c, e, g, i) P12S3 and (b, d, f, g, h) P24S12. The data are extracted in the equilibrium
region (x/θin = 512) for each flow.
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FIG. 14. Contours of (a, b) the sum of the turbulent kinetic energy production and dissipation terms, Pk − εk ,
(c, d) the sum of all turbulent kinetic energy budget terms, Pk − εk + Tk + Dk + Πk and (e, f) the sum of the
turbulent transport, viscous diffusion and velocity pressure-gradient terms, Tk + Dk + Πk . (a, c, e) P12S3 and
(b, d, f) P24S12. The data are extracted in the equilibrium region (x/θin = 512).

except that a positive Tk + Dk + Πk is observed above the roughness crest for P24S12 due to the
positive Tk .

The comparison of the contours of Tk , Dk and Πk in Figs. 13 and 14 indicates that the dominant
contribution to the sum of Tk + Dk + Πk comes from large value of Tk throughout the region near the
roughness. To examine how the term of Tk is created over the ridge-type roughness in detail, contours
of the turbulent transport terms in the wall-normal and spanwise directions for P12S3 are plotted in
Fig. 15 with the contours of the dominant triple-product terms of the velocity fluctuations. Here, we
assume that the streamwise gradient of the averaged quantities is relatively small; thus, the turbulent
transport term stemming from the streamwise velocity fluctuation u′ (i.e., −1/2∂〈ui

′ui
′u′〉/∂x) is

neglected in the analysis. In Figs. 15(a) and 15(c), it is clear that the wall-normal transport rate of the
streamwise turbulent kinetic energy plays a dominant role in the creation of the wall-normal transport
of tke within the entire boundary layer due to the large magnitude of u′. Similarly, the spanwise
transport of tke in Fig. 15(b) is mostly induced by the spanwise transport of the streamwise kinetic
energy in Fig. 15(d). In Fig. 15(e), transport of the streamwise turbulent kinetic energy [Fig. 12(a)]
in the upward direction caused by the positive v′ (red) is observed both over the roughness crest and
in the valley, and only small portion of the negative 〈u′u′v′〉 is found near the no-slip surface (blue).

The positive and negative transports of the streamwise turbulent kinetic energy are closely
associated with the generation of the large energy production Pk at the boundary between the positive
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FIG. 15. Contours of the turbulent transport term: (a) −1/2(∂〈u′u′v′〉/∂y + ∂〈v′v′v′〉/∂y + ∂〈w′w′v′〉/∂y),
(b) −1/2(∂〈u′u′w′〉/∂z + ∂〈v′v′w′〉/∂z + ∂〈w′w′w′〉/∂z), (c) −1/2∂〈u′u′v′〉/∂y, (d) −1/2∂〈u′u′w′〉/∂z, (e)
〈u′u′v′〉 and (f) 〈u′u′w′〉, normalized by U 3

∞/θin for P12S3. The data are extracted in the equilibrium region
(x/θin = 512).

and negative contours of 〈u′u′v′〉 [see Fig. 13(a)]. When the values of 〈u′u′v′〉 change from negative
to positive above the wall, the term of −1/2∂〈u′u′v′〉/∂y is strongly negative, whereas the term of
−1/2∂〈u′u′v′〉/∂y is positive near the roughness crest. In Fig. 15(f), considerable transport of the
turbulent streamwise kinetic energy by w′ in the direction from the crest to the valley is observed on
the transverse plane while relatively minor transport of the streamwise kinetic energy pointing to the
roughness center is found right above the crest. Similar to the observation for 〈u′u′v′〉, the spatial
distribution of 〈u′u′w′〉 is linked to Pk [Fig. 13(a)], because the large production rate Pk above
the crest leads to positive and negative energy transport in the spanwise direction. In Fig. 15(d),
a large portion of negative −1/2∂〈u′u′w′〉/∂z above the crest is observed when the values of
〈u′u′w′〉 change from negative to positive across the region above the crest, whereas a positive
−1/2∂〈u′u′w′〉/∂z is found in the valley and above the crest when the values of 〈u′u′w′〉 change
from positive to negative. Considering the contribution of Tk to the RHS, which is important to derive
the advection of tke, the negative value of the RHS over the crest and on the bottom of the valley
results from −1/2∂〈u′u′v′〉/∂y and −εk while the positive value of the RHS in the valley comes
from −1/2∂〈u′u′w′〉/∂z, −1/2∂〈u′u′v′〉/∂y and Pk .

Based on the observation of the terms 〈u′v′〉 and 〈u′w′〉 in Figs. 12(d) and 12(e), the positive value
of 〈u′u′v′〉 over the crest in Fig. 15 indicates that u′ is correlated with a positive v′. The presence of
the negative value of 〈u′v′〉 over the crest in Fig. 12 suggests that the combination of the negative u′

014608-20



SECONDARY FLOWS IN TURBULENT BOUNDARY LAYERS …

FIG. 16. Contours of (a, b) the turbulent kinetic energy and (c, d) the sum of the convective terms (C2,k +
C3,k). (a, c) P12S3 and (b, d) P24S12. The data are extracted in the equilibrium region (x/θin = 512).

and the positive v′ are dominant in this region. Likewise, the opposite signs of 〈u′u′w′〉 at the either
side of the roughness element in Fig. 15 show that u′ is temporally correlated with w′, pointing to
the valley from the crest. The opposite sign of 〈u′w′〉 relative to that of 〈u′u′w′〉 near the edge of
the roughness in Fig. 12 suggests that the combination of the negative u′ and w′ pointing towards
the valley is dominant. Thus, when the large streamwise turbulent kinetic energy strongly related
to the negative u′ is transported near roughness, the upward v′ contributes to the generation of the
active transport of tke around the roughness element with w′ toward the valley. On the other hand,
the secondary flow convects the negative u′structure (low-speed fluid) along the roughness up over
the crest and brings the positive u′structure (high-speed fluid) down toward the wall on either side of
the roughness. The region of upflow is clearly associated with increased levels of 〈u′u′〉 and 〈−u′v′〉.

Figure 16 shows the contours of tke and the sum of the convective terms in Eq. (3) for P12S3 and
P24S12, respectively. Here, the streamwise gradient of tke is neglected at a local streamwise position
(i.e., C1,k ≈ 0) due to the small contribution. The contour of tke in Fig. 16(a) is half of the sum of
the Reynolds normal stresses in Fig. 12 (i.e., 1/2〈ui

′ui
′〉), and the dominant tke is observed above

the roughness crest. In Figs. 16(c) and 16(d), the sum of the convective terms, C2,k + C3,k for P12S3
and P24S12 is balanced with the RHS in Figs. 14(c) and 14(d). Because the spanwise gradient of tke
is negative in region “1” in Fig. 16(a) mostly due to the spanwise variation of 〈u′u′〉 in Fig. 12(a),
the presence of the positive RHS in region “1” in Fig. 16(c) indicates that the spanwise advective
velocity should be negative in this region; that is, the flow should point to the roughness element from
the valley. It should also be noted that although the term of C2,k may contribute to the positive value
in region “1,” the dominant contribution comes from the term C3,k , as shown in Fig. 8(a). Similarly,
the spanwise gradient of tke in region “2” is positive; thus, the spanwise advective velocity should
be negative to satisfy the requirements for the convective term to be negative in this region. For
the wall-normal advective velocity, a negative RHS and a positive RHS exist at regions “3” and
“4,” respectively, with a negative wall-normal gradient of tke in both regions. Thus, the positive
wall-normal advective velocity is derived at region “3,” while the negative wall-normal advective
velocity is induced at region “4.” In Fig. 16(d), a similar driving mechanism for the wall-normal
and spanwise velocities is observed at the equivalent regions of “1–4” for P24S12. However, the
positive convective term is induced with an increase of S at region “5” and the negative wall-normal
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advective velocity is derived with the negative wall-normal gradient of tke in this region. With the
previous observation in Figs. 8(a) and 8(e), the present results demonstrate that the generation of a
secondary flow and a tertiary flow over the ridge-type roughness can be explained as the realization
of the wall-normal and spanwise advective velocities derived by the local imbalance of the RHS in
Eq. (3); thus, the generated secondary and tertiary flows over the ridge-type roughness belongs to
Prandtl’s secondary flow of the second kind.

Finally, it is worth further discussing the origin of the opposite sense of rotation for the secondary
flows between the ridge- and strip-type roughness elements. Although the contours of Pk − εk for
the ridge- and strip-type roughness show distinctive patterns near the bottom wall (see Fig. 7 in
Ref. [11]), similar spatial patterns for Pk − εk are observed for the both types far from the wall,
i.e., a positive value of Pk − εk above the high-drag region and a negative value of Pk − εk above
the low-drag region. However, because the positive value of Pk − εk with the negative wall-normal
gradient of tke induces a downward advective velocity above the high-drag region, the wall-normal
advective velocity resulting from Pk − εk in the present study does not correspond to that of the
generated secondary flow over the ridge-type roughness. Thus, in addition to the local imbalance of
Pk − εk , the contribution of the turbulent transport term, Tk , to the induction of the secondary flow is
required to explain the rotational sense of the secondary flow for the ridge-type roughness, contrary
to the turbulent transport term being less important for the strip-type roughness [11]. Because the
presence of the ridge-type roughness leads to considerable energy production above the roughness
crest, in particular near the roughness edge [Fig. 13(a)] due to the large velocity gradient (Fig. 7),
the active transport of the streamwise turbulent energy in the wall-normal and spanwise directions
results in a large transport term (Fig. 15). Although a large amount of energy production of tke is
also found in TBLs in a high-drag region over the strip-type roughness [11], the energy production is
less intense over the strip-type roughness and the energy transport over the strip-type roughness by
Tk is highly limited in the near-wall region due to the small elevation for a high-drag region, similar
to that in a smooth wall turbulent flow [26].

Although the generation of the active turbulent transport in TBLs over ridge-type roughness is
explained using the energy imbalance near the roughness, an additional physical mechanism that
causes the secondary flow with the corresponding rotational sense can come into play. In a turbulent
flow with an isolated riblet, Goldstein & Tuan [16] showed that secondary flows arise due to the
upward deflection of spanwise fluctuations, as numerical simulations of turbulent flows over wires
and with only a w-damping fin produced strong secondary flows. The presence of the wires to impose
the effects of the triangular riblet crest (or edge) and the w-damping fin to prevent the flow through the
fin significantly damped the spanwise flows and deflected them vertically. In Figs. 8 and 9, although
the upward motions over the roughness crest and downward motions in the valley are affected by
the values of P and S due to the existence of the tertiary and quaternary flows for the ridge-type
roughness, dominant spanwise motions toward the roughness element in all cases are observed in the
valley, with cores of secondary flows near abrupt spanwise step changes. These results suggest that the
deflection of the spanwise motions due to damping by the spanwise step change is crucial to generate
the active turbulent transport with the corresponding secondary flows over the ridge-type roughness.
However, for strip-type roughness, the damping of the cross-flow fluctuations is not significant near
the boundary between high- and low-drag regions due to the relatively small difference in elevation
between the elevated and recessed topographies. The strong deflection of the spanwise motions by
the spanwise step change is consistent with the observation of the small vortices at the crest edge
(Fig. 8).

In an experimental study of a TBL with a three-dimensional multiscale roughness topology,
Barros and Christensen [7] also showed that the spanwise gradient of the roughness height excites a
secondary flow in the form of streamwise-elongated roll cells, which then induce spanwise-alternating
LMP and HMP patterns. However, the mean roughness height in their study was H/δ = 0.045, and
this value is similar to the value (H/hm = 0.034) of sediment particles (strip-type roughness) in
an experiment with an open channel flow, where hm is the mean flow depth [10]. These smaller
roughness heights for the strip-type roughness than that (H/δ ≈ 0.08) of the present longitudinal
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surface roughness in the equilibrium state for P12S3 weaken the effects of the large spanwise step
change between the high- and low-drag regions observed in the present study and the roughness
topology for the strip-type roughness does not play a role in generating the effects of the roughness
edge (e.g., the square edge or triangular edge) for the induction of the upwash flow over the crest
due to the less intense turbulent transport near the roughness. It should be noted that although the
strip-type roughness employed by Wang & Cheng [10] and Anderson et al. [11] was characterized
by periodic spanwise patterns of high and low roughness, that in Barros & Christensen [7] was
replicated from a damaged turbine blade containing a broad range of topographical scales in a highly
irregular manner on the entire wall.

IV. SUMMARY AND CONCLUSION

In the present study, we conducted DNSs of TBL flows over longitudinal roughness elements to
examine the spatial characteristics of secondary flows and the associated mean flow heterogeneity
as P and S vary. Based on the streamwise variation of the TBL parameters and the profiles of the
velocity defect forms and Reynolds stresses, the establishment of self-preservation for rough-wall
TBLs is observed at approximately x/θin > 220 for all cases. As rough-wall TBLs spatially develop
along the streamwise direction, a secondary flow is generated as a pair of counter-rotating vortices
at either side of the roughness from the step change near the inlet, and the size and strength of
the secondary flow grow with increased spanwise motions toward the roughness element along the
downstream direction, although the secondary flow reaches the equilibrium state at the streamwise
location similar to the observation of self-preservation of rough-wall TBLs.

As the values of P and S vary in the TBLs over ridge-type roughness, the spatial characteristics
of the secondary flows are compared in states of equilibrium. The sizes of the secondary flows
are mostly determined by the value of P−S (i.e., valley width), because the amount of spanwise
motion for secondary flows is less restricted with an increase of the valley width. On the other hand,
the strength of the secondary flows is enhanced when the value of P increases and the value of S
decreases, indicating that the strengths of the secondary flows are not proportional to the sizes of
these flows. As the value of S increases, a tertiary flow emerges over the roughness crest as a result of
the accumulation of the secondary flow, and the size and strength of the tertiary flow is enhanced with
an increase of S. Because the tertiary flow arising over the crest is stronger than that in the valley due
to the presence of strong upward motions at the ends of the crest, a quaternary flow is also induced
over the crest for a sufficiently large value of S. Although the sizes and strengths of the secondary
flows and the additional tertiary and quaternary flows are affected by the roughness configuration,
the rotational direction of the secondary flows and the spanwise locations for the LMPs and HMPs
are consistent regardless of the values of P and S; the LMP occurs over the crest and the HMP
arises in the valley. The distributions of the mean streamwise velocity and wall shear stress show that
the secondary flow plays an important role in the generation of the mean flow heterogeneity of the
streamwise velocity in TBLs over the ridge-type roughness and that the generation of the secondary
flow over the ridge-type roughness is not simply due to the downward motions created by the large
wall shear stress.

To examine the origin of the opposite rotational sense of secondary flows between the ridge-
and strip-type roughness elements, we analyze the Reynolds-averaged tke transport equation. It was
shown that the local imbalance of the RHS in the equation resulting from the spanwise heterogeneity
of the surface condition determines the advective velocities of tke on the cross-stream plane. When
the wall-normal gradient of tke is negative, the negative RHS in the region with a large amount of drag
should determine the upward advective velocity and the positive RHS in the low-drag region should
derive the downward advective velocity. Similarly, when the spanwise gradient of tke is positive and
negative, the spanwise advective velocity should be negative to be balanced with the negative and
positive RHS terms. Therefore, the secondary flow generated over ridge-type roughness is due to
Prandtl’s secondary flow of the second kind, which is initiated and sustained by the anisotropy of
turbulence. The distinctive rotational sense of secondary flows with respect to the roughness type
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is primarily attributed to the significant contribution of the turbulent transport term in the energy
budget for the ridge-type roughness, whereas this is not the case for the strip-type roughness. The
large contribution of the turbulent transport for the ridge-type roughness is closely associated with
the active energy production of tke near the roughness edge. The active transport of tke for the
ridge-type roughness is a direct consequence of the upward deflection of the spanwise motions in
the valley mostly caused by the roughness edge, creating strong positive v′ motions above the crest
and w′ motions toward the valley.
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