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Ice crystals are present in a variety of clouds, at sufficiently low temperature. We
consider here mixed-phase clouds which, at temperature �−20 ◦C, contain ice crystals,
shaped approximately as thin oblate ellipsoids. We investigate the motion of these particles
transported by an isotropic turbulent flow and, in particular, the collision between these
crystals, a key process in the formation of graupels. Using fully resolved direct numerical
simulations, and neglecting the effects of fluid inertia on the particle motion, we determine
the influence of the turbulence intensity and of gravitational settling, in a realistic range
of parameters. At small turbulent energy dissipation rate, collisions are induced mainly by
differential gravitational settling between particles with different orientations. The effect
has a clear signature on the relative orientation of colliding ellipsoids. As the turbulent
energy dissipation rate increases, however, the influence of the turbulent velocity fluctuations
becomes the dominant effect determining the collision rate. Using simple estimates, we
propose an elementary understanding of the relative importance of gravitational settling
and turbulent fluctuations.
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I. INTRODUCTION

The condensation of water vapour in many types of clouds starts with very small liquid droplets
and ice crystals [1]. Whereas much work has been devoted lately to the formation of rain drops
in warm clouds, where the ice phase is totally absent [2–4], comparably much less work has been
devoted to the aggregation of small crystals to form larger clusters. The aim of the present work is
to investigate the effect of turbulence on the formation of graupels by aggregation of small crystals.

We are interested here in the class of “mixed-phased” clouds, where water vapor droplets coexist
with ice crystals. This is typically the case in cumulus clouds, in a range of temperature T between
−30 ◦C � T � 0 ◦C. The shape of the crystals depends on the temperature [1,5]. Over a range of
temperatures (−20 ◦C � T � −10 ◦C), ice crystals are shaped like snowflakes (they are columnar
shaped at lower temperature, or in the range −10 ◦C � T � −5 ◦C [1,5,6]). We are focusing in this
work on the class of crystals with an oblate shape.

It is known that gravitational settling plays a significant role in cloud microphysics processes
involving ice crystals [1,7,8]. The anisotropic nature of the crystals results in an anisotropy of the
drag coefficients [9] which implies a dependence of the settling velocity as a function of the orientation
of the crystal in the fluid. Understanding precisely the distribution of orientation of crystals settling
in a turbulent flow with respect to gravity, g, is still a subject of active research [1,9–12]. This
orientation distribution controls important properties of the clouds, including those related to light
or radiation reflection [1,13,14]. A previous study, at relatively low turbulence intensity [15] has
stressed the importance of the dispersion of the settling velocity in determining the collision rate
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between crystals [15]; turbulence seemed to play a rather minor role. This is in sharp contrast with the
problem of collision of droplets in turbulent warm clouds, where, in the absence of any differential
gravitational settling, turbulence has been argued to play the major role in determining the collision
kernel [16–20].

In this work, we determine the collision rate of crystals in a turbulent flow, at different turbulence
intensity, measured by the energy dissipation rate, ε, chosen in the range 1 cm2/s3 � ε � 256 cm2/s3.
We perform direct numerical simulations of homogeneous, isotropic turbulent flows, using a
simplified model of ice crystal dynamics [10,21,22]. To disentangle the relative roles of turbulence
and gravity, we determine the collision rates both with and without gravity. Whereas our results, in
full agreement with Ref. [15], point to a dominant role of differential settling at low turbulence
intensity, they indicate that turbulence plays a much more prominent role at higher intensity.
This is due, in particular, to the strong effect of the inertial effects in the motion of particles,
qualitatively consistent with what has been found in the problem of collision between droplets in warm
clouds [18–20].

We begin by reviewing the simplifying assumptions used to study the problem, along with the
underlying equations and the numerical methods used; see Sec. II. We then study in Sec. III the
statistics of orientation and of settling of the ellipsoids. The collisions statistics of these objects are
presented and discussed in Sec. IV. Concluding remarks are finally given in Sec. V.

II. SETTING UP THE PROBLEM

Turbulent flows in clouds occur at a very high Reynolds number and are influenced by many factors,
including buoyancy. In addition, the shapes of ice crystals are rather complicated. A fully realistic
numerical study of the problem appears impossible, and, for this reason, a number of simplifying
assumptions have been introduced. In the following, we summarize these approximations and present
the resulting equations of motion, as well as the numerical methods used.

A. Turbulent flow

1. Simplifying assumptions

Homogeneous and isotropic turbulence is used as a paradigm for the motion of the carrier fluid.
A turbulent flow is simulated by direct numerical simulation (DNS) in a periodic box of size
8π cm ≈ 25 cm, which represents a subdomain of the cloud. In this box, turbulence is sustained
at large scales by an external forcing with an energy injection rate ε (per unit mass) equal to
ε = 0.976 cm2/s3, 15.62 cm2/s3, and 246.4 cm2/s3. The choice of a realistic value of the fluid
viscosity, ν ≈ 0.1132 cm2/s, ensures that in our simulations, the smallest length and time scales
of the flows match those in the cloud. Namely, the size of the smallest eddies in the flow, the
Kolmogorov length scale is η ≡ (ν3/ε)1/4, and the fastest time scale, τK , is τK ≡ (ν/ε)1/2.

The small size of our computational system strongly limits the Reynolds numbers in the
simulations. The intensity of turbulence is often characterized by the Reynolds number based on
the Taylor microscale, Reλ. It is defined as Reλ = urmsλ/ν, where λ = √

15u2
rmsν/ε and u2

rms = 〈u2
x〉

(ux is the x component of the fluid velocity, which by isotropy is equivalent to any other component
in the flow). In our setup, with a fixed system size and viscosity, the relation between Reλ and
ε is one-to-one. In our simulations, Reλ takes the values Reλ ≈ 56 (ε = 0.976 cm2/s3), Reλ ≈ 95
(ε = 15.62 cm2/s3), and Reλ ≈ 151 (ε = 246.4 cm2/s3), which are much smaller than in clouds.
In a system with a given size and a fixed viscosity, the Reynolds number Reλ grows essentially as
Reλ ∝ ε1/6. As has been documented many times, the fluctuations of the velocity gradient become
more extreme when the Reynolds number increases [23]. For this reason, our turbulent flow could
conceivably underestimate the role of turbulence.

We would like to stress that our choice of a simplified turbulent flow potentially leaves aside
important aspects of the flow in a cloud. It nonetheless allows us to obtain accurate numerical data
and to improve our understanding of the various physical effects affecting the collision rate.
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2. Numerical methods

In practice, the Navier-Stokes equations are solved:

∂tu + (u · ∇)u = −∇p

ρf

+ ν∇2u + f, (1)

∇ · u = 0, (2)

where u and p, respectively, denote the velocity and pressure fields, ν is the kinematic viscosity of
the fluid, and ρf is its mass density. These equations are solved by using a pseudospectral method in
a triply periodic domain. The flow is maintained statistically stationary by stirring the velocity field
with a force (per unit mass), f , acting on low wave numbers and such that the injected power (f · u),
averaged over the entire volume, remains constant and equal to ε. The solution is fully dealiased by
using the 2/3 rule [24]. Specifically, if N is the number of grid points in each direction, the nonlinear
term is computed by using only Fourier modes 0 � n � N/3. The number of points taken here are
N = 384, 768, and 1536. The energy dissipation rate ε has been adjusted so that kmaxη � π , η being
the characteristic size of the smallest eddies, known as the Kolmogorov scale η = (ν3/ε)1/4, and
kmax = N/3 being the highest wave number represented. With our resolution, the velocity gradients
can be faithfully interpolated at the position of the ellipsoids. The numerical integration rests on a
second-order accurate in time Runge-Kutta scheme.

B. Ice crystals dynamics

1. Simplifying assumptions

As a simplified assumption, the snowflake-shaped ice crystals are approximated here as very thin
oblate ellipsoids of revolution (a spheroid), with a very small aspect ratio β between the short and the
long axes, β = c/a ∼ 0.01. We chose a realistic value for the long axis of the particles, a = 150 μm.
Most of the calculations were carried out with the value of β = 0.02. We investigated the role of
the shape of the ellipsoid by varying β at the intermediate value of ε ≈ 16 cm2/s3 (β = 0.01 and
β = 0.05). The equations describing the motion of the very small ellipsoids are obtained by neglecting
all effects of inertia of the fluid, that is, by using the assumption that the local Reynolds number is
very small, so the Stokes equations can be used [21,22].

Our approach relies on a one-way coupling approach, which ignores the feedback induced by the
motion of the particles on the fluid motion. This approximation is well justified when the particle
volume fraction is very low [25].

2. Equations of motion

The equations of motion of the ellipsoids are derived by using the expressions of the force and
of the torque acting on them by neglecting fluid inertia, that is, by assuming the Reynolds number
based on the difference between the velocity of the fluid, u, and that of the particle, v, to be very
small. Specifically, by solving the hydrodynamics in the low Reynolds number limit, the equation
for the translational motion of the center of mass of the ellipsoids reduces to [22]

dv
dt

= g + νρf

mc

R−1K̂R · (u − v), (3)

where mc = 4ρpπa3β/3 is the mass of the crystal (ρp is the particle density). In Eq. (3), R is the
rotation matrix between the laboratory coordinate system, (x,y,z), and a particle fixed reference
system, (x̂,ŷ,ẑ), chosen in such a way that x̂ and ŷ correspond to the elongated directions of the
ellipsoid, and ẑ to its short direction. In this frame, the resistance tensor K̂ has a simple diagonal
form:

K̂ = 16πa3βdiag(1/(χ0 + a2α0), 1/(χ0 + a2α0),1/(χ0 + a2β2γ0)). (4)
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The values of the coefficients are α0 = [β2/(β2 − 1) + arccos(β)β/(1 − β2)3/2], γ0 = [−2/(β2 −
1) − 2 arccos(β)β/(1 − β2)3/2], and χ0 = [2a2β arccos(β)/

√
1 − β2].

As the ellipsoids are subject to a torque by the action of the fluid [21], they rotate with an angular
velocity � ≡ (�x,�y,�z) in the frame of reference attached to the ellipsoid (as mentioned above).
The equation of motion for � is obtained by equating the rate of change of angular momentum with
torque:

d

dt

⎛
⎜⎝

�x

�y

�z

⎞
⎟⎠ =

⎛
⎜⎝

�y�z
β2−1
1+β2

�z�x
1−β2

1+β2

0

⎞
⎟⎠ + 20

ρf

ρp

ν

a2

⎛
⎜⎝

1
α0+β2γ0

0 0

0 1
α0+β2γ0

0

0 0 1
2α0

⎞
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⎛
⎜⎝

1−β2

1+β2 Ŝyz + (�̂zy − �x)
β2−1
1+β2 Ŝxz + (�̂xz − �y)

(�̂yx − �z)

⎞
⎟⎠,

(5)

where Ŝ and �̂ are the rate of strain and rate of rotation tensors in the reference frame of the ellipsoid,
respectively defined as the symmetric and antisymmetric parts of the velocity gradient tensor in the
same frame, Â = RAR−1 (Aij = ∂jui): Ŝ = (Â + Ât )/2, �̂ = (Â − Ât )/2. The rate of rotation of
the reference frame, �, allows us to determine the rotation matrix R from the ellipsoid coordinate
system to the laboratory frame.

The equations of motion (3) and (5) have been implemented in the code, and the numerical results
have been carefully compared with those obtained, in the case of simple flows, using Mathematica.
In particular, we used a still flow (u = 0) or elementary flows with a few Fourier series modes; on
all these flows, we made sure that the solutions were identical to machine accuracy.

3. Equations of motion in the limiting case of very thin ellipsoids

As we are interested here mainly in very small values of β, the resistance tensor K̂ in Eq. (4)
reduces to K̂ ≈ 32 a diag(1/3,1/3,1/2). As a consequence, the equation of motion (3) can be simply
expressed in terms of the response time τSp of a sphere of radius a in the flow:

dv
dt

= g + 16

3πβτSp

R−1

⎛
⎝1/3 0 0

0 1/3 0
0 0 1/2

⎞
⎠R · (u − v), (6)

where

τSp = 2a2

9ν

ρp

ρf

. (7)

From Eq. (6), the characteristic time of the translational dynamics is of the order of β τSp.
Similarly, the expressions α0 ≈ πβ/2 and γ0 ≈ 2, valid when β → 0 reduce the matrix diag(1/(α0 +
β2γ0),1/(α0 + β2γ0),1/(2α0)) in Eq. (5) to 2

πβ
diag(1,1,1/2). This implies that the characteristic time

scale of the evolution of � is ∼βτSp.

4. Equations of motion: Dimensionless numbers

In the case of spherical particles, it is customary to compare the effects of turbulence, gravitational
settling, and particle inertia by introducing dimensionless numbers. Namely, the particle relaxation
time can be inferred from (6) to be τp ≈ 2βτSp. Comparing this time scale to the Kolmogorov time
scale leads naturally to the definition of the Stokes number:

St ≡ 2β
τSp

τK

. (8)

To characterize the relative importance of gravitational settling and turbulence, we introduce the
dimensionless gravity parameter, Sv,s , defined as the ratio between the settling velocity, of order gτp,

014604-4



SETTLING AND COLLISION BETWEEN ICE CRYSTALS …

and the velocity differences at the Kolmogorov scale, (εν)1/4 [26]. Using (6), we introduce

Sv,s ≡ 2β
gτSp

(νε)1/4
. (9)

Recent work [12] demonstrates that the distribution of orientation depends on the Stokes number
and on Sv,L = Sv,s/Re

1/2
λ . In turbulent flows, the ratio between the root-mean-square (rms) velocity,

〈u2
x〉1/2 and the velocity scale at the Kolmogorov scale, (νε)1/4, is ∝ Re1/2

λ , which indicates that
the settling velocity gτSp should be compared with 〈u2

x〉1/2. This leads us to introduce the gravity
parameter Sv,L, based on the large-scale velocity of the flow:

Sv,L ≡ 2β
gτSp

〈u2〉1/2
. (10)

In our study, the ratio between Sv,L and Sv,s is ∝ ε−1/12 or, equivalently, ∝ Re−1/2
λ .

C. Collisions

1. Simplifying assumptions

We focus in this study on the geometrical collision rate [4,27] by neglecting any hydrodynamic
interactions occurring when particles are very close to each other [1,28], as well as molecular effects
[29] which play a crucial role during the coagulation process. We also use the “ghost-collision”
approximation [17,30,31], which consists in simulating a large number of trajectories in the flow,
and in simply determining when two particles touch each other. This approximation has been used
in many studies and has been thoroughly tested in the case of spherical particles [31].

2. Algorithm for collision detection

Collision detection between particles of nonspherical shapes requires a special approach. We
follow here the one proposed by Siewert and collaborators [32] and implemented in particular
in Ref. [15]. The method of detection is based on the work of Choi et al. [33]. Specifically, for
each ellipsoid, one expresses the equation of the surface in the form: X · Bi · X = 1, where X is
a vector in four dimensions: X = (x,y,z,1), and the matrix Bi characterizes the ith ellipsoid. To
detect possible contacts between ellipsoids i and j , one computes the fourth-order polynomial:
Pij (λ) = det(Bi − λBj ). It is known [33] that the polynomial Pij has exactly two positive, real roots.
Whether the two ellipsoids i and j are in contact can be determined from the nature of the two
other roots of Pij , that can be real (negative) or complex. In the former case, the two ellipsoids are
separated, in the latter they overlap. When they are in contact, the polynomial Pij has a real, negative
double root. The algorithm implemented for collision detection consists in representing, for each pair
of ellipsoids, the evolution of the polynomial Pij as a function both of λ and of t , and in detecting
the formation of a negative double root of Pij .

3. Practical implementation of the collision detection algorithm

We followed a set of Nell = 703 (respectively Nell = 1003) ellipsoids in a turbulent flow in the
presence (respectively absence) of gravitational settling. Before processing the ellipsoids for collision
detection, we let them equilibrate in the flow for at least 50τK , where τK ≡ (ν/ε)1/2 is the Kolmogorov
time. In all our runs, this long equilibration time is at least 100 times larger than the particle relaxation
time. We subsequently followed the motion of the ellipsoids for at least 170τK , or equivalently, 14
times TL, the integral (or correlation) time scale of the velocity field.

To check the quality of the statistics, and in particular the lack of any unstationary effects, we
divided the runs into shorter ones, with time intervals of length ≈25τK , and determined the various
averages, particularly the collision rates based on these shorter runs. The collision rates determined
from these differed by less than a few percent from the collision rates reported here. Overall, the
statistics presented in Sec. IV were determined with at least 72 000 recorded collisions.
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TABLE I. Values of the physical parameters used in the simulation. The fluid consists of moist air, whose
volumic mass and viscosity are ρf and ν. The ice particles have a volumic mass ρp and a major axis a. The
gravity magnitude is g.

Fluid Particles Gravity

ρf (g/cm3) ν (cm2/s) ρp (g/cm3) a (cm) g (cm/s2)

1.413 × 10−3 0.1132 0.9194 0.015 981

D. Parameters

1. Physical parameters

To approach realistic conditions, we have fixed various physical constants in a range relevant to
the dynamics of ice crystals in clouds, presented in Table I.

2. List of runs

Our results are based on several calculations, obtained at different values of ε, the rate of energy
injected in the flow, and the aspect ratio β of the particles. The list of the runs is presented in Table II,
from which several observations can be made.

The effect of the settling induces a systematic drift of the particles in the computational box. In this
context, the use of periodic boundary conditions in the vertical direction may become problematic
if the settling becomes very fast, so that heavy particles go through the periodicity box in a time
which is shorter than the turbulence decorrelation time. Specifically, let Usett be the average settling
velocity (Usett = −〈vz〉) and Tsett ≈ L/Usett the characteristic time of settling of the particles through
the entire box. Provided Tsett is large compared to the decorrelation time of the turbulent velocity field
TL, however, the particle is submitted to a velocity field that significantly differs from that at earlier
time. We observe that the value of the settling velocity measured for β = 0.05 and ε ≈ 16 cm2/s3 is
Usett ≈ 23.44 cm/s, so particles settle in a time of ≈1 s through the computational box L ≈ 25.1 cm.
This time is larger than the decorrelation time of the velocity field by a factor ≈2, which guarantees
that the use of periodic boundary conditions in the vertical direction does not lead to spurious effects.

Table II shows that the Stokes number, defined by Eq. (8), varies from ≈0.03 at ε ≈ 1 cm2/s3,
up to values ≈0.5 at ε ≈ 256 cm2/s3. We note that in the related problem of collisions between

TABLE II. Characteristics of the runs discussed here. TL and τK , respectively, denote the integral and
Kolmogorov time scales. Trun refers to the time over which collision statistics have been computed. The number
of ellipsoids used to estimate the statistical properties is Nell; the rms of the turbulent velocity fluctuations is
urms, and the settling velocity Usett (in runs with g, i.e., with a “Y” in the “gravity” column).

ε (cm2/s3) Reλ β τK (s) TL (s) Trun (s) Gravity Nell urms (cm/s) Usett (cm/s) St Sv,s Sv,L

Run 1 0.976 55.8 0.02 0.341 1.96 59.6 Y 703 2.18 9.78 0.034 17.0 4.5
Run 2 0.976 55.8 0.02 0.341 1.96 59.6 N 1003 2.18 0 0.034 0 0
Run 3 15.62 94.6 0.02 0.085 0.696 14.6 Y 1003 5.72 9.60 0.135 8.3 1.7
Run 4 15.62 94.6 0.02 0.085 0.696 14.9 N 1003 5.72 0 0.135 0 0
Run 5 15.62 94.6 0.01 0.085 0.696 14.6 Y 703 5.72 4.88 0.068 4.2 0.85
Run 6 15.62 94.6 0.01 0.085 0.696 14.9 N 1003 5.72 0 0.068 0 0
Run 7 15.62 94.6 0.05 0.085 0.696 14.6 Y 703 5.72 23.44 0.34 20.3 4.1
Run 8 15.62 94.6 0.05 0.085 0.696 14.9 N 1003 5.72 0 0.34 0 0
Run 9 246.4 151.2 0.02 0.021 0.265 3.69 Y 703 14.4 10.08 0.54 4.4 0.7
Run 10 246.4 151.2 0.02 0.021 0.265 4.11 N 1003 14.4 0 0.54 0 0
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FIG. 1. (a) Illustration of the definition of the vector n parallel to the small axis of the ellipsoid. The angle
θ is the angle between n and the direction of gravity, g. With our definition, cos(θ ) = nz. We restrict ourselves
to 0 � nz � 1. (b) Distribution of nz for ellipsoids with aspect ratio β = 0.02 in the presence of gravity in
a turbulent flow at ε ≈ 1 cm2/s3 (full line), ε ≈ 16 cm2/s3 (dashed line), and ε ≈ 256 cm2/s3 (dashed-dotted
line). (c) Distribution of nz in the presence of gravity, at Reλ = 95, for ellipsoids of aspect ratio β = 0.01 (full
line), β = 0.02 (dashed line), and β = 0.05 (dashed-dotted line).

spherical particles, inertial effects become important for St ≈ 0.4, i.e., in the range covered by the
present study [20,34]. This aspect will be further discussed in Sec. IV D.

The values of Sv,s shown in Table II are all larger than 1, which suggests that gravitational settling
plays a dominant role in all our simulations. Comparing the settling velocity with the rms of the
turbulent velocity fluctuations suggests, however, that the role of turbulence becomes more prevalent
at ε ≈ 16 cm2/s3 and β = 0.01, or at ε ≈ 256 cm2/s3 and β = 0.02 (Sv,L < 1). These issues will be
further discussed in Sec. III, in particular Sec. III C.

As already stressed, the equations of motion for the crystals have been derived by neglecting the
fluid inertia, i.e., by assuming a very small Reynolds number of the particles. Actually, by judging
from the quantities listed in Table II, the Reynolds number based on the settling velocities is here close
to unity. The corrections due to a nonzero Reynolds number of the particle have been the subject of
several investigations [35,36]. Taking into account finite Reynolds number effects may be particularly
important, in particular for the description of the rotational degrees of freedom [11,37,38]. We note
that the torque acting on oblate ellipsoids, and due to finite Reynolds number effects (deviation
from the Stokes regime), tends to stabilize the configuration where the ellipsoid settles with its basis
horizontal [1,35,39]. How the effects of inertia would affect the equation of motion for the angular
degrees of freedom is unknown. Having completely neglected these effects is certainly a limitation
of the present approach.

III. ORIENTATION AND SETTLING STATISTICS OF ELLIPSOIDS IN TURBULENT FLOWS

From a geometric point of view, the oblate ellipsoids considered in this study can be characterized
by the angle between the gravity, g, and the short eigendirection of the ellipsoid, n. We define the
unit vector ez of the (fixed) frame of reference as ez = −g/|g|. As represented in Fig. 1(a), the cosine
between n and g, or equivalently, ez, therefore reduces to nz, up to an immaterial sign. We chose the
sign of nz, by convention, to be positive throughout.

A. Orientation statistics

In this subsection, we focus on the distribution of the orientation of the ellipsoid with respect to g,
which is relevant not only to the study of collisions, but also to understand the reflection properties
of light by clouds loaded with ice crystals [40,41].

The results presented in this subsection are generally in agreement with those of Ref. [10] and can
be understood theoretically with the help of the formalism developed in Ref. [42]. This theoretical
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approach leads to a quantitative description of the probability distribution functions (PDF) [12]. In
the following, we briefly discuss the distribution of nz for ellipsoids with an aspect ratio β = 0.02,
at the three values of ε simulated, and as a function of β, at ε ≈ 16 cm2/s3.

Figure 1(b) shows the distribution of nz for ellipsoids of aspect ratio β = 0.02, at the three
Reynolds numbers considered here, in the presence of gravity. In contrast, the distribution of nz is
uniformly distributed in the absence of gravity. At low Reynolds number, the probability distribution
is strongly biased towards small values of nz, corresponding to ellipsoids settling edge first, which in
effect minimizes the drag in the vertical direction. The effect strongly diminishes when the Reynolds
number increases, as demonstrated in Fig. 1(b): at the highest Reynolds number simulated in this
work, Reλ = 151, the angles nz are almost uniformly distributed; the corresponding curve differs
from 1 by no more than 10%. The observed tendency to relax towards a uniform distribution of nz

when the intensity of turbulence, i.e., the energy dissipated in the fluid ε increases, can be qualitatively
understood from the increase of the torque exerted by the turbulent flow on the particles; see Eq. (5).

Figure 1(c) shows the distribution of orientation of the ellipsoids settling in a turbulent flow
at intermediate Reynolds number (ε ≈ 16 cm2/s3, Reλ = 95). The main observation is that the
ellipsoids with the highest values of β are those whose distribution of nz is most biased towards
small values; see the dashed-dotted line in Fig. 1(c). In contrast, for ellipsoids with the smallest
value of β, the distribution of nz is almost uniform; see the full line in Fig. 1(c). The trend shown in
Fig. 1(c) can be qualitatively understood by noticing that the mass and the inertia of the ellipsoids
increase with β. Therefore, at a given turbulence intensity, the randomizing effect of the flow is felt
more strongly when β becomes smaller. In this sense, the trends observed in Figs. 1(b) and 1(c)
both illustrate that turbulence tends to randomize the direction of the ellipsoids, the more so as the
Reynolds number of the turbulent flow increases, and as the inertia of the ellipsoids decreases.

The simplified model used here, which completely neglects corrections due to fluid inertia (finite
Reynolds numbers effects), predicts that particles may settle with any orientation in a fluid at rest.
In this sense, our numerical results show that this degeneracy is lifted by turbulence, at least over an
intermediate range of values. This effect can be explained quantitatively [12]. Taking into account
the corrections due to fluid inertia, in a systematic expansion in the Reynolds number of the particle,
leads to corrections that would favor settling of the ellipsoids with nz ≈ 1 [1,39]. This may be a
limitation of the present work. However, the lack of a set of equations taking systematically into
account the corrections due to inertia, even at the lowest Reynolds number, makes it difficult to
analyze the problem completely. Similar difficulties occur when studying the settling of elongated
(prolate) ellipsoids in a flow; see, e.g., Ref. [11].

We conclude this subsection by pointing out that our study leaves aside interesting properties
concerning the correlation between the orientation of the ellipsoids, n, and the velocity gradient
tensor or the tumbling rate 〈ṅ2〉. These have been recently studied in various cases, mostly when the
angular dynamics is overdamped and in the absence of gravity [9,43–47].

B. Orientation dynamics

To obtain information on the dynamics of the vector n, we determined the correlation function,
C(t ; τ ) ≡ 〈n(t)n(t + τ )〉, where the average in the definition of C is taken over an ensemble of
ellipsoids. As the dynamics of the ellipsoids in the flow is statistically stationary, the correlation
function depends only on the time separation between the two instants, τ : C(t ; τ ) = C(τ ) =
〈n(0)n(τ )〉.

Figure 2 shows the correlation functions plotted as a function of τ/τK , for ellipsoids with β = 0.02,
both in the presence (top panel) and in the absence (lower panel) of gravitational settling. In all cases
considered, the correlation function does not reveal any sign of a secondary maximum (a peak)
for τ > 0. The crystals therefore do not show any sign of oscillations. This is consistent with the
representation of the motion in Ref. [15]; see in particular their Fig. 4(a). This property may change
when taking into account the effect of fluid inertia [39].
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FIG. 2. Correlation function of the vector n in the flow in the presence (upper panel) and in the absence
(lower panel) of gravitational settling for ellipsoids with an aspect ratio β = 0.02. The correlation function
〈n(0)n(τ )〉 is plotted as a function of τ/τK .

In all cases shown in Fig. 2, the correlation function decays to a value of order 1/e over a time
of decorrelation, τC,n which is in the range 6.2 � τC,n/τK � 14.3 with, and 3.1 � τC,n/τK � 7.8
without, gravitational settling. In all cases considered here, the orientation of the ellipsoids varies
over a characteristic time of a few τK . The correlation function strongly depends on ε and on the
presence or absence of gravitational settling. Whereas at small turbulence intensity (ε ≈ 1 cm2/s3)
n decorrelates much faster in the absence than in the presence of settling, the trend is completely
opposite at much higher ε. As a general trend, the correlation function, once expressed in units of
τ/τK , decays faster (slower) when ε increases in the presence (absence) of gravity.

C. Settling velocity

In a still flow, the settling velocity depends on the value of nz. The dependence of the settling
velocity of the ellipsoids (absolute value of 〈vz〉) as a function of nz is shown in Fig. 3(a), as a curve
with cross symbols, when β = 0.02. The qualitative feature of Fig. 3(a) can be understood by looking
for steady solutions of Eq. (6) assuming u = 0 and a fixed orientation of the ellipsoids. The settling
velocity becomes smaller when the value of nz increases, which is a consequence of the increased
resistance of the fluid as the largest sides of the ellipsoids become closer to horizontal.

It has already been documented that turbulence may change the settling velocity of droplets in
a turbulent flow; see, e.g., Ref. [48]. Figure 3(a) shows the dependence of the settling velocity,
Usett = −〈vz〉, conditioned on the angle nz, for the three Reynolds numbers studied here. As the
turbulence intensity ε increases, the dependence of the averaged settling velocity conditioned on the
ellipsoid orientation nz shows a clear variation. Specifically, the settling velocity of the ellipsoids, at
small values of nz, significantly increases with ε. On the other hand, the slowest settling velocities,
when nz ≈ 1, decrease when ε increases. Averaged over all possible directions, the settling velocity
Usett shows a weak variation as a function of the turbulence intensity: it is ≈9.6 cm/s for ε ≈ 1 cm2/s3,
≈9.8 cm/s for ε ≈ 16 cm2/s3, and ≈10.1 cm/s for ε ≈ 256 cm2/s3. Overall, these slight variations
of Usett are consistent with those reported in Ref. [10]. Figure 3(a) implies that two particles very
close to each other may have a very significant velocity difference, provided the two ellipsoids have
a different orientation. This effect becomes slightly stronger when ε increases. In a suspension of
identical particles, in the absence of gravity, the velocity differences between particles close to each
other is much smaller. This difference is at the origin of the very different collision rates obtained in
the presence and in the absence of gravity, reported in the following section.
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FIG. 3. Averaged settling velocity of ellipsoids in turbulent flows: (a) settling velocity as a function of nz for
ellipsoids with an aspect ratio β = 0.02, at several values of ε, as indicated in the legend (for comparison, the
settling velocity in still air is shown by the curve with crosses); (b) ratio between the settling velocity and the rms
of the fluctuations. This ratio, which is very close to the gravity parameter Sv,L, defined by Eq. (10), is shown
for β = 0.02, as a function of ε. The dashed line indicates the ε−1/3 dependence, which captures qualitatively
the dependence obtained numerically.

In the range of values of β considered here, 0.01 � β � 0.05, at a fixed value of the energy
dissipation rate in the flow, ε ≈ 16 cm2/s3, the settling velocity is found to increase linearly with β.
This can be readily understood by noticing that the ellipsoids considered here have a fixed value of
a, so their volumes, hence their masses, are proportional to β. In the limit of very thin ellipsoids,
relevant to our study, the resistance tensor K̂ defined by Eq. (4) is independent of β. The settling
velocity is therefore proportional to the mass, hence to β, consistent with the results shown in Table II.

The theoretical work of Ref. [12] suggests that the proper gravity parameter to parametrize the
bias is rather Sv,L, defined by Eq. (10). On general grounds, the variance of the velocity fluctuations
of the flow, 〈u2

z〉 is related to the dissipation, ε, and the integral length scale of the flow, L, as

〈u2〉 ∝ (εL)2/3. (11)

This relation implies that the ratio between the settling velocity, which does not vary much with
the Reynolds number, and the rms of the velocity fluctuations should roughly go as ∝ ε−1/3 (note
that in the case of spherical particles at Stokes numbers comparable to those considered here, the
variance of the velocity of the fluid and of the particles are very close to each other [49]). This
expectation is consistent with our own numerical findings; see Fig. 3(b) (the size of the integral
length scale of the velocity here is ≈5 cm). The range of values of ε considered here covers cases
where the settling velocity is larger than the rms of the turbulent velocity fluctuations (ε ≈ 1 cm2/s3),
where the two velocities are comparable (ε ≈ 16 cm2/s3), and where the turbulent fluctuations
dominate (ε ≈ 256 cm2/s3). When ε ≈ 16 cm2/s3, we find that the settling velocity is larger (smaller)
than the rms of the turbulent velocity fluctuations when β = 0.05 (β = 0.01).

Further insight into the fluctuations of the settling velocity and its dependence on the orientation,
nz, is provided by Fig. 4. The figure shows the joint PDF of vz (the vertical velocity) and nz for
ellipsoids of aspect ratio β = 0.02 at the three turbulence intensities considered. The conditional
value of vz on nz, 〈vz|nz〉 is shown as a full line. The vertical extent of the region with a large
probability is, up to a numerical prefactor, the rms of the velocity fluctuations. At the smallest
turbulence intensity, ε ≈ 1 cm2/s3 (see the left panel of Fig. 4), the fluctuations in the vertical
velocities are small compared to 〈vz|nz〉. In particular, the vertical velocity is almost always negative,
implying that almost all particles move downward, in the direction imposed by gravity. In contrast,
at much larger turbulence intensity (see the right panel of Fig. 4), the velocity fluctuations are large
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FIG. 4. Comparison between velocity fluctuations and settling velocity at different turbulence intensity.
The figure shows the joint PDFs of the orientation, nz (horizontal) and of the vertical velocity, vz (vertical) for
ellipsoids at β = 0.02, at the three values of ε, as indicated. The probability is color coded, as indicated on the
color bar. The conditional average 〈vz|nz〉 is indicated by the full line in the figure (the dashed line shows the
settling velocity in still fluid).

compared to 〈vz|nz〉, which implies that while ellipsoids move downward, on the mean, they have
also large probabilities of moving up. The intermediate case, Reλ = 95, shown in the middle panel
of Fig. 4, corresponds to a case where ellipsoids can, with a relatively small probability, move up in
the gravity field.

Figure 4 clearly shows that, as expected, the importance of the bias due to settling diminishes when
the turbulence intensity, ε, increases. Although the gravity parameter corresponding to ellipsoids of
aspect ratios β = 0.02 at the highest turbulence intensity considered (ε ≈ 256 cm2/s3), is as high as
Sv,s ≈ 4.4, the bias induced by settling is actually relatively small. Consistent with this observation,
the results presented in Sec. IV show that the collision rates at ε ≈ 256 cm2/s3 with and without
gravitational settling do not differ very much. This provides additional reason to measure the influence
of gravity using Sv,L, which is smaller than 1 for ε ≈ 256 cm2/s3, rather than Sv,s .

IV. COLLISIONS

A. Definition of the collision rates

The probability of collisions between identical particles can be conveniently expressed in terms
of the collision kernel, K , defined by expressing the number of collisions Nc over a time T , in a
volume V containing N particles (N � 1) as

Nc = 1

2
K × N2

V
× T . (12)

The collision kernel has therefore the dimension of the cube of a length (a volume) divided by a
time. It depends on the Reynolds number, the shape of the particles, and the gravity acceleration.

Over the years, a good understanding of the collision rate in a turbulent, monodisperse suspension
of spherical particles has been obtained. The pioneering work of Saffman and Turner [50] provides
an explicit expression for the collision rate in the case of spherical droplets which exactly follow
the flow. In the case of inertial particles, the collision rate is enhanced due to, on the one hand, an
enhanced concentration of particles around existing particles in the suspension [16], and, on the other
hand, a much increased relative velocity of the particles when they collide [18,19]. Numerical studies
indicate that the latter effect prevails in determining the collision rate in a turbulent suspension as
soon as the inertia of the particles is significant [20,34].

Interestingly, several simulations have pointed that at a fixed turbulence rate, the effect of
gravitational settling is to reduce the collision rate of spherical particles [26,51–53].
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FIG. 5. Collision rate of a suspension of ellipsoids. The collision rates in the presence (“+” symbols) and
in the absence (“×” symbols) of gravitational settling are compared. (a) Collision rate as a function of β, at a
fixed Reynolds number, Reλ = 95 (ε ≈ 16 cm2/s3). The collision rate increases slightly with β in both cases
and is much larger in the presence of gravity. (b) Collision rate as a function of ε, at a fixed value of β = 0.02.
Generally the collision rates in the absence of gravity (shown with a “×” symbol) are much smaller than in the
presence of gravity (shown with a “+” symbol). The difference however, diminishes when ε increases.

B. Collision rate statistics

The collision kernel, K , expressed in cm3/s and measured from our own DNS, is shown in Fig. 5 as
a function of the dissipation rate ε in the fluid, both in the presence and in the absence of gravitational
settling.

The collision rate is first shown as a function of β, at the intermediate value of ε ≈ 16 cm2/s3;
see Fig. 5(a). The collision rate is much smaller in the absence than in the presence of gravity. The
increase of the collision kernel by a factor �10 due to gravity sharply contrasts with the decrease
of the collision kernel observed at comparable Reynolds numbers in the case of spherical particles
[52,53]. Figure 5(a) indicates an increase, essentially linear, of the collision rate as a function of β.

Figure 5(b) shows the collision rate as a function of the energy dissipation, ε, and demonstrates
once again that at small Reynolds numbers, the collision kernel is vastly enhanced by the presence
of gravity. It is, at the smallest value of ε considered here (ε ≈ 1 cm2/s3), ∼40 times larger in the
presence of gravity, than without it. The ratio, however, significantly drops when increasing the
Reynolds number, and at the highest Reynolds number here (ε ≈ 256 cm2/s3), the ratio is only
slightly larger than 1.

In Sec. IV D we will discuss the physical mechanisms possibly responsible for the behavior shown
in Fig. 5.

C. Orientation of colliding ellipsoids in the presence of gravity

As already explained (see Sec. III C), the dependence of the settling velocity on the angle between
the ellipsoid and the direction of gravity naturally provides a dispersion of the relative velocity of
the particles close to each other, thus potentially enhancing the collision rate.

To explore further these issues, Figs. 6(a)–6(c) show the orientation of two colliding ellipsoids,
at the three Reynolds numbers considered. The continuous line shows the PDF of the orientations of
all the ellipsoids. We distinguish the two colliding ellipsoids by identifying the one which has, at the
time of the collision, the highest position of its center of mass. The distribution of the angles nz for
the upper ellipsoid is shown as a dashed line, whereas the distribution for the lower ellipsoid is shown
as a dashed-dotted line. Overall, Fig. 6 shows that the higher ellipsoid tends to have predominantly
a smaller value of nz than the lower ellipsoid, whose probability of orientation has more weight at
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FIG. 6. Distribution of nz for the colliding ellipsoids during their collision: upper ellipsoid (dashed red
line) and lower ellipsoid (dashed-dotted magenta line). As a comparison, the distribution of the angles for all
ellipsoids is shown with a full line. The Reynolds number increases from Reλ = 56 (left), Reλ = 95 (center),
and Reλ = 151 (right). The results are shown for ellipsoids with β = 0.02. The upper (lower) ellipsoids have a
larger probability of having a small (large) value of nz, which implies that the upper ellipsoids settle faster than
the lower ones.

larger values of nz. This tendency persists for all the values of ε considered in this study. For the two
largest values of Reλ considered, the probability of orientation of the lower ellipsoids has even more
weight at larger values of nz than at smaller ones.

In comparison, Fig. 7 shows the distribution of the relative angle between the two colliding
ellipsoids, both in the presence and in the absence of gravitational settling. Specifically, Fig. 7 shows
the cumulative PDF, defined as

�(ξ ) =
∫ ξ

0
P (ξ ′) dξ ′, (13)

where P (ξ ) is the PDF of the cosine of the angle (n1 · n2) between the vectors n1,2 characterizing the
orientations of the two ellipsoids. In all cases, Fig. 7 shows a sharp increase of � close to n1 · n2 = 1,
that is, for perfectly aligned ellipsoids [the PDF P (ξ ) shows a very narrow peak near ξ = 1]. This
corresponds to a very high probability of the two ellipsoids colliding while perfectly aligned with

0 0.2 0.4 0.6 0.8 1
n1 · n2

0

0.2

0.4

0.6

0.8

1

Π
(n

1
·n

2)

g

g=0

ε = 0.98cm2/s3

ε = 15.6cm2/s3

ε = 246cm2/s3

FIG. 7. Cumulative probability distribution function of the cosine of the relative angle between two colliding
ellipsoids, n1 · n2. The full, dashed, and dashed-dotted lines correspond to Reλ = 56, Reλ = 95, and Reλ = 151,
respectively. The three lowest (respectively highest) curves correspond to a case without (respectively with)
gravitational settling. The cumulative probability distribution function is defined by Eq. (13).

014604-13



JUCHA, NASO, LÉVÊQUE, AND PUMIR

each other. The probability of the two ellipsoids colliding at a finite angle is clearly larger in the
case with gravity than in the case without gravity. This is consistent with the fact that in the presence
of gravity, many collisions occur due to a differential gravitational settling. While this difference is
visible at each of the three Reynolds numbers investigated, Fig. 7 shows that the difference becomes
weaker at the highest Reynolds number studied. This is consistent with the fact that, as the effect of
turbulence becomes stronger compared to that of gravitational settling, the difference in the nature
of the collisions between the two cases diminishes.

D. Discussion

To provide an explanation of the dependence of the collision rate K on ε and β shown in Fig. 5,
we begin by recalling that the collision kernel can be interpreted as a flux of particles incoming
into one of them. While this flux can be explicitly computed in the case of colliding spheres, an
exact determination of the collision rate is much more difficult in the problem of colliding ellipsoids
considered here. Still, as we show in this subsection, the interpretation in terms of a flux allows us to
provide qualitative estimates, as well as a qualitative explanation of the trends observed in Secs. IV B
and IV C.

1. Influence of gravitational settling

Consider first the case of ellipsoids in the presence of gravitational settling. As stressed in Sec. III C,
gravitational settling induces a strong relative velocity difference between ellipsoids with a different
orientation; see Fig. 3. Based on Eq. (6), the velocity difference is expected to be proportional to
2βgτSp. The values shown in Fig. 3 suggest a value of the velocity differences �us ≈ βgτSp/5, which
leads to �us ≈ 1.1 cm/s. The flux of particles incoming into an oblate ellipsoid can be estimated as
the product of the area of its largest side, ∼πa2, and of the relative velocity between two objects.
This provides, as an estimate of the collision rate of the particles, K ≈ π

5 a2βgτSp. In the case of
ellipsoids with β = 0.02 and ε ≈ 16 cm2/s3, this leads to K ≈ 8 × 10−4 cm3/s, which provides the
right order of magnitude for the value of K determined numerically, K ≈ 3.3 × 10−4 cm3/s [see
Fig. 5(b)]. The estimate above for the collision rate also predicts a growth of K ∝ β. This is certainly
consistent with the trend observed at ε ≈ 16 cm2/s3, between β = 0.01 and β = 0.02. The growth
of K is slower between β = 0.02 and β = 0.05, which can be understood as a consequence of the
increased importance of inertia, as explained below. Last, the estimate above does not involve the
intensity of turbulence, ε. This is qualitatively consistent with the relatively weak increase of K ,
when β = 0.02, as ε increases from 1 cm2/s3 to 256 cm2/s3.

2. Influence of turbulence in the absence of gravitational settling

We now turn to estimating the collision rate in the absence of gravitational settling, and begin
with the case where the motion of the ellipsoids can be thought of as a simple advection by the flow.
This picture is expected to be correct when the relaxation time of the particles is very short compared
to the time of the turbulent eddies, i.e., when the Stokes number St is very small. In this case, the
collision between particles is due to the relative motion between two ellipsoids, which in turn results
from the velocity gradients. Specifically, two objects separated by a distance a, small compared to the
Kolmogorov length, have a relative velocity ∝ a/τK [20,50], where τK = (ν/ε)1/2 is the Kolmogorov
time. This leads to an estimate of K ≈ πa3(ε/ν)1/2. The corresponding numerical values are K ≈
3 × 10−5 cm3/s when ε ≈ 1 cm2/s3 and K ≈ 1.2 × 10−4 cm3/s when ε ≈ 16 cm2/s3. These values
only slightly underestimate the collision rate determined numerically in the absence of gravity; see the
lower curve of Fig. 5(b). Our estimate also predicts a dependence of K ∝ ε1/2 (all other parameters
being fixed). This is close to the dependence observed in the range 1 cm2/s3 � ε � 16 cm2/s3. In
sharp contrast, this estimate is inappropriate to explain the collision rate at ε ≈ 256 cm2/s3 and the
fact that, in the absence of gravitational settling, the collision kernel K grows much faster than
K ∝ ε1/2 in the range 16 cm2/s3 � ε � 256 cm2/s3; see Fig. 5(b).
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FIG. 8. Probability distribution function of the relative velocity between the center of mass of two colliding
ellipsoids in the absence of gravity. The full, dashed, and dashed-dotted lines correspond to ε ≈ 1 cm2/s3, ε ≈
16 cm2/s3, and ε ≈ 256 cm2/s3, respectively. Although the distributions for ε ≈ 1 cm2/s3 and ε ≈ 16 cm2/s3

are symmetric and do not extend much beyond �vl/[a(ε/ν)1/2], the one obtained for ε ≈ 256 cm2/s3 displays
a broad tail for negative values of the relative velocity, thereby revealing the presence of large inertial effects.

We note that the estimates for K , with and without gravitational settling, obtained by neglecting
the particles inertia make possible a direct comparison between the effects of differential settling and
the effect of turbulence. Determining when K ≈ π

5 a2βgτSp and K ≈ a3/τK become comparable
leads to the conclusion that the effect of gravitational settling should become negligible compared to
that of turbulence when a/τK � βgτSp, or equivalently, ε � ν(βgτSp/a)2. With the parameter value
β = 0.02, this points to a value of ε ≈ 500 cm2/s3. As we now argue, this argument overestimates
the value of ε at which turbulence becomes dominant, as inertial effects have been so far completely
ignored.

3. Inertial effects

The strong deviation from the qualitative prediction that K ≈ a3/τK actually points to the
importance of inertial effects. In turbulent suspensions of spherical droplets, similar deviations are
known to occur when the inertia of the particles, measured by the Stokes number [Eq. (8)] increases
[16,18–20]. The very substantial increase of the collision rate can be attributed either to the effect
of the preferential concentration of droplets in certain regions of the flow or to the increased relative
velocity between close particles (the “sling effect” [18,51]). Careful numerical results establish that
the latter effect plays the dominant role in the increase of the collision rate [34], as soon as the Stokes
number of the particles St = τSp/τK � 0.5, where τSp = 2/9(r2/ν)(ρp/ρf ), where a is the radius
of the spheres. As indicated in Table II, the Stokes number of the particles considered in the present
study is of order 0.5 at the highest value of ε simulated here.

To demonstrate the role of the sling effect in the observed growth of the collision rate when the
kinetic energy injection increases from ε ≈ 16 cm2/s3 to ε ≈ 256 cm2/s3, Fig. 8 shows the PDF
of the relative velocity between the centers of mass of two colliding ellipsoids, in the absence of
gravity. Specifically, when two ellipsoids with centers of mass x1 and x2, and velocities v1 and
v2 (vi = dxi/dt) collide, we define �vl as �vl ≡ (v2 − v1) · (x2 − x1)/||x2 − x1||. In the absence
of any inertial effect, the fluctuations of �vl scale as 〈(�vl)2〉 ≈ a2(ε/ν). For this reason, Fig. 8
shows the PDF of �vl/[a(ε/ν)1/2]. With this scaling, the PDF of �vl superpose very well when
ε ≈ 1 cm2/s3 and ε ≈ 16 cm2/s3. The corresponding distributions are peaked around ≈0 and do
not extend much beyond �vl/[a(ε/ν)1/2], thus demonstrating that ellipsoids collide with a velocity
difference of order a(ε/ν)1/2, which is consistent with the absence of significant inertial effect. Note
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that, contrary to the case of colliding spheres, the relative velocity between the centers of mass, �vl ,
can be positive when the ellipsoids collide: Even when their centers of mass move away from each
other (�vl > 0), the ellipsoids may come into contact as a consequence of the angular motion. The
distribution of �vl when ε ≈ 256 cm2/s3, however, strongly differs from the distributions at lower
values of ε. The main peak around �vl = 0 is narrower, and very strikingly, the PDF acquires a
broad tail towards �vl < 0. This shows that when ε ≈ 256 cm2/s3, colliding ellipsoids move, with a
significant probability, with a relative velocity much larger than the fluid one. This is a clear signature
of large inertial effects, consistent with the well-documented sling effect [34].

The results concerning collisions in droplet suspensions then provide an explanation for the
very sharp increase of K for particles with β = 0.02, between ε ≈ 16 cm2/s3 (St ≈ 0.135) and
ε ≈ 256 cm2/s3 (St = 0.54). We also note that the Stokes number for particles with β = 0.05 and
ε ≈ 16 cm2/s3 is St ≈ 0.34, which points to significant effects of particle inertia, and could explain
the significant difference between the collision rates K between β = 0.02 and β = 0.05, in the
absence of gravity. It may also explain the departure from the linear dependence on β, in the presence
of gravity, when β increases to 0.5, as the effects of turbulence become important. Distinguishing
quantitatively the effect of differential settling from that of inertia in this case, however, is likely to
be a challenging task.

V. CONCLUSIONS

In this work, we have considered the collision of oblate ellipsoids, of properties close to those
of ice crystals, in a turbulent flow whose intensity ranges from ≈1 cm2/s3 to ≈256 cm2/s3. The
parameters chosen here are close to those observed in moderately turbulent clouds. The motion of
the ellipsoids is determined numerically by solving the equations determining their translation and
rotation. These equations use the expressions of the force and torque derived in the limit where the
Reynolds number of the flow around the object is very small. The collision rate has been determined
using the ghost-particle approximation, i.e., by following independent trajectories of ellipsoids, and
determining when they collide in the flow.

In the presence of gravity, our results show that crystals tend to settle edge first. We also observed a
strong variation of the settling velocity with the orientation, qualitatively consistent with the observed
gravitational settling in still air. Over the range of studied turbulence intensity, this effect tends to
increase with ε. On the other hand, the alignment effect of the ellipsoid with gravity, g, tends to
diminish when the intensity of turbulence increases. This can be attributed to an associated increase
in the velocity gradients in the flow, which in turn leads to an enhanced torque acting on the ellipsoid.

Our study points to the competition between several physical effects which strongly influence the
collision rate. As pointed out already [15], differential gravitational settling plays a very important
role, in particular at very small Reynolds numbers (ε ≈ 1 cm2/s3). In this regime, a direct comparison
between collision rate with and without gravitational settling reveals that the collision rate is reduced
by almost two orders of magnitude in the absence of g. As ε increases, however, the collision rate
induced in the turbulent flow without gravitational settling increases very rapidly, so the relative
influence of g rapidly decreases: at ε ≈ 256 cm2/s3, the collision rates with and without g are very
close. Thus, the very strong effect of gravitational settling seems to be limited to small Reynolds
numbers. Although the role of gravitational settling becomes weaker when the turbulence intensity
increases, the analysis of the relative orientation between two colliding ellipsoids reveals that the
influence of gravity remains significant, even at the highest value of ε considered here.

It is not completely clear whether at still higher values of the turbulence intensity, gravitational
settling will still increase the collision kernel, as is the case over the range of values of ε considered
here, or whether it will in fact lower the collision rate, as happens for droplets [52,53].

The model used here, based on a set of equations which do not take into account any inertia
correction, predicts in agreement with previous work [10,12] a tendency of the ellipsoids to settle with
their edges first. This clearly differs from the expectation based on the torque due to the corrections
induced by the fluid inertia [35,39]. Given that the values of the Reynolds number based on the settling
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velocity are not very small, it would be important to understand in detail the role of fluid inertia on
the effects discussed in this work. Qualitatively, the conclusion reached in this work, namely, that
the collision rate between crystals is due to differential settling at small Reynolds number, and to
turbulence at higher Reynolds number, is very unlikely to depend very sensitively on the precise
nature of the distribution of orientation of the ellipsoids.

Although we have chosen realistic values of the characteristic small time and length scales of
the turbulent flow in the present calculations, the Reynolds number of the simulated flow is much
smaller than in clouds. For this reason, our calculation may underestimate the influence of very large
fluctuations of the velocity gradients on the statistical properties of the orientation of the ellipsoids,
and on the collision rate. These effects remain to be understood.

Geometrical technicalities make a detailed analytical calculation of the collision rate difficult,
thus preventing an accurate estimate in the case where particles follow the flow, as done in the case
of droplets [50]. Simple estimates, however, can provide satisfactory predictions for the collision
kernel, both in the presence and in the absence of gravitational settling, at least when the response
time of the particles is sufficiently small compared to the smallest characteristic time in the flow, the
Kolmogorov time. As already known for droplets, we find an important enhancement of the collision
kernel for ellipsoids when particle relaxation time becomes large compared to the Kolmogorov time
scale.

A first natural extension of the work would be to determine, under various assumptions concerning
the collision (elastic, inelastic), the distribution of orientations and velocity statistics after collision.
A second one would consist in considering the full four-way coupling (fluid↔particle↔particle)
influence, and in particular how it affects the coagulation process, beyond the ghost-collision
approximation. Investigating such processes requires more sophisticated numerical methods [54,55].
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