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We experimentally and theoretically describe the dynamics of evolution and eventual
rupture of Landau-Levich-Bretherton films of partially wetting liquids in microchannels
in terms of nonplanar interface curvatures and disjoining pressure. While both the early-
stage dynamics of film evolution and near-collapse dynamics of rupture are understood,
we match these regimes and find theoretically that the dimensionless rupture time, Tr ,
scales with κ−10/7. Here, κ is the dimensionless curvature given by the ratio of the Laplace-
pressure discontinuity that initiates film thinning to the initial strength of the disjoining
pressure that drives the rupture. We experimentally verify the rupture times and highlight
the crucial consequences of early film rupture in digital microfluidic contexts: pressure drop
in segmented flow and isolation of droplets from the walls.
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I. INTRODUCTION

Rain droplets running on windows or over the surface of leaves are everyday examples of the
delicate interplay of forced wetting, stability, and dewetting of thin liquid films deposited on repelling
surfaces. A crucial question is whether a film of uniform thickness can coat the repelling surface
without any gradients in film curvature. Such conformal films are found on flat plates, cylinders, and
spheres, and, even on such simple surfaces, interesting transitions between coating and nonwetting
states emerge with rich dynamics and transitions that typically involve careful analysis of the contact
line and stability analysis involving perturbations of both the contact lineshape and film curvature
[1]. The general physics of what happens to coating conformal thin films is now well understood.
Briefly, for flat plates or cylindrical objects that are withdrawn at sufficient speed from a liquid bath,
the Landau-Levich-Bretherton (LLB) theory [2] teaches that conformal films are pulled along. The
deposited film thickness then scales as h ∼ C 2/3, where the capillary number C = μU/γ , with
viscosity μ, velocity U , and surface tension γ , signifies the ratio of viscous stress (∼μU/h) to
capillary pressure (∼γ /h). The eventual fate of these wetting films, on partially wetting surfaces,
is to form droplets. Small perturbations of film thickness grow and lead to rupture of the film and
dewetting to droplets, with a dramatic height dependence of rupture time, t ∼ h5, such that a 1-μm
film ruptures in 1 week and a 1-nm film ruptures in a second [3]. In contrast, on nonflat surfaces, e.g.,
near acute corners, in channels with rectangular cross sections or on topographically pre-patterned
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surfaces, even the static case without external flow is attended by polymorphism and topological
bifurcations [4]. If, in addition, flow deposits nonconformal films, then sharp localized curvature
gradients cause fluid flow and even in a fully wetting context profoundly influence the final shape
of the deposited film [5,6]. Nonconformal partially wetting films exhibit accelerated film thinning
and rupture with dramatic consequences: whereas moving elongated bubbles or drops in circular
microchannels are surrounded by long-lasting thin films of the carrier liquid on the confining walls,
in square channels such a well-behaved scenario is not observed for partially wetting fluids. In
contrast, the flow is characterized by chaotic dynamics that are poorly understood [7].

In this paper, we address the open question of predicting the rupture time from a well-defined
initial film shape, by studying a representative problem of confined long bubbles flowing in channels
of rectangular cross section, such that the distance from the nose of the bubble directly relates to
lifetime of the film. While significant progress has been made in understanding the evolution of such
films in various limiting cases [8], a comprehensive analysis that encompasses all the stages of film
evolution, and which ultimately predicts the rupture time, is still lacking. Briefly, the early stages of
thinning have been studied in the context of marginal soap pinching and ophthalmology [6,9], while
the main features of the final collapse are also understood [10]. We analyze the full dynamic evolution
of such thin films, from deposition to thinning to rupture, with theoretical rupture times that can be
compared to experiment. These rupture times find application beyond the time required to blink an
eye to rewet it, as mentioned above. We highlight the consequences of partial wetting in the context
of digital microfluidics, using the rupture time to delineate regimes with markedly different behavior.

II. EXPERIMENT

We recorded top-view micrographs of elongated bubbles coflowing with liquid [Fig. 1(a)]
in a microchannel (hc×wc = 127×300 μm2) that was manufactured using standard lithographic
techniques such that all walls consisted of smooth polydimethylsiloxane (PDMS). Speed U and
length l of monodisperse bubbles were independently varied by adjusting the gas and liquid feed
rates into a T junction [11]. The channel was trans-illuminated by reflection from a white background
and the microscope objective was focused on the bottom wall, such that droplets and film curvature
were visible in high contrast [Fig. 1(b)]. The partially wetting liquid was ethanol (>99.9%) of
viscosity η = 1.09 mPa s, surface tension γ = 21.8 mN/m, equilibrium contact angle θ0 = 8◦ with
air, and PDMS-ethanol-air Hamaker constant A = 2 × 10−21 J calculated from [12].

Flows at low speeds (C < 2.5 × 10−5) showed no deposition of fluid on the wall [Fig. 1(c)].
This image clearly shows the contact line between the liquid in the corners of the channel (black)
and the bare wall in the x-z plane. The z component of the velocity of this contact line is given
by U cos α, where α is the angle of the normal of the contact line with the z axis, as shown in
Fig. 1(e). Increasing the bubble speeds first resulted in a wetting film, first near the centerline of the
channel where cos α ≈ 1. This film is so thin that it immediately ruptures into the small droplets that
are clearly visible in the image. Increasing the bubble velocity further increases the distance from
the centerline where a film is deposited. Analysis of the data in Figs. 1(d)–1(g) revealed that the
highest value of α for which a film was deposited was given by α ≈ cos−1(Cc/C ) with the critical
capillary number for the onset of forced wetting Cc ≈ 3 × 10−5, which is in reasonable agreement,
assuming a slip length of 1 nm, with [13]. At even higher bubble speeds when α ∼ π/2, a film
was deposited that spanned the entire cross section of the channel between the menisci at the sides
[Figs. 1(h)–1(j)]. This film ruptured, always at the edge where the deposited film met the meniscus.
We measured the distance zr of unruptured film, as shown in Fig. 1(j) at five different locations on
the microchip. With increasing C , zr increased from zr ≈ 100 μm at C = 1.8 × 10−4 to zr ≈ 7.5
mm at C = 2 × 10−3, provided the bubble was long enough to observe any rupture at all. The
standard deviation of the measurements at the five locations was 20–25 % for all experiments. At
low speeds, the main source of uncertainty was the location of film deposition, i.e., the point where
the curvature in the z direction has vanished, determined by fitting a circle and straight line to the
inner black shadow of the micrographs [Fig. 1(i)]. At higher speeds, the main source of uncertainty
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FIG. 1. (a) Sketch of the experimental setup. (b) Top-view micrograph of a flowing bubble; dark regions
in the image indicate corner menisci. (c)–(g) Microscope observations of Landau-Levich-Bretherton (LLB)
film deposition dynamics; films are deposited at capillary numbers C > 2.5 × 10−5. (h)–(j) Observations of
dewetting dynamics: films rupture at the corners and move along circular fronts; zr is a speed-dependent length
of unruptured film. (k) Schematic three-dimensional cutout near the nose of the bubble (left) and x-y cross
sections of the lubricating film at increasing distance from the nose, depicting the important events, including
film deposition, rupture, and dewetting (right).

was the interpolation between two frames to find the moment of rupture. We did this interpolation
as follows: After rupture of the film near the meniscus, a dewetting front developed that spread out
radially at 2.2 mm/s, independent of film thickness in agreement with theory [14]. We measured the
radius of this front in several frames after rupture, as shown by the black dotted circles in Fig. 1(j).
Then, we extrapolated the time evolution of this front to zero to achieve subframe resolution of the
time and location of rupture. In turn, this subframe resolution of the rupture time straightforwardly
allowed interpolation of the location of the nose at the rupture between two frames to find zr .

The sequence of images in Figs. 1(c)–1(j) shows that there are three distinct regimes: a fully
dewetted regime without a LLB film [Fig. 1(c)], a partially wetted regime where the LLB film
ruptures, but such that the dewetting front cannot “catch up” with the nose [Figs. 1(d)–1(j)], and
finally a fully wetted regime in which the lifetime of the LLB film is longer than the convective
time l/U of the bubble. Jose and Cubaud [8] observed this last regime as a “lubricated” regime
and observed droplets (bubbles) that at least partially wet the walls in the other two regimes. Their
experimental data for different silicon oils with water droplets collapsed onto a regime boundary
as l/w = ζU 1/3C 2/3, where ζ is a dimensional constant. In the following, we derive this regime
boundary from the evolution of the LLB film.

III. RUPTURE TIME FROM THIN-FILM EQUATION

A bubble moving through a rectangular microchannel, besides depositing thin films, also leaves
liquid “gutters” along the channel edges, with a meniscus of radius r−1 = (2w−1

c + 2h−1
c ) [Fig 1(b)].
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Axial flow in these gutters can be ignored, but a Laplace pressure difference p = γ /r causes
transverse flow, which is balanced by viscous drag in the deposited film. Where the meniscus meets
the flat part of the film, the film thins out by liquid drainage into a localized dimple, where long-range
forces eventually induce a rapid collapse.

The evolution of the film thickness h(x,t) in the dimple near the meniscus is described by the
thin-film equation [1]

∂th + ∂x

(
γ

3μ
h3∂xxxh + A

6πμh
∂xh

)
= 0 (1)

in a region around x = 0 where the meniscus meets the thin film. We use the disjoining pressure
approximation, in which the long-range intermolecular forces between the phases are replaced by
a disjoining pressure 
 = A/6πh3

0 applied at the film boundary [15]. For negative x, the dimple
region will match onto the stagnant meniscus of constant curvature, i.e.,

h = h0 + x2

2r
, ∂xxh = r−1 for x � 0. (2)

The film deposited by the nose is not flat and decreases in thickness from h0 ∼ hcC 2/3 near the
centerline to h0 ∼ hcC near the menisci at the sides, where hc is the microchannel height [6].
Then, the initial slope and curvature for small and positive x are ∂xh ∼ C 2/3 and ∂xxh ∼ C 2/3/wc,
respectively, and for small C we may use

h = h0, ∂xh = 0 for x � 0 (3)

to complete the boundary conditions. Suitable choices of scales for time, transverse coordinate, and
height are

t∗ = 12π2μγh5
0

A2
, x∗ = h2

0

√
2πγ/A, h∗ = h0. (4)

Scaling with H = h/h∗, T = t/t∗, and X = x/x∗ removes all parameters from Eq. (1) to get

∂T H + ∂X

(
H 3∂XXXH + 1

H
∂XH

)
= 0, (5)

H = 1 + 1
2κX2, ∂XXK = κ for X � 0, and H = 1, ∂XH = 0 for X � 0 (6)

and leaves only a dimensionless curvature

κ = πh3
0γ

A
r−1 (7)

in the boundary conditions. This last remaining parameter, κ , signifies the relative strength of the
initial Laplace pressure jump (γ /r) at x = 0 to the disjoining pressure 
0 at the initial film thickness.

Figure 2(a) shows a numerical solution of Eq. (1) for κ = 50, starting from H = 1 + κX2 (x < 0),
H = 1 (x � 0). A depression in the film develops, having a minimum film thickness Hmin near x = 0.
First, a self-similar film profile develops, up to Hmin ≈ 0.2 at T = 2.3 × 10−3, which marks the depth
of the dimple region where long-range forces become prominent. From that moment onwards, the
film thins out in a region |X| < 0.1, leading to rupture at T = 2.5 × 10−3. In this short time, the
dimple profile is hardly affected outside the fast-pinching region, indicating how fast the final pinch
is in comparison to the earlier thinning.

At early times, h is large and the dimple slope ∂xh is small, such that the disjoining pressure term
in Eq. (1) may be ignored. Variables associated with this early stage are denoted by the symbol ˆ.
Characteristic scales for time, height, and width of the dimple are

t̂∗ = 3μr4

γ h3
0

, ĥ∗ = h0, x̂∗ = x

r
. (8)
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FIG. 2. (a) Dimensionless film height profiles H in the dimple region at various times T =
(0.01,0.03,0.08,0.15,0.27,0.45,0.75,1.28,2.0,2.5) × 10−3 from numerical solutions of Eq. (1) for κ = 50.
The highlighted profile indicates a transition from an early drainage dominated regime [9] to a long-range force
induced rupture regime [10]. (b), (c) Minimum film height Hmin values extracted from numerical solutions of
Eq. (1) for various κ are well described by the two self-similar expressions for minimum film height Hmin

provided in (a) at early and late times, respectively.

Now rescaling allows a self-similar solution [9], where the width of the dimple grows as Ŵ ∼
h0/rT̂ 1/4 and the height of film decreases as Ĥmin ∼ h0/rT̂ 1/2. Figure 2(b) shows that the evolution
of the minimum in film thickness for 0.25 < κ < 2.5 × 103 all collapse onto a single master curve
of Ĥmin ≈ 0.6T̂ −1/2 of a monotonically decreasing thinning rate. This master curve describes the
evolution of films that are still so thick that the disjoining pressure need not be taken into account.
Films that are initially already so thin that the disjoining pressure is relevant from the start, such as
that of κ = 0.25, never fully experience this regime. As soon as the long-range intermolecular term
becomes dominant, however, the thinning rate increases, rapidly, as the early and late time scales are
related as T̂ = κ2T : for large κ the time scale of the problem changes by orders of magnitude as the
dimple moves through progressive stages of thinning. Close to the time of rupture, Tr , the evolution
of the minimum film thickness is also amenable to a self-similar analysis [10], which predicts that
Hmin = 0.7681(T − Tr )1/5, independent of κ . We find indeed that for all κ , the final evolution of the
minimum film height collapses onto this curve [Fig 2(c)]. Here too, note that for κ = 0.25, the film
is initially so thin that its entire evolution collapses onto this curve.

We now explore whether we can match these two asymptotic descriptions to describe the entire
evolution. The crudest matching is using the early curve for the minimal film height Hmin up to
a given H ′ at T ′ and then instantaneously switching to the other curve. This matching amounts
to requiring that Hmin and ∂T Hmin are continuous at T ′ and is, in fact, identical to calculating
the value of H ′ for which the rupture is fastest, ∂H ′Tr = 0, as proposed by Vrij [16]. After some
algebra, one finds that the crossover occurs at T ′ = 0.913κ−10/7, with H ′ = 0.627κ−2/7, and the film
ruptures at Tr = 1.278κ−10/7. Of course, when the film is initially so thin that rupture is dominated
by van der Waals forces from the beginning, only the last asymptotic description is needed. One
expects this to happen for κ � 1 and, indeed, we find Tr = 13.0 for all κ < 0.196. We find that this
matching systematically overestimates the numerical rupture times, because at the crossover both
capillary thinning and long-range forces are important. Following the structure of Eq. (1), in which
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-10/7

FIG. 3. Film rupture time versus dimensionless meniscus curvature κ . The red markers are numerical
calculations. The dotted line is the theoretical prediction Tr = 3.92[1 + 3.74κ10/7]−1 obtained by matching
the two self-similar solutions from Fig. 2. The blue markers represent experimental data of rupture times of
ethanol films deposited around long bubbles on a PDMS surface.

the capillary term ∂X(H 3∂XXXH ) and long-range term ∂X(H−1∂XH ) contribute additively to the rate
of thinning ∂T H , it is better to add the thinning rates of both regimes. We begin by rewriting the
rate of thinning, ∂T H , in terms of H . For the early regime with ∂T H = −0.3κ2(κ2T )−3/2 we use
the H = 0.6(κT )−1/2 to eliminate T , to obtain ∂T H = −1.388κ2H 3. Likewise for the late regime,
we recast ∂T H = −0.1536(Tr − T )−4/5 into ∂T H = −0.053H−4. We then add these contributions
to obtain the overall ∂T H and integrate the resulting ∂HT = (∂T H )−1 from initial to final height to
obtain the rupture time. The rupture time is then given by

Tr =
∫ 1

0
(1.38κ2H 3 + 0.053H−4)−1 dH ≈ 3.92[1 + 3.74κ10/7]−1. (9)

The integral can be evaluated analytically to an impractically long expression, and the approximate
solution is compact and captures the relevant physics, as it is based on the limiting values Tr → 3.92
for κ → 0 and Tr → 1.048κ−10/7 for κ → ∞ of the full analytical solution. Figure 3 shows how
well this prediction of rupture time agrees with the numerical simulations. For large κ , the analytical
result tends to the numerical value. As can be seen in Fig. 2(b), for κ � 1 the two thinning regimes
are well separated and the evolution of Hmin runs closely along the asymptotic master curves. For
smaller values of κ , the separation of the regimes is less pronounced and Hmin does not evolve on the
capillary master curve, which accounts for the small difference in analytical and numerical results.
Nevertheless, the matching of the two regimes does identify the proper scaling of the rupture time
with the only parameter of the problem, and the numerical results corroborate the −10/7 exponent
derived above.

Returning to our experiments, we could easily vary the deposited film thickness by adjusting the
bubble speed, with negligible impact on the meniscus curvature. We measured the time of rupture
accurately as tr = zr/U . With experimental capillary numbers in the range 10−4 < C < 3 × 10−3,
we used h0 ≈ 0.5hcC [6] to estimate the initial film thickness in the range h0 ∈ [6–180] nm, such
that our experiments spanned three orders of magnitude of κ and four decades of rupture time,
Tr = tr/t∗ = (8zrA

2)/(3π2γ 2h5
cCa6). Figure 3 shows that the time needed to rupture elongated

bubbles in microchannels agrees very well with theory. In dimensional quantities, the large-κ limit
of the rupture length, as measured from the nose of the bubble, is given by

zr = 1.73

(
h3

cw
2
c

(hc + wc)2

)5/7(
μ3U 3

Aγ 2

)4/7

, (10)
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FIG. 4. Map of observed topological regimes, for PDMS-ethanol-air, arising from the dynamics of film
deposition and rupture: (I) no film deposition below a threshold C , (II) simultaneous film deposition and
dewetting (a speed-dependent unruptured length of film exists in all cases), and (III) completely lubricated
bubbles encapsulated in intact thin films. Inset: Measured pressure drop across bubbles depends strongly on the
topological regime.

where for clarity we have isolated the geometric parameters from the flow parameters. The distance
from the nose where dewetted patches of the lubricating film begin to grow is proportional to U 12/7,
which is larger than the linear scaling zr ∝ U that Jose and Cubaud [8] found. In our analysis, the
time needed to rupture, tr , increases with initial film thickness, which requires that zr = Utr increases
more than linearly with velocity.

IV. FLOW REGIMES AND PRESSURE DROP

In the context of digital microfluidics, droplets contain analytes and reagents that should remain
isolated from each other and have no interaction, chemical or otherwise, with the wall. We consolidate
our experimental observations in a topological map of dimensionless bubble length versus capillary
number (Fig. 4), featuring two boundaries. The first, corresponding to a critical capillary number
Cc ∼ 3 × 10−5, indicates the minimum speed to observe films at all. The second boundary shows
how short the bubble must be to ensure complete surrounding by wetting films. This boundary is
well predicted by our analysis of rupture times (Fig. 3) with zr ∼ C 12/7 as shown in Fig. 4. The
preceding analysis neglects the fluid above the lubricating film in the fluid-mechanical problem,
which is appropriate for the bubbles we analyzed experimentally. For liquid droplets, however, this
may not be the case, and effects on Hamaker constant and viscous drag need to be accounted for.
However, we note that the latter effect may not be dominant, especially when droplet viscosity is
lower than that of the carrier fluid, as is typically the case in microfluidic experiments.

To highlight the importance of partial wetting for the overall fluid mechanics of digital microflows,
even at small contact angles, we now examine the implications of differences in film topologies on
the frictional drag of bubble motion. We calculate the friction experienced by a flowing bubble,
expressed as the pressure jump across the bubble, as �pB = (�p − RUwh)/n, where n is the total
number of bubbles in the device. The hydrodynamic resistance, R, in the liquid segments is equivalent
to flow without bubbles and given by R = η[12/(1 − 0.63 hw−1)](Lliq/h3w). In experiments using
fully wetting silicone oil (η = 10 mPa s, γ=20.1 mN/m, θ0 = 0◦) at C = O(10−3), we find indeed
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that the pressure jump per bubble is a few percent of (γ /r) and scales as predicted, finding �p =
2.1C 2/3(γ /r) within 25% of the theoretical value [6,17]. In the second regime in Fig. 4, the front of
the bubble is lubricated by a wetting film that ruptures, and the rear is an advancing contact line. In
this case, the net pressure jump over the bubble can be written in terms of curvature differences �C

as �pB ∼ γ�C. The curvature at the (lubricated) nose is r−1 cos θe + βC 2/3 [6], and that at the rear
can be written as r−1 cos θa in terms of an advancing dynamic contact angle θ3

a = θ3
e + 9 ln(r/m)C ,

where m is a microscopic slip length [18]. In the inset of Fig. 4, we calculate the pressure drop
for the partially lubricated bubbles. Interestingly, for C > 10−3, the pressure drop scales again as
�pB ∼ C 2/3 (which follows from expanding 1 − cos C 1/3≈ 1

2C 2/3), but the pressure drop per bubble
is a factor of 2 to 3 higher, even at the small contact angle θe = 8◦ of ethanol on PDMS. Recent
experiments of pressure drop of bubbles in rectangular PDMS channels [19] did obey the �p ∼ C 2/3

scaling, but also exhibited higher proportionality constants for aqueous surfactant solutions than those
predicted by theory [6], which may well have been caused by partial wetting with small contact angles,
in agreement with our experiments.

V. CONCLUSIONS

In conclusion, in this paper we explain the full evolution of nonconformal thin films under the
action of surface tension and intermolecular forces. These nonconformal films exhibit LLB flat films
connected to gutters that are akin to Plateau borders. The films first thin out due to capillary suction
at the boundary between gutter and flat film to create a dimple, until intermolecular forces take over
to rapidly thin out this dimple. The ratio of capillary and intermolecular forces, as expressed in a
dimensionless parameter κ , determines how much of the thinning occurs in the first regime and how
much in the second. We predict and experimentally verify the dimensionless moment of rupture as
Tr ∼ κ−10/7. The present analysis offers a glimpse into the phenomena that mark the transition from
regular droplet and pearl-type flows to chaotic flows in partially wetting channels [7,8].
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