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In molecular dynamics simulations, nanochannel flows are usually driven by a constant
force, that aims to represent a pressure difference between inlet and outlet, and periodic
boundary conditions are applied in the streamwise direction resulting in an homogeneous
flow. The homogeneity hypothesis can be eliminated adding reservoirs at the inlet and
outlet of the channel which permits us to predict streamwise variation of flow properties. It
also opens the door to drive the flow by applying a pressure gradient instead of a constant
force. We analyze the impact of these modeling modifications in the prediction of the
flow properties, and we show when they make a difference with respect to the standard
approach. It turns out that both assumptions are irrelevant when low pressure differences
are considered, but important differences are observed at high pressure differences. They
include the density and velocity variation along the channel (the mass flow rate is constant)
but, more importantly, the temperature increase and slip length decrease. Because viscous
heating is important at high shear rates, these modeling issues are also linked to the use of
thermostating procedures. Specifically, selecting the region where the thermostat is applied
has a critical influence on the results. Whereas in the traditional homogeneous model the
choices are limited to the fluid and/or the wall, in the inhomogeneous cases the reservoirs
are also available, which permits us to leave the region of interest, the channel, unperturbed.

DOI: 10.1103/PhysRevFluids.3.014202

I. INTRODUCTION

The molecular dynamics (MD) configuration most commonly used to simulate nanochannel flows
is shown in Fig. 1. The fluid particles are bounded by solid particles that model a wall, periodic
boundary conditions are assumed in the streamwise and spanwise directions and the flow is driven
applying a constant external force. This driving mechanism has raised long-standing criticism for
it requires a huge force to be applied, which generates an important amount of heat that, in turn,
requires dissipative mechanisms (thermostating), and only represents an applied pressure difference
when the pressure gradient is assumed to be constant everywhere [1]. Using this configuration implies
assuming that the flow is streamwise homogeneous, which makes the problem easier by reducing
it to one spatial dimension, the other two (streamwise and spanwise) being only statistical. On the
other hand developing effects are eliminated from the beginning.

Nevertheless, this configuration has been used for years to study the flow slip over solid surfaces
and it is still widely used; see, e.g., Refs. [2,3]. Molecular dynamics simulations are performed
integrating the equations of motion of individual molecules. Introducing the interactions between
them results in a system whose size is the number of molecules. Apart from these interactions, the
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FIG. 1. Traditional molecular dynamics model of an homogeneous nanochannel flow. Fluid particles are
shown in blue and solid particles in red and black.

external force driving the system is also introduced. As the system is isolated, the work performed by
the external force driving the flow results in an increase of internal energy. Therefore, the only way
to reach a steady state is through the introduction of a dissipative mechanism. This term is included
assuming that the fluid is “in contact with a thermal bath” or “a reservoir” [4–7] which extracts energy
from the system. There are many possibilities, but the more commonly used in nonequilibrium MD
simulations are the Langevin, Nosé-Hoover, Berendsen, or DPD thermostats; see, e.g., Refs. [8]
and [9]. In the context of nanochannels the traditional approach [4] was to apply a thermostat in
the whole channel while assuming the flow to be homogeneous in the streamwise and spanwise
directions by applying periodic boundary conditions, as shown in Fig. 1. Wall particles are fixed but
their interaction with fluid is kept, which results in fluid-solid interface friction.

This model was improved including moving wall particles into the model, i.e., integrating their
equations of motion too [10–15]. In this case, apart from the external force acting over all fluid
particles in the streamwise direction, wall particles are also constrained to move around equilibrium
positions by applying external forces to them (typically derived from quadratic potentials). This
permits one to apply a thermostat on the wall particles too. In an effort to minimize its impact, some
authors [15] apply the thermostat to one solid layer only, the one being further from the fluid, shown
in black in Fig. 1. In fact, a rigorous derivation of this procedure has been developed in Refs. [16] and
[17] and named stochastic boundary conditions, showing that applying a thermostat on the external
border of a solid accounts for the influence of an infinitely large solid thermal bath around it.

After this improvement, the next natural question is whether the fluid should be thermostated
or not and there is a consensus in the literature about answering negatively [7], considering that
cooling through the walls is the only “realistic” [11–13,15] dissipative mechanism “mimicking real
experiments” [14]. While in the case of the solid walls the thermal bath has a clear physical meaning,
in the case of the fluid it has not. Besides, transport properties, viscosity and conductivity, shear stress,
and slip over a solid surface measured by the slip length Ls were shown to depend on the parameters
of the fluid thermostat [11,14,15]. Applying thermostats to shear flows has also been put into question
in Ref. [18] because they remove heat at rates that are higher than the rate of conduction of heat across
the fluid. The implication of this fact is the lack of time to maintain redistribution of energy across the
system, which implies that the steady states reached depend on the degrees of freedom the thermostat
is coupled to. This effect is specially severe at high shear rates and the (perhaps overly pessimistic)
conclusion in Ref. [18] is that the effort “should be directed to simulate lower shear rates.”

At this point, two well-established facts collide: the application of an external force generates an
important amount of heat and the application of a thermostat to the fluid is unphysical. On top of
that, assuming periodic boundary conditions, and therefore streamwise homogeneity, eliminates an
intrinsic heat transfer mechanism present in any (nano)channel, the transfer of heat by convection,
which makes the model definitively unrealistic.
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Another important heat transfer mechanism is the generation by shear friction. While in
macroscopic flows this term is usually negligible (except at very low Re numbers, i.e., creeping
flows) at nanoscales this term is very important, specially at high shear rates. In that case the flow
cannot be considered isothermal.

To understand the balance of these mechanisms a simple model can be developed from the
macroscopic energy conservation equation [19]

ρcp

dT

dt
− βT

dp

dt
= −∇ · q + �, (1)

where cp is the specific heat, ρ the mass density, β the (possibly temperature-dependent) thermal
expansion coefficient, p the pressure, q the internal heat flux, and � the Rayleigh function
representing the mechanical dissipation of energy in sheared motion, proportional to the viscosity
and the square of velocity gradients in Newtonian fluids. It is worth noting that the second term of
the left-hand side of Eq. (1) is relevant only in compressible fluids and it is negligible for nearly
incompressible ones, representing a heat sink due to the energy required by dilatation to occur. It is
also relevant that this equation is equivalent to the one obtained by a statistical treatment of molecular
equations of motion [20], namely,

∂E

∂t
+ ∇ · (Eu + q − u · σ ) = 0, (2)

where u is the fluid velocity and E = ρ(e + u2/2 + ψ) is the total energy per unit volume, that
includes the internal energy e and the external potential ψ whose gradient is the applied driving
force. Only after using kinetic and potential energy conservation Eq. (1) is obtained, which does not
include the external force (whose work cancels with potential energy variation). The two terms on
the left-hand side of Eq. (1) come from the calculation of the internal energy variation, which, apart
from the energy variation due to temperature changes, includes the energy variation by dilatation
that vanishes for incompressible flows, as mentioned.

Assuming a one dimensional steady flow that is cooled (or heated) from the walls at a temperature
Tw, and modeling that by a Newton law with convection coefficient h, which accounts for the heat
conduction in the fluid and the Kapitza resistance of the interface [21], we get from Eq. (1)

ṁcp

dT

dx
− uAβT

dp

dx
= −Ph(T − Tw) + �A, (3)

where ṁ is the mass flow rate across a section of the channel of length L, cross-sectional area A,
and perimeter P . The terms on the left-hand side represent convection heat transfer, the first term on
the right-hand side cooling through walls and the second one viscous heating (given by � = μγ 2

with μ the shear viscosity and γ the shear rate). Once again, we emphasize that the second term on
the left-hand side is negligible for incompressible flows, but it turns out to play an important role
otherwise, as will be shown below.

The solution of Eq. (3) can be obtained assuming the variables multiplying the temperature in the
second term on the left-hand side to be constant, a restrictive hypothesis that, in any case, permits us
to understand the implications of neglecting it or not. Observe that in this case, Eq. (3) has a uniform
solution

Tu = Ph(
Ph − uAβ

dp

dx

)Tw + �A(
Ph − uAβ

dp

dx

) . (4)

In general when the flow enters the channel at a temperature Ti , it is cooled (or heated) along the
channel, according to

(T − Tu) = (Ti − Tu)e− (Ph−uAβ
dp
dx

)L

ṁcp

x
L , (5)

reaching equilibrium asymptotically.
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This simple model permits us to conclude that only if the inlet temperature is Tu the flow can be
homogeneous. Otherwise an exponential increase or decrease is to be expected. Besides, when the
pressure gradient and the shear rate are negligible, i.e., −uAβ

dp

dx
� Ph and �A � Ph, taking the

inlet temperature as the wall temperature results in an isothermal flow (the heat produced by shear
is easily dissipated through the walls).

This simple model also permits us to understand how different configurations and flow driving
mechanisms impact on the energy balance. In the traditional streamwise homogeneous model the
terms in the left-hand side of Eq. (3) vanish and the equilibrium between heat generation by shear
and cooling through walls determines the fluid temperature. Applying a thermostat can be a way
of representing the dissipative terms neglected [observe that the pressure gradient is negative and
therefore the second term on the left-hand side of Eq. (3) is dissipative].

In this article we discuss an alternative configuration and a driving mechanism similar to others
recently proposed [22–25]. In fact, many alternative driving mechanisms to study nanochannel flows
have been proposed for years. The alternative proposed in Ref. [1] is the introduction of a “reflecting
particle membrane,” a Maxwell demon that precludes (with a given probability) the particles to
cross it in one direction, thus generating a pressure gradient. Whereas the method to drive the flow
does not introduce additional energy into the system (thus not requiring thermostating), the pressure
gradient is difficult to control (which is done through the given probability). Another approach
[26–28] is to fix the pressure in the external reservoirs by introducing rigid movable plates normal to
the flow, which introduces a time-dependent driving mechanism (the size of the reservoirs changes).
In Ref. [29] the channel walls are moved as in the Couette problem whereas the flow is stopped by
a cross-sectional wall.

The methods proposed in Refs. [22,24,25] and the one we study here are small variations of
the so-called “reservoir method” first proposed in Ref. [30]. The pressure difference is generated
applying a constant force in the reservoirs (a smoother Gaussian variation in Refs. [23,24]) whereas
they differ on how the temperature or density is controlled. Some authors introduce reservoirs while
driving the flow with a constant force and a Nosé-Hoover thermostat applied in the whole domain,
including the channel [31].

However, these alternatives have not been widely used, specially in the study of hydrodynamic slip,
one of the reasons being the important increase in the computational cost. Abandoning the streamwise
periodicity makes the problem two-dimensional (the spanwise direction being still statistical). On
the other hand, the advantages of these improved models have not been demonstrated. The case of an
inlet temperature substantially higher than that of the walls was analyzed in Ref. [25] but considering
only thermal effects, the flow assumed to be hydrodynamically fully developed. On the other hand
when the inlet temperature is similar to that of the walls, the fluid is heated inside the channel and
hydrodynamic effects appear, e.g., the maximum velocity increases and the slip length decreases
along the channel. We document these effects in Sec. III after detailed description of the methods in
Sec. II. We summarize the main conclusions in Sec. IV.

II. SIMULATION METHOD

We construct a nanochannel flow by confining a monoatomic fluid between two smooth solid walls.
Both the fluid and walls are composed by atoms which interact through the pairwise Lennard-Jones
(LJ) potential,

Vij (rij ) =
{

4εij

[( σij

rij

)12 − ( σij

rij

)6]
, rij < rc

0, rij � rc

, (6)

where rij = |rij | = |ri − rj | is the distance between atoms i and j whose positions are ri and rj ,
and εij and σij are the energy and length scales of the potential, respectively. The subscripts i and j

indicate the atom types (hereinafter f stands for fluid atoms and w for wall ones), and the calculation
of the interactions of each particle is truncated at a cutoff distance rc = 2.5 σ, since we have verified
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that the results do not change appreciably by increasing rc. All the physical units in this work are
expressed in LJ units (that is, in terms of the characteristic fluid length σ = σff , energy ε = εff ,
and atomic mass m = mf ). For liquid argon these values are σ = 3.4 Å, ε = 1.65 × 10−21 J and
m = 6.63 × 10−26 kg respectively.

In all our simulations, the interaction between wall and fluid atoms is chosen to be as intense
as that between fluid monomers, εf w = εff , which is considered highly hydrophilic [32–34], and
σf w = σff . Each atom of the thermal wall is tethered around its equilibrium position via a quadratic
potential,

Vwall(r) = Kw(r − r0)2, (7)

where r is the position of the wall atom and r0 its equilibrium position, and Kw models the stiffness
of the wall [35]. For the current work we have used a value Kw = 600 ε/σ 2, which is inside the
interval of values commonly used in MD studies and has been proved to accomplish the two basic
requirements for wall stiffness: (i) it is not too small, thus preventing the melting of the wall according
to the Lindemann criterion [36], and (ii) its associated frequency is low enough to allow the correct
integration of the equations of motion of the wall atoms without reducing the time step [35]. The
mass of wall particles is mw = 10 mf in order to reduce the vibration frequency, and they do not
interact with each other.

Taking into account the volume accessible for the fluid, the average fluid mass density in all
our simulations is ρf = 0.86 mσ−3. With regard to the walls, they form a face-centered cubic (fcc)
lattice of number density equal to 3.90 σ−3, which implies an equilibrium nearest-neighbor distance
of 0.71 σ . The wall planes in contact with the fluid are (010) faces, with the [100] orientation of the
fcc lattice aligned with the shear flow direction (x). The number of fluid, Nf , and wall atoms, Nw,
vary from one studied configuration to another and are detailed below.

In order to control the temperature in some region of the computational domain the dissipative
particle dynamics (DPD) thermostat is considered. This type of thermostat is considered to be
particularly suitable for nonequilibrium MD [34,37] since, among other advantages, it is a profile-
unbiased thermostat [38], that is, does not need to assume a predetermined streaming velocity profile.
This virtue of the DPD thermostat is due to the fact that it involves relative velocities between pairs
of particles, uij = ui − uj , instead of individual velocities as in other thermostats commonly used
(e.g., Langevin thermostat). Hence, the equations of motion in the thermostated region are

mi

dui

dt
= −

∑
j �=i

∇ri
Vij (rij ) + FD

i + FR
i , (8)

where two extra terms are added to the force resulting from the interatomic potential. FD
i denotes

the dissipative force on particle i and FR
i the corresponding random force. Both are expressed as a

sum of pairwise contributions,

FD
i =

∑
j �=i

FD
ij = −

∑
j �=i


w2(rij )(r̂ij · uij )r̂ij , (9)

FR
i =

∑
j �=i

FR
ij =

∑
j �=i

√
2kBT 
w(rij )αij r̂ij , (10)

where r̂ij = rij /|rij |, T is the target temperature, 
 the friction coefficient [
 = 1.0 mτ−1 in our

simulations, where τ = (mσ 2/ε)1/2 is the characteristic LJ time], αij a Gaussian white noise variable
that fulfills the condition αij = αji , and w(r) is a weighting function of rij . The usual choice is

w(rij ) =
{

1 − rij /rc, rij < rc

0, rij � rc

, (11)
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All the simulations have been carried out using the LAMMPS package [39]. The equations
of motion are integrated using the velocity Verlet algorithm, with a time step of t = 0.002 τ

(τ = 2.16 × 10−16 s for liquid argon). In the initial configuration the fluid particles are arranged in
the positions of a fcc lattice, and the equilibration runs lasted typically 5 × 105 steps. Once the steady
state is reached, a production run of a minimum of 106 steps (2 × 103 τ ) is performed to average the
data. The simulation domain is divided in bins of size x = 1.5 σ and y = 0.5 σ to discretize the
collected data.

The components of the local stress tensor in each spatial bin have been computed following the
Irving-Kirkwood method [20]:

P(rbin) = 1

Vbin

〈
Nbin∑
i∈bin

mi[ui(t) − u(rbin,t)][ui(t) − u(rbin,t)]

〉
+ 1

2Vbin

〈
Nbin∑
i∈bin

N∑
j �=i

rij (t)Fij (t)

〉
,

(12)

where the sum of the kinetic term includes the Nbin particles which are inside the bin located at
rbin at time t , and the potential term involves the interaction of particles i inside the bin with all the
other atoms j of the system (in or outside the bin); Fij is the sum of internal forces exerted on i by
j, u(rbin,t) the average velocity in the bin, and Vbin its volume. With regard to the temperature, only
the thermal velocities of the particles, i.e., ui(t) − u(rbin,t), are considered in the MD calculation of
T [40].

Previous features are common to all the models simulated in this work. In the rest of this section
we describe the specificities of the various studied models, that differ essentially in the driving
mechanism of the flow, the thermostated regions, and the geometry of the channel.

A. A simple approach: The streamwise homogeneous (SH) flow model

The configuration geometry of the SH flow model is shown in Fig. 1. The channel length in
the flow direction, Lx , varies from 200 to 400 σ depending on the case, its width (measured as the
distance between the wall planes in contact with the fluid) is Ly = 30.0 σ , and its depth Lz = 10.0 σ .
Both the upper and lower walls consist of four fcc layers separated by a distance 0.50 σ (that is, the
wall thickness is yw = 1.50 σ ). Then the number of fluid and wall atoms in the simulation cell
vary from Nf = 49 980 and Nw = 32 000 (for Lx = 200σ ) to Nf = 99 960 and Nw = 64 000 (for
Lx = 400σ ). Periodic boundary conditions are applied in x and z directions. As specified in Fig. 1,
the plane y = 0 cuts the channel through its center and x = 0 at the entrance.

The flow is generated by applying a constant external force (per unit mass) fx in x direction on
all the fluid atoms. The interval of forces simulated in this work goes from fx = 0.010 ε/mσ to
fx = 0.040 ε/mσ . Modeling the walls as nonrigid allows for the heat generated by friction to be
removed through them. The wall temperature is fixed to the value Tw = 1.1 ε/kB by applying the
DPD thermostat described above only to the wall atoms (and not to the fluid ones).

B. Abandoning homogeneity: The streamwise inhomogeneous force-driven (SIFD) flow model

In a first step towards a more realistic model, the homogeneity hypothesis is abandoned and the
configuration shown in Fig. 2(a) is studied. We consider a central channel of the same dimensions
as in the SH model, Lx × Ly × Lz = 200−400 σ × 30 σ × 10 σ , limited by the same fcc walls of
thickness yw = 1.50 σ . This is the domain of interest, where the fluid properties are extracted.
But now we add two open reservoirs of length Lres = 50 σ outside it, both on the left and on the
right of the channel, where the fluid can move freely in the vertical (y) direction. Periodic boundary
conditions are applied in the three directions. Again, we choose the origin in such a way that y = 0
at the center of the channel and x = 0 at the entrance (and, then, x coordinates take negative values
at the left reservoir).
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(a)

(b)

FIG. 2. (a) New configuration suggested in this work for inhomogeneous MD simulations of nanochannel
flows. Fluid particles in the reservoirs (in green) are thermostated and allowed to move freely in the y direction.
The properties of the fluid inside the channel (atoms in blue) varies along the x direction. Solid particles are
shown in red. (b) Alternative configuration where vertical motion is constrained in the left and right reservoirs
by extensions of the channel walls.

We apply a DPD thermostat, Eqs. (8)–(11), to the fluid particles, but only when they are located
in the reservoirs outside the domain of interest. In such a way, we fix the temperature of the fluid
at the inlet to be Tin = 1.1 ε/kB and we leave the fluid completely free inside the channel. As in
SH model, the walls are also thermostated to Tw = 1.1 ε/kB , and the flow is driven by a constant
external force fx exerted on every fluid atom in the whole simulated domain.

Unlike the SH flow model, the SIFD model allows for the evolution of the fluid properties along
the channel, like the local temperature, and therefore incorporates the heat transfer by convection.
The presence of the reservoirs also makes it possible to analyze the channel entrance effects, like
pressure losses. The basic idea behind a model like this is to explicitly separate the domain of
interest, where the system evolves according its natural dynamics, without being restricted by artificial
forces or constraints, from the surroundings where constraints are applied to induce the desired fluid
conditions at the entrance of the region of interest. This is, precisely, the great difficulty when
periodicity is abandoned in MD: how to impose the proper boundary conditions to couple both
regions adequately. In fact, this is also the main challenge to build hybrid models which couple
molecular dynamics with continuum dynamics [41–44].

As mentioned in Sec. I, other works have previously proposed different boundary conditions for
generating inhomogeneous flows on nanopores, and one of the reasons why the use of this kind
of models is not generalized is that enlarging a system to include a region outside the domain of
interest has a computational cost. In our case, the number of fluid atoms grows to Nf = 78 300 and
Nw = 32 000 (for Lx = 200 σ ) or Nf = 128 280 and Nw = 64 000 (for Lx = 400 σ ). Nevertheless,
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it is affordable given the tremendous amount of computing power available in supercomputers and
the maturity of the simulation software.

A simplification of the configuration of this SIFD model is presented in Fig. 2(b). Again we
consider a channel of length Lx and we add left and right reservoirs that are extensions of the channel.
In these reservoirs the flow is thermostated (Tin = 1.1 ε/kB) and periodic boundary conditions
are applied, but the vertical motion is constrained by (fictitious) extensions of the channel walls.
This configuration does not account for hydrodynamic entrance effects but it will be important to
understand the relation to the SH model. As in previous models, wall particles are also thermostated
(Tw = 1.1 ε/kB), and the force fx is applied to all the fluid atoms. The number of simulated particles
in this case are Nf = 74 970 and Nw = 48 000 (for Lx = 200 σ ) or Nf = 124 950 and Nw = 80 000
(for Lx = 400 σ ).

There are therefore two types of SIFD models according to the type of reservoir: the SIFD model
with open reservoirs [SIFD-OR, Fig. 2(a)] and with closed reservoirs [SIFD-CR, Fig. 2(b)].

C. Leaving the channel unperturbed: The streamwise inhomogeneous
pressure-driven (SIPD) flow model

Finally, we have simulated another model in which body forces no longer exist inside the channel.
The configuration is the same shown in Fig. 2(a), but now a pressure gradient is generated between
the inlet and outlet reservoirs by applying a force only on those fluid atoms located far from the
channel. In particular, we apply an external force of magnitude

fx = p

ρf z
(13)

on all the fluid atoms located inside two regions of width Lres/3 at the edges of the simulation cell
(one at the beginning of the left reservoir and the other at the end of the right one), but not outside
them. z = 2Lres/3 is the total length of both regions where the force is applied, and p is the
pressure difference created. The DPD thermostat described above is applied in the reservoirs of
length Lres to fix the temperature to 1.1 ε/kB , and also in the walls. In this configuration the heat
generated by the external force is dissipated in place, as far from the channel as possible trying to
minimize the disturbance caused in the system.

D. Model summary

With the purpose of clarifying the differences between simulated flow models, and making the
reading of the rest of the paper easier, we summarize the main figures that change between models
in the following Table I. Interaction parameters εf w, σf w and εww as well as fluid and wall densities
and the stiffness coefficient Kw are the same in all computations (and given at the begining of this
section).

III. RESULTS

A. Homogeneous flow

The fluid properties obtained by atomistic simulations of periodic homogeneous flows in
nanochannels are rather well understood. In Fig. 3 we show the averaged density, temperature,
velocity, and pressure profiles for the SH model. As previously mentioned, this model maintains the
wall temperature fixed but it does not thermostat the fluid, which is widely accepted to be the more
realistic option for homogeneous flows [7,11–13,15]. Nevertheless, the evacuation of the viscous
heat through the walls does not avoid a significant temperature increase in the fluid, as we shall see
shortly. The constant force applied to induce the flow in this case has been fx = 0.020 ε/mσ , which
despite being a value in the range of those commonly used in MD exceeds the gravity force by a
factor of 1.5 × 1011.
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TABLE I. Summary of MD simulation setups in the different flow models studied in this work: dimensions
of the channel Lx, Ly, Lz and wall thickness yw , type of reservoirs and their size Lres, regions where external
force fx and DPD thermostat are applied, and directions in which periodic boundary conditions (PBCs) are
imposed. Length dimensions are given in units of σ .

DPD thermostat
Model Lx Ly Lz yw Reservoirs fx applied to applied to PBC

SH 200/400 30 10 1.5 No All fluid atoms Wall atoms x,z

Wall atoms
SIFD-CR 200/400 30 10 1.5 Closed (Lres = 50) All fluid atoms x,z

Fluid atoms in
reservoirs

Wall atoms
SIFD-OR 200/400 30 10 1.5 Open (Lres = 50) All fluid atoms x,y,z

Fluid atoms in
reservoirs

Fluid atoms in Wall atoms
SIPD 200/400 30 10 1.5 Open (Lres = 50) x,y,z

edge regions of Fluid atoms in
width Lres/3 reservoirs

The fluid density shows a clear layered structure (with at least six marked layers separated by a
distance ∼0.9 σ ) in the region near to the atomic walls, where the surface effects are visible. On the
other hand, it is constant and equals the bulk value in the center of the channel. This fact suggests
that the channel is wide enough to assume the continuum equations to be valid at this scale [45]. In

FIG. 3. Averaged fluid profiles in the section x = 150 σ across the flow direction, obtained with the SH
(black solid line) and the SIFD-CR model (red dashed line), for an applied force fx = 0.020 ε/mσ and Lx =
200 σ : (a) fluid density, (b) temperature, (c) streaming velocity, and (d) pressure. The dotted green curves
in panels (b) and (c) are the fits of the homogeneous temperature [Eq. (19)] and velocity [Eq. (15)] profiles,
respectively (see text). Vertical dashed lines indicate the position of the innermost walls layers.

014202-9



VICENTE BITRIÁN AND JAVIER PRINCIPE

particular, the streaming velocity can be determined from the momentum equation

ρux

∂ux

∂x
= −∂p

∂x
+ μ

∂2ux

∂y2
+ ρfx, (14)

where ρ is the fluid mass density, and ux the x component of the streaming velocity. Since there is
no variation along the channel, the well-known quadratic profile is recovered,

ux(y) = ρfx

2μ

(
h2

4
− y2 + hLs

)
, (15)

where h is the distance between the solid-liquid interfaces at the top and bottom walls. The position
of the solid-liquid interface (that is, the point of closest approach where the boundary condition is
imposed) is not well defined. To take into account the excluded volume effects, we locate the interface
at a distance of 0.5 σ from the wall innermost fcc planes [33], and then h = 29.0 σ . The slip length
Ls is defined as the additional length, relative to the interface, at which the linearly extrapolated fluid
tangential velocity vanishes, ∣∣∣∣∂ux

∂y
(y = ±h/2)

∣∣∣∣ Ls = us, (16)

with us = ux(±h/2) the slip velocity at the interface. As can be seen in Fig. 3, the solution in
Eq. (15) fits accurately the velocity profile assuming a value around μ ∼ 2.4 ετσ−3 for the viscosity,
which coincides with that obtained from the simulated shear stress, μ = Pxy(∂ux/∂y)−1 = 2.45 ±
0.10 ετσ−3, and is close to those obtained with similar models [4]. The simulated flow rate is then
consistent with that obtained from the quadratic profile

Q = Lzh
3

12μ
ρfx

(
1 + 6Ls

h

)
. (17)

With regard to the temperature, again the homogeneity simplifies the energy balance equation,

ρcpux

∂T

∂x
− βT ux

∂p

∂x
= μ

(
∂ux

∂y

)2

+ κ

(
∂2T

∂y2

)
, (18)

which reduces to a quartic profile for the temperature [40],

T (y) = ρ2f 2
x

12κμ

[(
h

2

)4

− y4 + h3LK

2

]
, (19)

with κ the thermal conductivity of the system and LK the Kapitza length, which is defined equivalently
to the slip length in Eq. (16) but changing ux by T [46]. As can be seen in Fig. 3 the temperature
profile is satisfactorily fitted by a quartic function.

B. Streamwise inhomogeneous force-driven flow

Unless stated explicitly, in this subsection we discuss the results obtained using the SIFD-CR
model [that is, with the outer fixed-temperature reservoirs confined by the walls, the configuration
shown in Fig. 2(b)]. We will show below that the results with the SIFD-OR model [using the open-
reservoirs configuration in Fig. 2(a)] are qualitatively similar, and will discuss the slight differences.
From Fig. 3, it could seem that the differences between homogeneous and nonhomogeneous models
are not that noticeable (except for the temperature). But we must take into account that, whereas the
homogeneous profiles remain unaltered along the channel, the fluid properties in the inhomogeneous
model evolve through x. In Fig. 3, then, we present the fluid profiles in a particular section (x = 150 σ ,
far enough from the entrance) only as an example. It is more convenient to analyze the results along
the direction of the flow, as we do in Fig. 4.
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FIG. 4. Averaged fluid profiles in the plane y = 0 along the flow direction, obtained with the SH (black
line) and the SIFD-CR model for different applied force values: (a) fluid density, (b) temperature, (c) streaming
velocity, and (d) pressure. Vertical dashed lines indicate the entrance and exit of the channel.

One of the main distinctive features of inhomogeneous models is their compressibility: the fluid
density ρ diminishes significantly along the channel, and this reduction is more pronounced for
higher external forces, as expected. Note that only the values inside the nonthermostated channel
have physical meaning; those in the reservoirs are artificial because of the applied thermostat and
the imposed periodicity. On the contrary, the pressure is almost constant in the flow direction (a
slight gradient is observed only for very high forces). The reason of this behavior seems to be in
the configuration used: since both reservoirs are limited by walls, viscous forces are high enough to
equilibrate the external force in these regions [last two terms in Eq. (14)], and thus an appreciable
pressure difference is not created between channel ends. On the contrary, we will see that a clear
pressure gradient arises when fx is applied in open reservoirs, in which friction is much less important.

The compressibility of the flow allows the variation of the velocity along the channel, in such a
way that the mass flow rate is constant. As is shown in Fig. 4(c) and Fig. 5(a), when the fluid enters
the nonthermostated channel its velocity profile starts to develop (in the reservoirs, the thermostat
restrains the fluid and its velocity remains approximately constant). Due to the friction, velocity
gradually reduces in the regions near the walls, and therefore the fluid is accelerated at the center
of the section to maintain the mass flow rate [Fig. 5(a)]. As a consequence the slip decreases (and
shear rate γ increases) in the streamwise direction. The shear continues to grow downstream until the
friction force equilibrates the external force; downstream this entry region, the flow is fully developed.
Whether a given channel is long enough to consider the flow hydrodynamically developed should
be determined when designing the simulation of nanoscale flows. On the basis of the results of this
work, forces higher than 0.02 ε/mσ requires entry lengths longer than 400 σ . However, it is common
to find considerably shorter channels in the literature in which entrance effects are neglected.

Another noticeable impact of the change in the configuration is that the well-established quadratic
profile for the velocity in Eq. (15) may no longer be valid for nonhomogeneous flows, since the first
term in momentum equation, Eq. (14), does not vanish. The solution becomes significantly more
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(a)

(b)

FIG. 5. (a) Velocity and (b) temperature profiles across different channel sections obtained using the SIFD-
CR model with a force fx = 0.02 ε/mσ in a channel of length Lx = 400 σ . The eight curves correspond to
sections from x = 25 σ to x = 375 σ (from bottom to top, in successive steps of 50 σ ). Inset in (a) shows the
velocity profile in x = 75 σ for a force fx = 0.04 ε/mσ in a channel of length Lx = 400 σ (empty circles),
together with the best quadratic [Eq. (15), green curve] and hyperbolic [Eq. (20), red curve] fits. Dashed curves
in (b) are the fits of temperature profiles with the form in Eq. (22).
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complex, but as a first approximation one can assume that the velocity gradient ∂ux/∂x does not
depend on y (this is almost exactly true in our simulations). In this case, the new solution has the
form

ux(y) = u0[1 − A cosh(λ0y)], (20)

where

u0 = fx

∂ux/∂x
, λ2

0 = ρ∂ux/∂x

μ

and

A−1 = cosh

(
λ0h

2

)
+ Lsλ0sinh

(
λ0h

2

)
.

This solution reduces to Eq. (15) when the velocity gradient is small. Although we have indeed
confirmed that the hyperbolic profile fits better the results than the quadratic one for high forces,
the difference in our simulations is small [it is only noticeable near the boundary; see the inset in
Fig. 5(a)]. Nevertheless, it should be taken into account in future studies or for more intense driving
forces, as an accurate velocity fit can affect the calculation of the slip length. Consequently, the
volumetric flow rate expression in Eq. (17), used regularly in the literature for obtaining the slip
length from experimental flow rate measures [47], should be also modified to take into account the
nonhomegeneity, to be

Q = Lzu0

[
h − 2A

λ0
sinh

(
λ0

h

2

)]
. (21)

But over all the features of this model for inhomogeneous flows, there is one that makes it
clearly more realistic than the traditional homogeneous models: it incorporates the fluid cooling by
convection along the channel. As occurs in real (nano)channels, the fluid at the entrance is colder
than at the outlet, and this makes the temperature to gradually rise due to the viscous heat generated
by friction. The evolution of T in Fig. 4(b) is qualitatively similar to the simple unidimensional
model drafted in Sec. I, Eqs. (3)–(5), and tends asymptotically to a constant value. Again, we
have found that, for high external forces, the length of full thermal development is longer than the
simulated channels. It must be noted that the asymptotic value to which T tends in the case of
fx = 0.020 ε/mσ coincides with the temperature of the homogeneous model with the same applied
force. This fact leads us to conclude that, while representing convection by a thermostat when
assuming an homogeneous channel is a crude approximation, modeling cooling only through walls
also fails to describe heat transfer, especially at the entrance, and overestimates the temperature at the
channel. Only in low-shear regime (forces lower than fx = 0.010 ε/mσ in our model) temperature is
approximately uniform and the role of convection less important, as thermal conduction is effective
enough, a case in which the SH model without fluid thermostating provides similar results.

It is also interesting to analyze how the temperature distribution across the channel varies with x.
Results presented in Fig. 5(b) show marked differences between the profiles as the flow progresses.
At the inlet, where the convective cooling is intense, the thermal jump at the boundary is very
pronounced and heat is transferred by conduction from the walls to the center of the channel. Only
at sections where convection ceases to play a major role the temperature profile resembles that
obtained in homogeneous models [see Fig. 3(b)]. Understanding this behavior requires noticing
that the convective term in the energy Eq. (18) does not vanish now. Only to find an approximate
solution, we can assume that specific heat, density, viscosity and thermal conductivity do not vary
appreciably with y; that the temperature gradient is also approximately independent on y, and the
pressure gradient negligible (the last two hypothesis have been checked to be valid here). Finally,
for the sake of simplicity we take the solution in Eq. (15) for the velocity (since we have seen that
solution in Eq. (20) offers similar results for the simulations presented in this work). With these
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FIG. 6. Slip length calculated along the flow direction for the SH (black dashed curve) and SIFD-CR models
with different fx . In the inset, the shear rate distributions along the channel for different values of fx are shown.
The squared black symbols correspond to simulations in which the fluid is thermostated (see text).

approximations, we get

T (y) = a2y
2 − a4y

4 + a0, (22)

where

a2 = fx

4μ

ρ2

κ
cp

∂T

∂x

(
h2

4
+ hLs

)
, a4 = ρfx

24μ

(
ρ

κ
cp

∂T

∂x
+ 2

ρfx

κ

)
,

and

a0 = ρfx

2μ

(
ρ

κ
cp

∂T

∂x
+ 2

ρfx

κ

)
h3

24

(
LK + h

8

)
− ρfx

2μ

ρ

κ
cp

∂T

∂x

(
h2

4
+ hLs

)
h

2

(
LK + h

4

)
,

where LK is the Kapitza length. In Fig. 5(b) it is shown that temperature profiles may indeed be
very well fitted by this solution. At the beginning of the channel the convective term dominates and
the profile is eminently quadratic; on the contrary, near the end where the flow is almost thermally
developed a2 ≈ 0 and the profile is ∝ y4, as in the homogeneous case.

Finally, we have focused on the results obtained for the flow slip over the solid surface. The study
of the slip observed at nanoscales remains to be of great interest at present, among other reasons,
because of its potential technological utility for nanoscale flows [45,48]. Although this phenomenon
has been extensively investigated from experimental, theoretical and computational points of view
[49,50], there are some issues that are still controversial, like the slip dependence on shear rate.
Since the seminal work of Ref. [4], some authors have reported (both in experimental and simulation
studies) a nonbounded monotonic increase of the slip length with shear rate and the existence of a
critical shear rate at which Ls diverges [4,51,52]. However, other researchers have found that slip
length tends to a finite constant value at high shear [13,15]. It is important to emphasize that in all
these works an homogeneous flow is assumed, the first group applying a thermostat to the fluid and
the second only to the solid [15]; see also Ref. [3].

In Fig. 6 we can see the slip length for the SIFD flow model, calculated from definition in Eq. (16).
The slip length is higher at the inlet, decreases along x and tends to a constant value. It is worth
pointing out that, for fx = 0.020 ε/mσ , the slip length value at high x approximately coincides with
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FIG. 7. Averaged fluid profiles in the plane y = 0 along the flow direction, obtained with the SIFD model:
(a) density, (b) temperature, (c) streaming velocity, and (d) pressure. Solid and dashed curves correspond to
closed reservoirs (SIFD-CR) and open reservoirs (SIFD-OR) model, respectively.

that obtained with the homogeneous model and the same force. We confirm again, then, that the study
of homogeneous flow can describe the developed flow, but not its developing behavior. We also see
that shear rate increases along the channel, as can be readily understood from the increasing slope of
velocity profiles at the boundaries in Fig. 5(a) (see inset). The fact that slip reduces with growing shear
rate could appear to be in contradiction with those works that, in the line of Ref. [4], conclude that
slip grows with shear. However, those works assume constant temperature. Temperature variation
affects the slip, as has already been highlighted in the literature [3,53]. In this case, the slip length
decrease along the channel is due to the temperature increase. In order to support this conclusion we
conducted 10 extra MD simulations using the SH model with fx = 0.020 ε/mσ , but thermostating
also the fluid at 10 different temperatures, each one corresponding to the one obtained using the
SIFD model at a different section of the channel. The results, shown with squared symbols in Fig. 6,
confirm that temperature is the crucial factor that makes the slip to decrease along the channel, even
if the shear rate gradually increases. It also explains the smaller Ls for higher fx . For different values
of the wall-fluid interaction energy (εf w) the trend might be the opposite (the slip length would
increase with the temperature increase) as is shown in Ref. [3] using the SH model.

C. Open or closed reservoirs?

A few comments on the effects of assuming open reservoirs outside the channel [configuration
in Fig. 2(a) instead of that in Fig. 2(b)] should also be made, since they can shed some light on the
discussion about boundary conditions choice in MD simulations of nanoflows. The main difference
with respect to the closed-reservoirs case reported so far lies on the pressure gradient created out
of the channel [see Fig. 7(d)]. The lack of walls in the open reservoirs causes much flatter velocity
profiles (in the reservoir) than those in the closed ones, as shown in Fig. 8, and then, much smaller
viscous forces in these regions. As a result, a positive pressure gradient appears to compensate the
external force [see Eq. (14)]. This pressure difference between channel ends translates in a pressure
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FIG. 8. Velocity distribution across the channel in reservoir region (x = −25 σ ) with fx = 0.02 ε/mσ .
Solid and dashed curves correspond to closed reservoirs (SIFD-CR) and open reservoirs (SIFD-OR) model,
respectively.

drop inside the channel, and in an extra force on the confined fluid which adds to fx . Its effects
are not minor, since −∂p/∂x is comparable to ρfx . It must therefore be concluded that simulated
systems with the same force but different boundary conditions may not be dynamically equivalent,
and this must be taken into account when designing the model to simulate.

As a consequence a higher flow rate is observed when open reservoirs are considered, as can be
seen from Fig. 7(a) and Fig. 7(c) (note that, for example at x 	 150σ , the densities are similar but
the velocity is bigger when open reservoirs are considered). Evidently, the hydraulic resistance of
closed reservoirs is higher.

It is also worth to note the variation of flow properties (except temperature, which is fixed by the
action of the thermostat) along the streamwise direction in the reservoirs with an abrupt change at
the channel entrance. This effect is a direct consequence of the model geometry which now contains
an inlet, where the velocity grows sharply and density decreases.

On the other side, although the higher force exerted on the confined fluid in the open-reservoirs
configuration (and the corresponding higher shear rate) could suggest a more intensive heating, the
temperature distribution along the channel is not substantially different (and shows even a lower T )
from the closed-reservoirs case [see Fig. 7(b)]. The explanation for this behavior could be found in
the second term of the left-hand side of the energy equation, Eq. (18): a fraction of the heat transferred
to the fluid is devoted to increase the fluid temperature, but another part goes to diminish the fluid
pressure (unlike what happens with closed reservoirs).

To conclude this subsection we also note that in the case of closed reservoirs, caution is
recommended when altering the reservoirs height (in y direction), since it can affect the results
in some measure. The reason is that, for a given channel width Ly , increasing the reservoirs height
results in bigger pressure losses at the entrance (since the flow contraction is more abrupt), which,
in turn, results in a reduction in the pressure gradient inside the channel. This influences the fluid
properties obtained because, as discussed by Ref. [54], it is this pressure gradient, and not the pressure
difference between reservoirs, which characterizes the flow (see also Ref. [22]). We have checked
that entrance losses increase indeed if reservoirs height is enlarged, but it affects only slightly the
presented results.
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FIG. 9. Averaged fluid profiles in the plane y = 0 along the flow direction, obtained with the SIPD model:
(a) density, (b) temperature, (c) streaming velocity, and (d) pressure.

D. Streamwise inhomogeneous pressure-driven flow

Finally, we now move to discuss the third and last type of models studied in this work, which
should be, a priori, the most realistic to simulate nanoflows, since its driving mechanism is not a
fictitious external force that disturbs significantly the behavior of the fluid inside the channel, but a
pressure gradient (obviously, induced also by a force but applied in this case far enough from the
channel).

First, it has been confirmed that the application of a force of the magnitude in Eq. (13) in the
margin regions of length Lres/3 [see Fig. 2(a)] translates in a pressure difference between the ends
of the channel which coincides with the p value imposed in Eq. (13) with satisfactory accuracy
(less than a 10% discrepancy). In Fig. 9(d) we present the pressure profiles for a channel of length
Lx = 200 σ and four different p values, chosen to create the same driving in the confined fluid as
the one in the SIFD-OR model shown in Fig. 7 (that is, the value of p in the SIPD model is chosen
such that p/Lx in this model equals the average driving p/Lx + ρf fx in the SIFD-OR model
for each value of fx shown in Fig. 7). This choice aims to compare dynamically equivalent flows.
Observe that in the SIPD model the induced pressure gradient is much bigger than in the SIFD one.
As will be shown throughout this section, the pressure variation affects the rest of thermodynamic
fluid properties and changes notably the results analyzed so far. Also note that pressure losses at the
channel entrance, between the point where the external force is no longer applied and the inlet at
x = 0, are barely appreciable.

The induced pressure difference causes a significantly more pronounced variation of the density
along the channel than in the SIFD models with the same total force [see Fig. 9(a)]. In fact this
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FIG. 10. Averaged fluid profiles across different sections of a channel of length Lx = 200 σ , obtained with
the SIPD model and a pressure difference p = 6.0 ε/σ 3: x = 25 σ (black curves), x = 75 σ (blue curves),
x = 125 σ (red curves), and x = 175 σ (green curves): (a) density, (b) temperature, (c) streaming velocity, and
(d) pressure. Dashed curves in (b) are the best fits for temperature profiles with the form in Eq. (22).

density variation limits the applicability of this kind of models, since if the pressure drop is too high,
ρ will diminish sufficiently to provoke a phase change at the exit of the channel. This imposes a
limitation on the maximum p applied in MD simulations, and on the channel length for a given
pressure gradient. This is the reason why we are reporting results only for Lx = 200 σ : simulations
with larger Lx demand also larger p to induce a certain gradient, and the phase transition occurs.
Also related to density variation, it should be noted that the profiles in the wall-normal direction
(y) show a more marked structure near the walls (with more clearly located atomic layers) at the
beginning of the channel, where density is higher, as is apparent in Fig. 10(a) and Fig. 10(d). On
the other hand, it has been verified that in our simulations fluid density evolves with pressure in a
qualitatively similar fashion to that reported in Ref. [55], which obtained the phase diagram of a
Lennard-Jones fluid at equilibrium by MD simulations. As can be seen in Fig. 11(a), for small p

the p-ρ relation approaches the equilibrium equation of state, while for larger p the pressure is
slightly higher than the one at equilibrium but the functional relation with the density is similar.

The averaged velocity also shows a faster growth in the channel when flow is induced by a
difference in pressure [as can be seen comparing Fig. 9(c) with Fig. 7(c)], which is consistent with
the greater density drop and the requirement of mass flow rate conservation along the channel. We can
also observe that the gradient of ux progressively increases along x, and it is clearly larger at the exit;
that is, the fluid is more accelerated near the end than at the beginning of the channel. Besides, this
effect is more pronounced for higher p, in fact it is hardly noticeable for p = 2.0 ε/σ 3 but clearly
visible for p = 8.0 ε/σ 3. One might ask for the physical cause of this behavior. Since pressure
gradient does not change appreciably along x, we suggest that, again, it is the intense change of fluid
properties in the channel (in this case, shear viscosity) which explains it. Figure 11(b) includes the
results for viscosity as a function of x for different p, extracted from the simulated shear stress
through Pxy = μ(∂ux/∂y). μ lowering along x is in fact significant, being more marked as pressure
gradient is increased. This tendency is consistent with the results of Ref. [56], which reported both
theoretical and MD calculations for shear viscosity at a wide range of temperatures, and showed that
μ diminishes when ρ decreases [see the inset in Fig. 11(b)]. This behavior indicates that friction is
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FIG. 11. Left panel: Pressure versus fluid density obtained for various pressure differences p. Black
squares are extracted from the phase diagram reported in Ref. [55] from MD simulations at a temperature of
1.15 ε/KB . Right panel: Viscosity along the channel for different p. In the inset we compare the evolution of
μ with fluid density in these same simulations to the MD results of [56] for a temperature of 1.23 ε/KB .

reduced along the channel, and then explains the increase in the gradient of ux . Precisely at those
regions where ∂ux/∂x grows, the hyperbolic function Eq. (20) starts to differ from the quadratic
function Eq. (15), and one can confirm that it is more suitable to fit the velocity profiles, although
the discrepancy is still small (as an example, see the velocity in a point near the end of the channel
for p = 8.0 ε/σ 3 in Fig. 12).

But certainly the most significant difference observed in our MD simulations between the SIFD
and the SIPD flow models resides in the temperature distribution along the channel. If we look
at Fig. 9(b), we clearly observe that in SIPD models T raises to a much lesser extent than in SIFD
models [Fig. 7(b)]. The difference is important enough to conclude that the choice of proper boundary
conditions is a fundamental question in MD simulations of nanoflows, and must be addressed
carefully. In this work we suggest two causes of this disparity in the evolution of T . In the first
place, as we mentioned for the case of models with an external force and open reservoirs, the term
−βT ux

∂p

∂x
in the energy equation, Eq. (18), acts as an effective cooling mechanism. The internal

energy increase produced by the viscous heat does not directly result in a temperature increase, as it
would occur in an incompressible flow, due to the energy required by the pressure loss to occur. As
the flow velocity ux increases along the channel, this contribution becomes higher and temperature
growth becomes progressively slower (for p larger than 6.0 ε/σ 3 one can even observe a slight T

reduction at the end of the channel). The second factor that contributes to moderate the temperature is
shear viscosity, that, as we have seen, decreases in the flow direction, then causing a gradual reduction
of the friction. The relative importance of these two causes is not clear, and deserves further research.
What we do know is that both become much more important in models in which flow is induced
by a pressure gradient, since the streamwise pressure and viscosity variation increases notably with
respect to those driven by a uniform external force. With regard to the form of temperature distribution
across the flow [Fig. 10(b)], we see again that T profiles meet the functional form derived in Eq. (22).
Compared to those presented in Fig. 5(b) for SIFD flow models, the quadratic term (we recall that it
vanishes for SH flow models) dominates over the fourth-order term.

IV. CONCLUSIONS

A careful analysis of three different MD models for the flow in nanochannels has been reported.
The traditional SH (force-driven) flow model, which does not account for the variation of properties
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FIG. 12. Open symbols: Velocity profile across section x = 175 σ obtained with a pressure-driven model
with p = 8.0 ε/σ 3 and Lx = 200 σ . Solid curves are the best quadratic [green curve, Eq. (15)] and hyperbolic
[red curve, Eq. (20)] velocity fits.

along the channel, permits to predict the density, temperature, pressure and velocity profiles (and thus
slip length) when low forces are applied. In this case the heat generation by friction is small and it is
easily dissipated by thermal conduction to the walls, where it is finally dissipated by the thermostat
applied there. Other heat transfer (cooling) mechanisms, convection and dilatation, are missing as
they are incompatible with an homogeneous flow. Therefore, at higher forces an inhomogeneous
model must be used to capture flow developing profiles if the associated computational cost can be
afforded.

When two reservoirs are added at the inlet and the outlet and the fluid is thermostated there to fix
the inlet temperature, streamwise variation of the flow can be predicted. The main difficulty here is
that the results depend on the design of the reservoirs. If the reservoirs are surrounded by (fictitious)
extensions of the walls no pressure gradient is generated because the flow is driven by an external
force that balances the viscous dissipation, in the same way as it occurs inside the channel. If open
reservoirs are considered, the velocities outside the channel are almost uniform and a pressure gradient
is generated. In the former case, we have seen that also the reservoirs size can affect the pressure
distribution inside the channel, although the influence in the results presented in this work is minor.

The inclusion of reservoirs outside the domain of interest allows us to analyze the streamwise
evolution of the shape of velocity and temperature profiles in the wall-normal direction. In particular,
the appearance of a quadratic term in T (y) as a consequence of convection is discussed. For
the higher forces in the range studied in this work, the flow is not fully (hydrodynamically and
thermally) developed at the end of the channel, despite the large simulated channel lengths. The
usual homogeneous simulations ignore this developing behavior, as well as the stabilization of the
slip length along the channel.

The pressure gradient inside the channel has an important influence on the results. Even if the
pressure profile were constant across the channel section, a pressure gradient is equivalent to a
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constant external force only for incompressible flows. At high-pressure differences, heat generation
makes compressibility effects important, the density cannot be assumed to be constant and the
dilatation work acts as a heat sink. Therefore, the results obtained using the SIPD model are
substantially different from those obtained using the SIFD model, specially regarding temperature
distribution. It has been demonstrated that the temperature growth along the channel is much smaller
than in SIFD models. Both the energy required by the pressure loss and the streamwise variation
of viscosity are identified as the factors which explain this behavior. Therefore, at high-pressure
differences, the SIPD model should be used, as it is the only one that permits to correctly predict the
pressure gradient inside the channel. Force-driven models will fail because of the unphysical heating
of the fluid by friction.

In this respect it is worth noting that if a low-cost SH model is to be used, thermostating the fluid
to account for the missing heat transfer mechanisms will produce better (but still inaccurate) results
than those obtained with the SH model in which only walls are thermostated. This conclusion is
obtained comparing the temperature distributions in Fig. 7 and Fig. 9: the temperature obtained with
the most realistic model (SIPD) do not exceed 1.3 ε/kB whereas the temperatures obtained using the
SH model almost doubles this value. It is therefore less inaccurate to consider the temperature fixed
at its inlet value (1.1 ε/kB). Nevertheless, we remark once again that the use of homogeneous models
will only provide a first approximation due to their inability to describe the streamwise variation of
flow properties.
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