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We investigate flow instability created by an oblique shock wave impinging on a Mach
5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure
gradient of the oblique shock causes the boundary layer to separate from the wall, resulting
in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the
recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates
from its original laminar state. We utilize direct numerical simulation (DNS) and global
stability analysis to show that this first occurs at a critical shock angle of θ = 12.9◦.
At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a
spanwise wave number β = 0.25, in good agreement with DNS results. Examination of the
critical global mode reveals that it originates from an interaction between small spanwise
corrugations at the base of the incident shock, streamwise vortices inside the recirculation
bubble, and spanwise modulation of the bubble strength. The global mode drives the
formation of long streamwise streaks downstream of the bubble. While the streaks may
be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal
instability plays no role in the upstream self-sustaining mechanism of the global mode.
We employ an adjoint solver to corroborate our physical interpretation by showing that the
critical global mode is most sensitive to base flow modifications that are entirely contained
inside the recirculation bubble.
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I. INTRODUCTION

High-speed flows over complex geometries are typically characterized by shock-wave/boundary-
layer interactions (SWBLIs). Sudden changes in geometry such as compression ramps or the leading
edges of fins create shock waves that propagate over large distances. When a shock wave comes into
contact with a boundary layer flow, the large adverse pressure gradient associated with the shock
wave can cause the flow to separate from the surface. When this happens, a recirculation bubble
forms close to the wall and significantly alters the stability and dynamics of the flow. In some cases,
this interaction can cause an otherwise laminar flow to prematurely transition to turbulence. The
transition to turbulence is accompanied by a fivefold to sixfold increase in heat flux to the wall [1].
For this reason, the performance of a hypersonic vehicle often depends upon delaying the transition
to turbulence as much as possible. Unfortunately, a fundamental understanding of the shock-induced
boundary-layer transition is still lacking.
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While there have been many experimental and numerical investigations of shock waves interacting
with both laminar [2–7] and turbulent [8–19] boundary layers, studies of shock waves interacting with
boundary layers at transitional Reynolds numbers are relatively sparse. Interactions with hypersonic
boundary layers at transitional Reynolds numbers can produce complex and unexpected behavior.
For example, recent experiments of hypersonic boundary-layer flow past cylindrical posts remain
well behaved if the incoming boundary layer is either laminar or fully turbulent, but show complex
behavior if the boundary layer is in a transitional state [20,21]. In the experiment, the cylindrical posts
create complicated interactions between bow shocks and recirculation bubbles. In this paper, however,
we focus instead upon the simpler configuration of an oblique shock wave impinging on a flat plate
hypersonic boundary layer at a transitional Reynolds number. This oblique shock-wave configuration
was recently investigated experimentally and numerically by Sandham et al. [6]. Their experiments
and simulations introduced varying levels of forcing into the Mach 6 boundary layer upstream of
the impinging shock. They observed the shock to amplify second- (Mack) mode instabilities [22,23]
downstream. The interaction of second-mode instability with boundary-layer streaks was thought
to cause the flow to transition to turbulence. It is conceivable, however, that a recirculation bubble
can support self-sustaining instability, even in the absence of upstream forcing. This was observed,
for example, by Robinet for a shock-wave/laminar-boundary-layer interaction at Mach 2.15 [4]. The
aim of the present study, therefore, is to assess whether self-sustaining instability can play a role
in transitional shock-wave/boundary-layer interactions at Mach 5.92 and to understand the physical
mechanisms underlying such instability.

We investigate transitional shock-wave/boundary-layer interaction with direct numerical sim-
ulation (DNS) and global stability analysis (GSA). In this regard, our approach is conceptually
similar to that of Robinet [4], but increased computational power available today enables an
investigation at a transitional Reynolds number and higher Mach number. As we will see, these
flow conditions accentuate different flow features that result in a fluid mechanical model of the
physical mechanism responsible for the instability. In particular, because streamlines curve around
the recirculation bubble, we investigate centrifugal instability as a possible mechanism for SWBLI
instability [14]. We apply the massively parallel hypersonic flow solver US3D [24] to perform DNS
of SWBLI in domains of large spanwise extent to revisit the question of whether the bifurcation
of a shock-wave/boundary-layer interaction to self-sustaining instability is stationary or oscillatory
(previous DNSs produced inconclusive results [4]). We also extend the global stability analysis to
include adjoint mode analysis. Adjoint global modes show how SWBLI instability can be optimally
triggered and provide information about the sensitivity of direct global modes to changes in the base
flow. This provides additional insight into the mechanism responsible for SWBLI instability.

II. PROBLEM FORMULATION

A. Flow configuration

Figure 1 shows a schematic of a canonical SWBLI that we consider in this study. High-speed
freestream flow enters at the left boundary and flows over a flat plate situated along the bottom edge

FIG. 1. Schematic of an oblique shock wave (red) impinging on a Mach 5.92 boundary layer. The adverse
pressure gradient associated with the impinging shock causes the boundary layer to separate from the wall,
forming a recirculation bubble (blue).
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of the domain. The leading edge of the flat plate is assumed to be upstream of the left boundary.
Nevertheless, the leading edge produces a bow shock, which enters the domain through the left
boundary, as shown. We will discuss precisely how we calculate this in a later section. At the inlet,
the boundary layer has displacement thickness δ∗ and slowly grows as it develops downstream. Also,
an oblique shock wave enters the domain through the left boundary well above both the boundary
layer and bow shock. Such an oblique shock wave might result from placing a turning wedge in the
freestream a distance upstream. The incident oblique shock wave propagates at an angle θ until it
impinges on the boundary layer. The adverse pressure gradient of the impinging shock causes the
boundary layer to separate from the wall and form a recirculation bubble. Because of recirculation, the
boundary-layer separation point is well upstream of the impingement point. The recirculation bubble
displaces flow and causes it to bend around it. Concave streamline curvature on the upstream and
downstream portions of the bubble creates compression waves, which at high Mach number quickly
coalesce into separation and reattachment reflected shock waves. Convex streamline curvature (as
the flow passes over the bubble top) leads to an expansion fan in between these two reflected shocks.

We consider freestream flow conditions matching experiments performed in the ACE Hypersonic
Wind Tunnel at Texas A&M University [25]. Between the bow shock and incident shock, the
freestream Mach number, temperature, and pressure are M∞ = 5.92, T∞ = 53.06 K, and p∞ =
308.2 Pa, respectively. A Reynolds number of Re = ρ∞U∞δ∗/μ∞ = 9660 based on the undisturbed
boundary-layer displacement thickness δ∗ = 2.1 mm at the inlet is used in the present study. This
corresponds to a unit Reynolds number of 4.6 × 106 m−1. Here ρ∞, U∞, and μ∞ denote the
freestream density, velocity, and dynamic viscosity, respectively. We consider incident shock angles
ranging from 12.0◦ to 13.6◦. As the shock angle increases, the strength of the SWBLI increases. In
particular, the adverse pressure gradient becomes larger, leading to earlier boundary-layer separation
and larger recirculation bubbles. A Cartesian coordinate system is utilized hereafter with x, y, and z

denoting the streamwise, wall-normal, and spanwise directions, respectively.

B. Governing equations

The compressible Navier-Stokes equations are used to mathematically model the dynamics of
an oblique shock-wave/laminar-boundary-layer interaction at hypersonic speeds. These equations
govern the evolution of the system state q = [p; uT; s]T, where p, u, and s are the nondimensional
fluid pressure, velocity, and entropy, respectively [26,27]. After nondimensionalization with respect
to the displacement thickness δ∗, freestream velocity U∞, density ρ∞, and temperature T∞, these
equations are written as

∂p

∂t
+ u · ∇p + ρc2∇ · u = 1

Re

[
1

M2∞Pr
∇ · (μ∇T ) + (γ − 1)φ

]
, (1a)

∂u
∂t

+ 1

ρ
∇p + u · ∇u = 1

Re

1

ρ
∇ · τ , (1b)

∂s

∂t
+ u · ∇s = 1

Re

1

ρT

[
1

(γ − 1)M2∞Pr
∇ · (μ∇T ) + φ

]
. (1c)

The time scales are normalized by δ∗/U∞ and pressure with ρ∞U 2
∞. For an ideal fluid, the

density ρ and temperature T are related to pressure p through the equation of state γM2
∞p = ρT .

The freestream Mach number is defined as M∞ = U∞/a∞, where a∞ = √
γp∞/ρ∞ is the speed of

sound in the freestream. Furthermore, γ = 1.4 is the assumed constant ratio of specific heats.
For the present study, entropy is defined as s = ln(T )/[(γ − 1)M2

∞] − ln(p)/γM2
∞ so that s = 0

when p = 1 and T = 1. The viscous stress tensor τ is written in terms of the identity matrix I ,
velocity vector u, and dynamic viscosity μ to yield the expression

τ = μ
[∇u + (∇u)T − 2

3 (∇ · u)I
]
. (2)
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The viscous dissipation is defined as φ = τ : ∇u. Note that the operator : represents a scalar or double
dot product between two tensors. Furthermore, the second viscosity coefficient is set to λ = −2μ/3.
In order to compute the dynamic viscosity μ, Sutherland’s law is used with Ts = 110.3 K as follows:

μ(T ) = T 3/2 1 + Ts/T∞
T + Ts/T∞

. (3)

The Prandtl number is set to a constant value Pr = μ(T )/κ(T ) = 0.72, where κ(T ) is the coefficient
of heat conductivity.

C. Linearized model

To investigate the behavior of small fluctuations about various base flows, the system (1) is
linearized by decomposing the state variables q = q̄ + q ′ into steady and fluctuating parts. By
keeping only the first-order terms in q ′, the linearized Navier-Stokes equations are obtained

∂p′

∂t
+ ū · ∇p′ + u′ · ∇p̄ + ρ̄c̄2∇ · u′ + γ (∇ · ū)p′

= 1

Re

{
1

M2∞Pr
∇ · (μ̄∇T ′) + (γ − 1)[τ̄ : ∇u′ + τ ′ : ∇ū]

}
, (4a)

∂u′

∂t
+ 1

ρ̄
∇p′ − ρ ′

ρ̄2
∇p̄ + ū · ∇u′ + u′ · ∇ū = 1

Re

{
1

ρ̄
∇ · τ ′ − ρ ′

ρ̄2
∇ · τ̄

}
, (4b)

∂s ′

∂t
+ ū · ∇s ′ + u′ · ∇s̄

= 1

Re

1

ρ̄T

{
1

(γ − 1)M2∞Pr

[
∇ · (μ̄∇T ′) − p′

p̄
∇ · (μ̄∇T̄ )

]
+ τ̄ : ∇u′ + τ ′ : ∇ū − p′

p̄
τ̄ : ∇ū

}
.

(4c)

The overbars and primes denote the base flow and fluctuating parts, respectively. More-
over, the equation of state is linearized to obtain ρ ′/ρ̄ = p′/p̄ − T ′/T̄ . The expression
T ′ = (γ − 1)M2

∞(T̄ s ′ + p′/ρ̄) is derived by linearizing the definition of entropy and substituting
in the equation of state. In Appendix A we verify the accuracy of our global mode solver by applying
it to a range of known test cases involving high-speed boundary layers at flow conditions similar to
those of our SWBLI, but without shocks.

Global modes of the linear system (4) take the form

q ′(x,y,z,t) = q̂(x,y)ei(βz−ωt), (5)

where β is the nondimensional spanwise wave number and ω is the temporal frequency. Substitution
of (5) into (4) yields the eigenvalue problem

Aq̂ = −iωq̂. (6)

The operator A, known as the Jacobian operator, includes all terms in the system (4) that do not
involve a time derivative. The Jacobian operator gives the linear variation of the residual (i.e., terms
without a time derivative) of the original nonlinear system (1) with respect to the state variables,
taken about a base flow.

D. Numerical methods

For the base flow calculations and direct numerical simulations, the compressible Navier-Stokes
equations are solved in conservative form [28]. A stable low-dissipation scheme based upon the
kinetic energy consistent (KEC) method developed by Subbareddy and Candler [29] is implemented
for the inviscid flux computation. In this numerical method, the flux is split into a symmetric (or
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nondissipative) portion and an upwind (or dissipative) portion. The inviscid flux is premultiplied
by a shock-detecting switch, which ensures that dissipation occurs only around shocks [30]. A
sixth-order centered KEC scheme is employed for the present study. Viscous fluxes are modeled
with second-order central differences. Time integration is performed using an implicit second-order
Euler method with point relaxation to maintain numerical stability [31]. The implicit system is solved
using the full matrix data parallel line relaxation method, which has good parallel efficiency [32].

For the stability analysis, the linear system of equations (4) is discretized by fourth-order centered
finite differences applied on a stretched mesh. This results in a large sparse matrix [27]. Global modes
are extracted by the shift-and-invert Arnoldi method implemented by the software package ARPACK

[33]. The inversion step is computed by finding the lower-upper decomposition of the shifted sparse
matrix using the massively parallel SuperLU package [34]. A numerical filter is used to add minor
amounts of scale-selective artificial dissipation to damp spurious modes associated with the smallest
wavelengths allowed by the mesh. We perform a grid independence study in Appendix B and show
that this filter does not affect the discrete modes of interest [35]. Sponge layers at the top, left, and
right boundaries absorb outgoing information with minimal reflection [36]. The eigenspectra and
eigenmodes presented in the following sections are insensitive to the strength and thickness of the
sponge layers so long as they do not encroach upon the recirculation bubble. We verify this by
repeating the global stability analysis doubling and then halving the sponge thickness and damping
factor, independently. The insensitivity of SWBLI global modes to boundary conditions can be
understood in terms of the wave maker discussed in Sec. IV.

III. RESULTS

A. Base flows

Global stability analysis requires the specification of a base flow corresponding to unperturbed
flow. For our configuration, the SWBLI base flow is two dimensional because the spanwise direction is
homogeneous. The SWBLI base flow is also steady in time. We consider, however, three-dimensional
perturbations to this base flow. According to Eq. (5), these three-dimensional perturbations have
nonzero spanwise wave number and may be unsteady in time. The goal of the following sections is
to apply DNS and GSA to determine the stability of these three-dimensional perturbations at different
spanwise wave numbers.

We will see that SWBLI is indeed unstable to three-dimensional perturbations at some spanwise
wave numbers. For all of the shock angles we consider, however, our flows are always stable to
perturbations having zero spanwise wave number (two-dimensional perturbations). This fact enables
a convenient method for computing two-dimensional base flows. Specifically, if we constrain our
direct numerical simulations to be exactly two dimensional, then they will naturally converge to
steady solutions in time. This happens because all two-dimensional perturbations are stable and thus
decay to zero.

We therefore compute base flows on a two-dimensional (2D) domain. In terms of the inlet
boundary-layer thickness δ∗, the domain we consider extends 235δ∗ in the streamwise direction and
36δ∗ in the wall-normal direction. Our domain is discretized by a Cartesian mesh that is nonuniformly
spaced in the wall-normal direction. This allows us to cluster grid points close to the wall to resolve
sharp wall-normal gradients in this region. In viscous units, the first grid point above the wall is
positioned at y+ = 0.6 and the mesh spacing gradually increases moving away from the wall. In the
streamwise direction, the mesh spacing is uniform. A total of nx = 998 and ny = 450 grid points
resolve the domain in the streamwise and wall-normal directions, respectively. In Appendix B we
show that this resolution is sufficient to yield grid-independent results. The base flow simulations are
run for approximately 60 flow-through times with the US3D hypersonic flow solver [24] until the
residual is on the order of machine zero. Here a flow-through time is defined as the time it takes for
a fluid particle to traverse the entire streamwise length of the domain, traveling with the freestream
at Mach 5.92.
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FIG. 2. Contours of nondimensional pressure and density for a 2D oblique shock-wave/laminar-boundary-
layer interaction with an incident shock angle of θ = 13◦.

Figure 2 shows a base flow for a shock angle θ = 13◦. At the left inlet, we apply boundary-layer
profiles and introduce a downward propagating oblique shock wave. The boundary-layer profiles are
obtained from a larger base flow simulation extending upstream past the leading edge of the plate [28].
The larger simulation is performed without the oblique shock and provides the inlet boundary-layer
profile for all of the base flows that we consider. In the larger simulation, the leading edge of the
plate has a radius of 10−4 m. This produces a bow shock and an entropy layer in close vicinity. We
extract the inlet profiles used for the present paper at a distance of x = 40 mm downstream of the
leading edge. This distance is sufficient to significantly reduce the effect of the entropy layer and also
diminishes the strength of the bow shock. We introduce the oblique shock by modifying the inlet
boundary-layer profile so that the Rankine-Hugoniot conditions are satisfied at the point it enters
the domain. We select this point so that the oblique shock wave impinges upon the wall at a fixed
distance of 119δ∗ from the leading edge, where δ∗ is the boundary-layer thickness at the inlet of the
domain. This ensures that the Reynolds number Re at the impingement point is constant for various
shock angles. The oblique shock is introduced upstream of the bow shock. Because the bow shock is
relatively weak at the point where the incident shock crosses it (far downstream of the leading edge
of the plate), the interaction of the incident shock with the bow shock produces a minimal change
to the initial shock angle. For example, the incident shock angle changes from 13◦ to 12.89◦ after
the interaction with the bow shock. The lower boundary is modeled as an adiabatic wall. We enforce
a hypersonic freestream inlet along the upper boundary. Finally, we impose a characteristic-based
supersonic outlet boundary condition along the right edge of the domain [37].

Figure 2(a) shows color contours of pressure, while Fig. 2(b) shows contours of density for SWBLI
at θ = 13◦. We nondimensionalize x, y, and z by the displacement thickness δ∗. The incident oblique
shock causes the boundary layer to separate from the wall at x ≈ 50. At this location, we observe
that a reflected shock forms. The separated boundary layer causes a recirculation bubble to form
which has nearly constant density. At the apex of the recirculation bubble, an expansion fan forms
and extends up into the freestream. At x ≈ 155 the flow reattaches to the wall and compression
waves coalesce to form a second reflected shock. Figure 2(a) also shows a bow shock that enters the
domain through the left inlet. This bow shock is created by the leading edge of the plate and it does
not interact with the recirculation bubble.

To visualize how the SWBLI changes with the incident shock angle, we plot streamlines and
contours of streamwise velocity for several base flows in Fig. 3. As the shock angle increases, the
shock-wave/boundary-layer interaction becomes stronger and the bubble size increases. Even though
the oblique shock impingement point is the same in all of these simulations, the stronger recirculation
in the cases with larger shock angles causes the boundary layer to separate from the wall earlier. The
reattachment point shifts slightly downstream as the recirculation bubble becomes larger, but not as
much as the separation point shifts upstream.
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FIG. 3. Contours of streamwise velocity for a 2D oblique shock-wave/laminar-boundary-layer interaction
with incident shock angles ranging from θ = 12◦ (top) to θ = 13.4◦ (bottom). For θ = 13◦, white contours
indicate streamlines inside the recirculation bubble. The separation and reattachment locations are indicated by
S and R, respectively.

B. Direct numerical simulations

To study the dynamics of three-dimensional perturbations about the base flows, we perform
three-dimensional DNS using the US3D hypersonic flow solver [24]. We initialize the 3D calculations
by extruding the 2D base flow solutions in the spanwise direction. The spanwise length of our domain
is 95.2δ∗ with 200 uniformly distributed grid points. At the spanwise edges of the domain, we apply
periodic boundary conditions. We do not apply any initial stochastic forcing to the flow field and
we find that the SWBLI remains two dimensional for an incident shock angle of θ = 12.6◦ after
integrating for more than 80 flow-through times.

Next we repeat the DNS at an incident shock angle of θ = 13◦. Unlike the previous case, the
SWBLI starts to become three dimensional after 15 flow-through times. Integrating further in time,
we observe the flow to converge to a steady three-dimensional solution after 80 flow-through times.
Figure 4 shows the three-dimensional structure of this solution. In the figure we plot color contours
of spanwise velocity on an xz plane close to the wall, as well as on three yz planes at different
streamwise positions. Grayscale contours of the density gradient magnitude on an xy plane on the

FIG. 4. Color contours of spanwise velocity shown on a wall-parallel plane close to the wall and three
wall-normal planes for a 3D oblique shock-wave/boundary-layer interaction with θ = 13◦. Grayscale contours
of the density gradient magnitude are shown on a streamwise slice on the left.
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FIG. 5. Streamwise variation of the spanwise PSD from the DNS with an incident shock angle of θ = 13◦.
Color contours on a logarithmic scale represent the PSD of the streamwise velocity perturbation as a function
of streamwise position and spanwise wave number. The horizontal dashed line indicates the dominant spanwise
wave number β = 0.25. The recirculation bubble, bounded by the separation and reattachment locations (vertical
dashed lines), contains most of the perturbation energy.

left show the shock structure together with the edges of the recirculation bubble. The spanwise
velocity (and thus the three-dimensional flow) is mostly confined inside of the recirculation bubble.
Some spanwise velocity is imparted to the flow downstream of the bubble, however, and plays a role
in the formation of streaks.

In Fig. 4 we observe that three wavelengths of the 3D perturbation fit within the spanwise extent
of our computational domain. Downstream, a more complicated pattern emerges. To investigate the
spanwise spectral content of the flow as it develops downstream, we apply fast Fourier transforms
(FFTs) on a wall-parallel plane taken from the converged solution. Specifically, we apply FFTs in
the spanwise direction to the streamwise velocity perturbation on the xz plane at y = 1. Figure 5
shows logarithmic color contours of the power spectral density (PSD) of streamwise velocity as a
function of the spanwise wave number β and streamwise position x. We find much of the spectral
energy to be concentrated around a dominant spanwise wave number of β = 0.25. The nonlinear
simulation also gives rise to several harmonics, which are strongest in the downstream portion of the
recirculation bubble. Spanwise spectral content is largely absent outside of the recirculation bubble,
although the PSD at β = 0.25 shows a renewed growth as the flow approaches the right edge of the
domain. In this rightmost region, streamwise streaks begin to form.

As the shock angle increases, more spanwise scales appear and the three-dimensional steady state
eventually breaks down and the flow transitions to turbulence. At this point, the flow becomes

FIG. 6. Color contours of spanwise velocity for a SWBLI at θ = 13.6◦. Contours are shown on the same
planes as in Fig. 4, including grayscale contours of density gradient magnitude on the left.

013906-8



SIMULATION AND STABILITY ANALYSIS OF OBLIQUE …

FIG. 7. Eigenvalue spectrum of a SWBLI at M∞ = 5.92 from GSA with θ = 12.6◦ and β = 0.25.

unsteady and chaotic. Figure 6 shows an incipient transition to turbulence in the SWBLI at a
shock angle of θ = 13.6◦. Similar to θ = 13◦, the spanwise spectral content increases as the flow
develops downstream, although in this case it ultimately causes the flow to transition to turbulence.
While turbulent flow is chaotic and nonlinear, it is important to note that exactly three patches of
transitioning flow are visible near the right edge of the domain. This matches the dominant spanwise
wave number upstream and agrees well with that found previously for θ = 13◦. This suggests
that the three-dimensional steady state found at lower shock angles still has a strong influence
on the manner in which the flow transitions downstream of stronger shock-wave/boundary-layer
interactions. Furthermore, in the following section we show that global stability analysis can predict
the bifurcation to this three-dimensional steady state and that as such it may be understood in terms
of linearized dynamics.

C. Global mode analysis

To determine the critical incident shock angle at which the flow first becomes unstable, we apply
global stability analysis over a range of shock angles and spanwise wave numbers. For example,
Fig. 7 shows an eigenvalue spectrum resulting from the shift-and-invert Arnoldi method [33] with a
shock angle of θ = 12.6◦ at a spanwise wave number β = 0.25.

We express frequencies in nondimensional form as Strouhal numbers defined as St = f δ∗/U∞.
The real and imaginary parts of the complex frequency St = Str + i Sti denote the temporal frequency
and growth rate, respectively. We position shifts along the real axis to capture the least-stable modes
and 20 eigenvalues are converged at each shift. We space shifts close together so that a portion
of the spectrum converged at each shift partially overlaps with a portion converged at neighboring
shifts. Modes corresponding to redundant eigenvalues extracted by nearby shifts agree well with one
another, providing one check on the convergence of the Arnoldi method. More eigenvalues can be
found by using additional shifts or increasing the number of eigenvalues sought at each shift.

Every eigenvalue in Fig. 7 has a negative growth rate, which means that the system is globally
stable. This agrees with the DNS at θ = 12.6◦ that remained two dimensional and steady. Figure 8
displays two eigenmodes and the position of three sponge layers. Mode 1 corresponds to the least-
stable zero-frequency eigenvalue. Notice that a significant portion of the perturbation lies within
the recirculation bubble for this stationary global mode. We see a streamwise streak that extends
downstream until it gets driven to zero by the right sponge layer. Mode 2, which corresponds to an
oscillatory eigenvalue, has more structure within the recirculation bubble. In particular, the real part
of the streamwise velocity perturbation in global mode 2 contains positive and negative components
near the upstream portion of the bubble. This mode is structurally similar to the other surrounding
oscillatory eigenmodes (not shown).
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FIG. 8. Stable global modes labeled in Fig. 7 colored by the real part of the nondimensional streamwise
velocity perturbation. Here the dashed lines indicate the start of three different sponge layers.

Next we increase the incident shock angle to θ = 13◦ and repeat the same analysis, keeping the
spanwise wave number fixed at β = 0.25. Figure 9 shows the eigenvalue spectrum at these conditions.
We see that one stationary eigenmode has a positive growth rate, which means that the system is
globally unstable. This agrees with the DNS at θ = 13◦ that eventually produces a 3D steady state.
Robinet found a similar unstable mode with zero frequency for an oblique shock-wave/laminar-
boundary-layer interaction at Mach 2.15 [4]. Figure 10 displays the least-stable zero-frequency
eigenmode in three dimensions. This unstable global mode also contains long streamwise streaks
similar to those shown in Fig. 8 at a smaller incident shock angle. These elongated structures are
clearly coupled to the shear layer on top of the recirculation bubble. We also observe significant
spanwise variation inside the recirculation bubble.

While θ = 13◦ supports global instability over a range of spanwise wave numbers, GSA of incident
shock angles θ = 12.6◦ and 12.8◦ revealed these cases to be globally stable at all spanwise wave
numbers. Increasing the shock angle to θ = 12.9◦, however, resulted in instability at a single spanwise
wave number β = 0.25. Figure 11 shows the maximum growth rate versus spanwise wave number
for angles ranging from θ = 12.6◦ to θ = 13◦. Above the critical incident shock angle θ = 12.9◦, the
2D flow bifurcates to a 3D steady state with spanwise wave number β = 0.25. The least-stable global
mode for every incident shock angle and spanwise wave number has zero frequency, meaning that
such global modes are stationary at these conditions. In other words, the unstable global modes do

FIG. 9. Eigenvalue spectrum of a SWBLI at M∞ = 5.92 from GSA with θ = 13◦ and β = 0.25. These
conditions produce one eigenvalue in the unstable upper half plane. The unstable eigenvalue has zero frequency,
indicating stationary instability.
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FIG. 10. Isosurface contours of streamwise velocity perturbations induced by the least-stable global mode
for θ = 13◦ and β = 0.25. Red and blue contours indicate positive and negative velocities, respectively. This
mode corresponds to the eigenvalue in the unstable half plane in Fig. 9.

not contain traveling waves or other oscillatory components, but instead simply grow exponentially
while remaining in place, until they saturate and nonlinear effects become important. We see that
β = 0.25 results in the largest growth rate for every shock angle. These results agree with the DNS
and more specifically Fig. 5. As the spanwise wave number approaches zero, we expect the system
to become fully stable because the base flows are two dimensional and the 3D component of the
perturbation gets smaller. The system stabilizes for nondimensional spanwise wave numbers above
β = 0.4.

While the GSA predicts the dominant spanwise wave number observed in DNS, we further
verify that the unstable global mode (Fig. 10) corresponds to the one observed in DNS (Fig. 6),
by introducing the mode obtained from GSA into the DNS and measuring its growth rate. For this
purpose, we add the unstable global mode obtained for a shock angle of θ = 13◦ and a spanwise wave
number of β = 0.25 (the most unstable mode) to a three-dimensional DNS initialized with the steady
two-dimensional base flow. The global mode is scaled so that its amplitude is small compared to the

FIG. 11. Maximum growth rate versus spanwise wave number for an oblique shock-wave/laminar-
boundary-layer interaction at four different incident shock angles.
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FIG. 12. Temporal variation of the L2-norm of an unstable stationary mode predicted by global stability
analysis compared to the growth rate from the DNS after adding this global mode. This corresponds to an
incident shock angle of θ = 13◦ and a spanwise wave number of β = 0.25.

base flow. Figure 12 shows the L2-norm of the three-dimensional streamwise velocity perturbation
associated with the global mode as it develops in time. After an initial adjustment, the DNS matches
the growth predicted by GSA closely. The initial adjustment is likely caused by slight differences
in numerical methods. To obtain an accurate growth rate from the DNS after adding the unstable
global mode, we remove all numerical dissipation. Due to almost no dissipation, the shocks adjust
slightly compared to the scheme used to obtain the steady base flows. A very small amount of
numerical dissipation is needed to suppress numerical instabilities that otherwise contaminate the
steady base flows and prevent convergence at very long times (much longer than the time considered
in Fig. 12). This explains the initial transient in Fig. 12 and highlights the sensitivity of hypersonic
flows to numerical methods. After this initial adjustment, we recover the the growth rate predicted
from GSA almost exactly. Furthermore, the mode shape (Fig. 10) is almost exactly the same as the
eigenfunction predicted by GSA, after it makes very slight adjustments to changes in the base flow.
This comparison provides confidence that our GSA results are relevant to the physics of the DNS
and that our global modes are robust to slight changes in the base flow and numerical methods.

IV. DISCUSSION

As discussed in the preceding section, GSA reveals that SWBLI becomes globally unstable
at a critical shock angle of θ = 12.9◦. Furthermore, at this shock angle, the analysis predicts the
least-stable global mode to be nonoscillatory and three dimensional, with spanwise wave number
β = 0.25, in good agreement with DNS. While this provides useful information about the nature
of the bifurcation, we now pursue a deeper understanding of the physical mechanism driving this
instability. Determining a causal relationship between the different parts of a global mode can be
challenging, because a global mode encompasses feedforward and feedback effects simultaneously.
Nevertheless, by examining the shape of the critical global mode, we develop a fluid mechanical
model of SWBLI instability in Sec. IV A. In particular, we test the hypothesis that the feedforward
part of the global mode relies upon centrifugal instability created by curved streamlines over the
downstream portion of the recirculation bubble. Then, in Sec. IV B, we mathematically investigate
the origin of the critical global mode by applying an adjoint solver. Adjoint global modes show how
SWBLI instability can be optimally triggered. Additionally, by overlapping direct and adjoint global
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FIG. 13. Rear view of the SWBLI recirculation bubble perturbed by the critical global mode. In both images,
the gray separation stream surface bounds the recirculating flow contained in the bubble. (a) Magenta and green
isosurfaces of positive and negative streamwise vorticity show a spanwise array of counterrotating streamwise
vortices that form just under the apex of the recirculation bubble. (b) In response to the streamwise vortices,
the recirculation bubble expands and contracts periodically in the span. The yellow surface represents another
stream surface, taken closer to the core of the recirculation bubble. See [38] for a movie showing these figures
from different angles.

modes, we find the spatial region where the instability is most sensitive to base flow modifications.
All of these approaches work together to build a coherent picture of the physics responsible for
SWBLI instability.

A. Physical mechanism

Figures 13 and 14 show the effect of the least-stable global mode with spanwise wave number
β = 0.25 at a shock angle of θ = 13◦. As before, we select θ = 13◦ to match the DNS results.
To visualize the recirculation bubble, we add the global mode to the base flow and compute the
compressible stream function associated with the resulting flow in each xy plane. The compressible
stream function ψ is defined such that ρu = ∇ × ψ , where ψ = [0 0 ψ]. The density inside the
recirculation bubble is nearly constant (see Fig. 2), so contours of ψ closely approximate stream
traces computed by path integration of the velocity field. To compute ψ , we ignore the spanwise
component of u because it is much smaller than the streamwise and wall-normal components. Also,
since the global mode is stationary, the spanwise velocity perturbations are 90◦ out of phase relative
to the streamwise and wall-normal perturbations. This means that in the xy planes where the bubble

FIG. 14. (a) Side view of the recirculation bubble (gray) perturbed by the same global mode shown in
Fig. 13. The front edge cuts through the spanwise location of maximum bubble strength (the spanwise position
corresponding to the maximum streamwise extent of the bubble core as indicated by the yellow isosurface).
At this spanwise location, the bubble pushes the impinging shock foot forward, producing a patch of positive
pressure perturbation bounded by a red isosurface. Above the bubble, a shift in the expansion fan produces
a negative pressure perturbation bounded by a blue isosurface. (b) Pressure perturbations produced by the
impinging shock foot have the correct phase to drive the streamwise vortices (magenta and green isosurfaces)
shown in Fig. 13(a). See [38] for a movie showing these figures from different angles.
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reaches its maximum and minimum streamwise extents, the spanwise velocity perturbation is indeed
exactly zero.

The gray isosurface shown in Fig. 13(a) represents the separation stream surface (ψ = 0) which
detaches from the wall along the separation line. Fluid underneath this surface stays inside the
recirculation bubble, whereas fluid outside this surface is deflected around the bubble. As such, this
surface represents the boundary of the recirculation bubble.

Figure 13(a) also shows colored isosurfaces of streamwise vorticity inside the recirculation bubble.
Because the base flow contains zero spanwise velocity and no spanwise gradients, any streamwise
vorticity that develops is purely a consequence of perturbations owing to the three-dimensional global
mode. As such, the shape of these patches of streamwise vorticity does not depend on the amplitude
of the global mode relative to the base flow. These isosurfaces show that a spanwise periodic array of
alternating streamwise vortices forms just below the apex of the bubble. Very close to the wall, patches
of opposite vorticity form below these vortices, owing to shear created by the no-slip condition at
the wall. The curved arrows in Fig. 13(a) show the sense of the streamwise vortices just underneath
the bubble apex. The counterrotation of these vortices acts both to draw high-momentum fluid outside
the bubble down close to the wall and to push low-momentum fluid inside the bubble upward into the
flow, in an alternating pattern along the spanwise direction. This causes both a spanwise undulation
in the apex of the bubble and a corresponding undulation in the reattachment line. Owing to the
obliqueness of the angles in this hypersonic flow, the variation in the reattachment line location is
much larger than the variation of the bubble height.

The spanwise variation of the reattachment line produces a corresponding spanwise modulation
of the recirculation bubble strength as shown in Fig. 13(b). Here the yellow isosurface represents
another surface of constant ψ , closer to the core of the spanwise vortex at the center of the recirculation
bubble. In regions where the recirculation bubble is extended, the bubble core expands and vice versa.
Importantly, when the bubble core expands, it does so approximately equally in the upstream and
downstream directions.

As the bubble expands, it pushes the base of the incident oblique shock slightly upstream. This
forms a patch of positive pressure perturbation at the upstream end of the bubble core vortex as shown
in Fig. 14(a). At the same time, the expansion fan at the apex of the bubble grows and shifts slightly
upstream, resulting in a negative pressure perturbation extending into the freestream. At spanwise
locations corresponding to minimum bubble strength, this process occurs in reverse, resulting in
corresponding pressure perturbations of opposite sign. Similar to the streamwise vortices found
previously, the red and blue isosurfaces of positive and negative perturbation pressure (respectively)
are determined by the critical global mode only and so are not dependent on its amplitude relative
to the base flow.

Finally, Fig. 14(b) shows a front view of the pressure perturbations that develop at the base of the
incident shock, relative to the streamwise vortices found previously. These pressure perturbations
extend a short distance down into the recirculation bubble. When added to the base flow, these
pressure perturbations would correspond to a spanwise corrugation of the incident shock base. From
Fig. 14(b) we see that the original spanwise vortices form just underneath these alternating pressure
perturbations. The alternating pressure perturbations have the correct phase to provide a driving
impulse to the streamwise vortices.

This completes the cycle that sustains the critical global mode. Shock-wave/boundary-layer
interaction instability forms from streamwise vortices created by corrugations at the base of the
incident shock. These streamwise vortices modulate the recirculation bubble strength in a way that
reinforces the incident shock corrugations. This stationary three-dimensional instability is similar to
a mechanism observed in laminar recirculation bubbles that form in incompressible fluid flow past
backward-facing steps and bumps [39–41]. A similar mechanism is also active in laminar separation
bubbles created by adverse pressure gradients applied to incompressible flat plate boundary layers and
provides an important route to three-dimensional flow independent of external excitation [42]. For our
high-speed flow, we visualize the three-dimensional nature of SWBLI instability by adding the global
mode to the base flow and plotting streamlines as shown in Fig. 15. We observe that the resulting
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FIG. 15. Toroidal streamline patterns inside the recirculation bubble created by three-dimensional SWBLI
instability. Corrugation of the impinging shock creates a region of high pressure just upstream of the point F (u).
This pushes streamlines at the periphery of the recirculation bubble away from this point and towards the point
F (s). As they recirculate, these streamlines (red) trace the exterior of a horizontally aligned torus. At F (s), they
are attracted to the center of the recirculation bubble and then quickly pass through the center of the torus to
reemerge close to F (u).

streamlines follow surfaces of spanwise aligned tori sandwiched between locations of maximum
and minimum recirculation bubble strength. In the upstream portion of the bubble, streamlines are
driven away from the point marked F (u) owing to the high pressure created by the corrugated shock
base (see also Fig. 14). In the downstream portion of the bubble, these streamlines do not recover
completely in terms of their spanwise position. The net result is that fluid elements near the periphery
of the recirculation bubble slowly move in the spanwise direction from regions of maximum bubble
strength to regions of minimum bubble strength, over many recirculation cycles (indicated by the
red streamlines). At the point of minimum bubble strength, fluid elements are attracted to a stable
spiraling focus that forms in the bubble core. Still rotating, they are then rapidly injected back through
the center of the torus to an unstable spiraling focus at the point of maximum bubble strength (blue
streamlines). The outward spiraling of streamlines at this unstable focus explains the equal magnitude
upstream and downstream modulation of the bubble core shown in Fig. 13(b). This toroidal motion
of fluid elements inside the recirculation bubble is also consistent with the location of the patches of
streamwise vorticity shown in Fig. 13.

Figure 16 summarizes how the global mode responsible for SWBLI instability modifies the flow
topology. At the separation line, a series on no-slip critical points forms when the flow is perturbed
three dimensionally. Because the flow along the wall is attracted to the separation line, these critical
points form an alternating sequence of stable nodes and saddle points. The reattachment line is
similarly perturbed except that an alternating sequence of unstable nodes and saddle points results.
Different from low-speed separation bubbles [43], the stable nodes along the separation line and the
unstable nodes along the reattachment line do not align in the streamwise direction. The result is that
the flow along the wall is driven away from the regions of maximum bubble strength. Along the core
of the bubble (dashed line) a sequence of stable and unstable spiraling foci then forms to allow fluid
elements to return to their original spanwise locations. While the amplitude of a global mode relative
to the base flow is arbitrary (and continuously changing), the topological picture shown in Fig. 16 is
valid even for infinitesimal three-dimensional perturbations and so provides a valid description over
a range of amplitudes. As the amplitude increases, the stable spiraling foci shift to lower positions,
until they finally touch the wall. At this point, they each split into two no-slip stable spiraling foci,
bounded upstream and downstream by two no-slip saddle points. Similar spiraling patterns have
been observed in surface flow visualizations of SWBLI experiments, although wind tunnel sidewall
effects could not be ruled out as possible causes in such cases [44–46].
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FIG. 16. Topology of three-dimensional SWBLI instability. No-slip critical points form along the separation
and reattachment lines. Likewise, three-dimensional instability transforms the center associated with the core
of two-dimensional recirculation bubble to a series of stable and unstable spiraling foci. While this pattern is
reminiscent of three-dimensional instability in low-speed recirculation bubbles, the stable and unstable nodes
along the separation and reattachment lines do not align for SWBLI instability. This creates the toroidal flow
patterns shown in Fig. 15.

The streamwise vortices responsible for the critical SWBLI global mode are not amplified by
centrifugal instability. Figure 17 shows color contours of the Rayleigh discriminant


 = 2ωz

|ū|
R

, (7)

where ωz is spanwise vorticity and R is the local streamline curvature [40,47],

R = |ū|3
∇ψ · (ū · ∇ū)

. (8)

FIG. 17. Color contours of the Rayleigh discriminant 
. Blue contours (
 < 0) indicate regions that can
support centrifugal instability, whereas yellow contours (
 > 0) correspond to zones of stability with respect
to centrifugal perturbations. The gray line represents the separation streamline. The black lines correspond to
contours of streamwise vorticity from the critical global mode, showing the location of the streamwise vortices
that support SWBLI instability.
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FIG. 18. Adjoint mode corresponding to the critical direct global mode shown in Fig. 10. Red and blue
isosurface contours represent, respectively, positive and negative adjoint streamwise velocity perturbations.

Centrifugal instability can develop in regions where 
 < 0, which occurs when the vorticity and
angular velocity of a fluid particle have opposite sign. Figure 17 shows that the Rayleigh discriminant
does become negative for the SWBLI flow, but only outside of the recirculation bubble. In the figure
the separation streamline is represented by the white contour. The black lines, on the other hand,
indicate contours of streamwise vorticity derived from the critical global mode. They reside inside
the bubble, well away from regions of negative 
. In fact, the streamwise vortices form in a region
of positive 
, where centrifugal effects are stabilizing. Therefore, while centrifugal instability (e.g.,
Görtler vortices) may play a role in amplifying disturbances outside and especially downstream of
the recirculation bubble, we conclude that it plays no role in sustaining the critical global mode
associated with SWBLI instability.

It is worth noting that in addition to Görtler instability, spatial transient growth due to the lift-up
effect may also play a role in separation bubbles and lead to the formation and amplification of
streamwise streaks [48,49]. Quantification of this effect for SWBLI would be very interesting, but it
would rely on nonmodal stability analysis methodologies such as adjoint looping to identify optimal
transient growth [50], which fall beyond the scope of this paper.

B. Adjoint analysis

While the fluid mechanics of SWBLI instability presented in the preceding section are compelling,
we apply adjoint analysis to further understand the origin of this instability. While the direct linear
system (4) governs the behavior of effects of the instability, we derive an adjoint linear system that
governs the sensitivity of the instability to its environment. In other words, analysis of this adjoint
system uncovers what causes the instability to begin in the first place [51].

For example, Fig. 18 shows contours of adjoint streamwise velocity perturbation of the adjoint
global mode corresponding to the direct mode shown in Fig. 10. In the direct mode, the effects of
SWBLI instability are evident inside the bubble and downstream. The corresponding adjoint mode,
however, is active upstream, both in the incoming boundary layer and along the incident shock. This
adjoint mode indicates where the critical global mode is most receptive to external perturbations and
so represents the optimal way to trigger the SWBLI instability. In fact, introducing small perturbations
to the flow that align perfectly with the adjoint mode will, with the least amount of effort expended,
cause the flow to respond via the direct global mode. Of course, external perturbations need not
align exactly with this adjoint mode in order for the instability to activate. Rather, convolution of
the adjoint mode with arbitrary disturbances (e.g., white noise) picks out those components that will
initiate the instability and so the adjoint mode can be thought of as a trigger for the instability.
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FIG. 19. Color contours of ‖q̂j‖E‖q̂+
j ‖E quantifying the overlap between the direct and adjoint critical

global mode. Red corresponds to regions where SWBLI instability is most sensitive to base flow modification,
or the wave maker. The white line indicates the separation streamline, whereas the black lines represent contours
of streamwise vorticity created by the critical global mode.

The triggering mechanism provided by the adjoint global mode can be interpreted physically. For
instance, the spanwise alternating pattern of velocity perturbations along the incident shock indicates
that SWBLI instability can be initiated by the spanwise corrugation of the oblique shock. This agrees
well with the fluid mechanical model presented above. Likewise, spanwise alternating fluctuations in
the streamwise velocity of the incoming boundary layer can activate the instability through spanwise
modulation of the bubble strength.

While the direct global mode in Fig. 10 shows that the effects of SWBLI instability are felt mostly
downstream, Fig. 18 shows that the instability is precipitated from perturbations introduced mostly
upstream. This spatial separation of the direct and adjoint global modes indicates significant non-
normality of the Jacobian operator, caused by the strong convection present in the flow [52]. Alteration
of SWBLI instability therefore requires a balance between modifying sensitivity to upstream triggers
and modifying the responsiveness of the system in terms of downstream effects. These modifications
can be accomplished by changing the base flow slightly. In fact, one can show mathematically that
an upper bound for the deviation of an eigenvalue ∂ωj associated with the linear operator A due to
a structural perturbation P (such as that created by changing the base flow slightly) is given by

|∂ωj | � ‖q̂j‖E‖P ‖E‖q̂+
j ‖E, (9)

where q̂j and q̂+
j are the direct and adjoint eigenmodes corresponding to the eigenvalue ωj ,

respectively [51–54]. Here the subscript E refers to an energy norm, such as those derived for
compressible flow [55]. From (9) we can see that P has the strongest effect when ‖q̂j‖E‖q̂+

j ‖E

is large. In physical terms, this is the region of space where the direct and adjoint global modes
overlap [51]. For SWBLI, the overlap between direct and adjoint modes is greatest inside the bubble.
The recirculation of the bubble provides the necessary balance between triggers and effects so that
changing the base flow in this region modifies both processes and can even result in stabilization of
the system. Because the instability depends upon the details of the base flow where ‖q̂j‖E‖q̂+

j ‖E is
large, this region is called the wave maker [51]. In essence, the wave maker is the location where the
base flow creates the instability.

Figure 19 shows color contours of ‖q̂j‖E‖q̂+
j ‖E for the critical global mode for the shock angle

θ = 13◦. The white contour line represents the separation streamline and the black contour lines are
again three different levels of streamwise vorticity. The red color in Fig. 19 indicates regions where
SWBLI instability is most sensitive to base flow modification, i.e., the wave maker. This figure shows
that the wave maker is contained almost exclusively inside the recirculation bubble. Furthermore,
the region of maximum base flow sensitivity occurs just beneath the apex of the recirculation bubble.
This is precisely the region where corrugations in the incident shock foot create streamwise vortices,
according to the fluid mechanical model developed previously. This sensitive region also follows the
streamwise vortices downstream. This suggests that these streamwise vortices form a crucial element
of SWBLI instability, in good agreement with our fluid mechanical model.

The fact that the wave maker is almost entirely contained within the recirculation bubble explains
the insensitivity of the global mode to boundary conditions (sponge layers) at the edges of the
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computational domain. For SWBLI, the recirculation bubble and its interaction with the impinging
shock foot completely determines the global mode dynamics and are not affected by the sponge
layers so long as the sponge layers are sufficiently far removed from the wave maker. This provides
additional confidence in the physical relevance of the mechanism discussed above.

V. CONCLUSION

We applied global stability analysis to find that an oblique shock wave impinging on a Mach
5.92 laminar boundary layer becomes linearly unstable for shock angles greater than θ = 12.9◦ at
the conditions studied. At the critical shock angle, the analysis predicted that a mode with spanwise
wave number β = 0.25 first becomes unstable and that this mode does not oscillate in time. These
predictions agreed well with results of three-dimensional direct numerical simulations.

The global stability analysis took into account strong streamwise gradients in the base flow
such as that created by an impinging shock. It also allowed perturbations to propagate upstream
as well as downstream, unlike methods based on the parabolized stability equations. Because of
this, we were able to unravel the feedforward and feedback effects of the recirculation bubble to
develop a physical model of the self-sustaining process responsible for SWBLI instability. We found
that SWBLI instability depends crucially on the development of streamwise vortices within the
recirculation bubble. These streamwise vortices redistribute streamwise momentum in the wall-
normal direction and create a spanwise undulation in the reattachment line. The spanwise variation
of the bubble length modulates its strength, creating corrugations in the oblique shock at its base,
which in turn reinforce the original streamwise vortices.

Because the recirculation bubble creates significant streamline curvature in the flow, we
investigated centrifugal instability as a possible mechanism for the creation of the streamwise
vortices. We computed the Rayleigh discriminant for the flow and found that the streamwise vortices
responsible for the instability form in a location where this quantity is positive so that the flow
is stable with respect to centrifugal perturbations. We found that the Rayleigh discriminant does
become negative, however, outside of the recirculation bubble so that centrifugal instability may play
a role in the amplification of streaks downstream (see [50]). The streamwise vortices responsible for
sustaining SWBLI instability, however, cannot be a consequence of centrifugal instability, but are
created instead by spanwise corrugations at the base of the incident shock.

Adjoint analysis further confirmed the physical model of SWBLI instability and provided
additional insight about the mechanisms responsible. The adjoint mode corresponding to the critical
global mode indicated that SWBLI can be initiated by perturbations along the incident shock or in
the upstream boundary layer. The former corresponds to corrugations in the incident shock, while the
latter would result in spanwise periodic modulation of the recirculation bubble strength. Both of these
effects were links in the self-sustaining cycle driving SWBLI instability, so this agreed well with our
physical interpretation of the global stability results. Furthermore, by combining the critical direct
and adjoint global modes, we calculated the sensitivity of SWBLI instability to modifications in the
base flow. This analysis revealed that the spatial location of maximum sensitivity (the so-called wave
maker region) was almost entirely contained within the recirculation bubble. Furthermore, inside the
bubble, the zone of peak sensitivity coincided with the streamwise vortices found previously. This
once again indicated that SWBLI instability hinges upon the formation of streamwise vortices inside
the recirculation bubble.
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TABLE I. Comparison of our global mode solver to Malik’s results [56]. Real and imaginary parts of the
eigenvalue corresponding to the least-stable global mode for five test cases are listed below. We define the length
scale � = √

ν∞x/u∞, where ν∞ is the kinematic viscosity in the freestream.

Case Malik’s No. M∞ Re� Real Imaginary Malik’s real Malik’s imaginary

1 1 0.50 2000 0.0289 0.00223 0.0291 0.00224
2 3 2.50 3000 0.0362 0.00064 0.0367 0.00058
3 5 10.0 1000 0.1143 0.00017 0.1159 0.00015
4 4 10.0 2000 0.0982 0.00228 0.0975 0.00203
5 6 4.50 1500 0.2521 −0.00255 0.2534 −0.00249

APPENDIX A: GLOBAL MODE SOLVER VERIFICATION

To verify our global mode solver, we run a few test cases that are presented in [56]. The base
flow is locally parallel and consists of a boundary-layer profile that satisfies the Mangler-Levy-
Lees transformation. We model the bottom boundary as an adiabatic wall. Furthermore, we employ
periodicity at the left and right boundaries of the domain. A sponge layer is placed along the top
boundary, which we treat as a freestream outlet. Further, we use a stretched grid with (nx,ny) =
(101,301) and y+ = 0.6 for every case. The Reynolds number ranges from 1000 to 3000, while the
Mach number has a lower bound of 0.5 and goes up to 10. We consider stagnation temperatures
between about 277.8 and 2333.3 K. There are no shocks present in this flow configuration.

Real and imaginary parts of the eigenvalue corresponding to the least-stable global mode for each
test case that we have computed with our global mode solver is compared against Malik’s results
[56]. Table I displays these comparisons along with the case number. Note that only the second case
has a nonzero spanwise wave number with β = 0.1. The boundary-layer displacement thickness
changes for every case. We specify the streamwise wave number α for the first four test cases as
0.1, 0.06, 0.12, and 0.105, respectively. The last comparison is different in that we solve the spatial
eigenvalue problem. For this we choose ω = 0.23, which is the angular frequency in [56].

We see from Table I that our global mode solver agrees well with previous stability calculations
about high-speed boundary layers. For the first test case, we obtain almost exact agreement using the
shift-and-invert Arnoldi method to obtain the least-stable eigenmode. Notice at supersonic speeds
we also get excellent agreement with Malik’s results [56]. As the Mach number increases to 10,
our solutions start to deviate a small amount from the established values. Nevertheless, our global
mode solver still predicts the established values to within 15% relative error in these extreme cases.
Our formulation is different from some recent work on the stability of hypersonic boundary layers
[57] because we utilize nonconservative state variables p, u, and s when solving for global modes.
Our method is based on the characteristic formulation described in [26] and is similar to the method
used in [58] to study instabilities in swept boundary-layer flow at Mach 8.15. Table I shows that
our method is able to accurately capture the relevant flow instability physics over a broad range of
operating conditions of interest.

APPENDIX B: GRID INDEPENDENCE OF THE EIGENSPECTRA

Four grid resolutions are tested to study the convergence of our global mode solver. We use
constant grid spacing in the streamwise direction for each resolution. Furthermore, the stretching
function in the wall-normal direction does not change. The first grid has a total of 449100 points,
while the other three have approximately 20%, 40%, and 60% less. We decrease the percentage of
points in both the streamwise and wall-normal directions by the same amount. Here we focus our
attention on the least-stable modes.

We consider an incident shock angle of θ = 13◦ and a spanwise wave number of β = 0.25.
Figure 20 shows four eigenspectra pertaining to the various grid resolutions at this condition. We
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FIG. 20. Eigenspectra that correspond to high (blue dots), medium (red circles), low (green triangles), and
very low (magenta diamonds) resolution grids of the SWBLI for θ = 13◦ and β = 0.25. A closeup of the
unstable eigenvalue is displayed on the right.

see most eigenvalues shift by only a small amount with increasing grid resolution. Eigenvalues at
higher frequencies have a noticeable shift because they are part of the continuous spectrum. This
is expected since there are fewer grid points in the freestream than there are close to the wall. To
examine more precisely how the eigenvalues shift with grid resolution, the inset plot on the right-hand
side of Fig. 20 shows a closeup view of the unstable eigenvalue. While the increment in resolution
was constant between successive grids, we observe the eigenvalues shift significantly less between
the two highest-resolution grids. This indicates that the eigenspectrum is converged with respect to
mesh resolution. While the axes of the inset figure are chosen to exaggerate the shift of the unstable
eigenvalue, it is important to note that in fact it changes by less than 1.5% going from low to high
resolution.
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